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SUMMARY 

In this paper, we describe a novel methodology, BC-VARETA, for estimating the Inverse Solution (sources 

activity) and its Precision Matrix (connectivity parameters) in the frequency domain representation of 

Stationary Time Series. The aims of this method are three. First: Joint estimation of Source Activity and 

Connectivity as a frequency domain linear dynamical system identification approach. Second: Achieve 

super high resolution in the connectivity estimation through Sparse Hermitian Sources Graphical Model. 

Third: To be a populational approach, preventing the Inverse Solution and Connectivity statistical analysis 

across subjects as a postprocessing, by modeling population features of Source Activity and Connectivity. 

Our claims are supported by a wide simulation framework using realistic head models, realistic Sources 

Setup, and Inverse Crime effects evaluation. Also, a fair quantitative analysis is performed, based on a 

diversification of quality measures on which state of the art Inverse Solvers were tested. 

 

1 INTRODUCTION 

 

Currently there is a consent at neuroscience community that the brain network connectivity play a crucial 

role for the understanding of brain functions at behavior and cognition levels by the pattern of 

communication between brain neuronal regions (Avena-Koenigsberger, 2018). In neuroscience field brain 

networks topology is defined by a group of neural elements (sources) and their interconnections 

(connectivity) of two kinds: the so called directed or undirected networks (Salvador, et al., 2005, Estrada, 
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2012). Therefore, the brain function characteristics is due to neural groups collective action and mutual 

interactions of the neural system.  

Nevertheless, non-invasive magneto/electroencephalographic (M/EEG) recordings brings an ideal 

scenario to cover the gap of other “slower” and “indirect” imaging methods (such as fMRI, fNIRS, PET), 

given its direct association to Neuronal Local Field Potentials and high temporal resolution, which allows 

the M/EEG to follow at a time-scale of milliseconds and with direct Electrophysiological substrate the 

Neural events involving human perception and cognition (Schomer and Lopes da Silva 2011, Hämäläinen, 

et al., 1993). M/EEG signals are widely used to reconstruct the neural dynamics in both Resting State (RS) 

and Event Related Potential (ERP). These signals carry the effect of multiple sources within the gray 

matter, thus M/EEG connectivity analysis constitute a strong asset for noninvasively study brain functional 

networks (Schoffelen and Gross, 2009, Smit, et al., 2008).  

Unfortunately, M/EEG Sources and Connectivity analysis has proved to be a tough problem. The reason 

for this is that M/EEG are an smeared projection at the scalp of sources in the brain. Consequently, what 

we observe at the sensors are signals as products of mixture due to volume conduction and field spreading 

(Hassan and Wendling, 2018). There are many works in the past pursuing the brain functional connectivity 

analysis at the scalp level by statistics of the sensor’s signal interdependences (Blinowska, 2011, Kaminski 

and Blinowska, 2014). In fact, these approaches fail to have a precise matching with anatomical areas, 

extracting conclusion about brain information processing without an adequate physiological/anatomical 

basis (Papadopoulou, et al., 2015). Therefore, ignoring the influence of volume conduction these methods 

“hope” that resulting patterns at the scalp would reflect the underlying brain activity, which have been 

strongly criticized by neuroscience community during the last years (Haufe, et al., 2013, Brunner, et al, 

2016, Van de Steen, et al., 2017).  

Moreover, it’s affirmed that the estimation of connectivity at the generator’s level will be improved by 

Electrophysiological Source Imaging (ESI) methods in both time and frequency domain, accounting from 

MNE (Hämäläinen and Ilmoniemi, 1994), LORETA family (Pascual, 1999; Pascual, 2002; Haufe, 2016), 

sparse methods (Friedman, 2008), to ENET-SSBL (Paz-Linares, 2017). Mostly based on mathematical or 

penalty models, anatomical constraints of M/EEG generators and biophysical head conductivity models, 

they are settled upon highly ill-conditioned mathematical framework which is still an issue.  

Up to now, the approaches to estimation of cortical connectivity based on ESI methods work in three main 

stages, firstly: to carry out the inverse solution for a single subject without considering connectivity 

information which usually is the solution of a Bayesian problem with an arbitrary prior connectivity matrix, 

secondly: perform independently the connectivity estimation by statistical analysis of the Sources’ time 
series (Sakkalis, 2011, Bastos and Schoffelen, 2016), such as Granger Causality (Granger, 1969), Dynamical 

Causal Models (DCM) (Penny, 2004), frequency domain connectivity measures like Coherence (Coh) 

(Tucker, et al. 1986; Srinivasan, et al., 2007; Guillon, et al., 2017), Partial Coherence (PCoh) (Lopes da Silva, 

et al., 1980), Directed Coherence (DC) and Partial Directed Coherence (PDC) (Baccalá and Sameshima, 

2001), thirdly: population statistical analysis of the results for sources activity and connectivity features 

extraction (Hipp et al., 2012; Babiloni et al., 2005; Brookes, 2001).  

Nevertheless, these ESI methods with prior connectivity have been developed mainly to estimate 

activation and not connectivity. Therefore, the connectivity estimation constitutes a postprocessing after 

inverse solution computation as it is the consequently population features extraction, so, imprecisions in 

the source localization and source time series reconstruction strongly affect the results about connectivity 
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and thus population features. Additionally, the brain connectivity is a special case of System Identification 

(SI) problem in which the whole model variables (sources activity and connectivity features of the 

population) should be estimated to fit the data, those, separated approaches incur into a severe 

methodological error.  

However, the correct solution to this conceptual problem stands for the need of simultaneously 

estimation of activation and connectivity given the state-space nature of the M/EEG model (Galka, et al., 

2004, Valdes-Sosa, 2004), and its subsequent extension to populations. Our research is deep motivated 

by previous work, Variable Resolution Electromagnetic Tomographic Analysis (VARETA) method, well 

stablished in Inverse Solution by the estimation of the covariance matrix at the sources level (Valdes-Sosa, 

1996, Bosch-Bayard, et al., 2001). Also, given the recent outbreak in the literature on estimation of high 

dimension covariance matrices and inverse covariance matrices (Maurya, 2016, McGillivray, 2016, Ledoit 

and Wolf 2015, Cai, et al., 2016, Adegoke, et al., 2018), we are encouraged to use similar approach. Here 

we consider and extension of these previous developments to the complex variable case, which arises 

from the frequency domain representation of the M/EEG forward model of the population, based on the 

Complex sources Effective Empirical Covariance matrix and the Precision Matrix, the last carrying the 

functional brain connectivity as a populational statistic. 

In this paper, we propose a novel methodology for Inverse Solution (sources activity) and its Precision 

Matrix (connectivity parameters) for multiple subject’s stationary time series in the frequency domain by 

means of populational Hermitian graphical lasso prior. This approach attempts for stablishing a new 

procedure with three important outcomes: A complete dynamical system identification by joint 

estimation of Sources Activity and Connectivity, Super-Resolution in connectivity estimation through 

sparse models upon the precision matrix and Modeling the entire population inverse solution and 

connectivity features. In the next sections of this paper, we provide detailed theoretical demonstrations 

of the method and its promising results for realistic scenarios like variable source localization, complex 

connectivity structure, levels of SNR by using pseudo EEG and real data of EEG and MEG. 

2 METHODOLOGY: BC-VARETA 

In what follows we formulate and provide implementation details of a framework that allows for the joint 

reconstruction of M/EEG Sources and Connectivity features for multiple subjects. This is done by imposing 

penalties on the frequency domain populational sources variances and covariances matrix achieving great 

flexibility and precision upon its estimation. This strategy has been stablished by the well-known VARETA, 

and this methodological refinement attempt for going to the next step, i.e. Variable Resolution Functional 

Connectivity Analysis. So, we refer to our methodology as Functional Connectivity Variable Resolution 

Electromagnetic Tomographic Analysis (BC-VARETA)  

2.1 The ECM Method with Population Connectivity Sparse Penalty Model  

Here we describe the technical aspects of the inference through the Expectation Conditional Maximization 

(ECM) algorithm and maximum a posteriori analysis throughout Sources Graphical Model (SGM) on the 

inverse covariance matrix (Rubin, 1977, Rubin, 1994, Hsieh, 2014). 
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2.1.1 The frequency domain MEG/EEG Covariance Components Model in populations 

The CCM, represents the relationship between the observed variables or data (𝑽) and unobserved 

variables or parameters (𝑱) as a linear model, in a similar fashion to the definition of the MEG/EEG forward 

model, see equation [1.1]: 𝑽∙𝑖𝑗 = 𝑲∙∙𝑖𝑱∙𝑖𝑗 + 𝒆∙𝑖𝑗 ;  𝑖 = 1 … 𝑚 , 𝑗 = 1 … 𝑛      [2.1.1] 

The data (𝑽)𝑝×𝑚×𝑛,  parameters (𝑱)𝑞×𝑚×𝑛 and noise (𝒆)𝑝×𝑚×𝑛 are defined as complex number Tensors, 

from the frequency domain representation (at a single frequency bin) of the M/EEG recordings, sources’ 
PCD and M/EEG sensors’ noise, respectively, where 𝑝 is the number of sensors, 𝑞 is the number of 

generators, 𝑚 is the number of subjects under analysis and 𝑛 is the number of time windows in which the 

Fourier coefficients are computed. Furthermore, the source to sensors design Tensor (𝑲)𝑝×𝑞×𝑚 is 

obtained from the discretization of the specific head model Lead Field, in a common generators and 

sensors space across subjects. For the complex noise vectors 𝒆∙𝑖𝑗  it is assumed that constitute independent 

random vectors with Circularly Symmetric Complex Multivariate Normal probability density function (pdf) 

(Marzetta, 1995): 𝒆∙𝑖𝑗|𝜎𝑒2 ∽ 𝑁𝑛𝒞(𝒆∙𝑖𝑗|0, 𝜎𝑒2𝑹)        [2.1.2] 

Where nuisance scale parameter 𝜎𝑒2 is an unknown positive scale hyperparameter and (𝑹)𝑝×𝑝 is a known 

positive definite and hermitic matrix. Under these assumptions the likelihood or the observed variables 

pdf will be the following: 𝑽∙𝑖𝑗|𝑱∙𝑖𝑗, 𝜎𝑒2 ∽ 𝑁𝑛𝒞(𝑽∙𝑖𝑗|𝑲∙∙𝑖𝑱∙𝑖𝑗, 𝜎𝑒2𝑹)       [2.1.3] 

Therefore, the M/EEG Data Empirical Covariance Tensor is defined: (𝑺𝑽𝑽)∙∙𝑖 = 1𝑛 ∑ [𝑽∙𝑖𝑗𝑽∙𝑖𝑗T]𝑛𝑗=1         [2.1.4] 

The complex sources’ PCD vectors 𝑱∙𝑖𝑗 are modeled as independent random variables with Circularly 

Symmetric complex multivariate Normal pdf, where the covariance or cross-spectral matrix (𝜮𝑱𝑱)𝑞×𝑞 is 

defined as an unknown positive semidefinite and hermitic matrix of hyperparameters to be estimated:   𝑱∙𝑖𝑗|𝜮𝑱𝑱 ∽ 𝑁𝑞𝒞(𝑱∙𝑖𝑗|0, 𝜮𝑱𝑱)        [2.1.5] 

A prior pdf over the hyperparameters (𝜎𝑒2) and (𝜮𝑱𝑱) could be considered. In this sense it is important to 

notice that by using prior pdf on the cross-spectral matrix (𝜮𝑱𝑱) we are regularizing the real and imaginary 

part. For simplicity, all hyperparameters including (𝜎𝑒2) and (𝜮𝑱𝑱) are summarized within a unique variable 

(𝛀), thus the whole hyperparameters set prior pdf can be denoted as 𝑝(𝛀). The data and parameters {𝑽∙𝑖𝑗, 𝑱∙𝑖𝑗}; 𝑖 = 1 … 𝑚, 𝑗 = 1 … 𝑛, can be rearranged into what is defined as complete data (𝑽, 𝑱) , so its 

joint pdf can be referred as complete data likelihood 𝐿𝑐(𝛀) = 𝑝(𝑽, 𝑱|𝛀). The CCM admits a hierarchical 

representation by means of a Bayesian Network (Figure 1), where the estimation of the unobserved data 

or parameters (𝑱) constitute the first level of inference followed by the estimation of the hyperparameters 

(𝛀), or second level of inference.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 13, 2018. ; https://doi.org/10.1101/346569doi: bioRxiv preprint 

https://doi.org/10.1101/346569


 

 

2.1.2 Population Expectation Step 

A Maximum a Posteriori (MAP) analysis of the hyperparameters can be performed by applying the 

expectation over the unobserved variables of the hyperparameters’ log posterior pdf (McLachlan, 2007). 

Using the Bayes rule the hyperparameters’ posterior pdf can be expressed as proportional to the product 

of the Complete Data Likelihood and the hyperparameters’ prior pdf: 𝑝(𝛀|𝑽, 𝑱) ∝ 𝐿𝑐(𝛀)𝑝(𝛀)        [2.1.6] 

The expectation operation on [2.1.6] can be written in short by formulas [2.1.7] and [2.1.8] below, where 

(𝛀(𝑘)) represent fixed values of the hyperparameters, providing the hyperparameters’ iterated posterior 

density function: 𝐸�̂�(𝑘){log(𝐿𝑐(𝛀)𝑝(𝛀)) |𝑽} = 𝑄(𝛀, �̂�(𝑘)) + log 𝑝(𝛀)     [2.1.7] 𝑄(𝛀, �̂�(𝑘)) = 𝐸�̂�(𝑘){log(𝐿𝑐(𝛀)) |𝑽}       [2.1.8] 

Under the model assumptions of formulas [2.1.3], [2.1.5] and with a fixed value of the hyperparameters 

(𝛀(𝑘)) it is straightforward to show that the unobserved data {𝑱∙𝑖𝑗}; 𝑖 = 1 … 𝑚, 𝑗 = 1 … 𝑛 posterior pdf is 

a multivariate Normal distribution with individual subjects posterior mean (�̂�∙𝑖𝑗(𝑘+1)
) and Covariance matrix (𝜮�̂��̂�(𝑘))∙∙𝑖 (see Appendix B1):  𝑱∙𝑖𝑗|𝑽∙𝑖𝑗, �̂�(𝑘) ∽ 𝑁𝑞𝒞 (𝑱∙𝑖𝑗|�̂�∙𝑖𝑗(𝑘), (𝜮�̂��̂�(𝑘))∙∙𝑖)                    [2.1.9] 

(𝜮�̂��̂�(𝑘))∙∙𝑖 ← (𝑲∙∙𝑖T (�̂�𝑒2(𝑘)𝑹)−1 𝑲∙∙𝑖 + (�̂�𝑱𝑱(𝑘))−𝟏)−1
     [2.1.10] 

(𝑻(𝑘))∙∙𝑖 = (𝜮�̂��̂�(𝑘))∙∙𝑖 𝑲∙∙𝑖T (�̂�𝑒2(𝑘)𝑹)−1
       [2.1.11] �̂�∙𝑖𝑗(𝑘) ← (𝑻(𝑘))∙∙𝑖𝑽∙𝑖𝑗;          [2.1.12] 

𝜎𝑒2 𝑽∙𝑖𝑗 

𝑱∙𝑖𝑗 

𝜮𝑱𝑱 𝑷(𝜮𝑱𝑱) 

Figure 1. Bayesian network of the covariance Components Model with covariance matrix prior 
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Where the slices of the Tensor 𝑻 constitute the denominated data to sources’ Transference Operator 1 for 

individual subjects.  

After some algebraic transformation of the Expectation in equation [2.1.8] by using equations [2.1.9], 

[2.1.10], [2.1.11] and [2.1.12] (see Appendix B2), we can reach to a closed expression of the function 𝑄(𝛀, �̂�(𝑘)): 𝑄(𝛀, �̂�(𝑘)) = ∑ ∑ [𝑙𝑜𝑔𝑁𝑛𝒞 (𝑽∙𝑖𝑗|𝑲∙∙𝑖�̂�∙𝑖𝑗(𝑘), 𝜎𝑒2𝑹) − tr (𝑲∙∙𝑖T (𝜎𝑒2𝑹)−1𝑲∙∙𝑖 (𝜮�̂��̂�(𝑘))∙∙𝑖)]𝑛𝑗=1𝑚𝑖=1    −𝑚𝑛 log|𝜮𝑱𝑱| − 𝑚𝑛 tr (𝚿�̂��̂�(𝑘)𝜮𝑱𝑱−1)                                         [2.1.13] 

The matrix (𝚿�̂��̂�(𝑘)
), hereinafter we will call the Effective Sources Empirical Covariance (ESEC), since it 

carries the information about sources correlations that will effectively influence the estimator of (𝜮𝑱𝑱) in 

the maximization step, is defined as the sum of two components, the subjects mean of the sources 

(parameters) posterior covariance  ((𝜮�̂��̂�(𝑘))∙∙𝑖) and the Sources Empirical Covariance ((𝑺𝑱𝑱(𝑘))∙∙𝑖): 𝚿�̂��̂�(𝑘) = 1𝑚 ∑ [(𝜮�̂��̂�(𝑘))∙∙𝑖 + (𝑺𝑱𝑱(𝑘))∙∙𝑖]𝑚𝑖=1 ;                       [2.1.14] 

Where the Source Covariance (𝑺𝑱𝑱(𝑘)
) is defined: 

(𝑺𝑱𝑱(𝑘))∙∙𝑖 = 1𝑛 ∑ [�̂�∙𝑖𝑗(𝑘) (�̂�∙𝑖𝑗(𝑘))†]𝑛𝑗=1                       [2.1.15] 

In virtue of [2.1.12] the ESEC can be expressed as a function of the data empirical covariance (𝑺𝑽𝑽): 𝚿�̂��̂�(𝑘) = 1𝑚 ∑ ((𝜮�̂��̂�(𝑘))∙∙𝑖 + (𝑻(𝑘))∙∙𝑖(𝑺𝑽𝑽)∙∙𝑖 ((𝑻(𝑘))∙∙𝑖)†)𝑚𝑖=1 ;                   [2.1.16] 

2.1.3 Population Maximization Step 

The estimator of the hyperparameters (𝜎𝑒2) can be obtained by equating to zero the corresponding 

derivative of [2.1.13]. If for a better numerical control, we consider using a Jeffreys Improper Prior pdf 

(Jeffreys, 1946) with shape log 𝑝(𝜎𝑒2) ~ 𝜖𝑚𝑛𝑝 𝜎𝑒2⁄ , the following estimator arises (see Appendix B3): 

�̂�𝑒2(𝑘+1) ← ∑ tr((𝑨(𝑘))∙∙𝑖T 𝑹−1(𝑨(𝑘))∙∙𝑖(𝑺𝑽𝑽)∙∙𝑖)𝑚𝑖=1 𝑚𝑝 + ∑ tr(𝑲∙∙𝑖T 𝑹−1𝑲∙∙𝑖(𝜮�̂��̂�(𝑘))∙∙𝑖)𝑚𝑖=1 𝑚𝑝 + 𝜖    

 [2.1.17] (𝑨(𝑘))∙∙𝑖 = 𝑰 − 𝑲∙∙𝑖(𝑻(𝑘))∙∙𝑖         [2.1.18] 

Without losing generality the prior pdf of (𝜮𝑱𝑱) can be expressed as an exponential of a penalty function 𝑃(𝜮𝑱𝑱, 𝜆), so that log 𝑝(𝜮𝑱𝑱) ~ − 𝑚𝑃(𝜮𝑱𝑱, 𝜆), where the coefficient 𝑚 has been set for convenience and 𝜆 represents a vector of regularization parameters or tuning hyperparameters of the covariance matrix 

                                                           
1 The superscript T will denote transpose and the superscript -1 will denotes matrix inversion across the document. 
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prior pdf. After substituting log 𝑝(𝜮𝑱𝑱) in [2.1.7], eliminating the factor 𝑚 and changing the sign, the 

maximization step over (𝜮𝑱𝑱) turns into the minimization of the auxiliary target function: �̂�𝑱𝑱(𝑘+1) ← argmin𝜮𝑱𝑱 {log|𝜮𝑱𝑱| + 𝑡𝑟 (𝚿�̂��̂�(𝑘)𝜮𝑱𝑱−1) + 𝑃(𝜮𝑱𝑱, 𝜆)}    [2.1.19] 

The estimation of the regularization parameters will be done iteratively by maximizing the likelihood 

through direct differentiation of the terms dependent on (𝜆) [2.1.6] and setting a prior 𝑝(𝜆) that 

guarantees a close form solution and the existence of a single local maxima at every iteration (see 

Appendix D1): �̂�(𝑘+1) ← zeros𝜆 { 𝜕𝜕𝜆 log 𝑝(𝜆) − 𝑚 𝜕𝜕𝜆 𝑃 (�̂�𝑱𝑱(𝑘), 𝜆)}     [2.1.20] 

The hyperparameters’ iterated posterior distribution provides a target function for the estimation of the 

covariance matrix that is independent on the rest of the current hyperparameters estimators. 

Importantly, it can be seen that [2.1.20] is dependent through ESEC from the hyperparameters obtained 

in the previous maximization step and from the parameters and its posterior covariance estimates given 

in the current expectation stage. The sources estimation or first level of inference will influence 

downwards into the second level of inference, estimation of the covariance matrix, through the iterated 

ESEC, and the estimation of the covariance matrix and its properties will affect upwards into the model 

inference, sources estimation. The estimation of the covariance matrix becomes a separated problem 

itself that we describe in the next section.  

2.2 The Penalized Population Inverse Covariance model 

Here we describe a methodology for the second level of inference or Sources’ Graphical Model (SGM) 
estimation, similar to the typical Graphical Model (Whittaker, 2009), where the ESEC performs 

analogously to the empirical covariance in this context but in the sources’ level. We reformulate the target 

function as a function of the Inverse covariance and incorporate a Penalized Inverse Covariance model 

(PIC) as a prior pdf in the BC-VARETA Maximization step. The PIC model when combined with a strategy 

for SGM estimation based on Proximal Newton-type Methods (Schmidt, 2010) lead us to an iterative 

scheme where the computation of the descend direction is tackled into the Penalized Least Squares (PLS) 

framework.   

2.2.1 Population Sources’ Graphical Model with Penalized Inverse Covariance. 

The penalty function 𝑃 in equation [2.1.19] is redefined as dependent of the inverse covariance (𝚯𝑱𝑱 ←𝜮𝑱𝑱−1): 𝑃(𝚯𝑱𝑱, 𝜆) ← 𝑃(𝜮𝑱𝑱, 𝜆)         [2.2.1] 

When the target function is redefined over the Inverse covariance matrix by changing variable (𝚯𝑱𝑱 ←𝜮𝑱𝑱−1) within the whole expression [2.1.19] we obtain an equivalent minimization of Graphical Model type 

target function instead: �̂�𝑱𝑱(𝑘+1) ← argmin𝚯𝑱𝑱 {− log|𝚯𝑱𝑱| + 𝑡𝑟 (𝚿�̂��̂�(𝑘)𝚯𝑱𝑱) + 𝑃(𝚯𝑱𝑱, 𝜆)}    [2.2.2] 
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In the context of PIC, a single penalty models leading to different independent estimation schemes 

reported in literature can be regarded. For example, if we consider the special case of a non-informative 

prior over the inverse covariance matrix (or constant penalty function 𝑃(𝚯𝑱𝑱) = 𝑐𝑡𝑒), which is equivalent 

to the implementation of EM by (McLachlan, 2012), then the equation [2.2.2] has a unique and closed 

form solution with the ESEC matrix (see Appendix B3).  

The Laplace prior with matrix L1 norm exponent or real LASSO model (𝑃(𝚯𝑱𝑱) = 𝜆‖𝚯𝑱𝑱‖1,𝚲), where 𝚲 is a 

known positive weights’ matrix representing inverse covariance elementwise precisions, has been used 

to pursue sparse estimation of the inverse covariance. This model, originally identified within literature as 

the Graphical LASSO (Friedman, 2008, Mazumder, 2012), has been tackled by means of several algorithms. 

They attempt to optimize the functional [2.2.2] under LASSO model by solving the equation that arises 

from its direct differentiation2:  −𝚯𝑱𝑱−1 + �̂�𝑱𝑱(𝑘) + 𝜆(𝚲 ⊙ sign(𝚯𝑱𝑱)) = 𝟎        [2.2.4] 

For an implementation of PLS methodology we consider the L1 norm model. It leads to a solution of this 

Graphical Model optimization problem by LASSO regression (Tibshirani, 1996) (see Appendix C1). 

Furthermore, in Appendix D we provide with the detailed technical insights into BC-VARETA 

implementation and its pseudocode which could be summarized in eight main steps:  

INPUTS: 𝑲, 𝑹,  𝝀𝟏, 𝝀𝟐, 𝚲𝟏, 𝚲𝟐, 𝑺𝑽𝑽 

OUTPUTS: �̂�𝑱𝑱 

START 

step 1 Initialize: 𝑘, �̂�𝑒2(𝑘)
, �̂�𝑱𝑱(𝑘)

. 

step 2 

Compute Sources’ Posterior Covariance: 

                           (𝜮�̂��̂�(𝑘))∙∙𝑖 = �̂�𝑱𝑱(𝑘) − �̂�𝑱𝑱(𝑘)𝑲∙∙𝑖T (𝑲∙∙𝑖�̂�𝑱𝑱(𝑘)𝑲∙∙𝑖T + �̂�𝑒2(𝑘)𝑹)−1 𝑲∙∙𝑖�̂�𝑱𝑱(𝑘)
. 

step 3 

Compute the Transference Operator: 

                           (𝑻(𝑘))∙∙𝑖 =  (𝜮�̂��̂�(𝑘))∙∙𝑖 𝑲T (�̂�𝑒2(𝑘)𝑹)−1
. 

step 4 

Compute Effective Sources Empirical Covariance:  

                          𝚿�̂��̂�(𝑘) = 1𝑚 ∑ ((𝜮�̂��̂�(𝑘))∙∙𝑖 + (𝑻(𝑘))∙∙𝑖(𝑺𝑽𝑽)∙∙𝑖 ((𝑻(𝑘))∙∙𝑖)T)𝑚𝑖=1 . 

step 5 

Compute Hyperparameters’ Update:  

                          �̂�𝑒2(𝑘+1) = ∑ tr((𝑨(𝑘))∙∙𝑖T 𝑹−1(𝑨(𝑘))∙∙𝑖(𝑺𝑽𝑽)∙∙𝑖)𝑚𝑖=1 𝑚𝑝 + ∑ tr(𝑲∙∙𝑖T 𝑹−1𝑲∙∙𝑖(𝜮�̂��̂�(𝑘))∙∙𝑖)𝑚𝑖=1 𝑚𝑝 . 

                          (𝑨(𝑘))∙∙𝑖 = 𝑰 − 𝑲∙∙𝑖(𝑻(𝑘))∙∙𝑖 
                          �̂�1(𝑘+1) ← (𝜂1−1)𝜃1+𝑚2 ‖𝚯𝑱𝑱‖1,𝚲1  

                         �̂�2(𝑘+1) ← (𝜂2−1)𝜃2+𝑚4 ‖𝚯𝑱𝑱‖2,𝚲22   

step 6 Penalize the covariance matrix (�̂�𝑱𝑱(𝑘+1)
): 

                                                           
2 Here the symbol ⊙ represents the element wise matrix product (Hadamard) and  sign(𝚯𝑱𝑱) is the element wise 

sign function.  
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                         �̂�𝑱𝑱(𝑘+1) ← argmin𝚯𝑱𝑱 {− log|𝚯𝑱𝑱| + 𝑡𝑟 (𝚿�̂��̂�(𝑘)𝚯𝑱𝑱) + 𝑃(𝚯𝑱𝑱, 𝜆)} 

step 7 

If the convergence criteria for �̂�𝑱𝑱(𝑘+1) does not hold then: 

                        �̂�𝑒2(𝑘+1) ← �̂�𝑒2(𝑘)
  

                        �̂�𝑱𝑱(𝑘+1) ← �̂�𝑱𝑱(𝑘)
  

                        𝑘 ← 𝑘 + 1  

and go to step 2 

END 

3 RESULTS 

3.1 Simulation study 

Traditional inverse solution methods attempt to estimate the localization of the active dipoles and 

functional connectivity computations is done afterwards. Differently, BC-VARETA method aims to 

simultaneously estimate, through the effective sources empirical covariance, the activity at sources level 

and the functional connectivity between the active generators. The main concept behind BC-VARETA 

method lies over the principle that the activity at the brain bias the brain connectivity and vice versa, 

therefore the estimation of the inverse solution without taking in account the connectivity could lead to 

a wrong statistic of the inverse solution. Furthermore, BC-VARETA is a method developed to for variable 

resolution sources estimation of spatially distributed Neural Activity along the cortical surface, so a fair 

validation should cover a variety of scenarios of multiple sources with different spatial extensions, 

different distances between sources centroids and also different connectivity modes.  

To analyze the performance of the BC-VARETA method we created a simulation framework representing 

a realistic scenario of spatially distributed sources (patches) with variable extensions and a dense 

connectivity pattern within the patches, but attaining for different degrees of sparsity in the connections 

between them (Figure 2). The generators were defined over a cortical surface of 2004 equally distributed 

electric dipoles. From the ICBM152 model the dipole position was obtained by down-sampling the 74924 

vertices in MNI space coordinates (Haufe, 2018).  

Three patches were generated with different sizes (4, 16 and 24 active generators) over the brain cortical 

surface. The patch centroids were randomly generated into four Regions of Interest: ROI 1, ROI 2, ROI 3 

and ROI 4 (Figure 3). However, the localization of the patch centroids was selected according to two main 

criteria: close-distance and far-distance. The close-distance was defined so that the three patches 

belonged to the same ROI and without overlapping, which guaranteeing a maximum distance between 

patches lower than 5 cm and the far-distance was defined so that each patch belong to different ROI’s, 

which guarantee for the distance between patches to be higher than 8 cm. 
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Figure 2. Block diagram of the simulation framework performance evaluation of the connectivity estimation 

method. The data empirical covariance matrix, 𝑺𝑽𝑽, defines sensor’s activity (elements on the main diagonal) and 

covariances (elements out of main diagonal) at the scalp level, meanwhile the covariance matrix, 𝜮𝑱𝑱, defines the 

activity (elements on the main diagonal) and connectivity (elements out of main diagonal) at the generator’s level.  
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Figure 3. Four ROIs over the ICBM152 brain: a) left hemisphere view, b) axial view and c) right hemisphere view. 

 

 

Figure 4. Connection modes between cortical patches: a) not-connected, b) low-connected, c) high -connected and 

d) fully-connected. 
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Furthermore, the connectivity between the active generators of each patch were defined by four 

connection modes (Figure 4): 

• not-connected: all three patches are unconnected between them. 

• low-connected: first patch and third patch are connected between them, but the second 

patch is unconnected with first patch and third patch. 

• high-connected: first patch is connected to second patch and to third patch but there is 

no connection between second patch and third patch. 

• fully-connected: all three patches were connected between them. 

 

 

Figure 5. Examples of sources covariance matrix for four connection type between three patches: a) not-

connected, b) low-connected, c) high-connected and d) fully-connected. 

 

For each of the patches configurations and connectivity modes, the sources covariance matrix (𝜮𝑱𝑱) was 

generated with random complex numbers (Figure 5) and it was projected onto 108 EEG electrodes (𝑺𝑽𝑽) 

defined by the New York Head model (Haufe, 2015, Huang and Haufe, 2015) following next equation:  𝑺𝑽𝑽 = 𝑲𝜮𝑱𝑱𝑲T            [3.1.1] 
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Furthermore, four different levels of noise (∞, 19, 7 and 0 dB) were added to the data covariance matrix, 𝑺𝑽𝑽. First, the simulation was corrupted with biological noise in 500 generators, following and 

autoregressive model filtered to create a pink noise, that was projected to the scalp sensors with the 

M/EEG forward model. Secondly, all sensors (108 electrodes) were contaminated with noise (white noise), 

mimicking a real situation of an M/EEG recording system. 

3.2 Simulate data analysis 

3.2.1 Localization performance 

To evaluate the BC-VARETA performance of variable resolution source retrieval we generate 400 

configuration of patches localization (close distance and far distance). For comparison purpose we use 

well stablished methods for inverse solution: Linearly Constrained Minimum Variance (LCVM) and Exact 

Low-Resolution Tomography (eLORETA). LCMV approach is a spatial filtering method that relate the 

underlying neural activity to the distribution of potential measured at the surface assuming stationary 

source distribution (Van Veen et al., 1997). On the other hand, eLORETA is one of the member of the 

LORETA family with zero error localization for one active dipole (Pascual, 2007). 

In Figure 6 we show two examples of solutions for active generator localization over the cortical surface, 

obtained by eLORETA, LCMV and BC-VARETA. There eLORETA solution reach a completed estimation of 

the simulated patches but as a typical smoothed estimation it spreads over the cortical surface recovering 

the larger number of wrong active dipoles. LCMV scenario is more favorable since it is able to recover the 

correct localization of the three patches, but its solution is not sparse enough to identify the three patches 

separately. Nevertheless, the estimation reached by BC-VARETA is the sparsest one, and qualitative 

different to the previous solutions, identifying more accurately the three patches extensions. This simple 

qualitative analysis constitutes a partial demonstration of our aims: Variable Resolution Estimation, that 

shall be demonstrated with proper quantitative analysis in what follows. For a complete analysis we 

evaluate the estimated sources covariance matrix (𝑺) by direct measures of its difference with the 

simulated source covariance matrix (𝜮𝑱𝑱) (Ground Truth). The quantitative evaluation of each result was 

performed by means of five measures: Sensitivity (TPR), Specificity (TNR), Area Under ROC Curve (AUC), 

F1 score (F1S), Dipole Localization Error (DLE).  

The results of eLORETA, LCMV and BC-VARETA localization performance by using ROC analysis and DLE 

estimation are reported in Table 1. The worst results are obtained by eLORETA method since the sparsity 

level of it inverse solution is lowest, therefore the method doesn’t have the resolution to estimate patches 
at different size even when the far-distance criteria hold. One interesting point to be noted here is that 

the DLE values for eLORETA solutions are not zero as it is claimed in previous publications, this is due to 

the fact that eLORETA even when it is able to achieve exact localization for a single simulated dipole, fails 

to recover multiple sources in a wide range of conditions as shown in Figure 6. In general, for several 

active dipoles the eLORETA source estimation will be characterized by values of the DLE measure higher 

than zero. Also, the LCMV solutions for both examples are not sparse enough but reduce considerably the 

numbers of False Positive with respect to eLORETA which leads to a more precise estimation, accounting 

for the reprted values of the quality measures. The best results are achieved by the BC-VARETA with very 

sparse solution that minimizes False Positive estimation when compared with the other methods, in 
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configurations when the centroids of the patches are close in distance. Also, BC-VARETA is outperforming 

according to the DLE values (lower values better estimation), meanwhile eLORETA and LCMV have higher 

localization error due to the quite smeared distribution of the solution.  

 

Figure 6. Two simulation configurations of the three patches with different size (4, 8, 24 active 

generators) for the two spatial distribution criteria: a) close-distance and b) far-distance. The Ground 

Truth and it localization estimation based on eLORETA, LCMV and BC-VARETA is shown from left to right. 

The square represents the True Positive estimation (red color for patch 1, green color for patch 2 and 

blue color for patch 3), the yellow diamond represents the False Positive estimation and the magenta 

circle represents the False Negative estimation. All the solutions were normalized and values lower than 

0.01 (1%) were set to zero.  
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Table 1. Results of ROC analysis and DLE estimation for localization performance evaluation of eLORETA, 

LCMV and BC-VARETA, and with the two criteria for the distance between patches: close distance (top) 

and far distance (bottom). 

Close distance configuration 

Method TPR TNR AUC F1 DLE 

eLORETA 1.00 ± 0.00 0.31 ± 0.07 0.33 ± 0.07 0.05 ± 0.00 4.51 ± 1.03 

LCMV 1.00 ± 0.00 0.67 ± 0.05 0.68 ± 0.05 0.10 ± 0.01 5.55 ± 1.42 

BC-VARETA 0.95 ± 0.05 0.99 ± 0.00 0.99 ± 0.00 0.97 ± 0.03 0.00 ± 0.01 

Far distance configuration 

Method TPR TNR AUC F1 DLE 

eLORETA 1.0 ± 0.00 0.10 ± 0.05 0.12 ± 0.05 0.03 ± 0.00 4.49 ± 1.12 

LCMV 1.0 ± 0.00 0.53 ± 0.09 0.54 ± 0.09 0.07 ± 0.01 9.58 ± 1.85 

BC-VARETA 0.95 ± 0.06 1.00 ± 0.00 0.99 ± 0.00 0.97 ± 0.04 0.00 ± 0.00 

 

3.2.2 Connectivity estimation performance 

To evaluate BC-VARETA method performance in functional connectivity estimation, four connection 

modes (not-connected, low-connected, high-connected and fully-connected) were simulated based on the 

structure of the sources empirical covariance matrix. One example of each configuration is shown in Figure 

7 with the estimation of eLORETA, LCMV and BC-VARETA. A homogeneity test between the estimated 

Precision Matrix (Inverse Covariance Matrix) and the simulated covariance matrix was applied, the Box’s 
M test statistic to evaluate the similarity between covariance matrices (𝐻𝑜: Σ0 = Σ1 ) (Pituch and Stevens, 

1994). To contrast our results a similarity tests based on the Frobenius norm, ‖Σ0 − Σ1‖𝐹2  was also 

implemented (TT Cai, 2017). 

Table 2. Box’s M test statistic and squared Frobenius norm for the covariance matrix estimation. The lower 

values represent close similitude between the simulated and estimated covariance matrices. 

Connectivity performance based on Box test 

Method 
Connectivity type 

not-connected low-connected high-connected fully-connected 

eLORETA 6.450 ± 0.295 7.244 ± 0.306 7.598 ± 0.168 9.954 ± 0.034 

LCMV 6.786 ± 0.193 7.683 ± 0.229 7.810 ± 0.182 9.849 ± 0.058 

BC-VARETA 6.537 ± 0.577 6.475 ± 0.384 6.503 ± 0.137 7.291 ± 0.471 

Connectivity performance based on squared Frobenius norm 

Method 
Connectivity type 

not-connected low-connected high-connected fully-connected 

eLORETA 14742 ± 4243 15530 ± 4747 16078 ± 4801 15618 ± 4245 

LCMV 1483 ± 500 1524 ± 506 1574 ± 507 1768 ± 551 

BC-VARETA 220 ± 23 260 ± 26 287 ± 25 446 ± 38 
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Figure 7. Examples of eLORETA, LCMV and FC-VARETA solution for connectivity estimation between the three 

patches with different size are shown. From the left to right figures represent the simulated and estimated 

connectivity by eLORETA, LCMV and FC-VARETA in different connectivity modes: a) not-connected, b) low-

connected c) high-connected, and d) fully-connected. All the solutions were normalized and the values under a 

threshold of 0.01 (1%) were set to zero. 
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The performance of BC-VARETA over different level of SNR was evaluated and same conditions were 

applied to eLORETA and LCMV models to compare the results. The Figure 7 shows an example for three 

patches with different size under the two criteria: far-distance and not-connected.  

Noise performance  

a) 

b) 

c) 
Figure 8. Three none-connected patches with different size and the corresponding eLORETA, LCMV and FC-VARETA 

estimation. Three level of noise were applied: a) SNR = 19 dB, b) SNR = 7 dB and c) SNR = 0 dB. The small squares 

drew at cortical surface represents the True Positive estimation of the three patches differentiated by colors (red 

color for patch 1, green color for patch 2 and blue color for patch 3), the small yellow diamonds represent the False 

Positive estimation and the magenta circles represent the False Negative estimation. All the solutions were 

normalized and the values under a threshold of 0.01 (1%) were set to zero. 
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Table 3. Performance evaluation of eLORETA, LCMV and BC-VARETA based on ROC analysis (higher values 

represent better estimation) and DLE (lower values represent better estimation) for localization 

performance and the corresponding Box’s M test statistic and squared Frobenius norm of covariance 

matrices (lower values represent better estimation) for connectivity estimation at the three different level 

of noise (SNR = 19 dB, SNR = 7 dB and SNR = 0 dB). 

Localization performance based on ROC analysis and DLE 

SNR Method TPR TNR AUC F1 DLE 

19 dB 

eLORETA 1.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 3.92 ± 0.82 

LCMV 0.98 ± 0.01 0.36 ± 0.04 0.37 ± 0.04 0.06 ± 0.00 22.81 ± 2.41 

BC-VARETA 0.84 ± 0.06 0.93 ± 0.01 0.92 ± 0.01 0.36 ± 0.06 5.28 ± 1.67 

7 dB 

eLORETA 1.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.00 4.15 ± 1.00 

LCMV 0.85 ± 0.07 0.32 ± 0.04 0.33 ± 0.04 0.05 ± 0.04 25.42 ± 2.46 

BC-VARETA 0.74 ± 0.08 0.92 ± 0.01 0.91 ± 0.01 0.28 ± 0.04 7.78 ± 2.26 

0 dB 

eLORETA 1.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.00 12.65 ± 2.91 

LCMV 0.72 ± 0.12 0.29 ± 0.04 0.30 ± 0.04 0.03 ± 0.00 30.65 ± 3.35 

BC-VARETA 0.65 ± 0.11 0.92 ± 0.01 0.91 ± 0.01 0.22 ± 0.04 9.98 ± 2.59 

Connectivity performance based on Box’s M test statistic 

SNR Method 
Connectivity type 

not connected low connected high connected fully connected 

19 dB 

eLORETA 6.471 ± 0.304 7.216 ± 0.287 7.621 ± 0.224 9.950 ± 0.037 

LCMV 6.506 ± 0.173 6.820 ± 0.178 7.660 ± 0.146 9.883 ± 0.046 

BC-VARETA 6.105 ± 0.676 6.443 ± 0.575 6.784 ± 0.550 7.473 ± 0.953 

7 dB 

eLORETA 6.367 ± 0.247 7.197 ± 0.249 7.630 ± 0.218 9.923 ± 0.050 

LCMV 6.240 ± 0.107 6.239 ± 0.129 7.541 ± 0.112 9.899 ± 0.045 

BC-VARETA 5.117 ± 0.806 5.608 ± 0.726 5.750 ± 0.698 6.356 ± 1.176 

0 dB 

eLORETA 6.222 ± 0.149 7.117 ± 0.150 7.564 ± 0.136 9.865 ± 0.071 

LCMV 6.083 ± 0.069 5.780 ± 0.075 7.561 ± 0.080 9.909 ± 0.042 

BC-VARETA 4.488 ± 1.075 4.694 ± 1.107 4.783 ± 0.955 4.682 ± 1.249 

Connectivity performance based on Frobenius norm 

SNR Method 
Connectivity type 

not connected low connected high connected fully connected 

19 dB 

eLORETA 15843 ± 4127 16047 ± 4603 16276 ± 4545 16241 ± 4153 

LCMV 933 ± 97 974 ± 96 984 ± 96 1151 ± 105 

BC-VARETA 212 ± 20 254 ± 24 279 ± 24 440 ± 33 

7 dB 

eLORETA 19949 ± 4682 21372 ± 5692 21065 ± 5128 21522 ± 5580 

LCMV 843 ± 69 882 ± 78 916 ± 78 1060 ± 78 

BC-VARETA 210 ± 20 252 ± 25 277 ± 25 437 ± 33 

0 dB 

eLORETA 31375 ± 5691 30763 ± 5179 31291 ± 5453 31091 ± 5082 

LCMV 834 ± 66 863 ± 71 902 ± 63 1053 ± 74 

BC-VARETA 213 ± 32 250 ± 30 278 ± 30 437 ± 38 

 

From the results it can be noticed that with the reduction of SNR level the quality of the localization 

estimation as well as connectivity estimation get worse for the three methods under analysis. However, 

the BC-VARETA outperform over the rest in all scenarios. Furthermore, the results for 200 random patches 

configuration, each of them replicate at the four-connectivity mode (not-connected, low-connected, high-

connected and fully-connected) and different SNR level (19 dB, 7 dB and 0 dB) are summarized in Table 3. 
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3.3 Real data analysis 

3.3.1 Real EEG data 

The real EEG data was gathered as part of the Cuban Human Brain Mapping Project (Hernandez-Gonzalez, 

2011) created in 2005 with the aim to obtain atlases for normal and pathological Cuban population. The 

EEG data case under analysis in this research belong to healthy male subject of 32 years old in resting 

state condition with eyes closed. The EEG was recorded using a MEDICID 5 EEG recording system of 128 

channels with sampling frequency of 200 Hz. 

The physiology of human EEG signal for resting condition, with eyes-closed and eyes-open, have been 

wide studied and its spectral characteristic and brain areas associated are well-defined (Barry, 2007): delta 

band is related to frontal activation and alfa band is related to occipital activation. In Figure 8 the 

estimation of BC-VARETA for two specific frequency bins, 1.57 Hz and 10.57 Hz, that belongs to delta (1.5 

Hz – 3.5 Hz) and alpha (8 Hz – 13 Hz), respectively. Here the BC-VARETA results shown a high 

corresponding with the state of art studies on the physiology of difference frequency band of the EEG 

spectra. 

 

Figure 9. Real EEG data for a healthy subject with eyes closed in resting state condition. The FC-VARETA estimation 

was performed at two frequency bins: top) 1.57 Hz and bottom) 10.57 Hz, which represent the delta and alpha bands 

respectively. From left to right is showed the power spectral density for each of 58 EEG channels, the scalp 

topography of 58 channels for a specific bin of frequency, the localization estimation performed by BC-VARETA and 

the connectivity estimation between anatomical areas of the brain. 

Scalp topography 

Scalp topography 
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3.3.2 Real MEG data 

MEG real data of a healthy adult was picked from the WU-Minn HCP consortium in the MEG Initial Data 

Release, the data corresponds to the resting condition with eyes open and attention fixation on a 

projected red crosshair (Marcus et.al., 2011). This data was recorded in 248 magnetometer channels of a 

MEG system for three runs of approximately 5 minutes each, at a sampling rate of 508 Hz. Analogously 

the previous EEG study, the BC-VARETA activity and connectivity analysis was performed at the delta and 

alpha bands. The results are shown in Figure 10. 

 

 

4 CONCLUSIONS 

A novel methodology, BC-VARETA, for JOINT ESTIMATION of Sources ACTIVITY and its CONNECTIVITY 

parameters is described. SUPER-RESOLUTION in the connectivity estimation through Sparse Hermitian 

Sources Graphical Model is achieved. 
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Figure 10. Real MEG data for a healthy subject with open eyes in resting state condition. The FC-VARETA estimation 

was performed at two frequency bins: top) 1.55 Hz and bottom) 10.55 Hz, which represent the delta and alpha bands 

respectively. From left to right it is shown the power spectral density for each of 248 MEG sensors, the scalp 

topography of 248 sensors for an specific frequency bin, the localization estimation by BC-VARETA and the 

connectivity estimation between anatomical areas of the brain. 
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