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Current methods for inferring population structure from genetic data do not provide formal significance tests for
population differentiation. We discuss an approach to studying population structure (principal components analysis)
that was first applied to genetic data by Cavalli-Sforza and colleagues. We place the method on a solid statistical
footing, using results from modern statistics to develop formal significance tests. We also uncover a general ‘‘phase
change’’ phenomenon about the ability to detect structure in genetic data, which emerges from the statistical theory
we use, and has an important implication for the ability to discover structure in genetic data: for a fixed but large
dataset size, divergence between two populations (as measured, for example, by a statistic like FST) below a threshold
is essentially undetectable, but a little above threshold, detection will be easy. This means that we can predict the
dataset size needed to detect structure.
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Introduction

A central challenge in analyzing any genetic dataset is to

explore whether there is any evidence that the samples in the

data are from a population that is structured. Are the

individuals from a homogeneous population or from a

population containing subgroups that are genetically dis-

tinct? Can we find evidence for substructure in the data, and

quantify it?

This question of detecting and quantifying structure arises

in medical genetics, for instance, in case-control studies

where uncorrected population structure can induce false

positives [1]. It also arises in population genetics, where

understanding of the structure may be important to the key

scientific issues, especially uncovering the demographic

history of the population under study.

We focus on principal components analysis (PCA), which

was first introduced to the study of genetic data almost thirty

years ago by Cavalli-Sforza [2].

We will use PCA and ‘‘eigenanalysis’’ interchangeably. The

latter term focuses attention on the fact that not just the

eigenvectors (principal components) are important here, but

also the eigenvalues, which underlie our statistical proce-

dures.

PCA has become a standard tool in genetics. In population

genetics, we recommend a review paper [3] focusing on the

use of ‘‘synthetic maps’’ which use PCA to study genetic

geographic variation.

Usually PCA been applied to data at a population level, not

to individuals as we do here. Exceptions are [4,5].

In addition to single nucleotide polymorphisms (SNPs) and

microsatellites, PCA has been applied to haplotype frequen-

cies [6,7] and the distribution of ALU insertion polymor-

phisms [8] in order to study population structure. Most of the

literature on PCA in genetics is applied, not methodological,

and we know of no paper that concentrates as we do here on

the statistical significance of the components. Data with

hundreds or thousands of individuals and hundreds of

thousands of markers are now becoming available, so that

small but real effects will be detectable, and it is important to

develop rigorous tests for population structure that will be

practical, even on the largest datasets. This is our main aim in

this paper.

Using some recent results in theoretical statistics, we

introduce a formal test statistic for population structure.

We also discuss testing for additional structure after some

structure has been found. Finally, we are able to estimate the

degree of population differentiation that will be detectable

for a given data size.

Our methods work in a broad range of contexts, and can be

modified to work with markers in linkage disequilibrium

(LD). The methods are also able to find structure in admixed

populations such as African Americans—that is, in which

individuals inherit ancestry from multiple ancestral popula-

tions—as long as the individuals being studied have different

proportional contributions from the ancestral populations.

We believe that principal components methods largely fell

out of favor with the introduction of the sophisticated

cluster-based program STRUCTURE [9,10]. STRUCTURE

and similar methods are based on an interpretable popula-

tion genetics model, whereas principal components seems

like a ‘‘black box’’ method. We will discuss how the models

underlying the cluster methods, and the PCA technique we

will describe, are much closer to each other than they may at

first appear to be.

Our implementation of PCA has three major features. 1) It

runs extremely quickly on large datasets (within a few hours

on datasets with hundreds of thousands of markers and

thousands of samples), whereas methods such as STRUC-

TURE can be impractical. This makes it possible to extract

the powerful information about population structure that we
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will show is present in large datasets. 2) Our PCA framework
provides the first formal tests for the presence of population
structure in genetic data. 3) The PCA method does not
attempt to classify all individuals into discrete populations or

linear combinations of populations, which may not always be
the correct model for population history. Instead, PCA
outputs each individual’s coordinates along axes of variation.
An algorithm could in principle be used as a post-processing

step to cluster individuals based on their coordinates along
these axes, but we have not implemented this.

We note that STRUCTURE is a complex program and has
numerous options that add power and flexibility, many of

which we cannot match with a PCA approach. Perhaps the
central goal of STRUCTURE is to classify individuals into
discrete populations, but this is not an object of our method.

We think that in the future both cluster-based methods such
as STRUCTURE and our PCA methods will have a role in
discovering population structure on genetic data, so that, for
example, our PCA methods offer a good default for the

number of clusters to use in STRUCTURE. In complex
situations, such as uncovering structure in populations where
all individuals are equal mixtures of ancestral populations, it
may remain necessary to use statistical software that explicitly

models admixture LD, such as [10–13], which allow estimation
of local ancestry at arbitrary points of the genome.

In this study we aim to place PCA as applied to genetic data
on a solid statistical footing. We develop a technique to test

whether eigenvectors from the analysis are reflecting real
structure in the data or are more probably merely noise.
Other papers will explore applications to medical genetics
[14] and to the uncovering of demographic history. In this

paper, our main purpose is to describe and to validate the
method, rather than to make novel inferences based on
application to real data, which we leave to future work. We

show that statistically significant structure is real and
interpretable, and also that our methods are not failing to
recover real structure that is found by other techniques.

Two important results emerge from this study. First, we

show that application of PCA to genetic data is statistically
appropriate, and provide a formal set of statistical tests for
population structure. Second, we describe a ‘‘phase change’’

phenomenon about the ability to detect structure that

emerges from our analysis: for a fixed dataset size, divergence
between two populations (as measured, for example, by a
statistic like FST) that is below a threshold is essentially

undetectable, but a little above threshold detection will be
easy. Based on these results, we are able to give an estimate of
how much data will be required to find population structure
given a level of genetic divergence such as FST (as defined by
Cavalli-Sforza, [15, p. 26, Equation 3].)

The theory shows that the methods are sensitive, so that on

large datasets, population structure will often be detectable.
Moreover, the novel result on the phase change is not limited
just to PCA, but turns out to reflect a deep property about the
ability to discover structure in genetic data. For example, in
the paper we present simulations that show the ability to
detect structure occurs with the same dataset size when

STRUCTURE and PCA are used; that is, the phase change
manifests itself in the same place.

The phase change effect was suggested by a recent paper in
theoretical statistics [16], which demonstrated the phenom-
enon for a situation that is mathematically similar to ours.
The theory has continued to develop and nearly all we need
has now been proved, the most recent paper being [17]. We

believe that the applications to genetics still pose some
interesting questions for the theorists. While our methods are
derived from asymptotic theory (where the datasets are very
large), they also seem to work well on small datasets, and we
would be interested in seeing a theoretical explanation.

Results

The basic technique is simple. We assume our markers are
biallelic, for example, biallelic single nucleotide polymor-
phisms (SNPs). Regard the data as a large rectangular matrix
C, with rows indexed by individuals, and columns indexed by
polymorphic markers. For each marker choose a reference

and variant allele. We suppose we have n such markers and m

individuals. Let C(i,j) be the number of variant alleles for
marker j, individual i. (Thus for autosomal data we have C(i,j)
is 0,1 or 2.) For now suppose that there is no missing data.
From each column we subtract the column means. So set for
column j:

lðjÞ ¼

X

m

i¼1

Cði; jÞ

m
ð1Þ

and then the corrected entries are:

Cði; jÞ � lðjÞ ð2Þ

Set p(j) ¼ l(j)/2, an estimate of the underlying allele
frequency (autosomal data). Then each entry in the resulting
matrix is

Mði; jÞ ¼ Cði; jÞ � lðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðjÞð1� pðjÞÞ
p ð3Þ

Equation 3 is a normalization step, which is motivated by the
fact that the frequency change of a SNP due to genetic drift
occurs at a rate proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðjÞð1� pðjÞÞ
p

per gen-
eration. It also normalizes (at least if the data is in Hardy-

Weinberg equilibrium) each data column to have the same
variance. We note that Nicholson et al. use the same
normalization, and motivate it similarly [18].

We verified (unpublished data) that the normalization
improves results when using simulated genetic data, and that
on real data known structure becomes clearer. (However all
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When analyzing genetic data, one often wishes to determine if the
samples are from a population that has structure. Can the samples
be regarded as randomly chosen from a homogeneous population,
or does the data imply that the population is not genetically
homogeneous? Patterson, Price, and Reich show that an old method
(principal components) together with modern statistics (Tracy–
Widom theory) can be combined to yield a fast and effective answer
to this question. The technique is simple and practical on the largest
datasets, and can be applied both to genetic markers that are
biallelic and to markers that are highly polymorphic such as
microsatellites. The theory also allows the authors to estimate the
data size needed to detect structure if their samples are in fact from
two populations that have a given, but small level of differentiation.



the results are just as mathematically valid even without the
normalizations.)

The methods also are applicable to data such as micro-
satellites, where there are more than two alleles at a single
site. We use a device of Cavalli-Sforza [2,15], making a
‘‘marker’’ j out of each allele, and then setting C(i,j) to be the
number of occurrences of the allele for sample i. We omit the
normalization step of Equation 3 for microsatellites, merely
subtracting the mean. The normalization has no clear
justification for microsatellite data, and results on real data
(unpublished) show that it produces worse performance in
this case.

An alternative, suggested by a referee, is to use the
microsatellite allele length as a continuous variable, and
carry out PCA directly after a suitable normalization.

Now we carry out a singular value decomposition on the
matrixM. (A standard reference for the numerical methods is
[19]. Public domain software is readily available—we used the
well-known package LAPACK, http://www.netlib.org/lapack.)
We are chiefly interested here in the case that the number of
samples is less than the number of markers: m , n.
Computationally we will form

X ¼ 1

n
MM 9

the sample covariance of the columns of M. The resulting
matrix is m 3 m, with a dimension equal to the number of
samples in the dataset. We then compute an eigenvector
decomposition of X. Eigenvectors corresponding to ‘‘large’’

eigenvalues are exposing nonrandom population structure.
This means that a central issue for this paper is what is
‘‘large’’ here, or, more precisely, what is the distribution of
the largest eigenvalues of X at random (when there is no
population structure)?

The method is fast. In practice, the running time is
dominated by the calculation of the matrix product MM9,

which for extremely large problems is readily computed on a
parallel architecture. On a fast workstation, the matrix
product for a dataset of 100 individuals and 100,000 markers
takes just four seconds. For data with m individuals and n

markers, the work is proportional to m2n, and thus for a set of
2,000 individuals and 500,000 markers would take about 2.5
hours on the same single processor (see Methods for more
details). For many of the problems we have analyzed, reading
and storing the data takes longer than the analysis.

Most, though not all, previous applications of PCA to
analysis of population structure have taken the data to be a
matrix where the rows are indexed by populations not by
individuals (e.g., [2,15]). We prefer to consider the larger array
where the rows are indexed by individuals. Even when we
have population labels, it is useful to examine within-
population variation, and we also are often able to find
outliers in the data. Furthermore, when population labels are
available, we can carry out an analysis to check that the labels
do correspond to structure that the eigenanalysis has
uncovered.

We note that population labels may be socially constructed.
This makes us nervous about employing them in an initial
data study. On the other hand, the individual samples
certainly do not have any such construct, and even if
population labels are available, initial analysis at an individual
level allows us to check the meaningfulness of the labels [20].

Cavalli-Sforza [15, pp. 39–42] gives an explanation of why
PCA can be expected to reveal population structure. We give
a different explanation, oriented towards analysis at the
individual level. If e[1] is the principal eigenvector of the
matrix X, this means that the sum of squares

S ¼
X

k

X

j

e
½1�
j Mjk

 !2

ð4Þ

is maximized over all vectors with constant norm. The second
eigenvector e[2] maximizes the same expression with the
constraint that e[1], e[2] are orthogonal, and so on. Why would
we expect this to reveal population structure? Suppose that in
our sample, we have just two populations and that each is
homogeneous. Choose a vector with coordinates constant and
positive for samples from one population, and coordinates
constant and negative for samples from the other. Arrange so
that the vector coordinates sum to zero. Then, since alleles
within a population will tend to agree more than in the
sample as a whole, the quantity S of Equation 4 will tend to be
large. This is exactly what we maximize as a function of the
vector e. More generally, if we have K distinct populations,
there are K � 1 vectors constant on each population,
summing to zero and linearly independent. This implies that,
if the number of markers is sufficiently large, there will be K�
1 eigenvalues and K � 1 corresponding eigenvectors of our
matrix that are significant and meaningful. Vectors orthog-
onal to these K � 1 vectors are showing within-population
variance, and if each population is homogeneous, this is just
reflecting sampling noise.

Tracy–Widom Theory
We now turn to some recent theoretical statistics. Consider

an m3 n matrix M, each entry of which has an independent
standard normal random variable. We are interested in the
case that m , n.
(A notational issue is that in our genetic data, if m is the

number of individuals, then the square matrix for which we
calculate eigenvalues has rank m� 1 [we lose a dimension by
forcing each column to sum to zero]. We will, for the majority
of the paper, write m9 ¼ m � 1 for the number of nonzero
eigenvalues. However in this theoretical section, we will
assume there are m nonzero eigenvalues.)
Let

X ¼ 1

n
MM 9

X is a Wishart matrix. Let fkig1�i�m be the eigenvalues of X.
The probability density of (k1,. . . km) is known [21] but not
directly relevant to our work here, so we omit the details.
Order the eigenvalues so that

k1.k2:::.km

Johnstone in a key paper [22] showed that suitably
normalized, and for m, n, large, the distribution of the largest
eigenvalue k1 is approximately a distribution discovered by
Tracy and Widom [23], which in this paper we call TW. Set

lðm; nÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

þ
ffiffiffiffi

m
p

Þ2

n
ð5Þ
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rðm; nÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

þ ffiffiffiffi

m
p Þ

n

1
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p þ 1

ffiffiffiffi

m
p

� �1=3

ð6Þ

Now set

x ¼ k1 � lðm; nÞ
rðm; nÞ ð7Þ

Then the distribution of x is approximately TW.

More precisely, if as m,n ! ‘, n/m ! c � 1, then Johnstone
proves [22, Theorem 1.1] that x tends to TW in distribution.
As we show later (Theorem 2), Johnstone’s theorem also holds
if in the expression for x in Equation 7, we replace x by:

x ¼ L1 � lðm; nÞ
rðm; nÞ ð8Þ

where

L1 ¼
mk1
X

m

i¼1

ki

ð9Þ

The only difference here is that the m eigenvalues have
been normalized to have sum m.

In [22] Johnstone proved his theorem for the case that n,m
! ‘ with m/n bounded away from 0, but this condition was
shown in [23] not to be necessary. Johnstone [22] gives
convincing evidence that the fit is good even for values as
small as m ¼ 5, n ¼ 20.

We show in Figure 1 a plot of the Tracy–Widom density.
The complexity of the TW definition is irrelevant to its

application to real data. One computes a statistic, and then
looks up a p-value in tables or through a computational
interface. This is little different from how one uses (say) a
conventional chi-squared test.

One concern with applying this approach to genetic data is

that the entries in the matrix M do not have the Gaussian
distributions expected for a Wishart matrix; instead, they
correspond to the three possible genotypes at each SNP.
However it is not critical that the entries in the m3 n matrix
M be Gaussian. Soshnikov [25] showed that the same TW limit
arose if the cell entries were any distribution with high-order
moments no greater than the Gaussian. The matrix X is a sum
of n rank 1 matrices, and Soshnikov’s result suggests that the
same limit would be obtained from any probability distribu-
tion in which the columns of M are independent, isotropic
(all directions are equiprobable), and such that the column
norms have moments no larger than those for a column of
independent Gaussian entries. In all our genetic applications,
the column norms are in fact bounded, so we can expect the
sample covariance matrices to behave well.
This theory, originally developed for the case of Gaussian

matrix entries, thus seemed likely to work well with large
genetic biallelic data arrays. The remainder of this paper
verifies that this is the case.

Applying Eigenanalysis to Datasets with Linked Markers
For genetic applications we cannot necessarily assume that

all our markers are unlinked and thus independent. For
instance, in the International Haplotype Map project [26],
markers were chosen about 5,000 bases apart (phase 1), or
about 1,000 bases apart (phase 2), and so nearby markers will
often be in LD. Mathematically this will induce correlation
between nearby columns of our matrix M. The effect of this
will be that the matrix

X ¼ MM 9

should be ‘‘Wishart-like,’’ but the nonindependence of the
columns will reduce the effective sample size. We will discuss
this further (see Correcting for LD) but now introduce a new
idea. This adds robustness to our methods, so that minor
deviations from the model become of lesser importance.

Figure 1. The Tracy–Widom Density

Conventional percentile points are: P ¼ 0.05, x ¼ .9794; P¼ 0.01, x ¼ 2.0236; P¼ 0.001, x ¼ 3.2730.
doi:10.1371/journal.pgen.0020190.g001
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Suppose we have m individuals. We will analyze X¼MM9 as
a Wishart matrix. The rank of X will be m � 1 (assuming we
have many SNPs compared with m). We will think of the
eigenvalues of X as coming from a (m� 1)3 (m� 1) Wishart,
and write m9 ¼ m � 1.

There are two unknowns that we can regard as parameters
to the Wishart: 1) r2: the variance of the normal distribution
used for the cells of the rectangular matrix M; 2) n9: The
number of columns of M.

We want to carefully distinguish here between n, the actual

number of columns of our data array, and n9, a theoretical
statistical parameter, modeling the approximate Wishart
distribution of the square matrix X. We originally fit r,n9 by
maximum likelihood. The likelihood, as a function of the two
parameters, has two sufficient statistics, which are

P

i ki, and
P

i log ki. Maximum likelihood did not always work well, in
our genetic applications, probably because

P

i log ki is
sensitive to small eigenvalues, while we are only interested
in large. We recommend a moments estimator:

n9 ¼
ðmþ 1Þ

X

i

ki

 !2

ðm� 1Þ
X

i

k2i

 !

�
X

i

ki

 !2 ð10Þ

which is justified later. Note that n9 is invariant to scaling of
the matrix M as it should be. We estimate r by:

r̂2 ¼

X

i

ki

ðm� 1Þn9

A Test for Population Structure
This leads immediately to a formal test for the presence of

population structure in a biallelic dataset.

1. Compute the matrix M as in Equations 1, 2 and 3. M has
m rows, n columns.

2. Compute X ¼MM9. X is m3 m.

3. Order the eigenvalues of X so that

k1 . k2:::. km9 . 0

where m9 ¼ m � 1. (On a large dataset X will always have
rank m9.)

4. Using the eigenvalues ki (1 � i � m9), estimate n9 from
Equation 10.

5. The largest eigenvalue of M is k1. Set

l ¼ ðm9Þk1
X

m9

i¼1

ki

6. Normalize l with Equations 5–7, where the effective
number of markers n9 replaces n. This yields a test statistic x¼
x(M).

Our statistic x(M) is approximately TW-distributed. A p-
value can now be computed from tables of the TW
distribution. Notice that our statistic is independent of the
scaling of the ki, and it is convenient to normalize by scaling
so that the sum of the eigenvalues (that is the trace ofM) is m9.
All eigenvalues we report are scaled in this manner.

Simulations to Demonstrate Robustness of the Tests of
Significant Structure
We first made a series of simulations in the absence of

population structure. (Some additional details are in the
Methods section.) Our first set of runs had 100 individuals
and 5,000 unlinked SNPs, and the second 200 individuals and
50,000 unlinked SNPs. In each case we ran 1,000 simulations
and show in Figure 2A and 2B probability–probability (P–P)
plots of the empirical and TW tail areas. The results seem
entirely satisfactory, especially for low p-values in the top right
of Figures 2A and 2B. For assessment of statistical significance,
it is the low p-value range that is relevant. The simulations
show more generally that the TW theory is relevant in a
genetic context, that the normalizations of Equations 5–7 are
appropriate, and that the calculation of the effective marker
size has not seriously distorted the TW statistic.

Detecting Additional Structure
It is very important to be able to answer the question: Does

the data show evidence of additional population structure over and

above what has already been detected? The test we propose is
extremely simple. If our matrix X has eigenvalues

k1; k2;:::; kk; kkþ1; :::km9

and we already have declared the top k eigenvalues to be
significant, then we simply test kkþ1,. . .km as though X was a
(m9 � k) 3 (m9 � k) Wishart matrix. Johnstone shows [22,
Proposition 1.2] that this procedure is conservative, at least
for a true Wishart matrix. We tested this by generating data
in which there is one eigenvalue that is overwhelmingly
significant, and examined the distribution of the second

eigenvalue. As shown by the P–P plot of Figure 3, the fit is
again very good, especially for small p-values. If an eigenvalue
is not significant, then further testing of smaller eigenvalues
should not be done.

Cluster Analysis and PCA
There is a much closer relationship between our PCA and a

cluster-based analysis than is at first apparent. Consider a
model of genetic structure where there are K populations,
and fix a marker and variant allele. The populations have
diverged from an ancestral population recently. Suppose that
the allele frequency of the variant in the ancestral population
is P, and in population i is pi. Conditional on P, assume that
p ¼ (p1,p2,. . .pK) has mean (P,P,. . .P) and covariance matrix
P(1� P)B for some matrix B. Much past work in genetics uses
this paradigm, with variations on the distribution of B, and on
the detailed distribution of p conditional on P; for instance,
both Nicholson et al. [18] and STRUCTURE [9] in ‘‘correlated
frequency mode,’’ and in the ‘‘F-model’’ of [10]. The setup
here is nearly inevitable if one is considering allele
frequencies in populations that have only diverged a small
amount. In [18, p. 700] for the case of a diagonal matrix B, it is
shown that the diagonal term Bii can be interpreted as the
‘‘time on the diffusion time-scale’’ (inversely proportional to
effective population size) in which population i has under-
gone genetic drift.
Suppose we sample (autosomal) genotypes from these K

populations. Assume there are Mi samples from population i,

and set
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M ¼
X

K

i¼1

Mi

We suppose that the divergence of each population from a

root population, as measured by FST or equivalently by

divergence time on the diffusion timescale, is of order s,

which is small. What are the eigenvalues of the theoretical

covariance C of the samples for the marker after our mean

adjustment and normalization? Let M become large, while the

relative abundance of the samples stays constant across

populations. It can be shown (see the mathematical details,

Theorem 3) that if B has full rank, then C has K � 1 large

eigenvalues that tend to infinity with M, M � K eigenvalues

that are 1 þ O(s) and one zero eigenvalue that is a structural

zero, arising from the fact that our mean adjusted columns all

Figure 2. Testing the Fit of the TW Distribution

(A) We carried out 1,000 simulations of a panmictic population, where we have a sample size of m¼100 and n¼ 5,000 unlinked markers. We give a P–P
plot of the TW statistic against the theoretical distribution; this shows the empirical cumulative distribution against the theoretical cumulative
distribution for a given quantile. If the fit is good, we expect the plot will lie along the line y¼ x. Interest is primarily at the top right, corresponding to
low p-values.
(B) P–P plot corresponding to a sample size of m¼ 200 and n¼ 50,000 markers. The fit is again excellent, demonstrating the appropriateness of the
Johnstone normalization.
doi:10.1371/journal.pgen.0020190.g002
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have zero sum. We are interested in the case that s � 1 while
M � 1.

Thus, natural models of population structure predict that
most of the eigenvalues of the theoretical covariance will be
‘‘small,’’ nearly equal, and arise from sampling noise, while
just a few eigenvalues will be ‘‘large,’’ reflecting past
demographic events. This is exactly the situation that John-
stone’s application of Tracy–Widom theory addresses. We
also note that on real data (as we show below), the TW theory
works extremely well, which shows that the model will be a
reasonable approximation to ‘‘truth’’ in many cases.

Axes of Variation
Thus, we expect that the theoretical covariance matrix

(approximated by the sample covariance) will have K � 1
‘‘large’’ eigenvalues, with the remainder small and reflecting
the sampling variance. We call the eigenvectors of the
theoretical covariance, corresponding to the large eigenval-
ues, ‘‘axes of variation.’’ These are a theoretical construct, as
of course we only observe the sample covariance. Never-
theless, for eigenvectors that are highly significant by our
tests, we expect the corresponding eigenvector to correlate
well with the true ‘‘axis of variation.’’ An analogy here is that
we would often think of an allele as having a ‘‘true’’

population frequency in a population, and would regard
the frequency of the allele in a sample as an estimator of the
true frequency.

As defined, our axes of variation do depend on the relative
sample sizes of the underlying populations, so that differ-
ences between populations each with a large sample size are
upweighted. This is worth remembering when interpreting
the results, but does not seem a major impediment to analysis.

A Formal Test Is Appropriate in Our Applications
We do not review in detail older methods for testing for

significance. One technique is the ‘‘broken stick’’ model
[27,28], used, for instance, in a recent population genetics
analysis [5]. In this model, one normalizes the m9 nonzero
eigenvalues to sum to 1, then sorts them in decreasing order,
and compares the k-th eigenvalue with the expected size of
the k-th largest subinterval of the unit interval, partitioned by
‘‘breaking’’ the interval at m9 � 1 uniformly chosen points.
This method does not use the number of markers in any way,
thus it cannot be making optimum use of the data. In
particular for datasets with large numbers of markers, real
population structure may go undetected.

We believe that the application of PCA to genetic data—
and our way of analyzing the data—provides a natural
method of uncovering population structure, for reasons that
are subtle; thus, it is useful to spell them out explicitly. In
most applications of PCA, the multivariate data has an
unknown covariance, and PCA is attempting to choose a
subspace on which to project the data that captures most of
the relevant information. In many such applications, a formal
test for whether the true covariance is the identity matrix
makes little sense.

In genetics applications we believe the situation is differ-
ent. Under standard population genetics assumptions such as
a panmictic population, the natural null is that the
eigenvalues of the true covariance matrix are equal, a formal
test is appropriate, and deviations from the null are likely to
be of real scientific and practical significance. To support
this, in our experience on real data we take our null very
seriously and attempt to explain all statistically significant
axes of variation. Often the explanation is true population
structure in the data, but we also often expose errors or
difficulties in the data processing. Two examples follow.

In some population genetic data from African populations,
the fourth axis of variation showed some San individuals at

Figure 3. Testing the Fit of the Second Eigenvalue

We generated genotype data in which the leading eigenvalue is overwhelmingly significant (FST ¼ .01, m ¼ 100, n ¼ 5,000) with two equal-sized
subpopulations. We show P–P plots for the TW statistic computed from the second eigenvalue. The fit at the high end is excellent.
doi:10.1371/journal.pgen.0020190.g003
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each end of the axis. This made little genetic sense, and the
cause was some related samples that should have been
removed from the analysis.

In a medical genetic study, an unexplained axis of variation
was statistically correlated with the micro-titer plates on
which the genotyping had been carried out. This suggested
that the experimental setup was contributing to the evidence
for structure, instead of real population differentiation.

In both these cases more careful data preprocessing would
have eliminated the problem, but analysis and preparation of
large datasets is difficult, and more tools for analysis and
error-detection are always of benefit.

ANOVA Statistics Given Labeled Populations
In many practical applications, samples will already be

grouped into subpopulations (for instance, in medical
genetics there are often two populations: cases and controls).
It is natural to want to test if our recovered eigenvectors
reflect differences among the labeled subpopulations. We
therefore fix some eigenvector, and can regard each
individual as associated with the corresponding coordinate
of the eigenvector. We want to test if the means of these

coordinate values in each subpopulation differ significantly.
Our motivation is firstly that this is a powerful check on the
validity of our (unsupervised) Tracy–Widom statistics, and
secondly that the supervised analysis helps in interpretation
of the recovered axes of variation.
The conventional statistic here is an ANOVA F-statistic.

(See for instance [29]). We have here a ‘‘one-way layout,’’
where we want to test if the group means significantly differ.
This amounts to a check on our Tracy–Widom statistic, which
we compute ignoring the labels. We also routinely compute
an F-statistic for every pair of populations, and each
eigenvector (unpublished data). We give three examples of
ANOVA analysis on real data. In the first, we look at
population data from sub-Saharan Africa, genotyped with
783 microsatellites and 210 biallelic indels in the CEPH–
HGDP dataset [30,31]. We group the West African and Bantu
speaking populations (Yoruba, Bantu South Africa, and
Bantu Kenya) as ‘‘Bantu’’ and also examine samples from
San and Mandenka. We show plots of the first two
eigenvectors in Figure 4. Table 1 shows the key statistics for
this dataset. In Table 1, the ANOVA p-value is obtained from
the usual F-statistic, and we apply ANOVA to each of the first
three eigenvectors.
There is excellent agreement between the supervised and

unsupervised analysis. The lack of significance of the third
eigenvector is an indication that no additional structure was
apparent within the Bantu.
Our second study took samples from three regions:

Northern Thailand, China (Han Chinese), and Japan. The
last two population samples were available from the Interna-
tional Hapmap Project [32]. The Thai samples (25 individuals
after removing some close relatives and outliers) were
collected by J. Seidman and S. Sangwatanaroj as part of a

Figure 4. Three African Populations

Plots of the first two eigenvectors for some African populations in the CEPH–HGDP dataset [30]. Yoruba and Bantu-speaking populations are genetically
quite close and were grouped together. The Mandenka are a West African group speaking a language in the Mande family [15, p. 182]. The
eigenanalysis fails to find structure in the Bantu populations, but separation between the Bantu and Mandenka with the second eigenvector is
apparent.
doi:10.1371/journal.pgen.0020190.g004

Table 1. Statistics from HGDP African Data

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 2.07 46.2 ,10�12
,10�12

2 1.40 6.717 3.08 3 10�7
,10�12

3 1.31 0.380 .108 .74

doi:10.1371/journal.pgen.0020190.t001
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disease study, though here we focus on the population
genetics. Our analysis of these data used 40,560 SNPs.

In Figure 5 we plot the first two eigenvectors. Notice that
the population separation is clear, but that the natural
separation axes are not the eigenvectors. Further, the Thai
and Chinese populations appear to show a cline, rather than
two discrete clusters grouped around a central point. We
suspect that this shows some evidence of genetic admixture,
perhaps involving a population in Thailand that is related to
the Chinese. (See also Figure 8, which we describe later.)
Table 2 shows the eigenvalues, the TW significance, and an
ANOVA p-value for the first three eigenvectors. Again there
is excellent agreement between the supervised and unsuper-
vised analyses.

In the third dataset, which was created and analyzed by
Mark Shriver and colleagues [5], we have data from 12
populations. The missing data pattern showed some evidence
of population structure, with the missing data concentrated
in particular samples, populations, and SNPs. For this reason,
we only used markers for analysis for which there was no
missing data, and we corrected for LD using our regression
technique (see below). The details of the data preprocessing

steps are described in Methods. We analyzed samples from

189 individuals on 2,790 SNPs. On this dataset, we find the

leading eigenvalue statistics to be as shown in Table 3.

In all the datasets mentioned above, we have very good

agreement between the significance of the TW statistic, which

does not use the population labels, and the ANOVA, which

does. This verifies that the TW analysis is correctly labeling

the eigenvectors as to whether they are reflecting real

population structure.

Shriver and colleagues [5], using different principal

components methods and broken stick statistical analysis

[27,28], recovered four significant components on this data-

set. Our analysis has clearly recovered more meaningful

structure, providing empirical validation of the power of this

approach.

Figure 5. Three East Asian Populations

Plots of the first two eigenvectors for a population from Thailand and Chinese and Japanese populations from the International Haplotype Map [32].
The Japanese population is clearly distinguished (though not by either eigenvector separately). The large dispersal of the Thai population, along a line
where the Chinese are at an extreme, suggests some gene flow of a Chinese-related population into Thailand. Note the similarity to the simulated data
of Figure 8.
doi:10.1371/journal.pgen.0020190.g005

Table 2. Statistics from Thai/Chinese/Japanese Data

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 2.21 92.34 ,10�12
,10�12

2 1.47 31.15 ,10�12
,10�12

3 1.23 �1.61 .61 .97

doi:10.1371/journal.pgen.0020190.t002

Table 3. Statistics from Shriver Dataset

Number Eigenvalue TW Statistic TW p-Value ANOVA p-Value

1 22.36 76.091 ,10�12
,10�12

2 8.20 106.870 ,10�12
,10�12

3 5.09 106.071 ,10�12
,10�12

4 3.81 103.146 ,10�12
,10�12

5 3.33 115.239 ,10�12
,10�12

6 2.09 60.090 ,10�12
,10�12

7 1.89 51.768 ,10�12
,10�12

8 1.44 14.658 ,10�12
,10�12

9 1.30 2.038 .010 1.09 3 10�7

10 1.27 0.084 .084 0.78

doi:10.1371/journal.pgen.0020190.t003
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An Estimate for the Data Size Needed for Significance
A recent paper by Baik, Ben Arous, and Péché [16] gives

theorems for the asymptotics of the distribution of the largest

eigenvalue of a sample covariance matrix when the true

covariance matrix has a few eigenvalues greater than 1 and

the rest equal to 1. This is the situation in genetic data for

which there are just a few meaningful axes of variation.

Unfortunately the theorems proved are only for the case of

data matrices whose entries are complex numbers, but Baik,

Ben Arous, and Péché conjecture that the results hold for real

data, too. We state a form of the conjecture, which we call the

BBP conjecture, and then provide evidence for its applic-

ability to genetics.

Let l1 be the lead eigenvalue of the theoretical covariance

matrix, with the remainder of the eigenvalues 1. Set c2¼ n/m.

Let L1 be the largest eigenvalue of the sample covariance. We

will let n, m become large with the ratio n/m tending to a limit.

BBP Conjecture [16]:

(1) If l1 , 1þ 1/c, then as m,n ! ‘, L1, suitably normalized, tends

in distribution to the same distribution as when l1 ¼ l.

(2) If l1 . 1 þ 1/c, then as m,n ! ‘, the TW statistic becomes

unbounded almost surely.

That is, the behavior of L1 is qualitatively different

depending on whether l1 is greater or less than 1 þ 1/c. This

is a phase-change phenomenon, and we will define

1þ 1=c ¼
ffiffiffiffi

m
p þ ffiffiffi

n
p
ffiffiffi

n
p

as the BBP threshold. This is an asymptotic result, showing that

as the data size goes to infinity, the transition of the behavior,

as l1 varies, becomes arbitrarily sharp. The result, as stated

above, is proved in [16] for data where the matrix entries are

complex numbers, and statement (2) of the conjecture is
proved in [17], which demonstrates that the behavior is
qualitatively different according to whether l1 is greater or
less than 1 þ 1/ c. There seems little doubt as to the truth of
statement (1) above. It has been shown (D. Paul, Asymptotic
behavior of the leading sample eigenvalues for a spiked
covariance model, http://anson.ucdavis.edu/;debashis/
techrep/eigenlimit.pdf) that, under the assumptions of state-
ment (1) above, the lead eigenvector of the sample covariance
is asymptotically uncorrelated with the lead eigenvector of
the theoretical covariance, but we believe that the question of
the distribution of the leading eigenvalue is still open.

Consider an example of two samples each of size m/2,
diverged from each other at time s, where unit time is 2N
generations, and assume that N is the effective population
size. We assume s is small, from which it follows that

FST ’ s

We find that

l1 ¼ 1þ ms ð11Þ

It follows that the BBP threshold is reached when

s ¼ 1
ffiffiffiffiffiffi

nm
p

This is interesting by itself:

Define D, the data size, to be the product of the number of samples

and number of SNPs genotyped. For two subpopulations of equal

sample size, the phase change threshold is reached when 1/FST is equal

to the square root of the data size D, independently of the number of

individuals and markers, at least when both are large.

At a fixed data size, the expected value of the leading
eigenvalue of the data matrix (and the power to detect

Figure 6. The BBP Phase Change

We ran a series of simulations, varying the sample size m and number of markers n but keeping the product at mn¼ 220. Thus the predicted phase
change threshold is FST ¼ 2�10. We vary FS and plot the log p-value of the Tracy–Widom statistic. (We clipped �log10 p at 20.) Note that below the
threshold there is no statistical significance, while above threshold, we tend to get enormous significance.
doi:10.1371/journal.pgen.0020190.g006
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structure) of course is a continuous function of FST, but the
BBP conjecture suggests that for large data sizes there will
only be a small transition region. Above the region, detection
of structure will be easy, and below it, impossible.

Let us take nm¼ 220 (about one million genotypes), so that
the BBP threshold is FST ¼ 2�10. We let m¼ 2k (k¼ 5. . .8) and
set n ¼ 220�k so that nm ¼ 220.

Now for each value of m, generate simulated data, varying
FST from 2�13 to 2�7. For each simulation, we compute L1, the
TW statistic, and a p-value. We show the TW statistics in
Figure 6.

The phase change is evident. Further, from [16, p. 1650ff]
(also see [17, Equation 1.10]): above the BBP threshold we
have that

L1 ! l1 þ
1

c2ðl1 � 1Þ

in probability as m,n ! ‘. It then follows that above the BBP
threshold, we can expect the TW statistic to be increasing
with the number of individuals m if the data size mn is fixed.
That is, increasing sample size, rather than marker number, is
advantageous for detecting structure above the BBP thresh-
old, but not below it. This effect is clearly visible in Figure 6
(note the behavior of the p-value for m¼ 256). We summarize:

For two equal size subpopulations, there is a threshold value of FST,

1=
ffiffiffiffiffiffi

mn
p

, below which there will be essentially no evidence of

population structure. Above the threshold, the evidence accumulates

very rapidly, as we increase the divergence or the data size. Above the

threshold for fixed data size mn, the evidence is stronger as we increase

m, as long as n � m.

Another implication is that these methods are sensitive.
For example, given a 100,000 marker array and a sample size
of 1,000, then the BBP threshold for two equal subpopula-
tions, each of size 500, is FST¼ .0001. An FST value of .001 will
thus be trivial to detect. To put this into context, we note that
a typical value of FST between human populations in
Northern and Southern Europe is about .006 [15]. Thus, we
predict: most large genetic datasets with human data will show some

detectable population structure.

The BBP phase change is not just a phenomenon of the
eigenvector-based analysis we are discussing here. We suspect
that at least for biallelic unlinked markers, no methods for
detecting structure will do much better than our TW-based
techniques. This implies that no method will have any
significant success rate if population divergence is below
the BBP threshold, while above threshold, reasonable

methods will succeed. To test this we made a series of
simulations, each with 1,600 biallelic markers and two
populations each of size 50. We varied FST and ran both our
eigenanalysis and STRUCTURE. (See Methods for more detail
about the simulations and analysis.) We were not successful in
using STRUCTURE to produce a higher likelihood for the
existence of two clusters rather than one except for the very
largest FST levels. We wanted to place our methods and
STRUCTURE on a ‘‘level playing field.’’ Our PCA methods
return a leading eigenvector, while running STRUCTURE
with K¼2 clusters, returns for each individual the probability
of belonging to cluster 1. We used a nonparametric idea,
applying a probit transform to both the output of both the
PCA and of STRUCTURE, and then running an ANOVA
analysis, both for PCA and STRUCTURE output. (The probit
transform uses order statistics (ranks) to map the observa-
tions into points appropriate if the underlying distribution is
standard normal. See, for example, [33].) This amounts to
carrying out an unsupervised analysis and then checking to
see if the recovered ‘‘structure’’ reflects the truth.
Thus, we will compute three p-values: 1) a TW statistic from

an unsupervised analysis; 2) an ANOVA p-value (F-statistic)
after probit transform of the leading principal component; 3)
an ANOVA p-value (F-statistic) after probit transform of the
STRUCTURE cluster probabilities.
Table 4 shows the results from a representative set of runs:

we show the geometric mean of the p-value in simulations,
based on a TW statistic (unsupervised) or a nonparametric
ANOVA analysis, both for the eigenanalysis and for STRUC-
TURE.
Here the BBP threshold is .0025. Below the threshold

nothing interesting is found by the TW unsupervised statistic.
Above the threshold, the TW statistic is usually highly
significant, and the ANOVA analyses show that the true
structure has become apparent. At the threshold we sometimes

have recovered significant structure, but it will be hard
(usually impossible) to tell if the structure is real or a
statistical artifact. Below the threshold, the structure is too
weak to be useful. In these runs, at the critical threshold, the
eigenanalysis slightly outperformed STRUCTURE. We have
not carefully investigated whether we could obtain better
results by varying the STRUCTURE parameters.
Summarizing: below the threshold, neither procedure

succeeds with reasonable probability, at the threshold success
is variable, and above the threshold success is nearly
guaranteed.

Table 4. BBP Phase Change: Eigenanalysis and STRUCTURE

FST P (TW) P (ANOVA, Eigen) P (ANOVA, STRUCTURE)

0 0.436 0.565 0.432

.000625 0.292 0.188 0.278

.00125 0.312 0.075 0.154

.00250 0.185 5.94 3 10�5 0.085

.00500 1.19 3 10�6
,10�12

,10�12

.01000 ,10�12
,10�12

,10�12

We give the geometric mean P of p-values (20 runs).
___ , the expected position of the phase change (FST ¼ .0025).
doi:10.1371/journal.pgen.0020190.t004
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Admixture
In an admixed population, the expected allele frequency of

an individual is a linear mix of the frequencies in the parental

populations. Unless the admixture is ancient—in which case

the PCA methods will fail as everyone will have the same

ancestry proportion—then the mixing weights will vary by

individual. Because of the linearity, admixture does not

change the axes of variation, or, more exactly, the number of

‘‘large’’ eigenvalues of the covariance is unchanged by adding

admixed individuals, if the parental populations are already

sampled. Thus, for example, if there are two founding

populations, admixed individuals will have coordinates along

a line joining the centers of the founding populations.

We generated simulated data, by taking a trifurcation

between populations (A,B,D) 100 generations ago. Population

C is a recent admixture of A and B. The mixing proportion of

A in an individual from C is Beta-distributed B(3.5,1.5) so that

the average contribution of population A in an individual of

population C is .7 (see Figure 7). Effective population sizes are

10,000 for each population. We then simulated data for

10,000 unlinked markers (more details are in the Methods

section). FST between any pair of A,B,D is .005. We are
attempting to mimic the data of Figure 5, and chose to run
our analysis on simulated samples from populations B,C,D,

not using samples from A. We expect two significant
eigenvalues corresponding to the splits of populations B,C,

and D. If population A is included in the analysis, we also get
just two significant eigenvalues, as predicted by theory. This is
what is observed (unpublished data), with, as predicted, the
admixed population not adding to the number of axes of
variation (the third eigenvalue is not significant). In Figure 8
we show a plot of the first two eigenvectors. Note the
dispersion of population C along a line. This is diagnostic of
admixture. The resemblance of Figures 5 and 8 is striking.
There remain issues to resolve here. Firstly, recent

admixture generates large-scale LD which may cause diffi-
culties in a dense dataset as the allele distributions are not
independent. These effects may be hard to alleviate with our
simple LD correction described below. STRUCTURE [10]
allows careful modeling. Secondly, more ancient admixture,
especially if the admixed population is genetically now
homogeneous, may lead to a causal eigenvalue not very
different from the values generated by the sampling noise.
Suppose, for example, in our simulation above, we let
population C mate panmictically for another 20 generations.
Then we will get three clusters for A, B, C that are nearly
collinear, but not exactly because of the recent 20-generation
divergence, which is reflecting genetic drift unique to that
population.
A third issue is that our methods require that divergence is

small, and that allele frequencies are divergent primarily
because of drift. We attempted to apply our methods to an
African-American dataset genotyped on a panel of ancestry-
informative markers [34]. The Tracy–Widom theory breaks
down here with dozens of ‘‘significant’’ axes that we do not

Figure 7. Simulation of an Admixed Population

We show a simple demography generating an admixed population.
Populations A,B,D trifurcated 100 generations ago, while population C is
a recent admixture of A and B. Admixture weights for the proportion of
population A in population C are Beta-distributed with parameters
(3.5,1.5). Effective population sizes are 10,000.
doi:10.1371/journal.pgen.0020190.g007

Figure 8. A Plot of a Simulation Involving Admixture (See Main Text for Details)

We plot the first two principal components. Population C is a recent admixture of two populations, B and a population not sampled. Note the large
dispersion of population C along a line joining the two parental populations. Note the similarity of the simulated data to the real data of Figure 5.
doi:10.1371/journal.pgen.0020190.g008

PLoS Genetics | www.plosgenetics.org December 2006 | Volume 2 | Issue 12 | e1902085

Population Structure and Eigenanalysis



believe have genetic meaning. Perhaps this is to be expected,
as on our informative panel FST is big (.58) and the theory
could be expected to perform poorly. In addition our
methods are here not dealing adequately with LD caused by
large admixture blocks.

This is an issue for our TW techniques, but not for PCA as
such. Indeed, on this dataset the correlation of our principal
eigenvector with the estimated European ancestry for each
individual recovered by the admixture analysis program
ANCESTRYMAP [12] is a remarkable .995 (STRUCTURE
produces similar results). ANCESTRYMAP has complex
modeling of admixture LD, and was also provided with
parental allele frequencies, but did no better than the simple
PCA. (There is an issue of interpretation here: the leading
eigenvector is almost perfectly correlated with ancestry, but
to infer actual ancestry proportions an affine transform must
be applied, translating and scaling the values. In practice,
some parental allele frequencies will be needed to determine
the appropriate transform. A similar issue arises with
STRUCTURE if parental frequencies are unknown.)

Finally, if ‘‘admixture LD’’ is present, so that in admixed
individuals long segments of the genome originate from one
founder population, simple PCA methods will not be as
powerful as programs such as STRUCTURE [10], ADMIXMAP
[11], and ANCESTRYMAP [12], where there is careful model-
ing of the admixture blocks and the transitions. The power of
these methods lies in the fact that genome-wide samples may
have similar proportions of inheritance from the ancestral
populations, but locally they will inherit either 0, 1, or 2 alleles
from each ancestral population. Methods that specifically
attempt to assign local ancestries will be able to determine the
specific patterns typical of each ancestral population locally.
An interesting and challenging problem is to build tools that
retain the power of these more complex models on admixed
data and that also run rapidly on large datasets.

Correcting for LD
The theory above works well if the markers are independ-

ent (that is have no LD), but in practice, and especially with
the large genotype arrays that are beginning to be available,
this is difficult to ensure. In extreme cases uncorrected LD
will seriously distort the eigenvector/eigenvalue structure,
making results difficult to interpret. Suppose, for example,
that there is a large ‘‘block’’ [35,36] in which markers are in
complete LD, and we have genotyped many markers in the
block. A large eigenvector of our Wishart matrix X will tend
to correlate with the genotype pattern in the block (all
markers producing the same pattern). This will distort the
eigenvector structure and also the distribution of eigenvalues.

We recommend the following if LD between markers is a
concern in the data. Pick a small integer k. 0, corresponding
to the number of adjacent markers one uses for adjustment (k
¼ 1 will often suffice). In the data matrix M we will ‘‘predict’’
each column by running a multivariate regression on the k

previous columns. We then will analyze the residuals.
Concretely: we first form M, as in Equation 2. For each
column j

Set:

a ¼ a½j�s ð1 � s � kÞ

Rði; jÞ ¼ Mði; jÞ �
X

k

s¼1

a½j�s Mði; j � sÞð1 � i � mÞ ð12Þ

Choose a to minimize
X

i

R2ði; jÞ

and now calculate X ¼ RR9 instead of MM9. It is first
important to check that in the absence of LD the suggested
correction does not seriously distort the Tracy–Widom
statistic. In Figure 9A and 9B we show P–P plots, uncorrected,
and with five levels (k¼ 1. . .5) of correction. The first figure is
with 100 individuals and 5,000 markers, the second with 200
individuals and 50,000 markers. Then in Figure 10A and 10B
we analyze a simulated dataset with severe LD. We generate
blocks in perfect LD, in which the probability that a block
contains L markers is 2�L. We show the corresponding plots.
Note that here the uncorrected statistic is distributed quite
differently than the Tracy–Widom distribution. Our sug-
gested correction strategy seems to work well, and should be
adequate in practice, especially as most large genotype arrays
will attempt to avoid high levels of LD. We would recommend
that before analyzing a very large dataset with dense
genotyping, one should filter the data by removing a marker
from every pair of markers that are in tight LD.

Comparison with STRUCTURE
In the work above on the BBP phase change, we already

showed some comparisons between STRUCTURE and our
methods. A fair comparison to STRUCTURE is not easy, as
the two programs have subtly different purposes and outputs.
STRUCTURE attempts to describe the population structure
by probabilistic assignment to classes, and we are attempting
to determine the statistically significant ‘‘axes of variation,’’
which does not necessarily mean the same thing as assigning
individuals to classes.
Our impression, confirmed by Table 4, is that when our

analysis finds overwhelmingly evident population structure,
thenSTRUCTUREwill aswell, andwhennothing at all is found,
STRUCTURE will fail, too. In a problem where the effect is
marginal, it may be hard to say which analysis is preferable.
STRUCTURE is a sophisticated program with many

features we have not attempted to match. STRUCTURE has
an explicit probability model for the data, and this allows
extra options and flexibility. It incorporates a range of
options for ancestry and for allele frequencies, and has
explicit options for modeling microsatellite distributions.
On the other hand, eigenanalysis has advantages over

STRUCTURE. First, it is fast and simple, and second, it
provides a formal test for the number of significant axes of
variation.
One future possibility is to somehow incorporate recov-

ered significant eigenvectors into STRUCTURE—in partic-
ular with regard to choosing the number of subpopulations,
which is not statistically robust in the STRUCTURE frame-
work. A sensible default for the number of clusters in
STRUCTURE is one more than the number of significant
eigenvalues under the TW statistic.

Missing Data and Other Problems
The most problematic issue when applying any method to
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infer population structure is that genotyping may introduce

artifacts that induce apparent (but fallacious) population

structure.

Missing genotypes by themselves are not the most serious

concern. Simply setting M(i,j)¼ 0 in Equation 3 if marker j is

missing for individual i is reasonable if we are testing the null,

that there is no structure, and the missing data is ‘‘missing at

random.’’ Unfortunately ‘‘informative missingness’’ [37,38] is

extremely frequent in genetic data. Probably the most

common and serious issue is that with current technology,

heterozygotes are more difficult to call than homozygotes.

Thus, true heterozygotes are more likely to be called as

missing. This is discussed in detail in [38], which is

recommended as a very useful discussion of the issues,

especially as they apply to medical genetics. If DNA quality

(or quantity) varies among our samples, then certain

individuals may have an unusual amount of missing data,

and then appear as outliers in our eigenanalysis—we in fact

have seen this in many runs on real data.

Another issue that may produce confounding effects is if

data from different populations or geographical areas is

handled differently (which may be inevitable, especially in the

Figure 9. LD Correction with no LD Present

P–P plots of the TW statistic, when no LD is present and after varying levels (k) of our LD correction. We first show this (A) for m¼ 500, n¼ 5,000, and
then (B) for m ¼ 200, n ¼ 50,000. In both cases the LD correction makes little difference to the fit.
doi:10.1371/journal.pgen.0020190.g009
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initial processing); then, in principle, this may induce

artifacts that mimic real population structural differences.

Even restricting analysis to markers with no missing data,

apart from an inevitable power loss, does not necessarily

eliminate the problems. After all, if a subset (the missing data)

is chosen in a biased way, then the complementary subset

must also be biased.

We have no complete solution to these issues, though there

is no reason to think that our eigenvector-based methods are

more sensitive to the problems than other techniques [9].

One check we do recommend is to generate a test matrix by

taking the initial counts C(i,j) to be 0 if the corresponding

data is present; otherwise, set C(i,j) ¼ 1. This is equivalent to

only focusing on the pattern of missing data. The eigenanal-

ysis on this test matrix will show significant TW statistics if

the missing data by itself is showing evidence of population

structure. If so, the results should be regarded with some

suspicion, especially if the eigenvectors show high correlation

to the eigenvectors of the main analysis. We here echo [38]

and recommend that the analyst should ‘‘control all aspects of

source, preparation and genotyping, using the paradigms of

Figure 10. LD Correction with Strong LD

(A) Shows P–P plots of the TW statistic (m¼ 100, n¼ 5,000) with large blocks of complete LD. Uncorrected, the TW statistic is hopelessly poor, but after
correction the fit is again good. Here, we show 1,000 runs with the same data size parameters as in Figure 2A, m¼500, n¼5,000, varying k, the number
of columns used to ‘‘correct’’ for LD. The fit is adequate for any nonzero value of k.
(B) Shows a similar analysis with m ¼ 200, n ¼ 50,000.
doi:10.1371/journal.pgen.0020190.g010
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blindness and randomization,’’ but, as the reference states,
this will not always be possible.

Another possible source of error, where the analyst must be
careful, is the inclusion of groups of samples that are closely
related. Such a ‘‘family’’ will introduce (quite correctly from
an algorithmic point of view) population structure of little
genetic relevance, and may confound features of the data of
real scientific interest. We found that this occurred in several
real datasets that we analyzed with eigenanalysis and in which
related individuals were not removed.

Discussion

For many genetic datasets, it is important to try to
understand the population structure implied by the data.
STRUCTURE [9], since its introduction, has been the tool of
choice, especially for small datasets. We think we have
provided some evidence that PCA has advantages also, as it
is fast, easily implemented, and allows accurate testing of
significance of a natural null model.

We can only uncover structure in the samples being analyzed.
As pointed out in [39], the sampling strategy can affect the
apparent structure. Rosenberg et al. [29] give a detailed
discussion of the issue, and of the question of whether clines
or clusters are a better description of human genetic variation.
However, our ‘‘axes of variation’’ are likely to be relatively
robust to this cline/cluster controversy. If there is a genetic cline
running across a continent, and we sample two populations at
the extremes, then it will appear to the analyst that the two
populations form two discrete clusters. However, if the
sampling strategy had been more geographically uniform, the
cline would be apparent. Nevertheless, the eigenvector reflect-
ing the cline could be expected to be very similar in both cases.

Our methods are conceptually simple, and provide great
power, especially on large datasets. We believe they will prove
useful both in medical genetics, where population structure
may cause spurious disease associations [1,40–43]; and in
population genetics, where our statistical methods provide a
strong indication of how many axes of variation are mean-
ingful. A parallel paper [14] explores applications to medical
genetics.

Mathematical Details
A moments estimator. We justify our estimator of the

‘‘effective number of markers.’’
Theorem 1.
Let k1, k2,. . . km be eigenvalues of an m3m Wishart matrix MM9,

where M is m3n with entries that are Gaussian with mean 0 variance

r2. Define

L1 ¼
X

m

i¼1

ki

L2 ¼
X

m

i¼1

k2i

If n,r2 are unknown, estimates are:

n̂ ¼ mðmþ 2Þ
S2 � m

ð13Þ

r̂2 ¼ S1

mn̂
ð14Þ

where

S1 ¼
X

m

i¼1

ki ¼ L1 ð15Þ

S2 ¼
m2
X

m

i¼1

k2i

S21
¼ m2L2

L2
1

ð16Þ

With these values of n̂ and r̂, the observed values of L1 and

2L2 þ L2
1 are equal to their expected values.

Note that in this section we define our Wishart as MM9, not
MM 9

n
, as n is unknown. This scaling hardly matters in

applications, as our procedures are always scale-invariant.
That is, we avoid assumptions on the variance of the Gaussian
entries of M.
Proof:
Let a ¼ (a1,a2,. . .am) be a random vector uniformly

distributed on the unit m-sphere. a2i is Beta (1/2,(m � 1)/2)-
distributed, and it follows that

Eða2i Þ ¼
1

m

Eða4i Þ ¼
3

mðmþ 2Þ

Let s ¼
X

m

i¼1

a2i ki. Then

EðsjkÞ ¼ 1

m

X

m

i¼1

ki ð17Þ

Eðs2jkÞ ¼ 1

mðmþ 2Þ 3
X

m

i

k2i þ
X

i 6¼j

kikj

0

@

1

A ð18Þ

¼ 1

mðmþ 2Þ 2
X

m

i¼1

k2i þ
X

m

i¼1

ki

 !2 !

ð19Þ

To obtain the distribution of s, unconditioned on k, we see
that we can write s as

s ¼ aDa9

where D ¼ diag(k1, k2,. . . km). After an orthogonal trans-
formation

s ¼ bXb9 ð20Þ

where X is our Wishart matrix and b is uniform (isotropic) on
the unit sphere. By properties of the Gaussian distribution,
the distribution of s as given by Equation 20 is independent of
b. We choose b to be (1,0,0,. . .). It follows that s/r2 is
distributed as a v2½n� variate so that s¼ 2r2G where G is C(n/2)-
distributed. Thus,

EðsÞ ¼ nr2 ð21Þ

Eðs2Þ ¼ r4nðnþ 2Þ ð22Þ

Comparing Equations 17 and 21, this proves:
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Eð
X

m

i¼1

kiÞ ¼ mnr2 ð23Þ

and comparing Equations 19 and 22, we find:

E 2
X

m

i¼1

k2i þ ð
X

m

i¼1

kiÞ
2

 !

¼ mðmþ 2Þnðnþ 2Þr4 ð24Þ

From Equations 23 and 24:

E 2
X

m

i¼1

k2i þ ð
X

m

i¼1

kiÞ
2

 !

Eð
X

m

i¼1

kiÞ
 !2 ¼ ðmþ 2Þðnþ 2Þ

mn

so that a natural estimator for n is:

n̂ ¼
ðmþ 2Þ

X

m

i¼1

ki

 !2

m
X

m

i¼1

k2i

 !

�
X

m

i¼1

ki

 !2 ¼
ðmþ 2ÞL2

1

mL2 � L2
1

ð25Þ

We then obtain as an estimate for r:

r̂2 ¼ L1

mn̂
ð26Þ

If we set:

S2 ¼
m2L2

L2
1

then Equation 25 simplifies to:

n̂ ¼ mðmþ 2Þ
S2 � m

ð27Þ

This completes the proof of Theorem 1.

It would be interesting to estimate the standard error for n̂.

We next show that normalizing the eigenvalues of an m3m

Wishart to sum to m does not change the asymptotics of the

largest eigenvalue. In our data analysis we always normalize

the empirical eigenvalues in this way.

Theorem 2.

Consider a Wishart matrix X with eigenvalues ki, originating from

an m 3 m matrix M whose entries are Gaussian with mean 0 and

variance 1. That is, X ¼ MM 9

n . Let k1 be the largest eigenvalue of X.

Define

L ¼ k1

L9 ¼ mk1
X

m

i¼1

ki

ð28Þ

Define s by

s ¼ L� lðm; nÞ
rðm; nÞ

s9 ¼ L9� lðm; nÞ
rðm; nÞ

which normalizes L,L9 by the Johnstone normalization of Equation 7

with l and r defined as in Equations 5 and 6. Then L and L9 both

tend in distribution to the Tracy–Widom distribution as m,n ! ‘,n/m

! c . 1. That is, the normalization of Equation 28 does not change

the asymptotic distribution of L.

Proof:
Let

T ¼

X

i

ki

m

Then

mT ¼
X

i

ki ¼ TraceðXÞ ¼ TraceðMM 9Þ=n

So

T ¼

X

ij

M2
ij

mn

Each entry of M is standard normal, and so T has mean 1 and
standard deviation

u ¼
ffiffiffi

2
p
ffiffiffiffiffiffi

mn
p

Let s ¼ r(m,n) be the scale factor of the Johnstone
normalization. Then we can show (we used Maple) that as
n ! ‘,

u

s
;

ffiffiffi

2
p

m1=3

Write T¼ 1þ x so that x has mean 0 and standard deviation u.
Thus, x/s ! 0 in probability as m ! ‘.

s� s9 ¼ L� L=T

s

¼ xL

sT
ð29Þ

We now show that this implies that s � s9 tends to 0 in
probability. From the definition of l(m,n) in Equation 5, we
have l(m,n) , 4. Pick a constant (say 10) .4. Since as m ! ‘,
(L� l(m,n))/r(m,n) tends to TW in distribution, and r(m,n) !
0, it follows that P(L . 10) tends to 0 as m ! ‘. Similarly, P(T
, 1/2) tends to 0. Take e . 0. From Equation 29:

Pðjs� s9j.eÞ,PðL.10Þ þ PðT, 1=2Þ þ Pðx=s . e=20Þ ð30Þ

All three probabilities on the right hand side of Equation
30 can be made arbitrarily small for large enough m.
By Johnstone’s theorem, s ! TW in distribution, and so s9

! TW also.

The Spectrum of the Covariance Matrix
We now turn to genetic (genotype count) data, and analyze

the theoretical covariance matrix of the data. We concentrate
on the covariance of the sample genotypes at a single biallelic
marker. Note that in contrast to the results for a Wishart
discussed in Theorem 2, we are now interested in a case
where there is population structure, which implies depend-
ence between the samples.
Consider sampling a marker from samples belonging to K

populations. Suppose the allele has frequency pi in popula-
tion i. We sample diploid genotypes, obtaining counts Cj of
the variant allele from sample j. We suppose sample j belongs
to population i¼ i( j ), and that the sample size for population
i is M(i). We discuss the spectrum (eigenvalues) of the
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covariance matrix of the raw counts Cj. Note that this is for
the theoretical covariance not the sample covariance.

We must specify the covariance of the population
frequency vector

p ¼ ðp1; p2; :::pKÞ

We assume that there is a hidden allele frequency P whose
exact distribution will not be important to us, but is diffuse
across the unit interval (0,1). Then conditional on P we
assume that p has mean P(1,1,. . .,1) and covariance matrix P(1
– P)B where B is independent of P. This is a natural
framework, used (filling in details variously) by Balding and
Nichols [44], Nicholson et al. [18], and STRUCTURE [9] in the
correlated allele mode. For small population divergence, we
can take the diagonal entry Bii as the divergence (FST) between
P and pi. Set

si ¼ Bii

and assume that all si are of order s, which is small.
Conditional on p, then the Cj are independent. Cj has mean
p and variance 2p(1 � p) where p ¼ pi(j). This assumes Hardy–
Weinberg equilibrium in each of the K populations.

Theorem 3.
With the assumptions above, define

C�
i ¼ Ci �

X

M

j¼1

Cj

M

so that Ci
* has mean 0. Let V* be the covariance matrix of C* and set

~V ¼ V�

2Pð1�PÞ. Conditional on the root frequency P:

1. ~V does not depend on P.
2. ~V has an eigenvalue 0 with eigenvector ð1;1;...;1Þ

ffiffiffiffi

M
p .

3. ~V has for each k (1 � k � K), M(k)� 1 eigenvalues equal
to 1 � sk. (We will call these the small eigenvalues.)

4. ~V has K � 1 eigenvectors that span a vector space F*

consisting of vectors v of length M whose coordinates are
constant on samples from each population, and such that the
sum of the coordinates of v are 0.

5. If the matrix B (the scaled covariance of the population
frequencies p) has rank r, then r � 1 of the eigenvalues of ~V

that correspond to eigenvectors in F* depend on B. (So if B
has full rank, all these eigenvalues depend on B.) If we allow
each sample size M(k)! ‘, then then all such eigenvalues also
! ‘. (We will call the corresponding eigenvalues the large

eigenvalues).
Proof:
Let V be the covariance matrix of the counts C. Regard V¼

jj Vij jj as a linear operator in the natural way. Write p(i) for
the population index of sample i(1 � i � K). We can write V¼
Vij as D þ W where D is a diagonal matrix with the diagonal
element Dii ¼ dp(i) and Wij ¼ qp(i),p(j). So the covariance
structure depends only on the population labels of the
samples. It follows that the vector space of M long column
vectors has an orthogonal decomposition into subspaces
invariant under V consisting of: 1) a subspace F of vectors
whose coordinates are constant within a population. F has
dimension K; 2) subspaces Si (1 � i � K). Vectors of Si are zero
on samples not belonging to population i, and have
coordinate sum 0, which implies that they are orthogonal to
F. It now follows that V has K eigenvectors in F, and for each k

(1 � i � K), (M(k) � 1 eigenvectors in Sk each of which have

the same eigenvalue kk. Conditional on p, V acts on Sk as 2pk(1
� pk)I where I is the identity matrix. (The factor 2 comes from
the two chromosomes sampled for each individual.) Thus,

kk ¼ Eð2pkð1� pkÞjPÞ

Now

Eðp2k jPÞ ¼ P2 þ Pð1� PÞsk
and so the eigenvalues corresponding to eigenvectors of Sk
are:

kk ¼ Eð2pkð1� pkÞjPÞ ¼ 2Pð1� PÞð1� skÞ

V* and V act identically on Sk, the vectors of which have
coordinate sum 0, so this proves assertion 3 of Theorem 3.
We now consider the action of V on the K-dimensional

subspace F. It is convenient to define mðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

MðkÞ
p

, a
quantity we will need repeatedly. Let for each k (1 � k � K),
f[k] be the vector whose coordinates are 0 except for samples i
where p(i) ¼ k, and where for such samples:

f
½k�
i ¼ 1

mðkÞ

The vectors f[k] form an orthonormal basis for F. Write dk¼
f[k].C. Set E to be the diagonal matrix

diagð1� s1; 1� s2; :::1� sKÞ

It is easy to calculate that the random variables dk have,
conditional on P, covariance matrix R, where

R ¼ ð4DBDþ 2EÞPð1� PÞ ð31Þ

and D ¼ diag(m(1),m(2),. . .m(K)). Here E corresponds to
sampling noise.
In the main paper we subtract the sample mean from the

counts C. So define the M long vector 1 ¼ (1,1,. . .,1). Then

1 ¼
X

K

k¼1

mðkÞf ½k� ð32Þ

Set C�
j ¼ Cj � 1

M

PM
k¼1 Ck, this is a linear transform T where

TðCÞ ¼ C� ¼ C � ð1:CÞ1
M

We are interested in the action of T on F. Write

Tðf ½k�Þ ¼
PK

l¼1 Tklf
½k�. 1

Then from Equation 32, regarding T as a K 3 K matrix
(abusing notation): T¼ I�Q where I is the identity matrix and

Qkl ¼
mðkÞmðlÞ

M

Set

dk ¼ f ½k�:C�

It now follows from Equation 31 that if R* is the covariance
matrix of the dk, then

R� ¼ ð4TDBDT þ 2TETÞPð1� PÞ ð33Þ

This is enough to prove that ~V ¼ V=2Pð1� PÞ does not
depend on P (assertion 1 of Theorem 3).
Next,T(1) –R*(1)¼0, which proves assertion 2 of Theorem 3.

The space F* of vectors F orthogonal to 1 is invariant under V
and ~V , thus R* will have K�1 eigenvectors of F* (assertion 4 of
Theorem3). IfB has rankK (which will be true except in special
cases), then TDBDT has rank K� 1 and if M(k) ! ‘ for each k,

PLoS Genetics | www.plosgenetics.org December 2006 | Volume 2 | Issue 12 | e1902091

Population Structure and Eigenanalysis



then R* will have K � 1 nonzero eigenvalues which become
arbitrarily large.More generally, ifBhas rank r, then thematrix
TDBDT will have rank r�1, and the r�1 eigenvalues of R* that
depend on B, again will become arbitrarily large as M(k) ! ‘.
Note that the matrix TET which arises from sampling noise is
bounded. (In fact TET is a contraction and has all eigenvalues
less than 1.) This completes the proof of Theorem 3.

The case in which B does not have full rank occurs if there
has been a genetically recent admixture between two or more
populations. In this case, even if there are K clearly distinct
populations, fewer than K � 1 eigenvalues will become large
as the sample size increases.

Definition of the TW Density
For completeness, we define the TW density. Our descrip-

tion is taken from [22].
Let q(x) be the solution of the differential equation:

q99ðxÞ ¼ xqðxÞ þ 2q3ðxÞ

with the boundary condition:

qðxÞ;AiðxÞ as x ! ‘

and Ai(x) is the Airy function. Then the TW distribution is
given by:

TWðsÞ ¼ exp � 1

2

Z

‘

s

qðxÞ þ ðx� sÞq2ðxÞdx
� �

ð34Þ

A table of the TW right-tail area, and density, is available
on request.

Some Questions in Theoretical Statistics
We believe this work raises some challenges to theoretical

statisticians. Our results with genetic simulations would be
even more convincing if there were theorems (say for the
Wishart case where the data matrix has Gaussian entries) that
showed: 1) that using the effective number of markers
calculated by Equation 10 instead of the true number of
markers does not affect the asymptotics; 2) that the BBP
phase change holds for real Wishart matrices as well as for
complex; 3) in Figures 2 and 3 the P–P plots show a noticeably
better fit at the high end, corresponding to low p-values.
Explain!

Methods
Datasets used. For the data used in Figure 4, we use the H952

subset of the CEPH–HGDP panel [30,31,45] where some atypical
samples and pairs of close relatives have been removed.

For the data used in Figure 5, we use an unpublished sample
collected and genotyped by Dr. Jonathan Seidman and Dr. S.
Sangwatanaroj. This consisted of 25 samples from Northern Thailand
(after removing some individuals who are close relatives of people
whose samples we retained) and 45 samples each from China and
Japan (data drawn from the International Human Haplotype Map
Project [32]). The Northern Thai samples were genotyped using an
Affymetrix Xba chip. The dataset analyzed consisted of the overlap
between the SNPs successfully genotyped in HapMap and the
Affymetrix chip, and included 40,560 SNPs.

For the data of Mark Shriver and colleagues [5], we analyzed only
autosomal data where no SNP had any missing data. We removed one

individual who was a duplicate, two Burunge and Mbuti samples that
represented close relatives of other samples, and nine Nasioi
individuals who our data suggest are part of one or two extended
families.

Algorithm details. In the eigenanalysis of the Shriver data, we
examine no more than two markers as independent regression
variables for each marker we analyze, insisting that any marker that
enters the regression be within 100,000 bases of the marker being
analyzed. This slightly sharpens the results. Varying these parameters
made little difference.

For all STRUCTURE runs, we ran with a burn-in of 10,000
iterations with 20,000 follow-on iterations, and no admixture model
was used. Computations were carried out on a cluster of Intel Xeon
compute nodes, each node having a 3.06-GHz clock.

For our coalescent simulations, we assumed a phylogenetic tree on
the populations, and at each simulated marker, ran the coalescent
back in time to the root of the tree. At this point we have a set of
ancestors A of the sampled chromosomes. We now assume that the
marker is biallelic and that the population frequency f of the variant
allele in the ancestral population is distributed uniformly on the unit
interval. Sample the frequency f and then choose an allele for each
ancestor of A, picking the allele for each ancestor with probability f.
Now retain the marker if it is polymorphic in our samples. This
process is mathematically equivalent to having a very large outgroup
population diverging from the sampled populations at the phyloge-
netic root, with the population panmictic before any population
divergence, and ascertaining by finding heterozygotes in the out-
group. If our simulated samples have n individuals, our procedure
yields a sample frequency that is approximately uniform on (1,2,. . .,2n
� 1).

For the admixture analysis that created the plot of Figure 8 we had
a population C that was admixed with founder populations A and B.
For each individual of C, we generated a mixing value x that is Beta-
distributed B(3.5,1.5). Now for each marker independently, the
individual was assigned to population A with probability x or B with
probability 1 � x.

Supporting Information

SMARTPCA, a software package for running eigenanalysis in a
LINUX environment, is available at our laboratory: http://rd.plos.org/
david_reich_laboratory.
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