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Abstract

Background: Ethnic differences in human DNA methylation have been shown for a number of CpG sites, but the

genome-wide patterns and extent of these differences are largely unknown. In addition, whether the genetic

control of polymorphic DNA methylation is population-specific has not been investigated.

Results: Here we measure DNA methylation near the transcription start sites of over 14, 000 genes in 180 cell lines

derived from one African and one European population. We find population-specific patterns of DNA methylation

at over a third of all genes. Furthermore, although the methylation at over a thousand CpG sites is heritable, these

heritabilities also differ between populations, suggesting extensive divergence in the genetic control of DNA

methylation. In support of this, genetic mapping of DNA methylation reveals that most of the population

specificity can be explained by divergence in allele frequencies between populations, and that there is little overlap

in genetic associations between populations. These population-specific genetic associations are supported by the

patterns of DNA methylation in several hundred brain samples, suggesting that they hold in vivo and across

tissues.

Conclusions: These results suggest that DNA methylation is highly divergent between populations, and that this

divergence may be due in large part to a combination of differences in allele frequencies and complex epistasis or

gene × environment interactions.

Background

In multicellular organisms, the great diversity of cell

types is maintained by mitotically heritable differences

in gene expression, which are in part regulated by epige-

netic mechanisms [1]. These include histone modifica-

tions, histone variants, RNA-based mechanisms, and

DNA methylation [2]. The latter is perhaps the best

understood component of the epigenetic machinery [3]

and in somatic cells occurs almost exclusively on cyto-

sine residues in the context of CpG dinucleotides [4].

While CpGs are underrepresented across the human

genome, they are enriched at the majority of gene pro-

moters, forming regions known as CpG islands that can

regulate the expression of neighboring genes [4]. DNA

methylation is not only closely linked to tissue-specific

gene expression, but also to a number of intriguing bio-

logical phenomena such as X-chromosome inactivation

in females, allele-specific expression of imprinted genes,

aging, and cancer [5].

An emerging aspect of epigenetics is its role at the

interface between the environment and the genome [6].

Although DNA methylation is a very stable epigenetic

mark, numerous environmental influences have been

associated with variation in DNA methylation as well as

other epigenetic marks [2,6]. These include nutritional

factors, exposure to environmental pollutants, and social

environment. It is this plasticity that underlies much of

the potential contribution of DNA methylation to multi-

factorial diseases and complex phenotypes [7]. However,

the fundamental biology of the epigenome poses some

challenges to testing this attractive concept. For exam-

ple, most primary material available from human popu-

lations consists of mixtures of different cell types with

distinct epigenomes, making it difficult to specifically

assess the association of epigenetic changes with envir-

onmental exposure and phenotype. To address the role

of epigenetics in common disease, it is important to

understand the nature of epigenetic variation in the con-

text of genetically well-characterized pure cell

populations.
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Recent advances in high-throughput technologies for

measuring DNA methylation have allowed the patterns

of methylation to be characterized throughout the

human genome [8-15]. Comparing these results between

twins has revealed that methylation at some CpG sites

can be heritable [14,15], and combining them with gen-

otype data has led to the discovery of hundreds of

methylation-associated SNPs, or ‘mSNPs’, in brain tissue

[11,12] as well as cell lines [13]. However, the question

of whether the effects of mSNPs on DNA methylation

levels and heritability differ between human populations

has not been addressed. Quantifying such population

specificity is important for our understanding of the

genetic architecture of the epigenome, as well as its

plasticity during human evolution.

Results

To compare DNA methylation between human popula-

tions, we utilized lymphoblastoid cell lines (LCLs) from

the HapMap project [16], which have been extensively

genotyped and previously employed to study the popula-

tion specificity of gene expression levels [17-19].

Although LCLs can acquire changes in gene expression

and DNA methylation during transformation and cell

culture [20,21], it has been shown that the inter-indivi-

dual variation - which is what is relevant for the current

work - is nearly always conserved (at least for gene

expression) [21]. Our initial study set consisted of 30

family trios (mother/father/offspring) of Northern Eur-

opean ancestry (abbreviated CEU), and 30 trios of Yoru-

ban (West African) ancestry (abbreviated YRI). These

180 cell lines were grown in identical conditions and

their genomic DNA was subjected to quantitative bead-

array-based DNA methylation analysis at 27, 578 CpG

sites near the transcription start sites of 14, 495 genes

(Materials and methods). Although an average of

approximately two CpG sites near each transcription

start site does not directly measure most of the methyla-

tion in regulatory regions, the fact that sites separated by

under approximately 1 kb show highly correlated methy-

lation [9,10] suggests that our data may actually capture

the majority of methylation information near transcrip-

tion start sites - similar to the effect of linkage disequili-

brium (LD) between genetic variants in genome-wide

association studies (though there is no guarantee that the

most relevant sites will be in ‘methylation LD’ with the

CpG sites we measure). The 1, 092 sites on the × and Y

chromosomes were excluded from all analyses to elimi-

nate gender effects, leaving 26, 486 autosomal sites in 13,

890 genes (in which no significant sex specificity was

observed; Figure S1 in Additional file 1).

The resulting data revealed a wide range of within-

population variability in the methylation of individual

CpG sites (Figure 1a), consistent with previous work

[11-13]. Across all sites, the average correlation of

methylation profiles between individuals (mean r
2 = 0.78

for CEU, 0.86 for YRI) was far lower than that of techni-

cal replicates (r2 > 0.99 for all six replicate pairs), indi-

cating that most of the variability was biological, and

not technical. In addition, we replicated results for two

variable sites in all 180 samples by pyrosequencing

bisulfite-treated DNA. This showed excellent concor-

dance with our array-based results (r2 = 0.88 for IGSF2

and 0.94 for PLSCR2; Figure 1b), suggesting that the

array data provide accurate quantification of DNA

methylation levels.

In addition to the variation within each population, we

observed extensive differences in the DNA methylation

patterns between populations (for example, FLJ32569 in

Figure 1a). To quantify this population specificity, we

calculated the number of CpG sites with methylation

differing between populations, using the nonparametric

Wilcoxon test. We found a substantial fraction differing

between the populations (Figure 1c): at nominal P <

0.01, 8, 475 sites differed between populations (32.0% of

sites; false discovery rate (FDR) = 3.1%), and 5, 654 sites

remained significant at P < 0.001 (21.4% of sites; FDR =

0.5%; Figure S2 in Additional file 1). Thus, the methyla-

tion of approximately 30% of the CpG sites we studied -

representing over a third of the genes assayed - differed

between populations (this degree of population specifi-

city is similar to that of gene expression levels in the

same cell lines; Figure S3 in Additional file 1). However,

these population-level differences tended to be small in

magnitude, with only 1, 033 sites (3.9%) differing by an

average of over 10% methylation, and 3, 695 sites

(14.0%) differing by over 5%. Perhaps because of their

small magnitudes, differences in DNA methylation

explained very little of the variation in gene expression

levels between populations that has been previously

reported [17-19] (Supplemental text and Figure S4 in

Additional file 1), consistent with previous findings that

inter-individual variation in DNA methylation explains

almost none of the variation in gene expression [12,13].

These subtle but extensive epigenetic differences

between populations could have genetic or environmen-

tal underpinnings - or a combination of both. To assess

the role of both common and rare genetic variants in

determining DNA methylation patterns, we estimated

the contribution of additive genetic variation (known as

narrow-sense heritability, or h2) to the methylation of

each CpG site in each population by measuring the cor-

relation in methylation levels between parents and their

offspring (Figure 2a; Materials and methods). We

observed heritable methylation at approximately 762

CpG sites in CEU and 930 sites in YRI (Figure 2b), sug-

gesting that genetic control of polymorphic methylation

is fairly common - though slightly less heritable than
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Figure 1 Population-specificity of DNA methylation. (a) Heatmap of the clustered methylation data set. Three representative cases are

magnified: a site with a clear population difference; a site showing within- but not between-population variability; and a site with little variability

within or between populations. (b) We performed pyrosequencing as an independent means to measure methylation of two CpG sites (IGSF2,

chromosome 1, base 117345939; PLSCR2, chromosome 3, base 147696535) in our 180 samples. The agreement validates the accuracy of our

microarray data. (c) The methylation of many sites differs between CEU and YRI. We performed the nonparametric Wilcoxon test to identify CpG

sites differing in methylation between populations. The P-values are skewed towards small values, as shown by comparing to the expected

uniform distribution on either a linear (left) or log (right) scale.
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Figure 2 Population specificity of DNA methylation heritability. (a) An example of a CpG site (near PLSCR2: chromosome 3, base

147696535) whose methylation is heritable in YRI, but not CEU, as assessed by the similarity of average parental methylation to their offspring

methylation (each point represents one family trio). (b) Histograms comparing the observed distribution of per-site heritabilities to a typical

randomized distribution (numbers in the text are based on 1, 000 randomizations; Materials and methods). The greater number of sites at high

heritabilities in the real data compared to random (arrows) is an estimate of the number of heritable sites we can detect in each population. (c)

No similarity between heritabilities in each population (Pearson’s r2 = 0.002; each point is a CpG site).
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gene expression levels in the same cell lines (Figure S5

in Additional file 1). Given our limited power to detect

weakly heritable DNA methylation, these numbers are

likely to be substantial underestimates of the true extent

of heritability.

Considering the overall genetic similarity among

human populations [16,22], we expected the patterns of

heritability in CEU and YRI to be similar. Surprisingly,

we found almost no correlation between them (r2 =

0.002; Figure 2c). This is similar to agreement in h
2 for

gene expression levels in the same cell lines (Figure S6

in Additional file 1). We did not find any evidence for

complex inheritance patterns - such as dominance,

maternal-biased, or paternal-biased inheritance of DNA

methylation - that could affect heritability (Supplemental

text in Additional file 1).

Differences in heritability between populations could

have many causes. h2 is defined as the ratio of a trait’s

additive genetic variance to its total variance in a popu-

lation; factors that can affect this ratio include changes

in the additive genetic variance (for example, differing

allele frequencies), non-additive (gene × gene, or GxG)

genetic variance, environmental variance, and gene ×

environment (GxE) interaction variance [23]. In addi-

tion, limited statistical power could restrict the accuracy

of our heritability estimates (Supplemental text and Fig-

ure S7 in Additional file 1). Although we were not able

to rule out any of these potential factors, the extensive

DNA sequence data available for these samples do allow

us to test the contributions of two types of divergence

that may contribute to the population-specific DNA

methylation levels, and their heritabilities.

One type of divergence that may affect DNA methyla-

tion levels and heritabilities is a difference in the CEU/

YRI allele frequencies at genetic variants that influence

methylation. In particular, lower minor allele frequency

at such a variant reduces the population-level genetic

variation affecting a site’s methylation, thus reducing h
2.

To test how much of our observed population specificity

can be explained in this way, we first identified the

‘local’ SNP (within 100 kb of the CpG) most strongly

associated with each CpG’s methylation across all 180

samples from both populations (although genetic asso-

ciations in ethnically heterogeneous cohorts such as this

can reflect population stratification, it is appropriate for

our current goal). We then included this single SNP

genotype in a multiple regression analysis to assess

whether genotype or population was a stronger predic-

tor of methylation at each site. Among the 5, 654 CpG

sites differing between populations at Wilcoxon P <

0.001 (discussed above), we found that 3, 131 (55.4%)

were more strongly associated with a local SNP geno-

type than with population, implying that common (and

likely cis-acting) genetic variants can explain over half of

the population specificity we observed. This result also

indicates that most of the population specificity is unli-

kely to be due to any type of cell line artifacts, since

these would not correlate with individual SNP

genotypes.

The second type of divergence we tested concerned

complex GxG or GxE interactions: if a genetic variant is

present in two populations, but affects DNA methylation

in only one, then that variant must genetically interact

with other variants and/or the environment. Such inter-

actions can decrease heritability by increasing the popu-

lation-level variance in DNA methylation (the

denominator of h2) without affecting the additive genetic

variance (the numerator). To perform this analysis, we

needed to identify SNPs associated with the methylation

of individual CpG sites separately in each population,

and then compare the lists to one another.

Three previous studies of genome-wide DNA methyla-

tion have mapped SNPs whose genotype correlates with

the methylation of a CpG site, termed ‘mSNPs’ [11-13].

Because mSNPs are highly enriched close to their target

CpG sites [11-13], we performed a ‘local’ association

analysis between methylation at each CpG site with all

HapMap SNPs within 100 kb, separately for each popu-

lation. These local mSNP associations can arise from

either true (likely cis-acting) genetic associations, or

genetic variants that disrupt hybridization of the bead-

array probes in some individuals, leading to spurious

associations (analogous to issues in eQTL mapping

[24]). Using recent and essentially complete catalogs of

common genetic variants in each [22], we identified all

probes overlapping variants present in the 1000 Gen-

omes samples (2, 734 probes in CEU, and 3, 923 probes

in YRI; Table S1 in Additional file 1). We observed a

2.6-fold higher frequency of mSNPs for these probes

compared to probes not disrupted by SNPs, implying a

high rate of spurious associations (re-analysis of pre-

viously reported brain mSNPs [11,12] suggests a simi-

larly high rate of spurious associations in those studies).

Therefore, we removed these probes from our analysis

(these sites did not have a higher level of heritability or

population differentiation, so were not excluded from

those analyses; Supplemental text and Figure S8 in

Additional file 1).

After excluding the potentially problematic probes, we

identified 49 mSNPs in CEU and 86 in YRI (genotype

versus methylation level r > 0.6; FDR of 37% and 28%,

respectively), each explaining 36 to 92% of the variance

in DNA methylation at the associated site (Figure 3a).

We note that these numbers are not directly comparable

to previous studies [11,12] that included CpG probes

that may contain SNPs, since including probes overlap-

ping SNPs in our analysis increases the number of

(apparent) mSNPs while decreasing the FDR. Restricting
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Figure 3 Population specificity of mSNPs. (a) An example of an mSNP (between a CpG site near LDHC (chromosome 11, base 18390591), and

rs2643856) that is found in both YRI and CEU. In both cases the T allele is associated with higher methylation. (b) Venn diagram of the overlap

among CpG sites associated with an mSNP in YRI and/or CEU. Five CEU sites and eight YRI sites were excluded from the overlap analysis

because they overlapped a SNP in the other population. (c) Example of an mSNP (between a CpG site near PLSCR2 (chromosome 3, base

147696535) and rs12489924) that is found in YRI but not CEU. No other SNPs in CEU within 100 kb of the CpG are associated with methylation

at the site (r < 0.25 for all), indicating that the difference is unlikely to be due to differing LD between rs12489924 and the causal variant. (d)

Scatter plot of all 86 YRI mSNPs, showing the strongest association found for that site in each population. Points are colored according to the

significance of the difference in the associations within each population; most mSNP association strengths are significantly (P < 0.005) different

between populations. The same plot for CEU mSNPs is shown in Figure S10 in Additional file 1. (e) Overlap of LCL mSNPs with brain mSNPs

from two studies of European populations (similar to CEU). Both all CEU mSNPs and CEU-specific mSNPs show similar overlap of 40 to 42%,

which is thus a minimum estimate for the extent of mSNPs shared between LCLs and brain. However, YRI-specific mSNPs show only 3.2%

overlap, not significantly different from the 1.2% expected from any random set of CpG sites.
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the CpG sites to only those with heritable methylation

(h2 > 0.2) decreased the FDR substantially (24 mSNPs at

8.6% FDR in CEU; 55 mSNPs at 4.7% FDR in YRI), pro-

viding a high-confidence list of mSNPs (Table 1; Table

S2 in Additional file 1), as well as evidence supporting

our heritability estimates in each population. Our high-

confidence YRI mSNP list overlapped the mSNPs from

a previous study of YRI LCL mSNPs [13] over 50-fold

more than expected by chance (Supplemental text in

Additional file 1). The vast majority of our mSNPs did

not coincide with eSNPs (SNPs associated with gene

expression levels; Supplemental text in Additional file

1), in agreement with previous work [13], suggesting

that most do not impact gene expression levels in stan-

dard LCL culture conditions. None of these mSNPs

affected methylation in known imprinted regions, and

there was no enrichment for Gene Ontology categories

or KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways among the genes associated with either popu-

lation’s mSNPs.

To test our mSNP mapping accuracy, we performed

bisulfite Sanger sequencing at one mSNP locus

(RNF186; Table 1) on 55 individual DNA molecules

from six samples (three CEU and three YRI; Figure S9

in Additional file 1). Each individual’s average methyla-

tion level at a particular CpG site (cg09195271) agreed

with our array-based results (r2 = 0.74), recapitulating

the association between this site’s methylation and the

genotype of a nearby SNP (rs3806308): individuals with

a CC genotype had the lowest average methylation (4/27

DNA molecules methylated = 14.8%), CT was inter-

mediate (5/18 = 27.8% methylated), and TT had the

highest (8/10 = 80% methylated). Interestingly, the

methylation at six additional CpG sites in between

rs3806308 and the target CpG did not correlate with the

SNP genotype, indicating site-specific control of methy-

lation, and not a more general regional effect.

Comparing our complete catalogs of mSNPs from

each population, we found little overlap between them,

or in the DNA methylation sites associated with mSNPs:

Table 1 High-confidence mSNPs in CEU

Gene Chromosome CpG
position

mSNP Perccentage CEU variance
explained

Perccentage YRI variance
explained

CEU
h
2

YRI
h
2

Brain
mSNP?

TTC13 1 229182620 rs7545429 71.3 49.0 0.41 0.64 No

MGC3207 19 13736014 rs371671 68.8 27.2 0.60 0.35 Yes

PPP4R2 3 73128376 rs9816164 66.7 43.2 0.51 0.23 Yes

LDHC 11 18390591 rs11601413 65.4 86.5 0.55 0.68 Yes

RNF186 1 20015084 rs3806308 65.1 68.3 0.41 0.50 No

FLJ32569 1 204085874 rs823080 58.5 4.5 0.28 0.05 Yes

NDUFAF2 5 60275337 rs162244 57.4 62.6 0.26 0.49 No

PCGF3 4 689950 rs2242234 57.2 19.9 0.47 -0.10 No

LTA 6 31648435 rs2516390 55.9 40.5 0.48 0.24 No

IGSF2 1 117345939 rs12130298 52.6 10.0 0.96 -0.19 No

GSTM5 1 110056139 rs4970776 52.4 12.1 0.55 0.14 Yes

FLJ32569 1 204085802 rs823080 50.4 3.7 0.49 0.08 Yes

ASCIZ 16 79627243 rs16954698 47.8 9.6 0.24 -0.12 No

TACSTD2 1 58815787 rs1109896 42.2 50.4 0.29 0.49 No

HLA-C 6 31347299 rs6457375 42.1 44.0 0.24 0.61 Yes

HLA-
DRB5

6 32606582 rs9271586 42.0 28.2 0.32 0.42 No

LYCAT 2 30523367 rs829650 40.8 52.4 0.75 0.64 Yes

PARK2 6 163069159 rs13218900 40.4 41.6 0.21 0.03 No

ITPR1 3 4510075 rs304075 39.4 7.6 0.21 -0.07 No

PSMD5 9 122644335 rs12343516 39.4 35.1 0.53 0.11 Yes

BTN3A2 6 26472772 rs2393667 38.1 14.9 0.22 0.31 Yes

RAPGEF3 12 46439111 rs3759407 37.2 6.8 0.71 -0.17 No

FAM83A 8 124264314 rs16898095 36.3 76.5 0.27 0.71 No

CRIP2 14 105011436 rs4983346 36.1 3.6 0.46 0.04 No

The 24 mSNP-CpG site pairs where > 36% of the variance in CEU methylation is explained by the mSNP genotype, and h2 > 0.2. When more than one SNP was

tied for the strongest association (due to perfect LD), one was chosen randomly. The YRI association strength is for the top local (within 100 kb) mSNP

association for the same CpG site. In bold are YRI associations that explain < 20% of the variance in YRI methylation, indicating a high-confidence set of CEU-

specific associations. For brain mSNPs, the intersection of cis-acting mSNP lists used by the authors of each original study [11,12] was used. YRI mSNPs are listed

in Table S2 in Additional file 1.
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only 11 CpG sites (8.9% of the mSNP-associated sites)

were present in both of our medium-confidence lists

(Figure 3a-c). This lack of overlap parallels the extensive

population specificity of both methylation levels (Figure

1c) and their heritabilities (Figure 2c). Sites with popula-

tion-specific mSNPs also tended to have population-spe-

cific heritabilities (Table 1, entries in bold; and see

PLSCR2 in Figure 2a and 3b), suggesting that the

mSNPs we detect are a major source of the heritability

of their target sites’ methylation.

Three factors could contribute to a lack of overlap

between mSNPs from each population: low power, dif-

fering LD/allele frequencies, and true population-specific

effects of genetic variation on methylation. We found

that neither low power nor differing LD/allele frequen-

cies could account for most of the population specificity

we observed (Supplemental text in Additional file 1),

suggesting that many mSNPs exert population-specific

effects on DNA methylation. Such population specificity

can only be explained by interactions between the

mSNPs and other genetic variants, and/or the environ-

ment (see Discussion).

Comparing our mSNP catalogs to previously reported

mSNPs from brain allows us to test the generality of the

observed population specificity in an independent cohort

and tissue. Among our CEU mSNPs, 42% (10/24; Figure

3e) were previously observed in both of two brain

mSNP catalogs that utilized cohorts of European ances-

try [11,12] (Table 1), indicating that these associations

are shared across tissues. A similar fraction (4/10, 40%;

Figure 3e; Table 1, entries in bold) of the subset of

high-confidence mSNPs observed only in CEU (not YRI)

were also seen in brain. A key prediction of our results

is that mSNPs found only in YRI should not be

observed in the European brain samples if they are truly

population specific. In support of this, only 1/32 (3.1%;

Figure 3e; Table S1 in Additional file 1) of YRI-specific

mSNPs were seen in European brain (not significantly

different than the 1.2% expected by chance). This lack

of overlap is unlikely to be due to potential artifacts of

long-term cell culture, since the CEU cell lines are dec-

ades older than the YRI, which would tend to act

against the trend we observed. Therefore, we conclude

that the population specificity we discovered is recapitu-

lated in vivo, as well as across tissues.

Discussion

Our results demonstrate extensive population specificity

in DNA methylation profiles near transcription start

sites. We observed these differences at three levels: the

extent of DNA methylation, its heritability, and its asso-

ciation with specific genetic variants (mSNPs). We attri-

bute most of these differences to two main factors:

population-specific allele frequencies of genetic variants

affecting DNA methylation, and complex GxG or GxE

interactions.

Although in vitro artifacts are always a concern when

using cell lines - and in particular LCLs, which have been

shown to have some methylation differences compared

to blood [20,21] - our results are unlikely to be driven by

these effects, for three main reasons. First, unlike some

previous studies of population-level differences in these

cell lines [17,25], we processed samples in a randomized

design, to eliminate the possibility of batch effects influ-

encing our estimates of population specificity. Second,

we found most of the population-specific DNA methyla-

tion to be explained by local genetic variants, ruling out

any type of cell line artifact as an alternative explanation.

Third, and most importantly, our population-specific

mSNPs are supported by comparison to two studies of

brain mSNPs in cohorts of European ancestry: 40% of

our CEU-specific mSNPs overlap with both of these pre-

vious studies, whereas only 3.1% of YRI-specific mSNPs

do, despite our expectation that the much older CEU

LCLs would be more likely to have accumulated abnorm-

alities in DNA methylation [20]. Together, these lines of

evidence strongly suggest that our results apply in vivo

and across tissues.

A variant that is present in two populations, but

affects DNA methylation in only one, can only be

explained by complex genetic interactions. These inter-

actions could involve the environment (GxE), epistasis

with other variants (GxG), or both. For example, some

genetic variants have an observable effect on DNA

methylation only in the presence of a sufficient quantity

of methyl donors [26], which could differ between Yoru-

bans and European-Americans as a result of diet or

other factors (though methylation differences due to

GxE interactions would have to be preserved during the

creation and culturing of the LCLs). Even with such

interactions causing differentiation between populations,

genetic effects could be entirely additive within popula-

tions, consistent with our observation of heritable DNA

methylation at many sites.

Divergence in the genetic underpinnings of DNA

methylation (as evidenced by the population-specific

mSNPs) would be expected to result in differing herit-

abilities and methylation levels, consistent with our

results. Although we cannot provide an accurate esti-

mate of exactly how much of the population-specific

DNA methylation we observed is due to population-spe-

cific mSNPs, it is likely to be a substantial fraction once

mSNPs of small effect (which could not be detected

here due to our limited sample size) are accounted for.

Conclusions

As DNA methylation is an important epigenetic modifi-

cation, affecting a wide range of diseases and other
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phenotypes [1-7], our finding that genetic or environ-

mental interactions likely affect most mSNPs - and thus

may also explain a substantial portion of the population

specificity of DNA methylation levels, and their herit-

abilities - underscores the complex interplay of factors

that influence epigenetic modifications. Further charac-

terization of these factors will be critical for our under-

standing of the epigenome.

Materials and methods

Genome-wide DNA methylation analysis

Genomic DNA was purchased from the Coriell Institute.

DNA concentration and purity were assessed spectro-

photometrically using a NanoDrop ND-1000 (Thermo

Scientific, Waltham, MA, USA). After random ordering

of all samples, 1 μg of genomic DNA from each sample

was bisulfite-converted using the EZ-96 DNA Methyla-

tion Kit (Zymo Research, Irvine, CA, USA) as per Illu-

mina’s Infinium specific protocol. Bisulfite converted

DNA was then quantified by NanoDrop and concen-

trated to higher than 50 ng/μl using a Speedvac.

Quantitative DNA methylation measurements of bisul-

fite-treated genomic DNA were performed with the Infi-

nium HumanMethylation27 BeadChip assay (Illumina,

San Diego, CA, USA), using experimental procedures

recommended by the manufacturer. Briefly, 200 ng of

bisulfite-converted DNA was whole-genome amplified,

fragmented by an enzymatic process and hybridized to

BeadChip arrays. Two oligonucleotide probes interro-

gated each CpG site, one probe with sequences targeting

methylated DNA and the other containing sequences

targeting unmethylated DNA. After extension with

DNP-labeled and biotin-labeled dNTP, each array was

stained with Cy5 labeled anti-DNP antibodies and Cy3

labeled streptavidin and scanned with the Illumina iScan

on a two-color channel to detect Cy3 labeled probes on

the green channel and Cy5 labeled probes on the red

channel. Using the Illumina GenomeStudio software

package, methylation levels (b values) were then calcu-

lated by dividing the methylated probe signal intensity

by the sum of methylated and unmethylated probe sig-

nal intensities. b values range from 0 (completely

unmethylated) to 1 (fully methylated) and provide a

quantitative readout of relative DNA methylation for

each CpG site within the cell population being interro-

gated. This method was highly reproducible, as technical

replicates across different runs had r > 0.996. All sam-

ples passed internal controls included on the Human-

Methylation27 arrays, including controls for array

background, hybridization quality, target specificity and

bisulfite conversion. Furthermore, all samples passed

our quality control check of having fewer than 5% of

sites with either detection P-value < 0.05 or fewer than

five beads being present on the array for a particular

CpG site. Cluster analysis also indicated the absence of

any outlier samples. Raw data have been deposited in

the Gene Expression Omnibus database under accession

number [GSE27146].

Samples from both populations were run together in a

randomized order to avoid confounding batch effects

with population differences. In order to test for the pre-

sence of batch effects, we tested whether the DNA

methylation profiles of samples run in either the same

batch number (1 to 4) or well number (1 to 96) were

more similar to each other than expected by chance.

Neither batch number nor well number was predictive

of profile similarity (comparing correlation coefficients

within batches or wells to all sample correlations, Wil-

coxon P = 0.79 and 0.64, respectively), indicating the

lack of any detectable batch effects.

Several steps were applied for normalization of b

values across the subjects. First, average background

intensity, as measured by negative background probes

present on the array, was subtracted from the raw inten-

sities to adjust for varying background signals across dif-

ferent samples. This background adjustment was done

separately for raw data from the green and red channels

to adjust for Cy3 and Cy5 differences. All negative

intensities were assigned values of zero before further

normalizations were performed. To minimize batch

effects across different sets of arrays, background

adjusted raw data from both channels were quantile

normalized separately. Applying the same formula used

by GenomeStudio, average b values were then recalcu-

lated using background subtracted and quantile normal-

ized intensities of methylated probes divided by the sum

of normalized intensities from unmethylated and methy-

lated probes.

Pyrosequencing

DNA methylation of the promoter regions of PLSCR2

and IGSF2 containing specific CpG loci under the con-

trol of mSNPs were confirmed using bisulfite pyrose-

quencing. Genomic DNA (750 ng) was bisulfite

converted using an EZ DNA Methylation Gold kit

(Zymo Research). After PCR amplification of approxi-

mately 200 bp regions encompassing the target loci

using specifically designed primers to ensure unbiased

amplification, quantitative measurement of DNA methy-

lation at each CpG was performed using a pyrosequen-

cing primer located within 30 bp of the CpG

interrogated. Reactions were measured on a PyroMark

Q96 MD Pyrosequencer following the manufacturer’s

protocol, and analyzed using the Pyro Q-CpG software

(Biotage, Uppsala, Sweden), which allows quality assess-

ment of each measurement. CpG loci that were called

‘passed’ in the default software settings are shown in

Figure 1b (n = 175 for IGSF2; n = 156 for PLSCR2). To
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assess the agreement between methods, we used Pear-

son’s correlation (as throughout the manuscript),

because rank-based correlations do not account for the

clustering of most samples within a small range of

methylation (for example, 95 to 100% methylation for

PLSCR2 in Figure 1b). An alternative metric, classifying

sites into high or low methylation based on a cutoff and

measuring agreement in a 2 × 2 contingency table, led

to results similar to the Pearson correlation across a

wide range of cutoffs (data not shown). Primer

sequences used for DNA amplification and pyrosequen-

cing are available upon request.

Calculation of false discovery rates

All FDRs were estimated by randomization, which pre-

serves all aspects of the data that might affect statistical

analyses. For example, the FDR for population-specific

methylation was estimated by randomly assigning CEU/

YRI labels, and recalculating the Wilcoxon P-value on

the randomized data (resulting in an essentially uniform

distribution of P-values, like that shown in Figure 1c).

FDRs for mSNPs were estimated by pairing genotypes

with randomly chosen methylation profiles, and calculat-

ing mSNPs as for the real data. Because of the family

trio structure of the HapMap samples, not all samples

are independent; to account for this in our randomiza-

tion procedure, we also performed randomizations

based on swapping methylation data for entire trios, in

effect treating each trio as an independent unit com-

posed of three methylation profiles and three genome

sequences. This procedure yielded indistinguishable

FDRs compared to randomizing all samples individually.

All FDRs are based on at least 1, 000 randomizations.

Heritability analysis

Narrow-sense heritabilities (h2) were estimated as the

correlation between average parental values and their

offspring. Because the offspring and parental variances

are equal, this is equivalent to performing regression.

Although heritabilities are by definition non-negative,

our estimates are often negative due to the limited

power inherent in our data. We note that our method

of estimating h
2 assumes that there is no shared envir-

onmental variance between parents and offspring that

impacts DNA methylation; if this assumption is violated,

we will overestimate h
2 (with an upper bound of H2, the

broad-sense heritability). It also assumes that somatic

DNA methylation is not passed directly from parent to

offspring through the germline, since this would violate

the assumptions of the heritability estimation. To esti-

mate the number of CpG sites with heritable methyla-

tion, we generated 1, 000 randomized versions of the h
2

distribution (see above), and calculated the number of

sites with greater methylation in the real data, compared

to each randomized distribution. Visually, this corre-

sponds to the area in between the two distributions, on

the right side (positive values) where the real distribu-

tion is shifted to the right. The average difference across

the 1, 000 randomizations was 762 sites for CEU, and

930 for YRI. Note that this procedure allows us to esti-

mate the number of heritable sites, but not specify

which specific sites are the heritable ones; thus, it is not

possible to calculate an FDR for these estimates.

mSNP analysis

mSNPs were identified by calculating correlations

between SNP genotypes (arbitrarily coded as 0, 1, and 2)

and methylation levels. Only SNPs within 100 kb of

each CpG site were tested, to reduce the multiple test-

ing burden. Although the 1000 Genomes SNP catalog is

more complete, we used HapMap genotypes [16] for the

mSNP analysis, since not all cell lines for which we col-

lected methylation data have been sequenced as part of

the 1000 Genomes Project [22]. We required a mini-

mum of 5 minor alleles among the 90 individuals of

each population to include a SNP in this analysis (for

details of how we accounted for the family trio struc-

ture, see ‘Calculation of false discovery rates’ above).

This resulted in 2, 668, 982 YRI SNPs and 2, 405, 735

CEU SNPs (1, 969, 973 shared by both). For the analysis

of genetic variants contributing to population-level dif-

ferences, only the SNPs shared by both populations

were used, and population was represented in the multi-

ple regression as 0/1 for CEU/YRI.

Correlations were recorded as the absolute value of

the correlation coefficient, since the sign is arbitrary,

depending on how genotypes are coded as 0/1/2. How-

ever, for comparisons between CEU and YRI correla-

tions, the fact that all correlations are positive means

that the difference between associations can be underes-

timated. If the same SNP (or two SNPs in high LD) was

used to calculate the correlation with a particular CpG

site’s methylation in both populations, the signs could

be used; however, in most cases a site’s strongest corre-

lation was with different SNPs in CEU and YRI, pre-

cluding the use of signs.

Bisulfite sequencing of RNF186 promoter region

Genomic DNA (500 ng) was bisulfite converted using

the EZ-96 DNA Methylation Gold Kit (Zymo Research)

as per the manufacturer’s protocol with minor modifica-

tions. A 532 bp region upstream of the RNF186 gene

containing the SNP rs3806308 and the CpG site

cg09195271 from the IlluminaHuman Methylation array

was amplified by nested PCR reactions using Hotstar

Taq (Qiagen, Hilden, Germany). The first round of PCR

amplification was done using 55°C annealing tempera-

ture for 30 cycles and the primer pair F3

Fraser et al. Genome Biology 2012, 13:R8

http://genomebiology.com/2012/13/2/R8

Page 10 of 12



(GGATATAGAGGGTGGTTTGTAGTGTTAGT) and

R2 (ACRCACAAATATTTAACACCTACTACT). A 3 μl

aliquot of the material obtained in the first round was

further amplified in the second round in a total volume

of 50 μl, using 51°C annealing temperature for 35 cycles

and the primer pair F2 (TGAATGAAATATTTGTTT-

GAGGGAGTGT) and R3 (CCTTAAAACCACAAC-

TATTATATTCACAA). All primers were designed to

be specific for bisulfite converted DNA. The amplified

PCR product was separated from primers by electro-

phoresis in a 1.5% Tris-acetate-EDTA (TAE) agarose

gel, excised and purified using the QIAquick gel extrac-

tion kit (Qiagen). Purified DNA was then ligated into

plasmid pGem-T Easy using the pGem-T Easy vectory

system (Promega, Madison, WI, USA) and transformed

into competent JM109 Escherichia coli (Promega) by the

CaCl2 method. Colonies carrying a plasmid containing

an insert were then selected based on blue-white screen-

ing. Plasmid DNA was extracted using Qiaprep Spin

Miniprep kit (Qiagen). Plasmid clones containing the

appropriate sized insert, as determined by a restriction

digestion analysis, were sequenced using T7 and/or SP6

primers by Genewiz Inc. South Plainfield, NJ, USA.

Sequences were analyzed using Sequencher sequence

analysis package 4.6 (Gene Codes Corporation, Ann

Arbor, MI, USA).

Additional material

Additional file 1: Supplemental text, Tables S1 and S2, and Figures

S1 to S19 [27-30].

Abbreviations

bp: base pair; CEU: HapMap population of Northern European ancestry; CpG:

cytosine-phosphate-guanine; FDR: false discovery rate; GxE: gene-by-

environment; GxG: gene-by-gene; LCL: lymphoblastoid cell line; LD: linkage

disequilibrium; mSNP: methylation-associated SNP; SNP: single-nucleotide

polymorphism; YRI: HapMap population of Yoruban ancestry.

Acknowledgements

We thank M Feldman, M Hayden, J Rine, S Roy, and an anonymous reviewer

for helpful comments and discussion. We further thank M Lorincz for advice

on bisulfite sequencing and use of Sequencher software, and A Devlin for

use of the PyroMarkMD system. Work in MSK’s laboratory is supported by

National Institute of Health (NIH) grant R24MH-081797-01. Work in HBF’s

laboratory is supported by National Institute of Health (NIH) grant

1R21HG005750-01A1. MSK is a Scholar of the Canadian Institute for

Advanced Research and of the Mowafaghian Foundation. HBF is an Alfred P

Sloan Fellow and Pew Scholar in the Biomedical Sciences.

Author details
1Department of Biology, Stanford University, Stanford, CA 94305, USA.
2Department of Medical Genetics, University of British Columbia, Vancouver,

British Columbia, V6T 1Z3, Canada. 3Centre for Molecular Medicine and

Therapeutics, Child and Family Research Institute, Vancouver, British

Columbia V5Z 4H4, Canada.

Authors’ contributions

MSK designed the project, oversaw data generation and wrote the paper.

HBF designed the project, analyzed the data and wrote the paper. LL and

SN generated and normalized the data. All authors have approved the final

manuscript for publication.

Competing interests

The authors declare that they have no competing interests.

Received: 29 September 2011 Revised: 30 January 2012

Accepted: 9 February 2012 Published: 9 February 2012

References

1. Mohn F, Schübeler D: Genetics and epigenetics: stability and plasticity

during cellular differentiation. Trends Genet 2009, 25:129-136.

2. Bonasio R, Tu S, Reinberg D: Molecular signals of epigenetic states.

Science 2010, 330:612-616.

3. Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA

methylation patterns in plants and animals. Nat Rev Genet 2010,

11:204-220.

4. Illingworth RS, Bird AP: CpG islands - ‘a rough guide’. FEBS Lett 2009,

583:1713.

5. Chang SC, Tucker T, Thorogood NP, Brown CJ: Mechanisms of X-

chromosome inactivation. Front Biosci 2006, 11:852-866.

6. Jaenisch R, Bird A: Epigenetic regulation of gene expression: how the

genome integrates intrinsic and environmental signals. Nat Genet 2003,

33(Suppl):245-254.

7. Bjornsson HT, Fallin MD, Feinberg AP: An integrated epigenetic and

genetic approach to common human disease. Trends Genet 2004,

20:350-358.

8. Zilberman D, Henikoff S: Genome-wide analysis of DNA methylation

patterns. Development 2007, 134:3959-3965.

9. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H,

Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Sun J,

Huang Y, Zheng H, Cao H, Zhou X, Guo S, Hu X, Li X, Kristiansen K,

Bolund L, Xu J, et al: The DNA methylome of human peripheral blood

mononuclear cells. PLoS Biol 2010, 8:e1000533.

10. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J,

Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK,

Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S,

Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S: DNA methylation

profiling of human chromosomes 6, 20 and 22. Nat Genet 2006,

38:1378-1385.

11. Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig DW,

Redman M, Gershon ES, Liu C: Genetic control of individual differences in

gene-specific methylation in human brain. Am J Hum Genet 2010,

86:411-419.

12. Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL,

Arepalli S, Dillman A, Rafferty IP, Troncoso J, Johnson R, Zielke HR,

Ferrucci L, Longo DL, Cookson MR, Singleton AB: Abundant quantitative

trait loci exist for DNA methylation and gene expression in human

brain. PLoS Genet 2010, 6:e1000952.

13. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y,

Pritchard JK: DNA methylation patterns associate with genetic and gene

expression variation in HapMap cell lines. Genome Biol 2011, 12:R10.

14. Boks MP, Derks EM, Weisenberger DJ, Strengman E, Janson E, Sommer IE,

Kahn RS, Ophoff RA: The relationship of DNA methylation with age,

gender and genotype in twins and healthy controls. PLoS One 2009, 4:

e6767.

15. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA,

Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW,

Gottesman II, Martin NG, Petronis A: DNA methylation profiles in

monozygotic and dizygotic twins. Nat Genet 2009, 41:240-245.

16. International HapMap 3 Consortium, Altshuler DM, Gibbs RA, Peltonen L,

Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F,

Peltonen L, Dermitzakis E, Bonnen PE, Altshuler DM, Gibbs RA, de Bakker PI,

Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, Palotie A,

Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, et al:

Fraser et al. Genome Biology 2012, 13:R8

http://genomebiology.com/2012/13/2/R8

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/gb-2012-13-2-r8-S1.ZIP
http://www.ncbi.nlm.nih.gov/pubmed/19185382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19185382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21030644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20142834?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20142834?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19376112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16146776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16146776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12610534?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15262407?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17928417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21085693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21085693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20215007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20485568?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21251332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21251332?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19774229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19774229?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19151718?dopt=Abstract


Integrating common and rare genetic variation in diverse human

populations. Nature 2010, 467:52.

17. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG:

Common genetic variants account for differences in gene expression

among ethnic groups. Nat Genet 2007, 39:226-231.

18. Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM: Gene-

expression variation within and among human populations. Am J Hum

Genet 2007, 80:502-509.

19. Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX,

Schweitzer AC, Blume JE, Cox NJ, Dolan ME: Evaluation of genetic

variation contributing to differences in gene expression between

populations. Am J Hum Genet 2008, 82:631-640.

20. Grafodatskaya D, Choufani S, Ferreira JC, Butcher DT, Lou Y, Zhao C,

Scherer SW, Weksberg R: EBV transformation and cell culturing

destabilizes DNA methylation in human lymphoblastoid cell lines.

Genomics 2010, 95:73-83.

21. Caliskan M, Cusanovich DA, Ober C, Gilad Y: The effects of EBV

transformation on gene expression levels and methylation profiles. Hum

Mol Genet 2011, 20:1643-1652.

22. The 1000 Genomes Project Consortium: A map of human genome

variation from population-scale sequencing. Nature 2010, 467:1061.

23. Lynch M, Walsh B: Genetics and Analysis of Quantitative Traits. Sinauer

Assoc 1997.

24. Alberts R, Terpstra P, Li Y, Breitling R, Nap JP, Jansen RC: Sequence

polymorphisms cause many false cis eQTLs. PLoS One 2007, 2:e622.

25. Akey JM, Biswas S, Leek JT, Storey JD: On the design and analysis of gene

expression studies in human populations. Nat Genet 2007, 39:807-808.

26. Friso S, Choi SW: Gene-nutrient interactions in one-carbon metabolism.

Curr Drug Metab 2005, 6:37-46.

27. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W,

Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF,

Sapienza C, Gudnason V, Feinberg AP: Intra-individual change over time

in DNA methylation with familial clustering. JAMA 2008, 299:2877-2883.

28. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E,

Veyrieras JB, Stephens M, Gilad Y, Pritchard JK: Understanding mechanisms

underlying human gene expression variation with RNA sequencing.

Nature 2010, 464:768.

29. Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M,

Pritchard JK: High-resolution mapping of expression-QTLs yields insight

into human gene regulation. PLoS Genet 2008, 4:e1000214.

30. Chen YA, Choufani S, Ferreira JC, Grafodatskaya D, Butcher DT, Weksberg R:

Sequence overlap between autosomal and sex-linked probes on the

Illumina HumanMethylation27 microarray. Genomics 2011, 97:214-222.

doi:10.1186/gb-2012-13-2-r8
Cite this article as: Fraser et al.: Population-specificity of human DNA
methylation. Genome Biology 2012 13:R8.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Fraser et al. Genome Biology 2012, 13:R8

http://genomebiology.com/2012/13/2/R8

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/20811451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20811451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17206142?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17273971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17273971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18313023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20005943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20005943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21289059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20981092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17637838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17637838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17597765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17597765?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15720206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18577732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18577732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20220758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20220758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18846210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18846210?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21211562?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21211562?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Discussion
	Conclusions
	Materials and methods
	Genome-wide DNA methylation analysis
	Pyrosequencing
	Calculation of false discovery rates
	Heritability analysis
	mSNP analysis
	Bisulfite sequencing of RNF186 promoter region

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

