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Abstract

Accurate and physiologically meaningful biomarkers for human aging are key to assessing antiaging therapies. Given ethnic differences in 

health, diet, lifestyle, behavior, environmental exposures, and even average rate of biological aging, it stands to reason that aging clocks trained 

on datasets obtained from speci�c ethnic populations are more likely to account for these potential confounding factors, resulting in an 

enhanced capacity to predict chronological age and quantify biological age. Here, we present a deep learning-based hematological aging clock 

modeled using the large combined dataset of Canadian, South Korean, and Eastern European population blood samples that show increased 

predictive accuracy in individual populations compared to population speci�c hematologic aging clocks. The performance of models was also 

evaluated on publicly available samples of the American population from the National Health and Nutrition Examination Survey (NHANES). 

In addition, we explored the association between age predicted by both population speci�c and combined hematological clocks and all-cause 

mortality. Overall, this study suggests (a) the population speci�city of aging patterns and (b) hematologic clocks predicts all-cause mortality. 

The proposed models were added to the freely-available Aging.AI system expanding the range of tools for analysis of human aging.

Keywords: Biochemistry aging clocks, Biological age, Deep Learning, Deep Neural Networks, Machine Learning.

According to the World Health Organization, from 2000 to 2015 the 

global life expectancy experienced its fastest growth since the 1990s, 

increasing by 5 years within this period (1). Life expectancy, however, 

varies across countries (1) and even across different regions within one 

country (2). The underlying factors driving this variability often unclear 

and research into subpopulation speci�c life expectancies could facilitate 

the identi�cation of more comprehensive country and region  speci�c 

aging patterns. Toward this end, we are investigating the populations 

of three diversely aging including Canada, South Korea, and Eastern 

Europe. Aging-dependent health care and social costs are rapidly 
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increasing in each of these three (3). Increased life expectancy, even when 

coupled with decreasing birth rate, is outpacing economic growth (4). 

Assessing aging is the �rst step towards interventions to reduce the ill-

ness, social, and economic-burden associated with aging (5).

Growing pre-clinical experimental evidence suggests the feasi-

bility of �nding interventions for extending human health span 

(6). Evaluating such interventions might require long follow-up 

periods and entails the possibility of failing to translate preclin-

ical success into improved clinical outcomes (7). The search for ef-

fective geroprotectors (i.e., anti-aging molecules) shown few positive 

results in humans (8,9). Biomarkers of aging, or aging clocks, are 

promising tools with the potential to provide a quantitative foun-

dation upon which to evaluate the therapeutic ef�cacy of clinical 

healthspan-extending interventions (10). Much progress has been 

made in measuring aging biomarkers using easily obtained data 

such as blood DNA methylation (11,12), transcriptomics (13), and 

metabolomics (14). Data of different modalities provide different 

levels of precision regarding the magnitude and rate of age-related 

changes, and biomarkers vary according to their resolving ability. 

While methylation-based aging clocks provide the most accurate 

representation of chronological age to date, epigenetic information 

is relatively stable (15). As such, epigenetic aging clocks appear to be 

comparatively less effective in quantifying the effect of behavioral, 

lifestyle, environmental, and interventional factors upon the rate of 

biological aging (16). Furthermore, epigenetic clocks are not as prac-

tically measurable as markers quantifying transcriptional (13,17) 

and the standardized accredited assays biochemical (14) markers. 

Nonetheless, the most accurate methods of calculating biological age 

is a subject of ongoing debate, and recent studies suggest that a suite 

of biomarkers, rather than any individual biomarker, constitute the 

most effective means of assessing the health status of a patient (18).

Here, we present several deep learning-based predictors of bio-

logical age trained upon population-speci�c blood biochemistry and 

hematological cell count datasets. Previously, we showed that blood 

biochemistry could be used to assess the biological age of a patient 

(14), an approach that has several advantages compared to other 

aging clocks, including strong correlation with chronological age 

(coef�cient of determination is greater than 0.8), constancy across 

the entire adult age range, lack of in�uence of sex, and ease of assess-

ment compared to methylation-based aging clocks. However, such 

aging clocks seem to be population-speci�c (19), therefore, robust 

aging clocks should be trained upon population-speci�c data. While 

current research appears to validate the importance of ethnicity 

upon life expectancy and mortality rates (20–22), the effect of ethni-

city on blood biochemistry-based biomarkers of aging remains un-

clear. In the present study we decided to focus on emerging machine 

learning (ML) techniques, such as deep neural networks (DNNs), in 

the construction of our aging clocks. DNNs are perceived as game-

changing methods in data analysis due to their capacity to capture 

hidden underlying features and learn complex representations of 

highly multidimensional data (23).

Materials and Methods

To perform this study, we trained a series of DNNs on anonymized 

blood tests for patients from three distinct ethnic populations: 

Korean, Canadian, and Eastern European. We compared the predic-

tive accuracy of our deep learning models �rst when trained using 

population speci�c data, and then when using a combined and eth-

nically diverse dataset that includes patients from all three patient 

populations (see Figure 1). We used the same feature space of 20 

blood biochemistry markers, cell counts, and sex to train three sepa-

rate deep networks on three speci�c ethnic populations. Here, we 

excluded samples from patients younger than 20 years of age given 

the high error rate in this age group and the different biochemistry 

reference ranges associated with adolescents and children.

Data Overview

Anonymized blood test records were kindly provided by Alberta Health 

(with IRB approval), Gachon University Gil Medical Center, and an 

independent laboratory, Invitro. Patient data were fully anonymized. In 

total, four datasets containing 20,699 samples for the Canadian popu-

lation, 65,760 samples for the South Korean population, and 55,920 

samples for the Eastern European population. Population dataset char-

acteristics are described in Supplementary Table 1.

To investigate the predictive power of trained models on the 

publicly available data and to assess the predictive value of hemato-

logic clocks to predict all-cause mortality, we analyzed the National 

Health and Nutrition Examination Survey (NHANES) dataset. We 

obtained retrospective laboratory data and demographics data for 

1996–2016 years of and mortality data for 1996–2011 years using 

the National Center for Health Statistics website (https://www.cdc.

gov/nchs/index.htm). The collected NHANES dataset contained 

55,751 samples with blood test values, which were used to predict 

the age of patients. The blood test dataset was merged with mor-

tality dataset by anonymized patient unique ids resulting in a table 

of 2,768 samples.

For mortality analysis, we explored Canadian population dataset 

(with known 340 deaths) and NHANES dataset (with known 873 

deaths).

Figure 1. Study design. First, blood samples of three populations (Canadian, 

Korean and Eastern European) with 21 the most relevant features with 

maximum samples available were used to train three population  specific 

predictors. Afterwards, the resulting dataset consisting of samples from all 

three populations was used to train and test DNNs for predicting patient age.
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Training and Testing Set Design

Models were trained on 19 blood test features (in this paper, we 

refer to features implying input data or variables), 15 of which are 

biochemistry markers, including Albumin, Glucose, Hemoglobin, 

Cholesterol, Sodium, Urea, LDL Cholesterol, Triglycerides, 

Hematocrit, HDL Cholesterol, Total Protein, Calcium, Creatinine, 

Potassium, and Total Bilirubin, and four are cell count markers, 

including Erythrocytes,  and Platelet count. While these markers 

are common parameters measured for South Korean and Eastern 

European blood tests, several of these markers were not present in 

the full Canadian dataset. Therefore, in order to obtain the same fea-

ture space for all three population speci�c datasets, values of Urea, 

Total Protein, Calcium, and total bilirubin for part of the Canadian 

dataset were reconstructed via regression analysis using samples 

with all 19 parameters (Supplementary Table  2). Values of blood 

tests were treated as continuous values while sex and population 

labels were treated as binary and dummy variables, respectively. We 

split the data into the training and testing sets at an 80/20 ratio. 

DNNs Implementations

We treated age prediction as a regression task, that is, the model 

takes a vector of blood test values and returns a single value of pa-

tient age. Here we decided to use a deep model with multiple layers, 

which allows �tting data with high-level of dependencies between 

input features (blood biochemistry and cell counts) and the output 

feature (age).

We used multilayer feed-forward neural networks as deep mod-

els (ie, having more than three layers) and the Python implemen-

tation of the Keras (https://keras.io/) library with Theano (http://

deeplearning.net/software/theano/) backend to build and train the 

neural networks. Grid search over a space of model parameters was 

used for optimization in order to �nd the best performing network 

architecture. We minimized the mean absolute error (MAE) loss 

function using a back propagation algorithm. We used the Leaky 

ReLU activation (24) function after each layer, EVE (25) as an opti-

mizer of the cost function, and a dropout (26) with 35% probability 

after each layer for the purposes of regularization. We trained the 

networks with �vefold cross validation to compensate for over�tting 

and to receive more robust performance metrics. All experiments 

were conducted using an NVIDIA Titan X (Maxwell) graphics 

processing unit.

We also compared DNNs with a set of conventional ML algo-

rithms, including Elastic Net, Random Forest, Partial Least squares, 

Gradient Boosting Machines, and Principal component Analysis. All 

models were implemented using the Scikit-learn library.

Feature Importance Analysis

To address the interpretability problem of DNNs and yield more 

insight into the data, we have applied permutation feature import-

ance (PFI) analysis to rank input blood markers according to their 

importance in terms of age prediction. We applied PFI for the best 

performing models on each dataset. PFI is a wrapper method, which 

assigns the relative importance to input features based on the level of 

decreased age prediction accuracy after each feature random reshuf-

�ing. The larger the decrease in the accuracy of age prediction, the 

more important the input feature is. We applied the same technique 

for the age prediction in the present study (14), with some modi�ca-

tion. Sex and population binary vectors were wrapped randomly, but 

systematically replaced with the opposite values.

Statistical Analysis

The following metrics were used to evaluate the accuracy of the age 

prediction models:

1) Pearson  correlation  coef�cient
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R2 shows the percentage of variance explained by the regression 

between predicted and actual age.
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dicted age, yi  is age value and N is a number of samples. MAE 

demonstrates average disagreement between the chronological 

age and the predicted age.

4) Log 2 transformed Aging ratio: Log Aging ratio2 =
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where yi
 is age prediction of the model, yi is a chronological 

age value, N is a number of samples. Aging ratio is the ratio of 

predicted age over observed chronological age. Log
2
Aging ratio 

of 1 means that the sample is predicted two-fold older than a 

chronological age and Log
2
Aging ratio of −1 means sample is 

predicted half as old
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is an age prediction of the model, yi  is a true age value. For 

instance, if epsilon ( )ε is 5 and the DNN model predicts age of 

55 but the real age is 50 or 60, then by epsilon accuracy such 

sample would be considered as correctly classi�ed.

To evaluate the association of the predicted age acceleration or age 

slowdown with all-cause mortality, we calculated the hazard ratios. 

We analyzed survival time data (from the age at blood draw until age 

at death or last follow-up). For hazard analysis by group, we used 

“coxph” function from the “survival” R package (27).We adjusted 

Cox models to chronological age and sex. A delta ( )∆  group was 

assigned according to the difference between predicted and actual age 

of the sample. Cases where ∆ ≥ 5,  the samples are predicted older 

than their chronological age, were compared to norms ( ),− ≤ ≤5 5∆  

similarly, cases where ∆ ≤ −5 , samples predicted young, were com-

pared to norms ( ).− ≤ ≤5 5∆

Results

Population Specific Biomarkers of Human Aging

To develop both universal and population speci�c aging clocks, we 

trained a series of DNNs on anonymized blood tests for patients 

from three distinct ethnically diverse populations: South Korean, 

Canadian, and Eastern-European. The best performing predictor 
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trained upon the Canadian population speci�c dataset demonstrated 

an MAE of 6.36  years and an R2 of 0.52 (Figure  2A and D and 

Table  1). Meanwhile, the best-performing predictor trained upon 

the South Korean population speci�c dataset demonstrated an MAE 

of 5.59 and an R2 of 0.49 (Figure 2B and E and Table 1). Lastly, 

the best-performing predictor trained upon the Eastern European 

population speci�c dataset demonstrated an MAE of 6.25, an R2 of 

0.69 (Figure 3C and F and Table 1). The best performing predictor 

of our previously reported blood biochemistry-based aging clock, 

Aging.AI, demonstrated R2  =  0.80 and MAE  =  6.07  years, while 

the entire ensemble demonstrated 83.5% epsilon-accuracy R2 = 0.82 

and MAE = 5.55 years. Aging.AI was trained on over 56,000 sam-

ples of 41 blood biochemistry and cell counts markers of patients 

from Eastern Europe.

To further investigate the importance of population in age pre-

diction, we tested Canadian, South Korean, and Eastern European 

population of samples on the networks trained on each single popu-

lation, the results of which are summarized in Table  1. Eastern 

European samples demonstrated the greatest increase in MAE 

(9.25  years compared to 6.25  years) and R2 (0.27 compared to 

0.69) when tested on the networks trained on the Canadian popu-

lation. Indeed, almost the same increase in MAE (8.52 compared to 

6.25  years) and R2 (0.34 compared to 0.69) were observed when 

the Eastern European samples were tested on the networks trained 

on the South Korean population. A similar situation is observed for 

Canadian and Korean populations tested on the Eastern European 

network (MAE of 9.68  years compared to 6.36  years and R2 of 

0.24 compared to 0.52 for the Canadian population, and MAE of 

9.77 years compared to 5.59 years and R2 of 0.29 compared to 0.49 

for Korean population). In contrast, the network trained on South 

Koreans appear to perform almost as well as it does on Canadians, 

and vica versa.

Next, we trained the age predictor on the combined datasets with 

population type included as a feature. The best-performing network 

achieved an R2 of 0.65 and MAE of 5.94 years for the combined 

population dataset (Figure 3A and B; Table 1), an R2 of 0.52 and 

MAE of 6.17 years when tested on the Canadian population, an R2 

of 0.49 and MAE of 5.60 years when tested on the South Korean 

population and, an R2 of 0.70 and MAE of 6.22 years when tested 

on the Eastern European population (Figure 4; Table 1). Using the 

datasets of all three populations to train the network resulted in an 

increase in the accuracy of age prediction for both the combined 

population as well as for each population individually (Table 1 and 

Supplementary Figure 2).

To determine which markers contributed to the predictive ac-

curacy of the network the most and to evaluate possible differ-

ences in biological aging between each distinct population, we 

performed PFI analysis as described in Putin et  al. (13). Given 

that the age distribution and sample size of each population spe-

ci�c dataset differed (Supplementary Figure 1), we equalized the 

sample size and age distribution of each set, so that an equal 

number of samples from each age-group of each population spe-

ci�c dataset were included in the �nal dataset, in order to avoid 

incorrect ranking of population type during PFI. Additionally, we 

trained a separate model on a combined dataset excluding popu-

lation type as a feature to evaluate the change in the predictive 

accuracy of the model.

Glucose, albumin, sex, urea, hemoglobin, HDL cholesterol, and 

triglycerides were ranked as the seven most important markers for 

the Canadian population. Hemoglobin, albumin, erythrocytes, sex, 

cholesterol, glucose, and sodium were ranked as the seven most im-

portant markers for the South Korean population. Albumin, glucose, 

LDL cholesterol, gender, urea, and erythrocytes were ranked as the 

seven most important markers for the Eastern European popula-

tion. The biochemistry markers found to be most important for the 

predictive accuracy of all three population speci�c predictors were 

Albumin, hemoglobin, urea, and glucose (Figure  5A–D). For the 

model trained on samples from all three populations, we found that 

the population-type ranked as one of the most important features for 

age prediction (Figure 5E). Consistent with this �nding, the network 

trained on a feature space that included population type as a feature 

demonstrated higher performance than the network that excluded 

population type as a feature (R2 of 0.65 compared to 0.62 and MAE 

of 5.94 compared to 6.09  years) (Table  1). Exclusion of sex as a 

feature also signi�cantly reduced the accuracy of the model trained 

on all three populations (R2 of 0.61 compared to 0.65 and MAE 

of 6.23 years compared to 5.94 years), but not for models trained 

on the individual populations (Table 1). In addition, the age of fe-

male samples tends to be predicted more accurately compared to 

male samples for South Korean and Eastern European populations 

by both population speci�c models and the universal model, how-

ever, no signi�cant difference is observed. Notably, female samples 

in the Canadian population were predicted less accurately compared 

to male samples.

Figure 2. Actual chronological age vs predicted age for Canadian (A), Korean 

(B), and European (C) populations of patients. The linear regression line is 

shown in dark grey. Log
2
transformed Aging ratio for for Canadian (D), Korean 

(E), and European (F) population predictions. Log
2
Aging ratio of 1 means that 

sample is predicted twice older than a chronological age and Log
2
Aging ratio 

of −1 means sample is predicted half as old.
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Validation of Models

The National Health and Nutrition Examination Survey (NHANES) 

dataset were used to validate our models. We excluded population 

as a feature in models trained on the individual Canadian, South 

Korean and Eastern European datasets, as well as the combined 

dataset to predict the age of NHANES samples based on their blood 

biochemistry values.

Networks trained on Eastern European and all samples demon-

strated higher accuracy in prediction of age of NHANES samples 

and achieved R2 of 0.46 and MAE of 7.88 and R2 of 0.50 years and 

MAE of 9.93 years, respectively (Table 1; Figure 6). This perform-

ance coincides with the performance of population speci�c networks 

tested on other populations. Interestingly, for the NHANES dataset 

the difference in accuracy of age prediction for male and female sam-

ples is higher compared to internal datasets investigated in this study 

and the age of female samples is predicted less accurately compared 

to male samples.

To investigate the predictive ability of deep hematologic aging 

clocks on mortality, we employed chronological age- and sex-

adjusted Cox regression models. Samples predicted younger con-

sistently demonstrated a decrease in  the hazard ratio (from 49.2 

to 31.5% for the Canadian dataset and from 30.4 to 24% for the 

NHANES dataset), while samples predicted older demonstrated a 

Figure  4. Actual chronological age vs predicted age for (A) Canadian, (B) 

Korean, and (C) European patient populations tested on the network trained 

on all population samples. Linear regression lines are shown in dark grey. 

Log
2,
 transformed aging ratio for (D) Canadian, (E) Korean, and (F) European 

populations tested on the network trained on all population samples. 

Log
2
Aging ratio of 1 means that sample is predicted twice older than a 

chronological age and Log
2
Aging ratio of −1 means sample is predicted half 

as old.

Figure  5. Feature importance plots of the model trained on (A) Canadian 

population samples, (B) on Korean population samples, and (C) on Eastern 

European population samples. Permutation feature importance (PFI) method 

was used to rank blood markers and sex by their importance in age prediction. 

(D) The top seven most important features across all predictors trained on 

different populations. Albumin, sex, hemoglobin, and urea are ranked as 

the most important markers for age prediction in all three models; (E) the 

most important markers for the network trained on the three populations. 

Albumin, glucose, and erythrocyte count were ranked as the most markers 

for age prediction in this model. PFI method was applied to rank blood 

markers, sex and population by their importance in age prediction.

Figure  3. (A) Actual chronological age vs predicted age for the resulting 

network trained and tested on the all three populations. The linear regression 

line is shown in dark grey. (B) Log
2
 transformed aging ratio. Log

2
Aging ratio 

of 1 means that sample is predicted twice older than a chronological age and 

Log
2
Aging ratio of −1 means sample is predicted half as old.
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signi�cant increase in the hazard ratio (from 69.5 to 185.8% for the 

Canadian dataset and from 32.6 to 66.2% for the NHANES data-

set) (Figure 6E, Supplementary Table 3).

Discussion

Here, we present several novel hematological aging clocks trained 

using data from several diverse populations. The best-performing 

predictor achieved an MAE of 5.94  years having greater predict-

ive accuracy than the best-performing predictor of our previously 

reported aging clock (which achieved an MAE of 6.07 years), despite 

being trained on a narrower feature space (21 compared to 41 fea-

tures). Importantly, our deep learned predictors outperformed con-

ventional ML models (Supplementary Figure 3). These results are in 

line with the hypothesis that ethnically-diverse aging clocks have the 

potential to predict chronological age and quantify biological age 

with greater accuracy than generic aging clocks. Furthermore, they 

have a greater capacity to account for the confounding effect of eth-

nic, geographic, behavioral, and environmental factors upon the pre-

diction of chronological age and the measurement of biological age.

Albumin, glucose, urea and hemoglobin were among the most 

important blood biochemistry parameters for all three popula-

tion  speci�c predictors. Albumin is the most prevalent protein 

in blood and its primary function is the regulation of oncotic 

pressure, which is critical for transcapillary �uid dynamics, and 

deviations in serum albumin levels is associated with a number 

of pathophysiological conditions (28). Hypoalbuminemia (i.e. 

abnormally low levels of albumin) is often associated with mal-

nutrition, liver disease, injury, chronic in�ammation (29) and the 

aging process (30). Blood glucose levels, on the contrary, tend to 

increase with age, and glucose is able to modify proteins via irre-

versible glycosylation, a feature that is directly associated with 

the aging process (31). In this regard, low-calorie and low-glucose 

diets are considered to be one of the most effective antiaging inter-

ventions, as well as metformin, a biguanide that reduces glucose 

levels. Levels of serum urea also increase with age, which is asso-

ciated with age-related decrease in muscle mass (32). Age-related 

decrease in hemoglobin is common in the elderly (33), a condition 

that increases the risk of cardiovascular disease, cognitive decline 

and an overall decline in quality of life (34). Our hematological 

clock is consistent with what is already known about the biology 

and pathophysiology of aging. While the blood parameters are 

not accurate biomarkers of aging by themselves, when analyzed 

in combination they can be used to reasonably accurately predict 

chronological and biological age.

Other groups have reported previously upon sex and ethni-

city speci�c differences in the rate of biological aging as for example 

quanti�ed by epigenetic aging clocks (35). Here, we report similar 

�ndings obtained through the use of hematologic aging clocks. The 

results of our PFI analysis also found that sex was ranked as one 

of the important features for age prediction by our system, which 

is consistent with sex-speci�c differences in the rate of aging as 

reported by many other groups; indeed, the phenomenon of sex-

dependent differences in aging rates has been widely investigated in 

model organisms and humans with fairly consistent results (35,36). 

However, the model trained on both males and females predicts age 

equally well for both sexes, despite the fact that blood biochemistry 

values vary between males and females and that such parameters as 

creatinine, hemoglobin, or HDL Cholesterol have sex-speci�c nor-

mal reference ranges.

The performance of population speci�c networks is better on the 

population dataset they were trained on. At the same time, the inclu-

sion of a population into the training set increases the accuracy of 

age prediction for this population. Accordingly, the network trained 

on all populations demonstrates almost the same level of perform-

ance compared to population  speci�c networks tested on popula-

tion  speci�c data. Population type was also ranked as one of the 

most important markers for age quanti�cation perhaps indicating 

that different populations show variability in their aging phenotype. 

Indeed, our PFI analysis determined the population type to be one of 

the most important features in our model, and our population spe-

ci�c predictors achieved greater predictive accuracy than our previ-

ously reported DL-based age predictor, despite being trained on a 

narrower feature space. However, we should emphasize that, while 

the tests used are completely standardized it is possible that slight 

biases between batches and labs in different regions could introduce 

subtle changes in the results. This could perhaps contribute to some 

of the differences observed between populations.

Figure  6. Validation of models. Actual chronological age vs predicted age 

for NHANES dataset using networks trained on Canadian (A), Korean (B), 

European (C), and (D) all patient population samples. The linear regression 

lines are shown in dark grey. Networks trained on both E.  European and 

all patient samples demonstrated the higher accuracy of age prediction of 

NHANES dataset. (E) Hazard ratios for the NHANES and Canada datasets. 

A  Cox proportional hazards regression model was used to relate survival 

time to the accelerated aging group (delta >5) and slowed aging group (delta 

<5). Patients predicted younger their chronological age has a lower mortality 

risk, while patients predicted older has a higher risk. Each row represents a 

hazard ratio and 95% confidence interval. Note: “∗∗∗” for p-value of .001; “∗∗” 

for p-value of .01; “∗” for p-value of .05.

1488 Journals of Gerontology: BIOLOGICAL SCIENCES, 2018, Vol. 73, No. 11

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

m
e
d
g
e
ro

n
to

lo
g
y
/a

rtic
le

/7
3
/1

1
/1

4
8
2
/4

8
0
1
2
8
7
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Previously, Cohen et  al. showed age prediction for four blood 

test datasets obtained from multiple different patient populations 

of non-Eastern European descent, using a freely available validated 

blood-based aging clock (www.Aging.AI) (14). Authors highlighted 

that the lower accuracy reported in their study was partly the result 

of using a much lower number of input samples [ie, 100 samples 

compared to 6,242 in our previous study (14)], the limited age range 

of the samples, and a minimum allowed number of input markers 

(ie, 10 markers compared to 41 in our previous study (14)). Our 

current results for the NHANES dataset correspond with the results 

presented by Cohen and colleagues, DNNs trained upon one popu-

lation show lower accuracy when predicting age on a different popu-

lation. However, a network trained on a diverse population, such as 

Eastern Europeans or on multiple combined datasets demonstrated 

higher accuracy. Notably, by using the NHANES and Canadian 

datasets we could test a key requirement for aging clocks: the ability 

to predict mortality. Importantly, patients that were found to have 

an older blood-age than their chronological age had increased risk 

of dying and vice versa. A younger blood age could, therefore, be a 

useful outcome measure in interventions for healthy aging.

DL-based hematological aging clocks, even when trained on a 

limited feature space, demonstrate reasonably high accuracy in pre-

dicting chronological age. The application of DNNs to the predic-

tion of chronological age and the quanti�cation of biological age 

allows us to characterize nonlinear dependencies between blood 

parameters and age. Further, the population-adjusted aging clocks 

display high levels of generalization, resulting in increased perform-

ance when applied to chronological age prediction and biological 

age quanti�cation of both ethnically-homogenous and heterogenous 

patient populations. Indeed, going forward we will include add-

itional population speci�c blood biochemistry datasets in order to 

further increase the predictive power and general utility of DL-based 

hematologic aging clocks. Importantly, the continuously updated 

Aging.AI system is freely available on the www.aging.ai website.

Supplementary Material

Supplementary data is available at The Journals of Gerontology, 

Series A: Biological Sciences and Medical Sciences online.
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