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A B S T R A C T

Porcine epidemicdiarrhea virus (PEDV), amember of the generaAlphacoronavirus in the familyCoronaviridae,

causes acute diarrhea/vomiting, dehydration and highmortality in seronegative neonatal piglets. For the

last three decades, PEDV infection has resulted in significant economic losses in the European and Asian

pig industries, but in 2013–2014 the disease was also reported in the US, Canada and Mexico. The PED

epidemic in the US, from April 2013 to the present, has led to the loss of more than 10% of the US pig

population.

The disappearance and re-emergence of epidemic PED indicates that the virus is able to escape from

current vaccination protocols, biosecurity and control systems. Endemic PED is a significant problem, which

is exacerbated by the emergence (or potential importation) of multiple PEDV variants. Epidemic PEDV

strains spread rapidly and cause a high number of pig deaths. These strains are highly enteropatho-

genic and acutely infect villous epithelial cells of the entire small and large intestines although the jejunum

and ileum are the primary sites. PEDV infections cause acute, severe atrophic enteritis accompanied by

viremia that leads to profound diarrhea and vomiting, followed by extensive dehydration, which is the

major cause of death in nursing piglets. A comprehensive understanding of the pathogenic characteris-

tics of epidemic or endemic PEDV strains is needed to prevent and control the disease in affected regions

and to develop an effective vaccine. This review focuses on the etiology, epidemiology, disease mecha-

nisms and pathogenesis as well as immunoprophylaxis against PEDV infection.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Porcine epidemic diarrhea virus (PEDV), amember of the genera

Alphacoronavirus in the family Coronaviridae of the orderNidovirales,

causes acute diarrhea, vomiting, dehydration and highmortality in

neonatal piglets, resulting in significant economic losses. The disease

was initially reported in European and Asian pig industries over the

last 30 years, with the virus first appearing in England (Wood, 1977)

and Belgium (Pensaert and de Bouck, 1978) in the early 1970s. Re-

cently, PEDVhas also been reported in theUS (Stevenson et al., 2013).

Since then, the virus has rapidly spread nationwide throughout the

USA (Cima, 2013) and to other countries inNorth America, including

Canada and Mexico. As a result of the significant impact of PEDV,

theUSpig industry has lost almost 10%of its domestic pig population

after only a 1 year-epidemic period, amounting to approximately 7

million piglets.

Similar epidemiological and clinical features between PEDV and

anotherAlphacoronavirus, transmissible gastroenteritis virus (TGEV),

have led to complications indiagnosis, requiringdifferential laboratory

tests (Saif et al., 2012). Since the emergence of a natural spike gene

deletion mutant of TGEV, porcine respiratory coronavirus (PRCV)

in 1984, the spread of TGEV has been reduced in PRCV-seropositive

herds due to cross-protective immunitywith TGEV (Saif et al., 2012).

In contrast, PEDV continues to spread and cause economic prob-

lems worldwide.

Based on genetic analysis, the family Coronaviridae can be

divided into the four genera: Alphacoronavirus, Betacoronavirus,

Gammacoronavirus, and Deltacoronavirus. Bats are the projected

host for the gene source of Alphacoronaviruses and Betacoronaviruses,

while birds are the suspect host for Gammacoronaviruses and

Deltacoronaviruses (Woo et al., 2012). In different US regions where

PEDV is epidemic, a new coronavirus genetically distinct from

PEDV, porcine deltacoronavirus (PDCoV), has been simultane-

ously (and frequently) detected in diarrheic fecal samples from

pigs (Wang et al., 2014a). The clinical impact and disease severity

of PDCoV in the field is reportedly less than that of PEDV. A recent

study confirmed that PDCoV is enteropathogenic in pigs and acutely

infects the small intestine, causing severe diarrhea and/or vomit-

ing and atrophic enteritis, similar to the clinical signs of PEDV and

TGEV infections (Jung et al., 2015). At present, differential diagno-

sis of PEDV, PDCoV, and TGEV is critical to control viral epidemic

diarrheas in US pig farms.
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This review focuses on current understanding of the etiology, epi-

demiology, disease mechanisms and pathogenesis of PEDV and the

control measures that may be used to prevent PEDV infection.

Etiology

PEDV structure and genome

PEDV is enveloped and pleomorphic with a range in diameter

of 95–190 nm, including the projections, which are approximate-

ly 18 nm in length (Pensaert and de Bouck, 1978). Details of the

PEDV structure and genome can be found elsewhere (Song and

Park, 2012). PEDV has a single-stranded positive-sense RNA genome

of approximately 28 kb in size (excluding the poly A-tail) that

encodes four structural proteins, namely, spike (S), envelope (E),

membrane (M), and nucleocapsid (N) protein, and four nonstructural

proteins: 1a, 1b, 3a, and 3b (Kocherhans et al., 2001). Among the

viral proteins, the S protein is critical for regulating interactions

with specific host cell receptor glycoproteins to mediate viral entry

and for inducing neutralizing antibodies (Bosch et al., 2003). The S

protein is also associated with growth adaptation in vitro and

attenuation of PEDV virulence in vivo (Sato et al., 2011). The M

protein is the most abundant component among viral proteins in

the envelope and plays an important role in virus assembly by

interacting with the S and N proteins (Klumperman et al., 1994;

Vennema et al., 1996). The N protein of coronavirus binds RNA

and packages viral genomic RNA into the nucleocapsid of virus

particles (Spaan et al., 1983).

Biological and physicochemical properties of PEDV

A previous study using the cell-adapted German isolate V215/

78 documented the biological and physicochemical properties of

PEDV (Hofmann andWyler, 1989). PEDV showed a buoyant density

of 1.18. PEDV was easily inactivated by ether or chloroform, and it

was relatively stable at 4–50 °C compared to higher temperatures.

After incubation in cell culture media at 4 °C with a pH range (3–

10) for 6 h, PEDV exhibited low to moderate residual infectivity,

whereas at 37 °C for 6 h, it retained its infectivity only between the

pH range 5 and 8.5, but the virus was completely inactivated at pH < 4

and > pH9. These data indicate that PEDVwill be inactivated by acidic

or alkaline disinfectants if they are applied for a certain period at

a higher temperature (>37 °C).

The PEDV strain V215/78 was not neutralized by an antiserum

to TGEV (Hofmann and Wyler, 1989). This finding was supported

by another report (Pensaert et al., 1981), which showed no cross-

reactivity of PEDV CV777 strain with either a Belgian strain of TGEV

or feline infectious peritonitis virus (FIPV), as determined by

immune-electron microscopy and immunofluorescence (IF).

However, a subsequent study found a detectable, two-way cross-

reactivity between PEDV and FIPV by more sensitive assays, such

as enzyme linked immune-sorbent assay, immunoblotting and

immune-precipitation (Zhou et al., 1988). These discrepancies in-

dicate that cross-reactivity between PEDV and other coronaviruses

probably varies depending on the sensitivity of the techniques and

the viral strains tested. A recent study reported evidence of anti-

genic cross-activity between the prototype CV777 and recent US

PEDV strains and TGEV (Miller strain) by sharing at least one con-

served epitope on the N-terminal region of their N proteins (Lin et al.,

2015).

Inactivation of PEDV

Pospischil et al. (2002) demonstrated that PEDV is inactivated

by disinfectants, namely, oxidizing agents (Virkon S), bleach, phe-

nolic compounds (One-Stroke Environ; Tek-Trol), 2% sodium

hydroxide, formaldehyde and glutaraldehyde, sodium carbonate (4%

anhydrous or 10% crystalline, with 0.1% detergent), ionic and non-

ionic detergents, 1% strong iodophors in phosphoric acid, and lipid

solvents such as chloroform.

Cell culture for virus isolation

Vero (African green monkey kidney) cells support the isolation

and serial propagation of PEDV in cell cultures supplemented with

the exogenous protease trypsin. Another African green monkey

kidney cell line, MARC-145, also supported a subsequent cell passage

of PEDV (Lawrence et al., 2014). Trypsin plays an important role in

cell entry and release of PEDV virions in Vero cells, contributing to

efficient replication and spread of the virus to neighboring cells in

vitro (Shirato et al., 2011; Wicht et al., 2014). Trypsin resulted in the

cleavage of the S protein into S1 and S2 subunits, which most likely

accounts for cell-to-cell fusion and the release of virions from in-

fected Vero cells (Shirato et al., 2011). Cytopathic effects consist of

vacuolation and formation of syncytia as a result of apoptotic cell

death (Hofmann and Wyler, 1988; Kim and Lee, 2014). The hem-

agglutinating activity of PEDV was demonstrated with rabbit

erythrocytes only after trypsin treatment (Park et al., 2010). Only

one serotype of PEDV has been reported from different countries

(Saif et al., 2012).

Epidemiology

Epidemiology of PEDV worldwide

PEDV first appeared in the United Kingdom (Wood, 1977) and

Belgium (Pensaert and de Bouck, 1978) in the early 1970s. The virus

was first isolated in 1977 in Belgium and was classified in the family

Coronaviridae (Pensaert and de Bouck, 1978). Subsequently, in the

1980s and 1990s, PEDV was identified as a cause of severe epidem-

ics in Japan and South Korea (Takahashi et al., 1983; Kweon et al.,

1993). Despite extensive application of PEDV vaccines, PED has re-

mained endemic in South Korea (Park et al., 2013).

During the 1980s and 1990s in Europe, outbreaks of PED ap-

peared infrequently, but the virus continued to spread and persisted

in an endemic form in the pig population. Subsequent serological

surveys showed a low to moderate prevalence of PEDV in Europe-

an pigs (Van Reeth and Pensaert, 1994; Carvajal et al., 1995). The

prevalence of PEDV in European pigs then declined greatly al-

though the reasons are unclear. Outbreaks of PED were observed

only sporadically in Europe: in The Netherlands in 1989–1991

(Pijpers et al., 1993); in Hungary in 1995 (Nagy et al., 1996), and in

England in 1998 (Pritchard et al., 1999). However, a typical epi-

demic outbreak of PEDwas identified in Italy in 2005–2006 (Martelli

et al., 2008).

In Thailand in 2007–2008, several outbreaks of severe PED were

reported with Thai PEDV isolates in the same clade phylogeneti-

cally as the Chinese strain JS-2004-2 (Puranaveja et al., 2009). This

new genotype of PEDV continues to cause sporadic outbreaks in

Thailand.

In China in 2010–2012, severe PED outbreaks in seropositive pigs

were reported in different regions (Li et al., 2012; Sun et al., 2012;

Wang et al., 2013). For almost two decades since PEDV first emerged

in China, many pig herds have been vaccinated with the proto-

type strain CV777-inactivated or related vaccines. However, the

moderate to high mortality of suckling piglets in vaccinated herds

indicates a low effectiveness of the CV777 vaccines (Li et al., 2012).

The PED outbreaks in China, in 2010–2012, were caused by both

classical and new PEDV variant strains that differ genetically from

the prototype CV777 (Wang et al., 2013).
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Molecular epidemiology of PEDV in the US in 2013–2014

The US PEDV strains identified during the initial outbreak in 2013

were closely related genetically to the Chinese strains (China/2012/

AH2012) reported in 2011–2012 (Huang et al., 2013; Chen et al.,

2014), indicating emergence of AH2012-like Chinese PEDV strains

in the US. The US-like PEDV strains were also found in diarrheic

piglets in South Korea and Taiwan during late 2013 and early 2014

(Cho et al., 2014; Lin et al., 2014), although whether Chinese or US

PEDV strains could have been transmitted to pigs in South Korea

and Taiwan is unknown. Further investigations are needed to clarify

if Chinese or US PEDV strains were already present in South Korea

and Taiwan before the related outbreaks were first identified.

For <1 year since the first outbreak, other novel US PEDV strains

(OH/OH851) with multiple deletions and insertions in their S gene,

which clustered closely with Chinese strain HBQX-2010 or CH/

ZMZDY/11, rather than AH2012, were found to possess low

nucleotide identity in their 5′-end S1 region (first 1170 nucle-

otides) and high nucleotide identity in the remaining S gene,

compared to the major US PEDV strains (Vlasova et al., 2014; Wang

et al., 2014b). Possible recombination events involving strain(s) from

China may have contributed to a rapid evolution of US PEDV and

the emergence of multiple variants, complicating the molecular epi-

demiology of US PEDV strains (Tian et al., 2014).

Remarkably, another PEDV variant, which has a large 197 amino

acid (aa) deletion in the N-terminal portion of the S protein of major

cell-cultured US PEDV strains, such as PEDV strain TC-PC22A

(GenBank accession number KM392224), has emerged only 1 year

after the first outbreak (Oka et al., 2014). Another PEDV variant with

a large (204 aa) deletion at positions 713–916 of the S protein was

identified among Korean PEDV strains (Park et al., 2014).

Transmission

The fecal–oral route is the main means of PEDV transmission,

although aerosolized PEDV remains infectious (Alonso et al., 2014).

Diarrheal feces and/or vomitus and other contaminated fomites, such

as transport trailers (Lowe et al., 2014) and feed (Dee et al., 2014),

can be major transmission sources of the virus. Another possible

reservoir for PEDV includes carriers, such as older pigs with

a-symptomatic infection, in which the virus spreads subclinically.

Previous studies showed a low to moderate detection rate (23–

41%) of PEDV RNA in milk samples of affected, lactating sows (Li

et al., 2012; Sun et al., 2012), suggesting that sow milk might be a

potential route for the vertical transmission of PEDV. Our study dem-

onstrated a significant detection rate of PEDV RNA in acute serum

samples (55–100%) of experimentally infected piglets or naturally

infected grower pigs (Jung et al., 2014). Whether pork plasma used

as a feed additive could be a transmission source of PEDV remains

questionable, since discrepant results were reported in two different

infection studies that investigated whether spray-dried porcine

plasma that had tested positive for PEDV RNAwas infectious in sero-

negative pigs (Opriessnig et al., 2014; Pasick et al., 2014).

Disease mechanisms and pathogenesis of PEDV

Tissue tropism of PEDV

Porcine small intestinal villous enterocytes express large amounts

of aminopeptidase N (APN), a 150-kDa glycosylated transmem-

brane protein, identified as the cellular receptor for PEDV (Li et al.,

2007). High density of the receptor on enterocytes allows PEDV to

enter and replicate through virus–receptor interactions (Li et al.,

2007). PEDV is cytolytic, and infected enterocytes rapidly undergo

acute necrosis, leading to marked villous atrophy in the small but

not in the large intestine (Fig. 1A) (Jung et al., 2014). PEDV antigens

are observed mainly in villous enterocytes of the small (duode-

num to ileum) (Fig. 1B) and large intestines (except the rectum)

(Debouck et al., 1981; Stevenson et al., 2013; Jung et al., 2014;

Madson et al., 2014).

Like TGEV (Kim et al., 2000), PEDVmay not induce apoptotic death

of enterocytes in the small intestine of infected pigs (Figs. 1C, D).

Occasionally, a few PEDV-positive cells were detected in the intes-

tinal crypt cells or Peyer’s patches during the late-stages of infection

(Debouck et al., 1981; Sueyoshi et al., 1995; Stevenson et al., 2013;

Jung et al., 2014). In our preliminary study, mean numbers of goblet

cells per intestinal villi of infected gnotobiotic pigs (<2/villus) at post-

inoculation hours (PIH) 30–72 were fewer than those (6–18/

villus) of the negative counterparts (Fig. 2).

As with TGEV (Schwegmann-Wessels et al., 2003), PEDV might

infect goblet cells, leading to a dramatic decrease in this cell type

during the early phase of diarrhea. Goblet cells secrete mucins and

provide the first line of defense against microbes in the intestine

(Kim and Ho, 2010). Lung tissues of oronasally infected pigs were

negative for PEDV antigen, indicating no evidence of PEDV repli-

cation in the lower respiratory tract (Debouck et al., 1981; Sueyoshi

et al., 1995; Stevenson et al., 2013; Jung et al., 2014). PEDV anti-

genswere not detected in othermajor organs, such as pylorus, tonsils,

spleen, liver and kidneys. However, a recent study reported the rep-

lication of PEDV in porcine pulmonary macrophages in vitro and

in vivo (Park and Shin, 2014). Whether extra-intestinal replication

of PEDV occurs still remains uncertain.

Intestinal replication of PEDV during disease progression

PEDV binds and infects enterocytes expressing APN. Assembly

of the virus in infected enterocytes occurs rapidly by budding through

intracytoplasmic membranes, such as the endoplasmic reticulum

and Golgi apparatus (Ducatelle et al., 1981). During the incuba-

tion period, PEDV antigen-positive cells were seen throughout the

small intestine and as many as 30–50% of the absorptive epitheli-

al cells were positive (Debouck et al., 1981), consistent with fecal

shedding of asymptomatic pigs during the acute stage of infec-

tion. From the acute stage tomid-stage (24–60 h after onset of clinical

signs) of infection, moderate to large numbers of PEDV antigen-

positive cells were observed throughout the small and large intestine,

frequently affecting the entire villous epithelium (Debouck et al.,

1981). During the later-stage of infection (>72 h after onset of clin-

ical signs), large numbers of PEDV-infected epithelial cells were still

observed, suggesting PEDV re-infection of regenerating enterocytes

(Debouck et al., 1981).

Pathophysiology

Diarrhea induced by PEDV is a consequence of malabsorption

due to massive loss of absorptive enterocytes. Functional disor-

ders of infected enterocytes also contribute to the malabsorptive

diarrhea. In the infected enterocytes examined by electron micros-

copy, loss of electron density of the cellular cytoplasm and rapid

degeneration of mitochondria result in a lack of transport energy

needed for absorption (Ducatelle et al., 1982). Ultrastructural changes

andmild vacuolation observed in the infected colonic epithelial cells

may interfere with the vital reabsorption of water and electro-

lytes (Ducatelle et al., 1982). Dehydration is exacerbated by vomiting

but the mechanisms by which vomiting is induced in PEDV infec-

tion are poorly understood.

Similar to hyperkalemia and acidosis in acute TGEV infections

(Saif et al., 2012), our preliminary study showed that PEDV-

inoculated piglets at 1 day after onset of severe watery diarrhea

showed hypernatremia, hyperkalemia, and hyperchloremia, but with

low calcium and bicarbonate levels. Brush border membrane-

bound digestive enzymes such as disaccharidases (lactase, sucrase,

136 K. Jung, L.J. Saif/The Veterinary Journal 204 (2015) 134–143



and maltase), leucine APN, and alkaline phosphatase are signifi-

cantly decreased in the small intestine of diarrheic piglets

(Coussement et al., 1982; Jung et al., 2006a). Reduced enzymatic ac-

tivity in the small intestine results in maldigestive diarrhea. In our

preliminary study, disorganized, irregular distribution and de-

creased expression of the tight junction protein, zonula occludin

(ZO)-1, and adherens junction protein, E-cadherin, was observed in

the small intestine of infected gnotobiotic pigs at PIH 30–120 (Fig. 3).

The impaired gut integrity might lead to loss of water into the in-

testinal lumen with high osmotic pressure caused by PEDV infection

as well as uptake of luminal bacteria causing co-infections.

Age-dependent resistance to PED

Themechanisms bywhich PEDV infection induces greater disease

severity and deaths in nursing versus weaned pigs have not been

clearly defined (Shibata et al., 2000; Madson et al., 2014). Several

anatomical and physiological factors that may influence the higher

susceptibility of suckling piglets to PEDV infection and a longer re-

covery from disease include the slower turnover of enterocytes (5–7

days) in neonatal piglets compared to 2–3 days in 3-week-old

weaned pigs (Moon et al., 1973).

The high turnover rate of the intestinal epithelium depends on

the stem cells found in the intestinal crypt. Intestinal stem cells

consist mainly of three cell types, namely, LGR5 (leucine-rich repeat-

containing G protein-coupled receptor 5)-positive crypt base

columnar cells (LGR5+ cells), +4 cells, and Paneth cells (Sato and

Clevers, 2013). However, the presence of Paneth cells in the intes-

tine of pigs is debatable (Burkey et al., 2009).

Our preliminary study revealed localization of large numbers of

LGR5+ cells in the crypt cell layers of PEDV-infected pigs (Fig. 4),

indicating the presence of stem cells that are critical to the epithelial

cell renewal during the acute-stage of PEDV infection (K. Jung et al.,

unpublished data). That study also revealed a lack of LGR5+ cells

and low proliferation of crypt cells (small expression of Ki67 protein

in crypt cells) in the small intestine of nursing piglets (9-day-old)

without PEDV infection, possibly causing the slow turnover of

enterocytes. At 3–5 days after PEDV infection, however, the number

of LGR5+ cells and proliferation of crypt cells were remarkably in-

creased, leading to the replacement of necrotic enterocytes shed from

infected villi. On the other hand, weaned pigs (3-week-old) without

PEDV infection exhibited high proliferation of intestinal crypt cells

and large numbers of LGR5+ cells in the crypts, relating to the rapid

turnover rate of enterocytes. Large numbers of LGR5+ cells and high

Fig. 1. Histopathology, localization of porcine epidemic diarrhea virus (PEDV) antigens by immunofluorescence staining, and apoptotic cells by an in situ TUNEL assay in

the intestine of gnotobiotic pigs inoculated with US PEDV strain PC21A. (A) Hematoxylin and eosin (H&E)-stained jejunum of an inoculated pig at post-inoculation hour

(PIH) 46 (at onset of clinical signs), showing acute diffuse, severe atrophic jejunitis with ratios of villous height to crypt depth (VH:CD) of ≤1. Original magnification ×200.

(B) Immunofluorescent (IF) staining of jejunum of an inoculated pig at PIH 30 (4–5 h after onset of clinical signs), showing that the epithelial cells lining atrophied villi are

positive for PEDV antigen. Original magnification ×200. (C) In situ TUNEL staining of formalin-fixed, paraffin-embedded jejunum of the inoculated pig (Panel B), showing

no increase of TUNEL-positive (apoptotic) cells (red staining) in the epithelium lining atrophied villi positive for PEDV antigen by IF staining, compared to Panel D (negative

control). Original magnification ×200. (D) In situ TUNEL staining of formalin-fixed, paraffin-embedded jejunum of a non-inoculated, negative control pig, showing few TUNEL-

positive (apoptotic) cells (red staining) in the intestinal villous epithelium. Note a few TUNEL-positive cells (red staining) in the lamina propria. Original magnification ×200.

IL, intestinal lumen. Nuclei were stained with blue-fluorescent 4′, 6-diamidino-2-phenylindole dihydrochloride in Panel B. TUNEL, in situ terminal deoxynucleotidyl transferase-

mediated dUTP nick end labeling.
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proliferation of crypt cells were maintained at 1–5 days after PEDV

infection, possibly resulting in a rapid recovery from PED in weaned

pigs.

Acute viremia

Viremia where viral RNA in serum ranged from 4.8 to 7.6 log10

genomic equivalents (GE)/mL was detected in gnotobiotic piglets

inoculated with a US PEDV strain (PC21A) at acute- to later-stages

of infection (Jung et al., 2014). Similar findings were observed in field

samples, showing that 11/20 acute serum samples (55%) collected

from diarrheic 13–20-week-old pigs had viral RNA titers (4.0–

6.3 log10 GE/mL) (Jung et al., 2014). The early, severe diarrhea/

vomiting and high PEDV fecal shedding titers might be accompanied

by viremia, but no one has yet confirmed the presence of infec-

tious virus in the serum.

Immune responses to PEDV

There is a dearth of information on the innate and adaptive

immune responses to PEDV. After PEDV infection, infiltration of lym-

phocytes (CD4+ and CD8+ T cells at PIH 30–120) (Fig. 5),

mononuclear cells, eosinophils and neutrophil was observed in the

lamina propria of the small intestine (Debouck et al., 1981;

Coussement et al., 1982; Sueyoshi et al., 1995). Isotype-specific

antibody-secreting cells in systemic and mucosal associated lym-

phoid tissues and serum antibody responses were studied in

conventional pigs inoculated with the CV777 strain (de Arriba et al.,

2002). Cultured intestinal epithelial cells expressing the E protein

of PEDV up-regulated interleukin (IL)-8 expression in vitro (Xu et al.,

2013).

Attenuation of PEDV

The pathogenicity of epidemic PEDV strains is commonly severe,

as evidenced by the high mortality of infected nursing piglets.

However, attenuation of the virulence of PEDV strains has been

induced through high cell-culture passages (93rd–100th) (Kweon

et al., 1999; Song et al., 2003; Sato et al., 2011). The attenuated PEDV

strains havemultiple nucleotide changes in their S and open reading

frame 3 (ORF3) genes compared to those of their parent wild-type

strains (Song et al., 2003; Sato et al., 2011). Among the 652 nucle-

otides of ORF3, two deletions and seven changes were identified

between the parent wild-type DR13 PEDV and the cell-adapted PEDV

(100th) that was confirmed to be attenuated (Song et al., 2003; Sato

et al., 2011). Notably, the S genes of the two attenuated PEDV strains,

Korean DR13 (100th) and Japanese 83P-5 (100th), had a remark-

able similarity with comparable nucleotide mutations and aa

substitutions relative to their parental viruses. The attenuated 83P-5

had 18 nucleotide mutations and 13 predicted aa substitutions in

the S gene.

Similarly, the sequence analysis of a US PEDV strain and in vitro

passaged virus (10th inMARC-145 cells) showed that the cell culture

adaptation specifically modifies PEDV S protein (six aa substitutions)

Fig. 2. Decreased numbers of goblet cells in the small intestine of gnotobiotic pigs inoculated with US porcine epidemic diarrhea virus (PEDV) strain PC21A, as determined

by toluidine blue staining. (A) Jejunum of an inoculated pig at post-inoculation hour (PIH) 72 (26–28 h after onset of clinical signs), showing few goblet cells per villus.

Original magnification, ×200. (B) Jejunum of a negative control pig, showing small to moderate numbers of goblet cells (arrows) per villus. Original magnification, ×200. (C)

Ileum of an inoculated pig at PIH 72 (26–28 h after onset of clinical signs), showing few goblet cells per villus. Original magnification, ×80. (D) Ileum of a negative control

pig, showing moderate to large numbers of goblet cells (arrows) per villus. Original magnification, ×80.
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whereas the open reading frame 1a/b (ORF1a/b)-encoded

polyprotein, ORF3, E, M, and N proteins remained unchanged

(Lawrence et al., 2014). Multiple nucleotide mutations and aa sub-

stitutions in the S gene of PEDV might contribute to attenuation of

its in vivo pathogenicity, but the entire PEDV genomes should be

sequenced to verify other changes after attenuation.

Epidemic PED (epidemic form of PEDV infection) versus

endemic PED (endemic form of PEDV infection)

Epidemic porcine epidemic diarrhea

Detailed clinical disease and complications as a result of typical

epidemic PEDwere documented on seronegative pig breeding farms

in the UK in 1976–1977 (Wood, 1977), Belgium in 1977 (Pensaert

and de Bouck, 1978), Japan in 1982–1983 (Sueyoshi et al., 1995),

Italy in 2005–2006 (Martelli et al., 2008), Thailand in 2007–2008

(Puranaveja et al., 2009), and the US in 2013 (Stevenson et al., 2013).

The clinical outbreaks on seronegative farms were characterized by

a sudden epidemic of severe diarrhea and/or vomiting, accompanied

by anorexia and significantly reduced appetite, in pigs of all ages.

The severity of clinical signs and mortality appeared to be in-

versely related to the age of the pigs (Shibata et al., 2000). In weaner

to finisher pigs, including pregnant sows, clinical signs are self-

limiting within 5–10 days after onset of disease and are not as severe

as those of nursing piglets under 2weeks of age (Martelli et al., 2008;

Puranaveja et al., 2009). When pregnant sows become immune after

virus exposure, they protect their offspring by lactogenic immuni-

ty. The interval between onset and cessation of the disease is

generally 3–4 weeks (Puranaveja et al., 2009), however clinical signs

mainly develop in the seronegative lactating sows and their suck-

ling piglets. In farrowing herds, morbidity can approach 100% in

piglets, but varies in sows. Mortality of piglets <2 weeks of age can

exceed 95% (50% on average) at 3–5 days after onset of severe watery

diarrhea and/or vomiting.

Field observations on epidemic PED in the UK in 1976–1977

(Wood, 1977) and in the US in 2013 (Stevenson et al., 2013) as well

as experimental findings (Pensaert and de Bouck, 1978) suggest that

the incubation period of PEDV before clinical signs are detected

varied, ranging from 1 to 7 days (US PEDV) or 5–8 days (UK PEDV).

Experimental studies using the prototype CV777 showed that 3–15-

day-old, caesarean-derived, colostrum-deprived (CDCD) pigs

developed diarrhea within PIH 22–36 (Pensaert and de Bouck, 1978;

Debouck et al., 1981). Another US PEDV infection study using 10–

35-day-old gnotobiotic pigs with 6.3–9.0 log10 GE showed that severe

diarrhea and/or vomitingwere detected commonlywithin PIH 24–48

Fig. 3. Expression of the tight junction protein, zonula occludin (ZO)-1, (A, B) and adherens junction protein, E-cadherin, (C, D) by immunofluorescence staining in the small

intestine of gnotobiotic pigs inoculated with US porcine epidemic diarrhea virus (PEDV) PC21A. (A) Jejunum of a negative control pig, showing well-organized distribution

and extensive expression of ZO-1 (green staining) on the apical surface of villous epithelial cells. Original magnification, ×400. (B) Jejunum of an inoculated pig at post-

inoculation hour (PIH) 30 (4–5 h after onset of clinical signs), showing disorganized, irregular distribution and moderately reduced expression of ZO-1 (green staining),

compared to the negative control counterpart (Panel A), on the apical surface of villous epithelial cells. Original magnification, ×400. (C) Jejunum of a negative control pig,

showing well-organized distribution and extensive expression of E-cadherin (green staining) on the apical and basolateral surface of villous epithelial cells and also mildly

in the cytoplasm. Original magnification, ×600. (D) Jejunum of an inoculated pig at PIH 30 (4–5 h after onset of clinical signs), showing disorganized, irregular distribution

and moderately decreased expression of E-cadherin (green staining) on the apical and basolateral surface of villous epithelial cells, compared to the negative control coun-

terpart (Panel C). Original magnification, ×600. Nuclei were stained with blue-fluorescent 4′, 6-diamidino-2-phenylindole dihydrochloride. Immunofluorescence staining

using monoclonal antibodies against human recombinant ZO-1 and E-cadherin (Invitrogen).
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(Jung et al., 2014). Unlike CDCD or gnotobiotic pigs, conventional

nursing piglets inoculated with 3.2–3.3 log10 50% tissue culture in-

fectious dose (TCID50) of a Chinese PEDV strain had a longer

incubation period (3–6 days after inoculation) before clinical signs

were detected (Wang et al., 2013).

Endemic PED and co-infections with bacteria and viruses

Detailed clinical disease and problems caused by endemic PED

were documented in a farrow-to-finish farm in The Netherlands

in 1989–1991 (Pijpers et al., 1993). During the outbreak in 1989,

diarrhea was most severe in fattening pigs and pregnant sows,

and was mild or absent in nursing and weaning pigs with no

mortality. For at least 18 months after the onset of the first out-

break, PEDV became endemic on this farm and the infection persisted

in seronegative gilts or 6–10-week-old pigs newly introduced to

the farm. Another typical endemic PED has been manifested in

Korean pig farms. Korean farms have employed live or inactivated

PEDV vaccines using three Korean strains DR13, KPEDV-9 and

SM98-1 or a Japanese strain P-5V. Studies reported that recent

prevalent Korean PEDV field isolates are closely related to Chinese

strains and differ genetically from the four vaccine strains used in

Korea and the prototype CV777 (Park et al., 2013). This divergence

of historic vaccine and recent field PEDV strains may contribute to

the reduced efficacy of the vaccines, causing difficulty with erad-

ication of PEDV from pig farms with endemic PED in the Korean

pig population.

Like endemic TGE, PEDV-related mortality and morbidity of

nursing piglets passively immunized is lower than is seen in sero-

negative pigs (Bohl et al., 1978). Endemic PED is manifested mainly

in weaned pigs (Pijpers et al., 1993), and the severity of clinical

disease in nursing piglets may be exacerbated by co-infections of

other enteropathogens (Escherichia coli, 3% for Chinese piglets or 9%

for Canadian piglets) (Turgeon et al., 1980; Wang et al., 2013), or

viruses including porcine circovirus type 2 (PCV2) (30–33% for Korean

piglets), TGEV (8% for Chinese piglets), and rotavirus (4% for Chinese

piglets) (Hirai et al., 2001; Jung et al., 2006b; Wang et al., 2013).

Lesions

Gross lesions

Gross lesions are limited to the gastrointestinal tract and are char-

acterized by thin and transparent intestinal walls (duodenum to

colon) with accumulation of large amounts of yellow fluid in the

intestinal lumen (Debouck et al., 1981; Sueyoshi et al., 1995;

Stevenson et al., 2013). The stomach is filled with curdled milk, pos-

sibly due to reduced intestinal peristalsis. Congestion of the

mesenteric vessels is frequently detected, and mesenteric lymph

nodes (MLN) are edematous. Lack of intestinal lacteals, as an indi-

cator of malabsorption, is frequently seen (Puranaveja et al., 2009).

Despite persistent severe diarrhea, infected pigs had low to mod-

erate appetite at 3–5 days after onset of diarrhea after which they

became moribund (Jung et al., 2014).

Histological lesions

Histological lesions consist of acute diffuse, severe atrophic en-

teritis and mild vacuolation of superficial epithelial cells and

subepithelial edema in the cecum and colon (Debouck et al., 1981;

Coussement et al., 1982; Sueyoshi et al., 1995; Jung et al., 2014). Based

on electron microscopy, one of four piglets infected with CV777 had

ultrastructural changes in the colonic epithelial cells, but with a lack

Fig. 4. Localization of LGR5+ crypt stem cells by immunofluorescence staining in

the small intestine of gnotobiotic pigs inoculated with US porcine epidemic diar-

rhea virus (PEDV) strain PC21A. Jejunum of a PEDV-inoculated pig at post-inoculation

hour 30 (4–5 h after onset of clinical signs), showing large numbers of LGR5+ crypt

stem cells (red staining; arrows) in the crypt cell layer of atrophied villi. Original

magnification, ×300. Immunofluorescence staining using a polyclonal antibody against

human LGR5 (Novus Biologicals). LGR5+ crypt stem cells, LGR5 (leucine-rich repeat-

containing G protein-coupled receptor 5)-positive crypt base columnar cells.

Fig. 5. Localization of CD4 or CD8-positive T cells by immunofluorescence staining in the small intestine of gnotobiotic pigs inoculated with US porcine epidemic diarrhea

virus (PEDV) strain PC21A. (A, B) Jejunum of an inoculated pig at 120 h after onset of clinical signs, showing low to moderate numbers of CD4+ (A) and CD8+ (B) T cells

(arrows) in the lamina propria. Original magnification, all ×400. (C) Jejunum of a non-inoculated, negative control pig, showing no detectable CD4+ T cells in the intestinal

section. Original magnification, ×200. Nuclei were stained with blue-fluorescent 4′, 6-diamidino-2-phenylindole dihydrochloride.
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of histological lesions (Ducatelle et al., 1982). During acute infection,

vacuolated enterocytes or massive cell exfoliation were seen on the

tips or the entire villi in the jejunum. Atrophied villi are fre-

quently fused and coveredwith a degenerate or regenerated flattened

epithelium. Infiltration of inflammatory cells is evident in the lamina

propria. The crypts of Lieberkuhn in the duodenum appeared normal

(Debouck et al., 1981). No lesions were seen in the spleen, liver, lung,

kidney, and MLN of orally and/or intranasally infected piglets

(Debouck et al., 1981).

During the incubation period, i.e. prior to onset of clinical signs,

infected pigs exhibited normal villous lengths but with vacu-

olated enterocytes undergoing necrosis (Debouck et al., 1981). For

1–3 days after the onset of diarrhea, infected pigs exhibited severe

villous shortening (Jung et al., 2014). Piglets euthanased at a later

stage of infection (84–120 h after onset of clinical signs) had mod-

erate to severe villous atrophy (Debouck et al., 1981; Jung et al., 2014),

indicative of continued cellular necrosis. After PEDV infection, in-

testinal crypt layers included LGR5+ cells (Fig. 4) and crypt cells

positive for Ki67 protein that is a marker for proliferating cells (Jung

et al., 2008). The time of onset and severity of malabsorptive diar-

rhea induced by PEDV may depend on the extent of villous atrophy

in the jejunum and the rapidity of replacement by the crypt stem

cells.

Immunoprophylaxis as a preventive strategy

Epidemic PED

When PED occurs in a seronegative breeding farm, immuniza-

tion or vaccination of pregnant sows is important in the control of

epidemic PED and to reduce the number of deaths of suckling piglets.

If the sows are due to farrow within 2 weeks or more, immuniza-

tion can be undertaken by exposure to virulent autogenous virus,

such as fecal slurry or minced intestines from infected neonatal

piglets. However, there is a potential risk of incidental wide-

spread infection of other pathogenic viruses, such as PCV2, contained

in the PEDV-infected piglets’ feces or intestines among sows or their

suckling piglets via vertical transmission routes (Jung et al., 2006c;

Park et al., 2009; Ha et al., 2010). The importance and mecha-

nisms of passive lactogenic immunity to provide newborn piglets

with immediate protection against TGEV infection have been re-

viewed by Saif et al. (2012).

All strains of epidemic PEDV in Europe, Asia and the US are highly

enteropathogenic, as evidenced by the high mortality of infected

nursing piglets. However, attenuation of the virulence of Korean

(KPEDV-9 and DR13) or Japanese (83P-5) PEDV strains could be

induced through high cell-culture passages (93rd–100th) (Kweon

et al., 1999; Song et al., 2007; Sato et al., 2011). In addition, the at-

tenuated cell-adapted PEDV strains have been used as oral (Korean

strain DR13 only) or intramuscular (IM) live virus vaccines. The IM

administration of live attenuated KPEDV-9 PEDV vaccine (1 mL of

107 TCID50/mL; twice at 2 or 4 weeks before farrowing) reduced the

40% mortality rate of piglets challenged with five 50% lethal dose

(LD50) of the parent wild-type strain and the 100% mortality rate

of piglets challengedwith 10 LD50 to 0% and 80%, respectively (Kweon

et al., 1999).

The efficacy might be associated with high PEDV specific IgG

levels in the serum and colostrum of vaccinated sows (Song et al.,

2007). A study using IM live attenuated DR13 PEDV vaccine (1 mL

of 107 TCID50/mL; twice at 2 or 4 weeks before farrowing) reduced

the 100% mortality of piglets challenged with a high-dose of the

parent DR13 to 60% (Song et al., 2007). Based on these observa-

tions, pregnant sows can be vaccinated using live attenuated PEDV

strains via an IM route, but induction of complete protection was

not observed in the nursing piglets.

Endemic PED

Active immunization of nursing or feeder pigs is important for

the control of endemic PEDV infections (Saif et al., 2012). A field study

(Song et al., 2007) showed that compared to vaccination via IM route,

oral administration with live attenuated PEDV (DR13 strain) vaccine

twice 2 or 4 weeks before farrowing was more effective in boost-

ing or initiating immunity in pregnant sows and their suckling piglets

(3-day-old). The vaccinated sows and their piglets exhibited higher

IgA (mucosal immunity) and virus neutralization antibody (humoral

immunity) levels in the colostrum or sera compared to those of the

counterparts administered the IM vaccine with the same dose.

However, the presence of maternal antibodies in vaccinated pigs

can interfere with active antibody production after PEDV infec-

tion, as observed in TGEV infection (Sestak et al., 1996; Saif et al.,

2012). Whether the oral live vaccine strain is genetically stable and

remains non-infectious in the fields needs to be further studied.

Conclusions

Disappearance and re-emergence of epidemic PED indicates that

PEDV is effectively able to escape from the current vaccination pro-

tocols, biosecurity and control systems. Endemic PED is a significant

problem, which is exacerbated by the emergence or potential im-

portation of multiple PEDV variants into countries. Epidemic PEDV

strains spread rapidly and cause a high number of pig deaths and

substantial economic losses. These strains are highly enteropatho-

genic and acutely infect villous epithelial cells of the entire small

and large intestines although the jejunum and ileum are the primary

sites of infection. PEDV infections cause acute, severe atrophic en-

teritis accompanied by viremia (viral RNA) that leads to severe

diarrhea and vomiting, followed by extensive dehydration and im-

balanced blood electrolytes as the major cause of death in nursing

piglets. A better understanding of the pathogenic characteristics of

epidemic or endemic PEDV strains is needed to prevent and control

the disease in affected regions and in the development of effective

vaccine.

High mortality of PEDV-infected, seronegative nursing piglets is

most likely associated with extensive dehydration as a result of

severe villous atrophy. In infected nursing piglets, there is an in-

creased proliferation of crypt cells as well as numbers of LGR5+ crypt

stem cells in the intestine, reorganization of the damaged intesti-

nal epithelium, and migration of mature enterocytes to the tips of

villi which may be not sufficient to prevent severe dehydration in

nursing piglets. The time taken until dehydration of PEDV-infected

nursing piglets in the field appears to be too short to enable the

animals to recover from the disease through naturally occurring ep-

ithelial cell renewal by crypt stem cells. Further studies are needed

to define the extent to which intestinal stem cells in nursing versus

weaned pigs organize and migrate to replace PEDV-infected villous

epithelial cells. Pharmacological or biological mediators such as epi-

dermal growth factor that promote stem cell regeneration or

maturation would be interesting targets to try to shorten the time

for epithelial cell renewal and to reduce PEDV death losses from

dehydration.
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