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Abstract

Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulence-

associated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown.

Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food

animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from

the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to

phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37

multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97% (100/103)

of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was

observed in 98% (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that

carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic

analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages

and the mobile resistance genes they carry.

DATA SUMMARY

One hundred and forty-three whole-genome sequences of
porcine faecal Escherichia coli sequenced in this project have
been deposited at the European Molecular Biology Labora-
tory (EMBL) European Nucleotide Archive under study
accession number PRJEB21464 [https://www.ebi.ac.uk/ena/
data/view/PRJEB21464]. For individual sample accession
numbers, please refer to Table S1 (available in the online
version of this article). Further strain data is available in
Tables S2–S6.

INTRODUCTION

Escherichia coli is the most frequently isolated Gram-nega-
tive pathogen affecting human health [1]. Isolates are fre-
quently resistant to multiple antibiotics and modelling
studies forecast that multidrug resistant (MDR; resistant to
three or more classes of antimicrobials) E. coli infections

will account for 30% of 10million fatal MDR infections

annually by 2050 [2]. In addition to the pathogenic variants,

commensal E. coli comprise an important component of the
gut microbiota. E. coli are shed into the environment in

high numbers. For example, each gram of faeces from com-

mercially reared pigs contains between 104 and 108 E. coli
[3]. It is important to understand the characteristics of these

E. coli given the huge quantities of faeces generated and dis-

seminated by intensive pig production. China, the world’s
largest producer of swine, produces an estimated 0.618 bil-

lion to 1.29 billion metric tonnes of swine faeces each year

[4, 5].

Pathogenic E. coli are broadly divided into intestinal patho-

genic E. coli (IPEC) and extraintestinal pathogenic E. coli
(ExPEC). ExPEC have a faecal origin, having persisted

asymptomatically in the gut before opportunistically colo-

nizing extraintestinal sites where they cause a diverse range
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of diseases, including urinary-tract infections (UTI), pyelo-
nephritis, wound infections, sepsis and meningitis [6].
ExPEC are thought to have foodborne reservoirs and may
enter the food chain via a number of sources [7–11]. The
zoonotic potential of commensal porcine E. coli as a source
of ExPEC that cause disease in humans is unknown. ExPEC
cannot be reliably detected in a diagnostic test as they are
yet to be shown to possess unique identifying features rela-
tive to other pathotypes of E. coli [12]. Instead, as we aim to
do here, whole-genome sequencing can be used to discrimi-
nate strains indistinguishable by other methods, and iden-
tify any genetic relationships between E. coli strains isolated
from pigs and humans.

Horizontal gene transfer, mediated by mobile genetic ele-
ments, plays an important role in the evolution of E. coli.
Commensal or pathogenic bacteria may, in a single horizon-
tal gene transfer event, acquire a mobile genetic element car-
rying multiple antimicrobial-resistance genes (ARGs),
virulence-associated genes (VAGs) and other genetic cargo
that encode traits that offer a niche advantage [13–17]. The
release of MDR commensal E. coli into the environment,
such as when pig faeces are used as manure, facilitates hori-
zontal transfer of resistance and virulence genes into other
microbial communities in a manner that is poorly under-
stood. ARGs cluster on mobile genetic elements and form
complex resistance regions that are often independently
mobile. Indirect selection pressure can, in the absence of
antibiotic use, lead to the persistence of transferred genes.
For example, heavy metals such as copper and zinc in feed
formulations for food animals select for ARGs that co-local-
ize with metal-resistance genes [18, 19]. Selection pressure
afforded by any one of a number of antibiotics and heavy
metals (zinc, cadmium, mercury) that contaminate faecal
waste or those used in food-producing and hospital envi-
ronments is sufficient to select for the retention and spread
of complex resistance regions [20, 21]. Understanding of
how ARGs assemble on mobile genetic elements, and the
extent to which these then traffic through human, food ani-
mal and environmental reservoirs, remains limited.

Class 1 integrons are a reliable proxy for the presence of
multiple ARGs within bacteria in clinical and veterinary set-
tings [22]. They are gene capture and expression elements
that can integrate AMR gene cassettes from the environ-
mental resistome and express them via a promoter residing
in the class 1 integrase gene. They are often mobilized by
mercury-resistance transposons belonging to the Tn21 fam-
ily, which have been disseminated globally on a wide variety
of conjugative plasmid backbones [23]. Resistance genes can
also be acquired, lost and rearranged in bacteria by genetic
events that involve insertion sequences (ISs) such as IS26,
ISEcp1and ISCR1 [24–27]. IS26 is prominent in this regard
due to its unique mechanisms of transposition (conservative
and replicative), ability to recognize itself, lack of copy num-
ber control and ability to mobilize a wide range of ARGs
[15, 26, 28–30]. Furthermore, IS26 is recognized to play a
key role in: (i) the evolution of plasmids and genomic

islands that carry combinations of VAGs and ARGs [16, 17,
31, 32]; (ii) driving the formation of cointegrate plasmids
encoding VAGs and ARGs [33]; and (iii) initiating deletions
in large multidrug-resistance plasmids that enhance plasmid
stability and expand host range [34].

Infectious-disease management relies on the surveillance of
antimicrobial resistance and emerging pathogens using a
One Health approach. There is currently no published data
available that records whole-genome-sequence-based phy-
logeny, or ARG or VAG carriage in commensal E. coli from
Australian pigs, and only one comparable study is available
from overseas [35]. Here, for the first time, to our knowl-
edge, we present whole-genome sequence analysis of 103
class 1 integron-positive commensal E. coli from pigs
commercially reared in Australia. We present data charac-
terizing their phylogenetic diversity, carriage of VAGs
and ARGs, and an analysis of the class 1 integrons they
carry.

METHODS

Management of farms and animals

The study was conducted using E. coli sourced separately
from two pig-production farm systems located approxi-
mately 250 km apart. Farms were designated descriptors F1
and F2. Isolate numbers consist of farm number, a pig num-
ber and a letter designating a single isolate from that pig (i.e.
F1_404D indicates farm 1, isolate D from pig 404). At both
farms, pigs were intensively housed and kept in total con-
finement. Both farms have used neomycin in the past for
the treatment of diarrhoeal disease. No antibiotics were

IMPACT STATEMENT

The data presented in this manuscript describes for the

first time, to our knowledge, a genomic analysis of com-

mensal Escherichia coli from commercial swine-produc-

tion facilities in Australia. Pig production routinely

involves antibiotic use for disease treatment and prophy-

laxis, and feed additives containing zinc and heavy met-

als to control infectious disease. The study is significant

because it reports phylogenetically diverse E. coli that

are multidrug resistant (MDR; resistant to three or more

classes of antimicrobials) and carry class 1 integrons

altered by IS26. This initial descriptive work is important

as a basis for the analysis of porcine faecal E. coli in all

countries that produce swine commercially, due to the

scale of global pork production and the vast quantities of

faecal waste that are used as manure. The contamina-

tion of this waste with MDR bacteria, antimicrobial-resis-

tance genes and unmetabolized antimicrobial residues is

a concern. It is necessary to characterize food-chain-

associated micro-organisms, such as E. coli, with zoo-

notic potential and multiple resistance genes, as they

may pose a threat to public health.

Reid et al., Microbial Genomics 2017;3

2



Downloaded from www.microbiologyresearch.org by

IP:  138.25.94.170

On: Thu, 28 Feb 2019 00:50:43

being used during the first sampling time at F1; however,
the pigs sampled at the second sampling time had received a
course of neomycin (see below). No antibiotics had been
administered to the pigs at F2 prior to sampling.

E. coli strains used in the study

E. coli isolates were collected via rectal-swab sampling of
pigs between 19 and 30 days of age. At farm 1, rectal swabs
were collected in May 2007 from pigs during an outbreak of
diarrhoeal disease, but prior to treatment with neomycin.
These pigs were subsequently removed from the shed. The
causative agent of the outbreak was unknown. A new batch
of healthy sows and their piglets were transferred to this
shed and the sows were given neomycin in-feed. Once the
piglets were weaned they also received neomycin in-feed for
7–10 days. The second sampling occurred on these piglets in
June 2007 after the course of antibiotics. At farm 2, rectal
swabs were performed on healthy weaners that were not
treated with antibiotics.

E. coli were isolated at the Elizabeth MacArthur Agricultural
Institute (EMAI), Australia. Up to ten E. coli colonies were
selected from individual pigs using MacConkey agar. The
total collection from farm 1 was 164 isolates from 33 pigs,
whilst from farm 2 was 171 isolates from 23 pigs. All strains
were screened by PCR for the class 1 integrase gene intI1.
This screening indicated that 117/164 (71%) E. coli from
farm 1 and 168/171 (98%) from farm 2 carried intI1. Ini-
tially, 50 intI1-positive isolates from F1 and 100 intI1-posi-
tive isolates from F2 were selected for whole-genome
sequencing. Two enterotoxigenic E. coli (ETEC) strains,
M10 and ETEC286_3, which were submitted to the EMAI
from Australian veterinary services, as clinical, pig-derived
strains, were also sequenced and included in the phyloge-
netic analysis as reference strains.

Storage

All strains were freshly cultured in LB medium and frozen
as glycerol stocks made using 500 µl M9 salts solution
and 500 µl 50% (v/v) glycerol and stored at �80

�

C. All
strains were cultured in LB medium prior to isolation of
total cellular DNA used for sequencing.

DNA extraction, whole-genome sequencing and
assembly

Total DNA was extracted using the ISOLATE II genomic
DNA kit (Bioline) following the manufacturers standard pro-
tocol for bacterial cells and stored at �20

�

C. Whole-genome
sequencing libraries were prepared from separate aliquots of
sample DNA using the Illumina Nextera DNA kit with modi-
fications. In brief, the DNA was first quantified using a Qubit
dsDNA HS assay kit (Thermo Fisher Scientific). All sample
DNA concentrations were standardized to equal concentra-
tion to achieve uniform reaction efficiency in the tagmenta-
tion step. Standard Illumina Nextera adaptors were used for
sample tagmentation. The PCR-mediated adapter addition
and library amplification was carried out using customized
indexed i5 and i7 adaptor primers (IDT), which were devel-
oped based on the standard Nextera XT indexed i5 and i7

adapters (e.g. N701–N729 and S502–S522). Libraries were
then pooled and size selected using SPRI-Select magnetic
beads (Beckman Coulter). Finally, the pooled library was
quality checked and quantified on an Agilent Bioanalyzer
2100 using the DNA HS kit (Agilent). Whole-genome
sequencing for the majority of F1 strains and ETEC strains
was performed as previously reported [36], using an Illumina
MiSeq sequencer and MiSeq V3 chemistry. Whole-genome
sequencing of the remaining F1 and F2 strains was performed
using an Illumina HiSeq 2500 v4 sequencer in rapid PE150
mode. Sequence read quality was initially assessed using
FastQC version 0.11.5 (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Illumina raw reads passing quality
control were assembled into draft genome sequences using
the A5 assembly pipeline, version A5-miseq 20140604 [37].
Genome sequences have been deposited in the European
Molecular Biology Laboratory European Nucleotide Archive
with study accession number PRJEB21464. Accession num-
bers for each sample are listed in Table S1.

Strain selection

Sequence data was successfully generated for 141 strains and
these were screened by BLAST for intI1, ARGs and VAGs, and
subjected to Phylosift analysis as described below. These anal-
yses indicated 12 strains were negative for intI1 and that a
number of clones were isolated from individual pigs. We,
therefore, excluded intI1-negative strains and selected repre-
sentatives of the clonal isolates, thereby excluding a further 26
strains. The subset of strains that were sequenced were identi-
fied as F1+F2 (n=103 from 42 pigs). This subset consisted of
35 strains from 21 pigs sampled at farm 1 and 68 strains from
21 pigs sampled at farm 2; among the F1 strains, 17 were dis-
ease-associated strains from 12 pigs (isolate numbers 1–30,
designated ‘disease’ in Tables S1–S5) and 18 were isolated
from 11 healthy pigs (isolate numbers 365–409, designated
‘healthy’ in Tables S1–S5). Only 11 isolates in the collection
carried toxin genes (eltA, n=2; eltB, n=2; stA, n=0; stB, n=11)
associated with porcine ETEC and no ETEC adhesins were
detected. Notably, only five of these were from diseased pigs,
whilst six were from healthy pigs. This highlights the role that
host factors, such as stress and immune health, play in the
manifestation of pre- and post-weaning diarrhoea in pigs and
we, therefore, argue that this collection should be considered
commensal.

Assembly statistics

Comprehensive assembly statistics for 143 sequenced por-
cine-derived E. coli, (141+2 ETEC) are available in Table S1.
Isolates not included in this study are highlighted grey. The
number of scaffolds per genome ranged from 29 to 1571,
with a mean of 235. Each genome sequence had a median
sequencing coverage of at least 20 �, with a maximum of
94� andmean of 54�.

Phenotypic resistance testing

F1 strains were tested at the EMAI using the calibrated
dichotomous susceptibility (CDS) test for resistance to 12
antibiotics [38]. The following were tested: ampicillin
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(25 µg), cefoxitin (30 µg), nalidixic acid (30 µg), ciprofloxa-
cin (2.5 µg), imipenem (10 µg), sulphafurazole (300 µg), tri-
methoprim (5 µg), tetracycline (10 µg), neomycin (30 µg),
gentamicin (10 µg), azithromycin (15 µg) and chloramphen-
icol (30 µg). F2 strains were tested for resistance to antibiot-
ics at the i3 Institute, University of Technology
Sydney, Australia, using the same method and panel of anti-
biotics as the F1 collection. F2 strains were also tested with
streptomycin (25 µg) and kanamycin (50 µg) (Table S2).

Gene identification and serotyping

Resistance, virulence and plasmid-associated genes were
identified using local BLASTN v2.2.30+ [39] searches with an
E value of 1.0�10�3 (Tables S3–S5). The gene databases
used were ResFinder, PlasmidFinder, ISFinder, Serotype-
Finder and VirulenceFinder [Data references 1–5] [40–44].
Our virulence database was supplemented with additional
virulence genes from GenBank, available in Table S6. Genes
were considered present if the subject nucleotide sequence
was >90% identical over 100% of the length of the query
sequence. BLAST hits with >90% identity but covering less
than 100% of the query were considered positive if they
were truncated by a scaffold break or insertion. Integrons
were characterized in SnapGene (GSL Biotech) using BLASTN

output. The collection was then retroactively screened for
characterized integrons using BLASTN. Where strains carry
two intI1 genes, de novo assembly software is unable to
assemble the two complete integrons with Illumina short
read data, as it cannot determine which cassette array
belongs to which intI1 copy. The presence of two integrons
in strains in this collection was, therefore, initially inferred
by BLAST identification of their cassette arrays and down-
stream regions (e.g. IS26 deletion signatures), and then con-
firmed by read-mapping using Bowtie2 and Tablet [45, 46].

Phylogrouping and multilocus sequence
typing (MLST)

E. coli phylogroups were determined using the scheme pub-
lished by Clermont et al. [47]. The genes chuA (GenBank
accession no. U67920.1), yjaA (GenBank accession no.
NC_000913.3) and the DNA fragment TspE4.C2 (GenBank
accession no. AF222188.1) were sourced from GenBank and
identified in silico using BLASTN. MLST was performed in sil-
ico using the PubMLST database (http://pubmlst.org/) and
the Achtman E. coli MLST scheme (http://mlst.warwick.ac.
uk/mlst/).

Phylogenetic analyses

Maximum-likelihood phylogenetic distances between
genomes were analysed using the PhyloSift pipeline [48],
and a tree was generated using FastTree2 [49]. The tree was
visualized using FigTree v1.4.2 (http://tree.bio.ed.ac.uk/soft-
ware/figtree/) and iTOL (https://itol.embl.de/). The Fast-
Tree2 protocol was modified to resolve short branches, as
described previously [50].

RESULTS

Our study collection consisted of 103/335 (31%) strains of
E. coli isolated from rectal swabs of pigs from two farms in
New South Wales, Australia, that were PCR-positive for the
class 1 integron integrase gene, intI1. Initial screening indi-
cated that 117/164 (71%) E. coli from farm 1 and 168/171
(98%) from farm 2 carried intI1.

Population structure of E. coli isolated from porcine
rectal swabs

Strains in our study collection were classified by phylog-
rouping, in silico MLST and in silico serotyping. The major-
ity of the strains in our study collection 74/103 (72%)
belonged to phylogroup A, while the remainder belonged to
phylogroup B1 (18; 17%), phylogroup B2 (5; 5%) and phy-
logroup D (6; 6%).

We identified 37 distinct sequence types, 21 of which were
previously isolated from swine, as reported by the E. coli
MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli;
accessed June 2017). Only seven sequence types were com-
mon to both F1 and F2. The most prominent sequence types
were ST10, ST361, ST641, ST542, ST48 and ST218. Twenty-
five sequence types were represented by a single isolate. Six
strains with a single SNP in a reference allele were assigned
putative sequence types (Fig. 1, Table S3; denoted by an
asterisk). A designation of non-typable was given to the five
remaining strains for which one or more alleles could not be
determined.

In silico O:H typing using SerotypeFinder predicted 47 sero-
types for 85 strains. The remaining 18 strains were O-non-
typable with 10 different H types (Fig. 1, Table S3). In gen-
eral, strains of any given sequence type carried the same O:
H alleles, though intra-sequence type variability was
observed among eight sequence types (ST10, ST48, ST218,
ST542, ST641, ST302, ST4630 and ST1437).

Phylogenetic analysis

To determine genetic relatedness, we used PhyloSift, Fast-
Tree2, FigTree v1.4.2, and iTOL to generate and visualize a
mid-point rooted, maximum-likelihood phylogenetic tree
containing the F1+F2 pig E. coli draft whole-genome
sequences, two ETEC strains (ETEC286_3 and ETECM_10)
and four pig-pathogenic E. coli complete genome sequences
[E. coli UMNK88 (NC_017641.1), UMNF18 (NZ_AGT
D01000001.1), PCN033 (NZ_CP006632.1) and PCN061
(NZ_CP006636.1)] (Fig. 1). Tree topology was highly con-
gruent with Achtman MLST and in silico serotyping, group-
ing strains by sequence type, and then further by serotype.
Clade structure was generally congruent with phylogroup
analyses; however, seven strains belonging to phylogroups
B2 and D formed a separate clade. We identified three
major clades, with the seven B2/D phylogroup strains form-
ing clade 1. Clade 2 consisted almost exclusively of phy-
logroup B1 strains, ST641 was the dominant sequence type;
however, one phylogroup A strain (F1_4A) was an unex-
pected member of this clade. Clade 3 was composed of two
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separate sub-clades, one consisted of six B2 and D strains
(three ST302, two ST1508 and a non-typable) and the other
exclusively containing phylogroup A strains (ST10 and
sequence types within CC10, as well as ST361 and ST542,
strains that were common in our study collection).

ARGs and heavy-metal-resistance genes

We identified a total of 17 ARGs in the collection and
strains carried between 1 and 15 ARGs each. A total of
100/103 (97%) strains carried three or more resistance
genes. Surprisingly, strains belonging to phylogroup A car-
ried the highest mean number of ARGs (10 per strain).

Strains belonging to phylogroup B1, B2 and D each car-

ried a mean of eight ARGs per strain. The most common

ARGs among the strains in our collection were: the peni-

cillin-resistance gene blaTEM-1, (84; 82%); aphA1, encoding

resistance to kanamycin and neomycin (76; 74%); the co-

linked streptomycin-resistance genes, strA and strB (73;

71%); and the tetracycline-resistance gene tetA (73; 71%).

Quinolone-resistance genes oqxAB, which typically localize

on plasmids, were less frequently identified (27; 26%).

Genes encoding extended-spectrum b-lactamases,

extended-spectrum carbapenemases and resistance to

Fig. 1. A mid-point rooted, maximum-likelihood phylogenetic tree inferred using PhyloSift v1.0.1, FastTree2, FigTree v1.4.2 and iTOL.

The tree contains all 103 pig E. coli isolates sequenced in this study, 2 porcine ETEC strains and 4 reference pig-sourced sequences.

The labels of strains isolated from pigs with diarrhoea are in white, and of ETEC and reference strains are in bold. Branches are col-

oured by clade (clade 1, red; clade 2, green; clade 3, blue). Shading over tip labels indicates phylogroup (A, blue; B1, green; B2, orange;

D, red). Tip labels also contain multilocus sequence type and serotype. Asterisks indicate single-locus variants of a given sequence

type. The tree scale shows the distance for 1 amino acid substitution per 1000 sites in the analysis. Clusters of the seven most com-

mon sequence types have been marked with an outer line. Integrons shown in Fig. 3 are annotated by shapes indicating the presence

of sul1 (triangles), IS26-truncated 3¢-CS (squares) and sul3 (circles). Integrons (a–j) are coloured red, orange, yellow, green, aqua, blue,

purple, magenta, pink and crimson. Strains that were intI1 positive, but were not characterized are annotated with a white circle. Inte-

grons were not determined for reference genomes used in the analysis.
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macrolides were not detected. Heavy-metal-resistance
genes, including the copper-resistance gene cusA (103;
100%), the Tn21 mercury-resistance gene merA (71; 69%)
and the tellurite-resistance gene terA (40; 39%), were
identified frequently (Fig. 2).

Five ARGs were identified as gene cassettes carried by class
1 integrons (Fig. 3). Cassettes carried by the majority of
strains included those conferring: aminoglycoside resis-
tance, aadA1 (69; 67%) and aadA2 (72; 70%); chloram-
phenicol resistance, cmlA (60; 58%); and trimethoprim
resistance, dfrA12 (62; 60%) and dfrA5 (51; 50%). Among
sulphonamide-resistance genes, sul3 was identified in more
strains (62; 60%) than sul1 (48; 47%) or sul2 (46; 45%)
(Fig. 2, Table S3). sul1 and sul3 were associated with inte-
grons (Fig. 3).

Structurally diverse class 1 integrons

Among our study collection, we sought to characterize the
diversity of class 1 integrons present. It is challenging to
assemble complete sequences for such regions using Illu-
mina sequence data, because of the presence of repeated ele-
ments. However, we identified numerous structurally
diverse class 1 integrons, hereafter referred to as integrons
(a–j) (Fig. 1 and 3). Notably IS26 altered the 3¢ region in six
of the most common structures (d–i).

Four different class 1 integrons (g–j) carried a sul3 gene.
The first time sul3 was linked with E. coli from a food-ani-
mal source in Australia was in 2015 in a highly virulent por-
cine ST4245 ExPEC strain [50]. Moreover, sul3 was first
reported in a human in Australia in 2017 in a commensal E.
coli ST95 [51]. In integrons (g) and (h), the sul3 module,

which comprises a putative transposase tnp440, sul3, two
hypothetical proteins (orfA and orfB) and 260 bp of the
macrolide efflux gene mefB truncated by IS26, was the same.
Integrons (g) and (h) differed from each other in their
respective cassette arrays. Integron (i) differed from (g) and
(h) both in its sul3 module, which carried an additional
copy of IS26, length of the mefB gene fragment (111 bp) and
an insertion of an IS1203-like element in qacH. In integron
(j), an IS26 insertion leaves only 197 bp of intI1 remaining,
mefB is absent and an IS1-like element is adjacent to orfB.
Only three of the integrons (a–c) among our strain collec-
tion carried a sul1 gene. Screening indicated that at least 22
strains carry two integron structures. The most common
co-carriage pattern was (d, i) (14/22), though (b, i) (2/22),
(d, j) (4/22) and (d, g) (2/22) also occurred (Fig. 1,
Table S3). Eight sequence types carried more than one inte-
gron, including predominant types ST10, ST361 and ST542
(Table S3).

VAGs

To assess the virulence potential of commensal pig E. coli

strains in our collection, we screened for a total of 94 genes

that have been associated with either intestinal disease or

extraintestinal disease caused by E. coli pathotypes. Twenty-

nine of these genes were present in at least one strain

(Fig. 2, Table S4). All strains possessed between 3 and 16

VAGs. The mean number of VAGs for each phylogroup

was: A, 5; B1, 9; B2, 11; D, 9. The VAGs were present in

diverse gene combinations between and within sequence

types. Most VAGs were typical of extraintestinal E. coli

pathotypes (ExPEC), whilst ETEC toxin gene (eltA, eltB,

Fig. 2. Heat map depicting carriage of ARGs (aqua), VAGs (orange) and plasmid incompatibility groups (purple) by sequence type.

A darker colour indicates high carriage amongst a given sequence type, a lighter colour indicates lower carriage and white indicates

no carriage. For full screening data see Tables S3–S5.
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stA, stB) carriage was only observed in 11 strains and no
ETEC adhesins were present.

Plasmid incompatibility groups

We screened the collection for plasmid replication-associ-
ated genes from nine plasmid incompatibility groups that
are commonly associated with carriage and mobility of
ARGs. IncF was the most common replicon (89; 86%), fol-
lowed by IncX (61; 59%) and IncHI2 (43; 42%). All repli-
cons were present across multiple sequence types (Fig. 2,
Table S5).

DISCUSSION

Globally, there is a poor representation of genomic sequen-
ces for commensal E. coli isolated from the faeces of pigs,
and none in Australia. Here, for the first time, to our knowl-
edge, we have sequenced the genomes of E. coli isolated
from the faeces of predominantly healthy pigs and deter-
mined their Clermont phylogroup, multilocus sequence
type (Achtman) and serotype, as well as carriage of ARGs
and VAGs. The phylogenetic relationships shared by the
103 strains, the types of resistance genes that reside within
the class 1 integrons and the structures of class 1 integrons

Fig. 3. Schematic diagram (not to scale) of integrons within porcine strains that were sequenced. Arrows represent ORFs. Arrows

with broken lines indicate hypothetical proteins. Vertical bars represent inverted repeats. Dashed double diagonal lines represent

sequence scaffold breaks. Intergenic sequences are not shown. ARGs (purple) and IS/transposable elements (yellow) are colour coded.

*, 260 bp of mefB remaining; ,̂ 111 bp of mefB remaining; #, IS1203-like.
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were also investigated. Despite sampling only two commer-
cial piggeries, we identified a wide variety of multilocus
sequence types. The diversity of isolates differed to previous
studies on E. coli in pigs [35, 52] and this may be due to our
selection of intI1-positive strains or simply reflect geograph-
ical differences. Our findings suggest that commensal E. coli
populations residing within the faeces of pigs are often resis-
tant to multiple antimicrobial agents and carry numerous
VAGs. Notably, we also identified genetic epidemiological
markers for tracking antimicrobial-resistance loci residing
on mobile genetic elements in commensal E. coli.

Commensal E. coli lineages are associated with
disease

The dominant lineages in our collection were phylogroup A
E. coli belonging to sequence types residing within CC10,
particularly ST10, ST48 and ST218. ST10 has previously
been reported as the dominant sequence type from pigs in
Germany, Denmark, Ireland and Spain [3, 35, 52–54]. Our
data and the observations of others suggest E. coli of CC10
sequence type may be opportunistic, MDR pathogens with a
broad animal host range. E. coli CC10 can colonize humans,
swine, poultry, dogs, migratory birds, rodents, camels and
cattle [9, 12, 55–61]. E. coli CC10 can also be isolated from
raw and treated wastewater, and from urban streams [8]. E.
coli CC10 is increasingly associated with intestinal disease in
humans [62, 63], and extraintestinal infections in pigs [64,
65], dogs [57] and humans, including UTI, pyelonephritis
and sepsis [9, 66–68]. E. coli CC10 are often MDR, and the
resistance genes they carry can encode resistance to
extended-spectrum b-lactams [69, 70]. ST10 is a noted
ExPEC sequence type in humans and has been identified in
food animals, retail meats and the environment [58, 71–74].
The core attributes of ST10 that enable it to colonize diverse
niches remain unknown. The phylogenetic diversity we
observed within porcine faecal ST10 suggests that such
attributes may vary between strains. Whole-genome
sequence analysis of E. coli ST10 genomes from different
regions of the world and from different hosts is needed to
understand the full diversity and success of this
sequence type.

MDR porcine E. coli carry structurally diverse class
1 integrons

Notably, sul3 was the most frequently identified sul gene in
our collection and three different sul3-containing integron
structures were identified. Carriage of class 1 integrons pos-
sessing sul3 has been observed in disease-associated and
commensal E. coli isolates from animals and humans, as
well as in bacterial species other than E. coli from different
countries [75–77]. In Australia, the carriage of sul3 by E. coli
has been reported infrequently, although it has been identi-
fied in several uropathogenic E. coli isolates [78], in a highly
virulent porcine ST4245 ExPEC strain [50], and in a human
commensal ST95 E. coli on a virulence plasmid that carries
multiple ARGs and VAGs [14]. In Europe, class 1 integrons
containing sul3 have been observed in commensal E. coli
from both humans and animals, indicating they are widely

disseminated in a variety of E. coli lineages [14, 79–82].
Structures similar to ours have also been reported in differ-
ent Salmonella enterica serovars, suggesting inter-species
transfer of class 1 integrons carrying sul3may have occurred
[75].

The potential role for sul3 integrons in intraspecies and
interspecies exchange of antibiotic resistance makes it desir-
able both to understand their evolution and to track their
movement through bacterial populations. In Fig. 4, we have
provided a model that could explain the micro-evolutionary
events that created the novel sul3 integron depicted in struc-
ture (i). This integron likely evolved from a progenitor simi-
lar to one described by Curiao et al. in a human-derived
extended-spectrum b-lactamase positive E. coli on an IncI1
plasmid from Spain (GenBank accession no. HQ875016.1),
as this is the only report to describe IS26 adjacent to sul3
[76]. Conceivably, the novel structure (i) emerged from
insertion of a second copy of IS26, which further truncated
mefB, followed by an inversion event. To our knowledge,
this is the first study to identify a 111 bp mefB variant. Inte-
gron (i) was observed within the collection in 26 E. coli
strains of different sequence types, suggesting horizontal
transfer of a mobile element(s) carrying the integron,
though we were unable to determine which mobile elements
were responsible for this. Further work is needed to examine
this hypothesis.

IS26-mediated deletions of mefB can be used to track sul3-
containing integrons and additional resistance genes they
may acquire due to the unique ability of IS26 to target itself
[26]. A number of different truncated variants of the mefB
gene are carried by sul3 integrons found in human- and ani-
mal-derived E. coli [14, 75–77]. Our data suggests the class 1
integrase upstream of the sul3 module is likely to be func-
tional based on the presence of different antibiotic cassette
arrays associated with a 260 bp mefB deletion (g, h). BLASTN
analysis identified sul3 integrons carrying DmefB with an
identical 260 bp deletion in porcine isolates P328.10.99.C2
(GenBank accession no. FJ196386.1) and P528.10.99.C4
(GenBank accession no. FJ196388.1) from Great Britain,
though the associated cassette arrays were not completely
characterized [77]. Furthermore, plasmid pCAZ590
(GenBank accession no. LT669764.1) isolated from poultry
in Germany carried an identical integron (estX-psp-aadA2-
cmlA-aadA1-qacI-tnp440-sul3-orf1-orf2-DmefB:260bp-IS26)
to 4(h) with an additional blaSHV-12 gene 73 bp upstream of
IS26 [83]. Although the evolutionary events that lead to this
derivative structure are not known, this plasmid illustrates
how IS26 augmented integrons continue to evolve and
acquire genes that confer resistance to critically important
human antibiotics.

The deletion event in the 3¢-CS of the integron depicted in
(d) (dfrA5-IS26) may serve as another genetic signature for
tracking resistance genes, and bacteria that carry them,
through different hosts and environments [15, 84–86]. Pre-
viously, we observed the integron structure (d) on plasmids
carrying VAGs in atypical EPEC strains isolated from cattle
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with gastrointestinal disease and E. coli strains linked to
EHEC O26:H� isolated from a human patient with hae-
morrhagic colitis [16, 17]. In each of these earlier cases, the
IS26 that interrupted the 3¢-CS of the integron formed part
of the left boundary of Tn6026, an IS26-flanked, globally
disseminated transposon that harbours multiple ARGs [15–
17, 87, 88]. Twenty-seven strains carrying integron (d) pos-
sess the resistance genes present in Tn6026 (blaTEM, sul2,
strAB, aphA1) suggesting this transposon is also carried in
our collection, though further studies are necessary to con-
firm this. This again highlights that tracking IS26 deletions
is useful for tracking not only the integrons they interrupt,
but also additional resistance genes that may be acquired in
association with the IS26.

The carriage of more than one integron in a number of
prominent sequence types in the collection suggests that
plasmid or transposon-mediated horizontal transfer of
resistance determinants may occur within the microbiota of
the porcine gut. This transfer is likely mediated by plasmids
present in the collection, though transposons and IS ele-
ments may be involved. Long-read sequencing is required
to test this hypothesis.

Zoonotic potential of commensal. E. coli from swine

In considering the zoonotic potential of pig faecal E. coli, we
determined the proportion of strains in our collection that
carried IPEC and ExPEC VAGs. A limitation of investigat-
ing zoonotic potential for extraintestinal disease is the
genetic redundancy identified in the virulence attributes
from ExPEC. A recent study suggested that the number of
virulence factors carried by an ExPEC strain is the only

independent factor that can explain extraintestinal virulence
in a mouse model of sepsis [89]. Our collection contained
two strains possessing large numbers of VAGs, belonging to
ST131 and ST117, representative of pandemic ExPEC clones
that cause hospital- and community-acquired infections in
humans worldwide [58, 90, 91]. They have both been linked
with poultry and have only rarely been isolated from por-
cine sources [9, 58]. The single ST131 strain in our porcine
collection carried 10 ARGs and 16 VAGs. The ST117 strain
carried 8 ARGs and 16 VAGs, including the full array of
iron-acquisition genes fyuA, irp2, ireA, iroN, iutA, iucD and
sitD. Several of these genes are typically encoded on viru-
lence plasmids circulating in APEC [92] and this profile is
similar to ST117-O111:H4 strains from poultry reported by
Mora et al. [93]. The presence of ST117 and ST131 in our
collection is intriguing, and warrants further investigation.

Most of the VAGs identified in our collection were those
associated with the ability to cause extraintestinal disease in
humans, as well as intestinal persistence [6, 94]. Carriage of
genes that are under positive selection in uropathogenic E.
coli [95], such as heat-stable agglutinin gene hra [96],
murine uroepithelial cell adhesin gene iha [97], iron-acqui-
sition genes fyuA, iutA, iucD and sitD, and the serum sur-
vival genes iss and traT, suggest that some strains may be
capable of causing extraintestinal disease in humans. Con-
versely, it also highlights how many ExPEC VAGs can be
considered important intestinal fitness factors. The most
intriguing IPEC VAG was intimin gene eaeA, found in eight
strains, that is characteristic of several intestinal E. coli path-
otypes, including EHEC, EPEC and atypical EPEC [98].

Fig. 4. Schematic diagram (not to scale) of proposed evolutionary pathway to the sul3-DmefB arrangement shown in Fig. 3(i). IS26

8 bp direct repeats are annotated.
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These strains also carried ExPEC VAGs and may represent
hybrid pathotypes.

The frequency of VAGs in phylogroups A and B1, a mean
of 5 and 9 VAGs per isolate, respectively, was unexpected
because E. coli belonging to phylogroups A and B1 are con-
sidered to have low virulence potential [99, 100]. The car-
riage of multiple VAGs in pig E. coli is consistent with
earlier studies [101, 102]. In China, ExPEC have been iso-
lated from a variety of tissues and bodily fluids of pigs with
septicaemia, meningitis and respiratory disease with
increasing frequency since 2004 [64, 65]. It is notable that
35% of 81 isolates in one of these studies belonged to phy-
logroup A, clonal complex 10 [64]. In European wild boars,
which are assumed to be ancestors of domestic pigs in
Europe [103], E. coli strains carry, on average, 7 or more
VAGs, with some strains carrying up to 16 VAGs [104].
Collectively, these observations suggest that E. coli phy-
logroup A and B1, at least those sourced from swine, carry
multiple VAGs.

Contribution of food-production animals to the
evolution of pathogens and antimicrobial
resistance

MDR E. coli carrying ARGs associated with mobile genetic
elements and VAGs are released into the environment by
food-production animals via faecal effluent. In Australia,
the capacity for pig production to contribute to the evolu-
tion and dissemination of pathogens and ARGs is restricted
compared to that of pig-production systems in many other
countries, due to a range of factors. Firstly, Australia has a
large landmass that is surrounded by ocean, preventing the
movement of animals from neighbouring countries. Sec-
ondly, importation of food animals into Australia has been
restricted since the 1970s [105]. Thirdly, antibiotics such as
fluoroquinolones cannot legally be administered to food
animals and many others are restricted from use in food-
animal production [106, 107]. However, even in the
restricted environment in Australia, phenotypic resistance
to clinically important antibiotics, including extended-spec-
trum cephalosporins and fluoroquinolones, has been
observed in E. coli that belong to globally disseminated E.
coli lineages ST744, ST100 and ST1 [108]. Globally, genomic
surveillance is needed to understand the relative contribu-
tion of food-production animals to the complex web of
interactions between microbiota and the mobile resistome,
to provide baseline carriage rates for antimicrobial genes
and VAGs, and to monitor the emergence of novel drug-
resistant pathogens [84, 109].

In summary, we report, to our knowledge, the first genomic
study of commensal E. coli isolated from commercial pigs
used for food consumption and provide data to inform
assessment of potential risks pig commensal E. coli may
pose to human health. Our results show that swine are a res-
ervoir: (i) for phylogroup A and B1 E. coli that carry VAGs,
(ii) the sul3 gene, (iii) class 1 integrons associated with IS26,
and (iv) E. coli lineages belonging to CC10. Our study has

identified several new genetic signatures that may be used in
tracking mobile ARGs.
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