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Abstract

Regression analysis is a powerful tool for the study of

changes in a dependent variable as a function of an in-

dependent regressor variable, and in particular it is ap-

plicable to the study of anatomical growth and shape

change. When the underlying process can be modeled by

parameters in a Euclidean space, classical regression tech-

niques [13, 34] are applicable and have been studied ex-

tensively. However, recent work suggests that attempts to

describe anatomical shapes using flat Euclidean spaces un-

dermines our ability to represent natural biological vari-

ability [9, 11].

In this paper we develop a method for regression analy-

sis of general, manifold-valued data. Specifically, we extend

Nadaraya-Watson kernel regression by recasting the regres-

sion problem in terms of Fréchet expectation. Although this

method is quite general, our driving problem is the study

anatomical shape change as a function of age from random

design image data.

We demonstrate our method by analyzing shape change

in the brain from a random design dataset of MR images

of 89 healthy adults ranging in age from 22 to 79 years.

To study the small scale changes in anatomy, we use the

infinite dimensional manifold of diffeomorphic transforma-

tions, with an associated metric. We regress a representa-

tive anatomical shape, as a function of age, from this popu-

lation.

1. Introduction

An important area of medical image analysis is the de-

velopment of methods for automated and computer-assisted

assessment of anatomical change over time. For example,

the analysis of structural brain change over time is impor-

tant for understanding healthy aging. These methods also

provide markers for understanding disease progression.

A number of longitudinal growth models have been de-

veloped to provide this type of analysis to time-series im-

agery of a single subject (e.g., [2, 7, 24, 32]). While these

methods provide important results, their use is limited by

their reliance on longitudinal data, which can be imprac-

tical to obtain for many medical studies. Also, while these

methods allow for the study of an individual’s anatomy over

time, they do not apply when the average growth for a pop-

ulation is of interest.

Random design data sets, which contain anatomical data

from many different individuals, provide a rich environment

for addressing these problems. However, in order to de-

tect time-related trends in such data, two distinct aspects of

anatomical variation must be separated: individual varia-

tion and time effect. For measurements that naturally form

Euclidean vector spaces, this separation can be achieved by

regressing a representative value over time from the data.

For example, in Figure 1 we apply kernel regression to

measurements reported in a study by Mortamet et al. [28]

on the effect of aging on gray matter and ventricle volume

in the brain. The regression curves demonstrate the aver-

age volume, as a function of patient age, of these structures.

These trends—on average there is a loss of gray matter and

expansion of the ventricles—have been widely reported in

the medical literature on aging [12, 23, 28]. While volume-

based regression analysis is important, it does not provide

any information about the detailed shape changes that oc-

cur in the brain, on average, as a function of age. This has

motivated us to study regression of shapes.

Recent work has suggested that representing the geome-
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try of shapes in flat Euclidean vector spaces limits our abil-

ity to represent natural variability in populations [9, 11, 24].

For example, Figure 2 demonstrates the amazing non-linear

variability in brain shape among a population of healthy

adults. The analysis of transformation groups that describe

shape change are essential to understanding this shape vari-

ability. These groups vary in dimensionality from simple

rigid rotations to the infinite-dimensional group of diffeo-

morphisms [26]. These groups are not generally vector

spaces and are instead naturally represented as manifolds.

A number of authors have contributed to the field of sta-

tistical analysis on manifolds (see Pennec [30] for a more

detailed history). Early work on manifold statistics in-

cludes directional statistics [5, 16] and statistics of point set

shape spaces [19, 20]. The large sample properties of sam-

ple means on manifolds are developed in [3, 4]. Jupp and

Kent [17] describe a method of regression of spherical data

that ‘unwraps’ the data onto a tangent plane, where stan-

dard curve fitting methods can be applied. In [9, 14, 30],

statistical concepts such as averaging and principal com-

ponents analysis were extended to manifolds representing

anatomical shape variability. Many of the ideas are based

on the method of averaging in metric spaces proposed by

Fréchet [10].

In this paper we use the notion of Fréchet expecta-

tion to generalize regression to manifold-valued data. We

use this method to study spatio-temporal anatomical shape

change in a random design database consisting of three-

dimensional MR images of healthy adults. Our method

generalizes Nadaraya-Watson kernel regression in order to

compute representative images of this population over time.

To determine the shape change in the population over time,

we apply a diffeomorphic growth model [24] to this time-

indexed population representative image.

2. Methods

2.1. Review of univariate kernel regression

Univariate kernel regression [13, 34] is a non-parametric

method used to estimate the relationship, on average, be-

tween an independent random variable T and a dependent

random variable Y . The estimation is based on a set of ob-

servations {ti, yi}
N
i=1 drawn from the joint distribution of T

and Y . This relationship between T and Y can be modeled

as yi = m(ti) + ǫi, where ǫi describes the random error

of the model for the ith observation and m is the unknown

function that is to be estimated.

In this setting, m(t) is defined by the conditional expec-

tation

m(t) ≡ E(Y |T = t) =

∫

y
f(t, y)

fT (t)
dy (1)

where fT (t) is the marginal density of T and f(t, y) is the

Figure 1. Illustration of univariate kernel regression: the effect

of aging on gray matter (top) and ventricle volume (bottom) in

the brain. Circles represent volume measurements relative to total

brain volume. Kernel regression is used to estimate the relation-

ship between patient age and structure volume (filled lines).

joint density function of T and Y . For random design data,

both f(t, y) and fT (t) are unknown and so m has no closed-

form solution. A number of estimators for m have been

proposed in the kernel regression literature.

One such estimator—the Nadaraya-Watson kernel re-

gression estimator [29, 35]—can be derived from (1) by

replacing the unknown densities with their kernel density

estimates

f̂h
T (t) ≡

1

N

N
∑

i=1

Kh(t − ti) (2)

and

f̂h,g(t, y) ≡
1

N

N
∑

i=1

Kh(t − ti)Kg(y − yi). (3)

In these equations, K is a function that satisfies
∫

R
K(t) dt = 1. Kh(t) ≡ 1

h
K( t

h
) and Kg(t) ≡ 1

g
K( t

g
)

are kernel functions with bandwidths h and g respectively.

Plugging these density estimates into equation 1 gives

m̂h,g(t) =

∫

y
1
N

∑N

i=1 Kh(t − ti)Kg(y − yi)
1
N

∑N

i=1 Kh(t − ti)
dy. (4)

Finally, assuming that K is symmetric about the origin, in-

tegration of the numerator leads to

m̂h(t) =

∑N

i=1 Kh(t − ti)yi
∑N

i=1 Kh(t − ti)
. (5)



Figure 2. To demonstrate the extent of natural brain shape variability within a population of healthy subjects, a mid-axial slice is presented

for a sample of images used in this study. The images are arranged in order of increasing patient age from 40 (left) to 50 (right). Because of

the complexity of the shapes and the high level of natural shape variability, it is extremely difficult to visually discern any patterns within

these data.

Intuitively, the Nadaraya-Watson estimator returns the

weighted average of the observations yi, with the weight-

ing determined by the kernel. Note that f̂h,g(t, y) is fac-

tored out of the estimator—the weights only depend on the

values ti.

In Figure 1 we illustrate univariate kernel regression by

applying it to demonstrate the effect of aging on ventricle

volume and gray matter volume in the brain. This illus-

tration is based on data collected by Mortamet et al. [28].

Each cross-mark represents a volume measurement, relative

to total brain volume, for a particular patient. These mea-

surements were derived from 3D MR images of 50 healthy

adults ranging in age from 20 to 72 using an expectation-

maximization based automatic segmentation method [21].

We used kernel regression to estimate the relationship, on

average, between volume and patient age (filled lines). A

Nadaraya-Watson kernel estimator with a Gaussian kernel

of width σ = 6 years was used.

2.2. Kernel regression on Riemannian manifolds

In this section we consider the regression problem in the

more general setting of manifold-valued observations. Let

{ti, pi}
N
i=1 be a collection of observations where the ti are

drawn from a univariate random variable T , but where pi

are points on a Riemannian manifold M. The classical ker-

nel regression methods presented in Section 2.1 are not ap-

plicable in this setting because they rely on the vector space

structure of the observations. In particular, the addition op-

erator in (5) is not well defined.

The goal is to determine the relationship, on average, be-

tween the independent variable T and the distribution of the

points {pi} on the manifold. This relationship can be mod-

eled by

pi = Expm(ti)(ǫi) (6)

where m : R → M defines a curve on M. The error

term ǫi ∈ Tm(ti)M is a tangent vector that is interpreted

as the displacement along the manifold of each observation

pi from the curve m(t). The exponential mapping, Exp,

returns the point on M at time one along the geodesic flow

beginning at m(ti) with initial velocity ǫi.

Following the univariate case, we define the regression

function m(t) in terms of expectation. However, in this

case we generalize the idea of expectation of real random

variables to manifold-valued random variables via Fréchet

expectation [10, 18]. Let f(p), p ∈ M be a probability den-

sity on the manifold. The Fréchet expectation is defined as

Ef [p] ≡ argmin
q∈M

∫

M

d(q, p)2f(p) (7)

where d(q, m) is the metric on the manifold M. This def-

inition is motivated by a minimum variance characteriza-

tion of the mean, where variance is defined in terms of

the metric. Note that Fréchet expectation might not be

unique [18]. Using the above definition, an empirical esti-

mate of the Fréchet mean, given a collection of observations

{pi, i = 1 · · ·N} on a manifold M, is defined by

µ = argmin
q∈M

1

N

N
∑

i

d(q, pi)
2.

Motivated by the definition of the Nadaraya-Watson esti-

mator as a weighted averaging, we define a manifold kernel

regression estimator using the weighted Fréchet empirical

mean estimator as

m̂h(t) = argmin
q∈M

(

∑N

i=1 Kh(t − ti)d(q, pi)
2

∑N

i=1 Kh(t − ti)

)

. (8)

Notice that when the manifold under study is a Euclidean

vector space, equipped with the standard Euclidean norm,

the above minimization results in the Nadaraya-Watson es-

timator.

2.3. Regression of rotational pose (SO(3))

Before we present results of the study of brain growth,

we exemplify the methodology in detail on the finite-

dimensional Lie group of 3D rotations, SO(3).
Following the approach in [6], we solve the weighted

averaging problem in (8) by a gradient descent algorithm.

The tangent space of SO(3) at the identity is the Lie algebra

of 3×3 skew-symmetric matrices, denoted so(3). We equip



SO(3) with the standard bi-invariant metric, given by the

Frobenius inner product on so(3). The tangent space at an

arbitrary rotation R ∈ SO(3) is given by either left or right

multiplication of so(3) by R.

The Lie group exponential map and its inverse, the log

map, are used to compute geodesics and distances. The ex-

ponential map for a tangent vector X ∈ so(3) is given by

exp(X) =







I, θ = 0,

I +
sin θ

θ
X +

1 − cos θ

θ2
X2, θ ∈ (0, π),

where θ =
√

1
2 tr(XT X). A geodesic γ(t) starting at a

point R ∈ SO(3) with initial velocity RX is given by

γ(t) = R exp(tX). The Lie group log map for a rotation

matrix R ∈ SO(3) is given by

log(R) =







I, θ = 0,
θ

2 sin θ
(R − RT ), |θ| ∈ (0, π),

where tr(R) = 2 cos θ + 1. The distance between two

rotations R1, R2 ∈ SO(3) is given by d(R1, R2) =
‖ log(R−1

1 R2)‖.

Now consider the weighted averaging problem with ro-

tation data Ri ∈ SO(3) and corresponding weights wi =

Kh(t − ti)/
∑N

j=1 Kh(t − tj). The regression problem in

(8) minimizes the weighted sum-of-squared distance func-

tion of the form f(R, {Ri, wi}) =
∑

i wid(R,Ri)
2. The

gradient for this function at a point R ∈ SO(3) is given by

∇Rf = −
∑

i wiR log(R−1Ri). Therefore, given the esti-

mate R̂k for the weighted average, the gradient descent up-

date to solve (8) is given by R̂k+1 = R̂ exp(−R−1∇
R̂k

f).

2.4. Kernel regression for populations of brain im-
ages

In this section we apply our shape regression methodol-

ogy to study the effect of aging on brain shape from ran-

dom design image data. We have observations of the form

{ti, Ii}
N
i=1 where ti is the age of patient i and Ii is a three-

dimensional image that we identify with the anatomical

configuration of patient i. We seek the unknown function

m that associates a representative anatomical configuration,

and its associated image Î , with each age.

It is important to point out that we cannot rely on the

natural L2 structure of the images themselves for our anal-

ysis. While images can be added voxel-wise, the result

is a loss of any identification with the anatomical config-

uration. Instead, we represent anatomical differences in

terms of transformations of the underlying image coordi-

nates. This approach is common within the shape analysis

literature [11, 25]. Because we are interested in capturing

the large, natural geometric variability evident in the brain

(cf. Figure 2), we represent shape change as the action of

the group of diffeomorphisms, denoted by H. In the rest of

this section, we formalize this notion and define a distance

between shapes that is valid in this setting and will allow us

to apply our regression methodology.

Let Ω ⊂ R
3 be the underlying coordinate system of the

observed images Ii. Each image I ∈ I can be formally

defined as an L2 function from Ω to the reals. Let H be the

group of diffeomorphisms that are isotopic to the identity.

Each element φ : Ω → Ω in H deforms an image according

to the following rule

Iφ(x) = I(φ−1(x)). (9)

We apply the theory of large deformation diffeomor-

phisms [1, 8, 15, 26] to generate deformations φ that are

solutions to the Lagrangian ODEs d
ds

φs(x) = vs(φs(x))
for a simulated time parameter s ∈ [0, 1]. The transfor-

mations are generated by integrating the velocity fields v
forward in time.

We introduce a metric on H using a Sobelev norm via a

partial differential operator L applied to v. Let e ∈ H be

the identity transformation. We define the squared metric

dH(e, φ)2 as

dH(e, φ)2 = min
v:φ̇s=vs(φs)

∫ 1

0

∫

Ω

||Lvs(x)||2 dx ds (10)

subject to

φ(x) = x +

∫ 1

0

vs(φs(x)) ds. (11)

The distance between any two diffeomorphisms is de-

fined by

dH(φ1, φ2)
2 = dH(e, φ−1

1 ◦ φ2)
2. (12)

This distance satisfies all of the properties of a metric:

it is non-negative, symmetric, and satisfies the triangle

inequality[27].

Using this metric on H, we can define the distance be-

tween two images as

dI (I1, I2)
2
≡

min
v:φ̇s=vs(φs)

∫ 1

0

∫

Ω

‖Lvs(x) ‖2 dx ds

+
1

σ2

∫

Ω

‖I1(φ
−1(x)) − I2(x)‖2 dx

(13)

where the second term accounts for the noise model of the

image [14]. While this construction is motivated by the

metric on H, it does not strictly define Riemannian metric

on the space of anatomical images (because of the second

term). In the future we plan to define distance in terms of

the elegant construction described in [33].



Having defined a metric on the space of images that

accommodates anatomical variability, we can apply that

metric to regress a representative anatomical configuration,

with associated image, from our observations {ti, Ii}

Îh(t) = argmin
I∈I

(

∑N

i=1 Kh(t − ti)d(I, Ii)
2

∑N

i=1 Kh(t − ti)

)

. (14)

Equation 14 expresses the following intuitive idea: For

any age t, the population can be represented by the anatom-

ical configuration that is centrally located, according to d,

among the observations that occur near in time to t. As in

the univariate case, the weights are determined by the kernel

K.

2.5. Diffeomorphic growth model

Having regressed a population representative anatomical

image, as a function of age, we can now study the local

shape changes evident—for the population—as a function

of age. We apply the longitudinal growth model of Miller

et al. [24] to the regressed image Î(t) in order to estimate

the time-indexed deformation that quantifies the fine scale

anatomical shape change of Î as a function of time.

2.6. Computational Strategy

We approximate the solution to (14) using an iterative

greedy algorithm that is similar to the method described

in [14]. When computing each representative image Î(x),
we use a multi-resolution approach that generates images at

progressively higher resolutions, where each level is initial-

ized by the results at the next coarsest scale. This strategy

has the dual benefits of (a) addressing the large scale shape

changes first and (b) speeding algorithm convergence.

The dominating computation at each iteration is a

Fast Fourier Transform. The order of the algorithm is

MNn log n where M is the number of iterations, N is the

number of images, and n is the number of voxels along the

largest dimension of the images. Therefore, the complex-

ity grows linearly with the number of observations, making

this algorithm suitable for application to large data sets.

3. Results

To demonstrate our method for estimating cross-

sectional growth, we applied the algorithm to a database of

3D MR images. The database contains MRA, T1-FLASH,

T1-MPRAGE, and T2-weighted images from 97 healthy

adults ranging in age from 20 to 79 [22]. For this study

we only utilized the T1-FLASH images; these images were

acquired at a spatial resolution of 1mm×1mm×1mm using

a 3 Tesla head-only scanner. The tissue exterior to the brain

was removed using a mask generated by a brain segmenta-

tion tool described in [31]. This tool was also used for bias

Figure 3. Representative anatomical images for the female cohort

at ages 35 (left) and 55 (right). These images were generated from

the random design 3D MR database using the shape regression

method described in Section 2.

correction. In the final preprocessing step, all of the images

were spatially aligned to an atlas using affine registration.

We applied our algorithm separately for males and fe-

males. We selected only patients for which T1-Flash data

was available. The final size of the male cohort was 43 pa-

tients ranging in age from 22 to 79; the final size of the

female cohort was 46 patients ranging in age from 22 to 68.

We applied the manifold kernel regression estimator (14)

to compute representative anatomical images for each co-

hort. Images were computed for ages 35 to 55 at increments

of 2 years using a Gaussian kernel with σ = 5 years. Fig-

ures 3 and 4 contain slices from these representative images

for the female cohort. Each 3D image took approximately

4 hours to produce on a 2.4GHz system with approximately

16 gigabytes of RAM.

We applied the diffeomorphic growth estimation algo-

rithm described in Section 2.5 to determine the anatomical

shape change over time for each cohort. Figure 5 illus-

trates the instantaneous change in the deformation at ages



age=29 31 33 35 37 39 41 43

45 47 49 51 53 55 57 59

Figure 4. These images show the average brain shape as a function of age for the female cohort (ages noted below each image). These are

not images from any particular patient—they are computed using the regression method proposed in this paper (14). Noticeable expansion

of the lateral ventricles is clearly captured in both the image data and the determinant maps (Figure 5). All 2D slices are extracted from the

3D volumes that were used for computation.

age=35 37 39 41 43 45 47 49 51 53

Figure 5. Illustration of the local brain shape change as a function of time for the female cohort. These data were generated by applying

a diffeomorphic growth model to the representative images that were computed using manifold regression. Red indicates local expansion;

blue indicates local contraction.

35, 41, 45, and 51 for the female cohort. More precisely,

the figure shows the log-determinant of the Jacobian of the

time-derivative of the deformation. In these images, red pix-

els indicate expansion of the underlying tissue, at the given

age, while blue pixels indicate contraction. According to

these determinant maps, expansion of the ventricles is evi-

dent for each age group. However, the expansion is accel-

erated for ages 45 to 53. Note that this finding agrees well

with volume-based regression analysis from Figure 1.

4. Conclusion

We have proposed a method for population shape re-

gression that enables novel analysis of population shape and

growth from random design data when the underlying shape

model is non-Euclidean. While the method is quite general,

in this paper we apply this method to study the effect of

aging on the brain. We regress a population representative

shape, indexed by age, from a database of MR brain images.

Finally, we apply a longitudinal growth model to these rep-

resentative images to study the detailed local shape change

that occurs, on average, as a function of age.

In the future, we plan to apply our method to a larger,

more focused anatomical study. In terms of methodology, it

is well known in the kernel regression community that ker-

nel width plays a central role in determining the regression

results [34]. We plan an extensive study of kernel width

selection for our method.
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