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Abstract: The effects of various population topologies

on the particle swarm algorithm were systematically inves-

tigated.  Random graphs were generated to specifications,

and their performance on several criteria was compared.

What makes a good population structure?  We discovered

that previous assumptions may not have been correct.

I. INTRODUCTION

The trajectories of individual members of a particle
swarm population have been analyzed in depth

[3][[4][8], and those analyses have resulted in improve-

ments in the performance of the algorithm.  It has long

been clear though that the uniqueness of the algorithm

lies in the dynamic interactions of the particles.  Even

when changes are made to the formulas e.g.,

[1][2][4][8], the performance depends on an effect in-

volving the entire population.

The particle swarm algorithm can be described gen-

erally as a population of vectors whose trajectories os-

cillate around a region which is defined by each individ-

ual’s previous best success and the success of some
other particle.  Various methods have been used to iden-

tify “some other particle” to influence the individual.

The two most commonly used methods are known as

gbest and lbest (Figure 1).  In the gbest population, the

trajectory of each particle’s search is influenced by the

best point found by any member of the entire population.

The lbest population allows each individual to be influ-

enced by some smaller number of adjacent members of

the population array.  Typically lbest neighborhoods

comprise exactly two neighbors, one on each side: a ring

lattice.
A kind of lore has evolved regarding these so-

ciometric structures.  It has been thought that the gbest

type converges quickly on problem solutions but has a

weakness for becoming trapped in local optima, while

lbest populations are able to “flow around” local optima,

as subpopulations explore different regions [7].  The lore

is based on experience and some data, but population

topologies have not been systematically explored.  The

present research manipulates some sociometric variables

that are hypothesized to affect performance.

There is not room in this forum to discuss the No
Free Lunch implications of the present strategy.  We are

convinced that it is worthwhile to seek an optimization

algorithm that performs well on a variety of standard test

functions, even if it is average across the full range of

possible functions.

II. CAUSAL FACTORS

The present study focused on population topologies

where connections were undirected, unweighted, and did

not vary over the course of a trial.  The usual particle

swarm rule was used, that an individual gravitated to-
ward a stochastically weighted average of its own previ-

ous best point and the best point found by any member

of its neighborhood.

FIGURE 1.  GBEST (LEFT) AND LBEST SOCIOMETRIC PAT-

TERNS
i
.

Watts [10][11] has shown that the flow of informa-

tion through social networks is affected by several as-

pects of the networks.  The first measure is the degree of

connectivity among nodes in the net.  Each individual in

a particle swarm identifies the best point found by its k

neighbors; k, then, is the variable that distinguishes lbest

from gbest topologies, and is likely to affect perform-

ance.

A second factor identified by Watts was the amount

of clustering, C.  Clustering occurs when a node’s

neighbors are also neighbors to one another.  The num-
ber of neighbors-in-common can be counted per node,

and can be averaged over the graph.

Finally, Watts noted that the average shortest dis-

tance from one node to another was an important graph

characteristic for determining the spread of information

through the network.  The present research did not ma-

nipulate this variable, which correlates very highly with

both k and C.

Previous investigation within the particle swarm

paradigm had found that the effect of population topol-

ogy interacted with the function being optimized [6].

Some kinds of populations worked well on some func-



tions, while other kinds worked better on other func-

tions.  Of course it would be best to find a methodology

that worked well on a wide range of problems.  Kennedy

[6] theorized that populations with fewer connections

might perform better on highly multimodal problems,
while highly interconnected populations would be better

for unimodal problems.

We hypothesized then that heterogeneous population

structures, with some subsets of the population tightly

connected and others relatively isolated, might provide

the benefits of both lbest and gbest sociometries.  It was

noted that the heterogeneity could be of two types.

Variance could be introduced into k, the number of

neighbors for each node in the population, or it could be

introduced into C, the number of neighbors in common.

If k has a high variance, then some nodes will have nu-

merous neighbors, while others have fewer.  (In all
cases, graphs are closed, meaning that at least one path

exists from any node to any other).  Variance in C means

that cliques will be found in some parts of the popula-

tion, where neighbors’ neighbors are neighbors, while

other parts of the population will be relatively isolated.

III. DEPENDENT VARIABLES

Five standard test functions were employed in the

present research.  These were the Sphere function,

Rastrigin, Griewank, Rosenbrock, and Shaffer’s f6 [9].

All except f6 were implemented in 30 dimensions; f6 is
a two-dimensional problem.

There are two major measures of performance in an

optimizer such as the particle swarm.  The first is the

best function result attained after some number of itera-

tions.  The present paper reports the best result found

after 1,000 iterations of the algorithm.

It is possible however for the algorithm to rapidly

attain a relatively good result while becoming trapped on

a local optimum.  Thus a second dependent measure

used in the present investigation was the number of it-

erations required for the algorithm to meet a criterion.

The criteria are given in Table 1.  The algorithm was run
for 10,000 iterations or until the criterion was met.  If it

was not met by that time, the measure was considered

infinite, that is, it was reported as if the criterion would

never be met.  Thus medians rather than means are re-

ported in iteration results.

A third dependent measure was derived from the

second.  That is a simple binary variable describing

whether the version attains the criterion or not.

Table 1.  Parameters and criteria for the five test functions.

Function Dimen-

sions

Initial

range

Criterion

Sphere 30 ±100 0.01

Rastrigin 30 ±5.12 100

Griewank 30 ±600 0.05

Rosenbrock 30 ±30 100

f6 2 ±100 0.00001

The performance at 1,000 iterations was standardized

within functions for analysis, that is, data were linearly

transformed so that results for each function had a mean

of 0.0 and a standard deviation of 1.0.  This simplified
the statistical analysis by allowing the averaging of re-

sults from the five functions, rather than performing

multivariate analyses.  Since all functions were mini-

mized, a negative standardized average means that a trial

performed better than the mean.  These are referred to

below as “standardized performance results.”

IV. RANDOM GRAPHS

The first experiments implemented the particle

swarm algorithm in graphs that were randomly gener-

ated and optimized to meet some desired criteria. An

optimization method inspired by simulated annealing,
using a cooling mechanism where the temperature de-

creases exponentially, was used to alter a randomly ini-

tialized set of connections among a population of 20

nodes.  Care was taken that each graph was unique.

Each experimental condition was defined by a combina-

tion of k, C, standard deviation of k (sdk), and standard

deviation of C (sdC).  The standard deviation conditions

were classified as high or low, with a threshold at 1.5.

Some configurations are impossible to create, for

instance, it is not possible to create a closed graph with

very low average k and high variance in k.  Further,
when sociometries are highly connected, it may not be

possible to generate a sufficient number of unique

graphs.  The research design reflects these constraints,

for instance there are many more graphs with k=10 than

with k=3.  While this affected the kinds of analyses we

could perform, we decided it was more important to

keep all the graphs that were created than to have trials

equally assigned to conditions.  1,343 graphs were gen-

erated with the combinations of characteristics shown in

the Appendix, plus 20 graphs with k=4.

Particle swarms with Type 1" constriction [3] were

implemented.  The form of the algorithm was:
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where 01.2=ϕ  and χ=0.729844.

Results for all experimental conditions are shown in

the Appendix.  That table collapses together the results

from conditions where the self is included in the neigh-

borhood and where it is not.  This factor was included in

an analysis of variance of main effects.  Other factors
were the average k, C, sdk, and sdC for a graph.  De-

pendent measures were standardized performance at

1,000 iterations averaged over the five functions (Perf.),

the averaged binary measure of whether the criteria were

met (Prop.), and the rank of the average number of it-



erations required to meet the criterion (Iter.).  Three

ANOVAs were run, one for each dependent measure.

The main effect for self/no-self was not significant

for the performance measure or iterations required, but

was for the binary variable, F(12,2673)= 7.94, p<
0.0049.  The no-self conditions were significantly more

likely to meet the criteria.

The only other significant effect was the effect of k

on all three dependent measures.  As can be seen in Ta-

ble 2, the k=5 conditions had the best values at 1,000

iterations (Stand. Perf.), and required the fewest itera-

tions to meet the criteria (Iter.), while k=3 had the high-

est success rate (Prop.).

Table 2.  The three measures aggregated by levels of connectivity, k.

k n

Stand.

Perf. Prop. Iter.

3 462 0.197 0.959 739.5

5 622 -0.055 0.949 670.6

10 1602 -0.035 0.912 792.8

The three dependent measures covaried reliably, as

seen in Table 3.

Table 3.  Spearman correlations among the three dependent measures.

Prop. Iters.

Perf. -0.497 0.695

Prop. . -0.810

The proportion meeting the criterion correlates

negatively with the other two measures because smaller

values, that is, smaller minimization results and fewer

iterations, are better for them.  Thus Table 3 suggests

that trials that performed well by one standard tended to

perform well by the others, too.

V. SPECIAL GRAPHS

As noted above, the standard particle swarm configu-

rations are not random graphs, but regular structures,

versions of ring lattices.  Lbest and gbest are but two

possible ways to structure the population regularly.  This

section of the paper describes experiments with some

topologies that were designed by the researchers.

Six sociometries were studied; four of these were

implemented both with and without the self included, for

a total of ten.  These were

• gbest: which treated the entire population as the

individual’s neighborhood.

• lbest: where adjacent members of the population

array comprised the neighborhood.

• pyramid: a three-dimensional wire-frame triangle.

• star: one central node influenced, and was influ-

enced by, all other members of the population.

• “small:” a graph created with cliques and isolates,

as an example of heterogeneity.

• von Neumann: neighbors above, below, and on each

side on a two-dimensional lattice were connected.

The ten special sociometries were added to the ran-

dom-graph data set, so their performance could be com-
pared to the others.  Conditions with fewer than 20 ob-

servations were removed to increase validity.  Perform-

ance at 1,000 iterations was standardized, as before, and

populations were grouped on the basis of the four inde-

pendent variables, with the new graphs added as separate

groups.  The resulting dataset had 70 groups of so-

ciometries to compare, with from 20 to 130 members in

each group.

Some of the special graphs produced outstanding

results – two were outstandingly good, and two out-

standingly bad.  A rough measure of goodness was cre-

ated by ranking all groups on each of the three measures,
performance, proportion, and iterations, and then taking

the average rank.

The von Neumann neighborhood with self included

ranked second in performance at 0.173 standard devia-

tions below the mean, and third in proportion meeting

the criterion, with 0.98 of trials meeting the criteria.  It

also ranked 37th out of 70 in terms of number of itera-

tions to the criterion.  Note that some configurations

scoring well on this measure actually failed to meet the

criteria a lot of time; fast to fail is not, in our eyes, as

good as slow to succeed.
The von Neumann neighborhoods without self also

did relatively well: they were fourth overall in perform-

ance, third in proportion, and 53rd in iterations.

Another special sociometry, called the “pyramid,”

was relatively good, too, ranking third in performance,

eleventh in proportion, and 45th in iterations.  It was

ranked ninth overall by the combined measure.

The worst two graphs in the entire dataset were from

the special subset.  Next-to-worst, ranking 69th in all

three measures, was the “star” configuration.  Its func-

tion performance was a full 1.396 standard deviations
above the mean.  The star is the centralized topology

where all information passes through one individual.

There is some irony here, in that the star is the social

configuration most used in business, government, and

military organizations.

The absolute loser in the population was the gbest

configuration without the self included.  It met the crite-

ria 0.80 of the time, and was dead last in that and the

number of iterations to criteria.  The selfless gbest rated

68th place in terms of its performance at 1,000 iterations,

which was 0.234 standard deviations above the mean.

It is certainly worth noting that the lbest populations
with self, one of the most common particle swarm to-

pologies, ranked 64th out of 70 by the combined meas-

ure.  They were slow and inaccurate.  When the self was

removed they performed somewhat better, earning a 61st

place ranking.



FIGURE 2.  THE VON NEUMANN NEIGHBORHOOD IS
SHOWN WRAPPED (TOP LEFT) AND ONE SECTION IS
FLATTENED OUT (LOWER LEFT).  THE PYRAMID SO-
CIOMETRY IS AT THE TOP RIGHT, AND THE STAR AT
LOWER RIGHT.

The lore mentioned above was somewhat borne out.

The gbest version with self was actually ranked second

in the population for number of iterations to the criteria,

requiring a median of only 404.8 iterations.  Unfortu-

nately it met the criteria only 0.85 of the time.  The lbest

version needed 755.5 iterations, but met the standard

0.94 of the time.  Neither of these approaches seemed

especially good in comparison.

VI. SELECTING WINNERS

We had now built up a data set of results from 2,777

particle swarm trials on each of the test functions.  The
special populations were run twenty times each, but the

random graphs were run once each and grouped by char-

acteristics.

For the next stage of the study, we ranked each of the

random graphs based on its one trial in self and no-self

conditions.  Then we chose several hundred of the top

performers and ran each of them twenty times on the

five functions, to learn whether their excellent perform-

ance would be consistent, or was simply due to chance.

The 306 “best” graphs were run 20 times each.

Three measures were used for each configuration corre-
sponding to those taken in the previous experiment.

It was found that aggregated scores correlated very

little with the individual scores for the same graphs, as

measured in the previous experiment.  Inspection of

those previous results showed that a large proportion of

the top performers in the individual trials were from

versions with k=10, but none of these were among  the

top performers when scores were aggregated.  The ex-

planation for this is that topologies with a large number

of connections have the potential to converge rapidly if

they are initialized in a good region.  If however they

start out badly, they will quickly converge to an inferior

solution, resulting in a mediocre average.

FIGURE 3.  THESE SOCIOMETRIES MET THE CRITERIA 100
PER CENT OF THE TIME.

FIGURE 4.  THE THREE BEST POPULATIONS, RANKED ON
A SCORE BASED ON PROPORTION AND PERFORMANCE.

The conclusion of this study depends on which de-

pendent measure one consults.  When groups were

ranked by the proportion meeting criteria, sixteen of the

best twenty graphs had k=5, with three tens and two

fours.  When they were ranked by performance at 1,000

iterations, 12 of the top twenty had k=5.  But when

ranking by the number of iterations needed to meet the
criteria, nineteen of the twenty best samples had k=10 –

and the remaining one had k=19, the gbest version.

Thus, as expected, greater connectivity speeds up con-



vergence, though it does not tend to improve the popu-

lation’s ability to discover global optima.

FIGURE 5.  THE FOUR BEST-PERFORMING POPULATIONS
AT 1,000 ITERATIONS.

The von Neumann neighborhoods fared well in this

comparison.  They ranked 7th in the proportion of trials

meeting the criteria (0.98), and 15th in performance, at

more than 0.12 standard deviations below the mean.

VII. SUMMARY

We conceptualize influence within a particle swarm

population as flowing information which moves fastest
between connected pairs of individuals, but is buffered

or slowed by the presence of intermediaries.  Thus, if

individual i finds a good solution, this may be passed to

its adjacent neighbor j, but not immediately to k, which

is not connected to i.  If the solution is indeed a good

one, though, j’s performance will improve, until j (which

is connected to k) is the best in k’s neighborhood.  When

this happens, the solution found initially by i may be

communicated to k.

The traditional particle swarm topology known as

“gbest” instantiates the most immediate communication
possible; all particles are directly connected to the best

solution in the population.  On the other hand, the ring

lattice known as “lbest” is the slowest, most indirect

communication pattern.  Where i is opposite z on the

lattice, a good solution found by i has to pass through i’s

immediate neighbor, that particle’s immediate neighbor,

and so on, until it reaches z.  Thus a solution found by i

moves very slowly around the ring.

As usual, the issue is the “optimal allocation of tri-

als” [5].  When distances between nodes are too short,

and communication passes too quickly, there is a ten-

dency for the population to move rapidly toward the best

solution found in the early iterations.  On complex func-

tion landscapes, this is not necessarily a good thing; the

population will fail to explore outside of locally optimal

regions.  On the other hand, inhibiting communication

too much results in inefficient allocation of trials, as
individual particles wander cluelessly through the search

space.

The research presented here has identified some su-

perior population configurations, but has not precisely

named the topological factors that result in best per-

formance on a range of functions.  We have eliminated

some bad solutions, and raised doubts about the so-

ciometries that have been most widely used since parti-

cle swarms were first introduced in 1995.

Our recommendation for the present is that particle

swarm researchers try the von Neumann configuration,

which performed more consistently in our experiments
than the topologies commonly found in current practice.

Research not reported here supports the recommenda-

tion.
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APPENDIX

Random topologies implemented in the experiments and their results on three measures.

k C SDk SDC n Stand. Perf. Prop. Iter.

3 0 H L 40 0.263 0.97 683.9

3 0 L L 164 0.056 0.976 691.3

3 1 H L 80 0.194 0.930 871.4

3 1 L L 178 0.313 0.954 785.9

5 0 H L 40 -0.101 0.960 647.5

5 0 L L 78 -0.103 0.956 633

5 1 H L 40 -0.005 0.950 692

5 1 L H 66 -0.077 0.945 607.1

5 1 L L 150 -0.106 0.948 569.7

5 2 H L 40 -0.05 0.955 753.4

5 2 L H 40 0.008 0.945 822.9

5 2 L L 40 -0.114 0.960 618.1

5 3 H L 36 0.073 0.928 912.8

5 3 L H 2 0.159 1.000 1789

5 3 L L 90 0.027 0.942 842.9

10 0 L L 42 0.022 0.890 1654.5

10 1 H H 24 -0.146 0.917 731.1

10 1 H L 44 -0.089 0.936 529.3

10 1 L L 80 -0.040 0.902 1077.5

10 2 H H 258 -0.034 0.902 1104.8

10 2 H L 22 -0.118 0.900 1314

10 2 L H 44 0.013 0.886 ∞
10 2 L L 100 -0.078 0.912 674.9

10 3 H L 120 -0.056 0.912 706.8

10 3 L L 124 -0.097 0.93871 574.8

10 4 H L 40 -0.016 0.905 814.6

10 4 L H 44 0.199 0.90909 1111.7

10 4 L L 260 -0.048 0.90923 941.5

10 6 H L 42 -0.009 0.91429 1239.3

10 6 L L 26 -0.006 0.92308 783.3

10 7 H H 44 -0.047 0.91364 741.7

10 7 H L 74 -0.033 0.91892 761.3

10 7 L L 94 -0.011 0.92766 706.8

10 8 H H 76 -0.012 0.91579 647.5

10 8 H L 44 0.037 0.91818 643

Note: “Stand. Perf.”= mean standardized best function result after 1,000 iterations; “Prop.”= average proportion meeting criteria by
10,000 iterations; “Iter.”= median number of iterations required to meet the criteria.

                                                       
1 Graphs were made with AT&T open-source software called “neato,” available from

http://www.research.att.com/sw/tools/graphviz/




