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Pyrite is widely distributed in the Longmaxi marine shale in the Upper Yangtze area of
China. Pyrite, one of the important components of shale, has an important influence on the
enrichment of shale gas. However, there are currently only a few studies on this topic.
Based on shale samples from drilling cores using field emission scanning electron
microscopy, the pore characteristics of pyrite from the Longmaxi Formation in the
Upper Yangtze area of China are studied. The results showed that the intergranular
pores of pyrite and abundant organic pores in the organic matter pyrite assemblages are
developed in the Longmaxi Formation shale in the study area. Most pyrite framboid pores
have triangular or irregular quadrilateral shapes, with pore diameters ranging from 0 to
240 nm. Pores with diameters of 80–240 nm are the major reservoir spaces for shale gas
within the pyrite framboids. The average contribution rate of pyrite framboids to shale pores
reaches 3.21%, and the highest contribution is 5.66%, indicating that the pyrite pores may
have a favorable contribution to the shale reservoir pore system, but the contribution
degree is low.
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INTRODUCTION

In recent years, the exploration and development of shale gas have achieved a great success in North
America and the Sichuan Basin in China (Hao et al., 2013; Chen et al., 2015; Zou et al., 2016; Chen
et al., 2019; Shu et al., 2020), which has attracted worldwide attention. Nanopores in shale reservoirs
are well developed in diverse types and structures, effectively providing storage space for shale gas.
The structural characteristics of nanopores are important and difficult aspects of the theoretical study
of shale gas geology (Ross and Bustin, 2008a; Clarkson et al., 2013). Pore characteristics are
important determinants of the gas content in shale gas reservoirs and are the keys to shale reservoir
evaluation. Therefore, studying the pore characteristics of reservoirs is of great significance for shale
gas exploration, development, and resource potential evaluation (Loucks et al., 2009; Roger and Neal,
2011; Gao et al., 2019).

Scholars have performed many studies on the pore characteristics and structure of marine shale,
including different types of pores, pore structures, and connectivity of shale gas reservoirs on
different scales (Loucks et al., 2009; Kuila and Prasad, 2013; Zargari et al., 2015; Jiang et al., 2016;

Edited by:
Shu Jiang,

The University of Utah, United States

Reviewed by:
Tao Hu,

China University of Petroleum, China
Xianglu Tang,

China University of Petroleum, China
Yi Shu,

Jianghan Oilfield Branch Company,
China

*Correspondence:
Lei Chen

cl211@126.com

Specialty section:
This article was submitted to

Economic Geology,
a section of the journal

Frontiers in Earth Science

Received: 04 January 2022
Accepted: 11 February 2022
Published: 01 March 2022

Citation:
Chen X, Chen L, Tan X, Wang C, Ji Y,

Xiong M and Wang G (2022) Pore
Characterization of Pyrite in the

Longmaxi Formation Shale in the
Upper Yangtze Area of China.
Front. Earth Sci. 10:848247.

doi: 10.3389/feart.2022.848247

Frontiers in Earth Science | www.frontiersin.org March 2022 | Volume 10 | Article 8482471

ORIGINAL RESEARCH
published: 01 March 2022

doi: 10.3389/feart.2022.848247

http://crossmark.crossref.org/dialog/?doi=10.3389/feart.2022.848247&domain=pdf&date_stamp=2022-03-01
https://www.frontiersin.org/articles/10.3389/feart.2022.848247/full
https://www.frontiersin.org/articles/10.3389/feart.2022.848247/full
https://www.frontiersin.org/articles/10.3389/feart.2022.848247/full
http://creativecommons.org/licenses/by/4.0/
mailto:cl211@126.com
https://doi.org/10.3389/feart.2022.848247
https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2022.848247


Zheng et al., 2019). Presently, the research contents on shale pore
structure mainly focused on 1) shale pore classification (IUPAC,
1994; Slatt and O’Brien, 2011; Ruppel et al., 2012; Yu, 2013), 2)
microstructural characteristics of shale pores (Loucks et al.,
2009; Ross and Bustin, 2008b; Jiang et al., 2016), 3) formation
mechanisms of shale pores and factors influencing pore
development (Jarvie et al., 2007; Chalmers and Bustin, 2008;
Zhang et al., 2016; Zheng et al., 2019), and 4) shale pore
evolution (Chen and Xiao, 2014; Lu et al., 2015; Zargari
et al., 2015; Tang et al., 2015). The results have shown that
the organic matter type, maturity, and mineral composition are
closely related to the pore structure (Kuila and Prasad, 2013;
Duan et al., 2016; Wei et al., 2016). With increasing thermal
evolution level, organic matter transforms to hydrocarbons, and
nanopores are widely developed in organic-rich shale, thereby
providing abundant storage space for shale gas. The major types
of pores and fractures in shale reservoirs are organic pores,
intragranular pores, intergranular pores, and microfractures.
Nanopores mainly provide connected storage space for shale gas
(Ruppel et al., 2012; Yu, 2013).

Current research studies on pyrite in shale mainly focuses on the
following aspects: 1) the correlation between pyrite and the shale
sedimentary environment (Wilkin et al., 1996; Raiswell et al., 1988;
Butler and Rickard, 2000; Liu et al., 2019), and 2) the organic matter
content is proportional to the pyrite content (Xu et al., 2015; Liu et al.,
2016).Many scholars have found that pores related to pyrite inmarine
shale are universally developed (Bernard et al., 2012; Wang Q. et al.,

2014; Cao et al., 2018; Zhao et al., 2018; Tang et al., 2019). Although
shale pores are fully studied, there are few reports on pores related to
pyrite in shale. To determine the development characteristics of pyrite
pores, especially pores within the pyrite framboids and their geological
significance, pyrite pores in the marine shale of the Longmaxi
Formation in the Upper Yangtze area were studied in this research.

GEOLOGICAL SETTING

Organic-rich shale (TOC>2%) is well developed in the Wufeng
Formation and the first member of the Longmaxi Formation in
the Upper Yangtze area, and kerogen is mainly composed of
sapropel (Types I-II1). The organic-rich shale is widely
distributed in the Upper Yangtze area, with burial depths

FIGURE 1 | Location of the study area and stratigraphic column of the Longmaxi Formation and the gamma-ray log of the X2 well (Wang et al., 2002).

TABLE 1 | Information of shale samples in well X2.

Number Well Stratum Depth/m Lithology Test items

1 X2 S1l 2330.46 Shale FE-SEM
2 2346.50
3 2366.74
4 2376.05
5 2385.42
6 2391.95
7 2402.55
8 2411.05
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ranging from 1,500 m to 4,500 m. The Longmaxi marine shale is
characterized by large thicknesses (20–50 m), high TOC, and
high maturity, and is one of the most favorable shale gas
exploration targets in China (Zou et al., 2014; Guo, 2015;
Tenger et al., 2017; Shan et al., 2017).

Previous studies have shown that the high-quality shale section
of the Longmaxi Formation is mainly in S1l1, which can be divided
into two sub sections. S1l1

1 is the most favorable interval for the
exploration and development of high-quality shale in the
Longmaxi Formation (Zou et al., 2016). S1l1

1 can be divided
into 4 sub-layers (Zhao et al., 2016). The study area is mainly
in the Upper Yangtze region. Taking well X2 as an example, S1l1

1

mainly contains gray–black and black silty shale with a thickness of
approximately 36 m (Figure 1).

S1l1
1−1 contains black silty shale with a thickness of

approximately 1.2 m, the TOC contents are within 3–6%, and

the pyrite contents are within 2–8%. S1l1
1−2 comprises

gray–black silty shale and carbonaceous shale with a
thickness of approximately 9.5 m. The TOC contents are
within 3–4%, and the pyrite contents are within 2–6%.
S1l1

1−3 contains gray–black carbonaceous shale and silty
shale, is approximately 8.5 m thick, and has TOC contents
within 2–4% and pyrite contents within 2–8%. S1l1

1−4

comprises gray–black shale and silty shale, has a thickness of
approximately 23.2 m, and low TOC contents of 1.5–2.5% and
pyrite contents of 1–4% (Figure 1).

MATERIALS AND METHODS

To characterize the pores related to pyrite in the Longmaxi
Formation shale in the Upper Yangtze area, eight shale samples

FIGURE 2 | Flowchart for quantitative characterization of pores in pyrite in the Longmaxi shale.
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from drilling cores of well X2 drill cores were used in this study
for argon ion polishing field emission scanning electron
microscopy (FE-SEM) analysis and quantitative
characterization experiments of pores in pyrite (Table 1).

FE-SEM
Core samples were cut into standard samples of 1 cm × 1 cm.
Then, an IB-09010CP ion section polishing instrument was used
for argon ion polishing processing on the surfaces of the samples.

FIGURE 3 | Common pore types associated with pyrite in the Longmaxi Formation shale in the southeastern basin. (A) Organic pore in pyrite framboid, X2 well,
2376.05 m; (B) organic pore in pyrite framboid, X2 well, 2385.42 m; (C) organic pore in pyrite framboid, X2 well, 2385.42 m; (D) intergranular pore of pyrite, X2 well,
2335.30 m.

TABLE 2 | Pore development characteristics of pyrite framboids.

Sample Depth/m Pore diameter/nm Pore diameter frequency/% Area frequency/%

1 2330.46 <80 nm 72.12 5.41
80–240 nm 22.96 47.68
>240 nm 4.92 46.91

2 2346.50 <80 nm 61.94 22.19
80–240 nm 37.17 71.64
>240 nm 0.88 6.19

3 2366.74 <80 nm 90.91 58.44
80–240 nm 9.09 41.56

5 2385.42 <80 nm 51.97 13.95
80–240 nm 45.1 76.96
>240 nm 1.62 9.09

7 2402.55 <80 nm 72.84 14.89
80–240 nm 22.22 44.06
>240 nm 4.93 41.04
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FIGURE 4 | Quantitative characterization of pores in pyrite framboids of shale samples from X2 well. 1, Black shale, X2 well, 2330.46 m; 2, black shale, X2 well,
2335.30 m; 3, black shale, X2 well, 2346.50 m; 5, black shale, X2 well, 2366.74 m; 7, black shale, X2 well, 2402.55 m.
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A JSM-6700F cold field emission scanning electron microscope
was used for image collection at a 10 KV acceleration voltage and
10 μA beam current.

Pyrite Content
First, the shale rock sample was dried and crushed into a powder
with a grain size less than 40 μm, and finally made into a test piece
for later use. Each type of mineral crystal has a specific X-ray
diffraction spectrum through which qualitative and quantitative
results can be obtained because the characteristic peak strength in
the spectrum is related to the mineral content of the sample. The
XRD test was accomplished by using the Panalytical X’Pert PRO
MPD X-ray diffractometer.

Quantitative Characterization of Pyrite
Pores
To quantitatively study the contribution of pores within the pyrite
framboids to the total porosity of the shale reservoir, the following
technical methods were applied: 1) FE-SEM (scanning electron
microscope) was used to obtain microscopic images of shale, and
the shale images were magnified to the μm–nm scale to observe the
pyrite framboids; 2) image analysis software was used for image
gray level segmentation to calculate the area of pyrite and shale
pores; 3) pyrite framboids were demarcated, multiple individual
pyrite framboids were selected to calculate the development area of
pyrite framboids, and the pore area and aperture of developed
pores in the microscopic area were ascertained to calculate the
average face rate of pore development in pyrite framboids; and 4)
the approximate contributions of pyrite framboids to the total
porosity of shale were quantitatively represented bymultiplying the
area percentage of pyrite area in the microscopic image by the
average face rate of pyrite framboids and by dividing by the total
face rate of shale in the microscopic image (Figure 2).

RESULTS AND DISCUSSION

Pore Types in Pyrite in Shale
The common pore types in pyrite in the Longmaxi Formation
shale in the Upper Yangtze area are as follows: abundant organic
pores are developed in the organic matter pyrite assemblages;
these pores are the most common type of pores that are closely

related to pyrite in the Longmaxi Formation shale (Figure 3). A
small number of irregular intercrystalline pores are found within
the pyrite framboids, appearing asmonomers, composed of pyrite
microcrystalline groups but not filled by organic matter
(Figure 3D). Intergranular and organic pores in pyrite can
provide space for the preservation of shale gas.

According to FE-SEM analysis, the organic pores related to
pyrite (Figure 3, B1, C1) are muchmore numerous and larger than
individual organic pores that are developed far away from the
pyrite (Figure 3, B2, C2), which means that pyrite may influence
hydrocarbon generation and expulsion of organic matter and pore
development. Organic pores in the organic matter pyrite
assemblages mainly occur for the following two reasons: 1) The
organic pores in pyrite as shown in Figure 3A are supported and
protected by the stable triangular stress lattice generated between
pyrite microcrystalline grains from later diagenesis (compaction)
(Sun and Guo, 2017; Zhao et al., 2018). 2) Pyrite can catalyze the
hydrocarbon generation of organic matter, which promotes the
development of more organic pores in organic matter around
pyrite (Hunt et al., 1991; Mango, 1992; Cui et al., 2013;Wang Y. M.
et al., 2014; Cai et al., 2016; Ma et al., 2017).

Characteristics of Nanopores in Pyrite
Pyrite occurs mainly in the form of pyrite framboids in shale.
Nanopores (intergranular pores and organic pores in pyrite
framboids) are one of the basic reservoir pore types in shale
(Loucks et al., 2009; Yu, 2013; Curtis et al., 2012; Guo et al., 2014)
and play an important role in the shale reservoir pore system (Hu
et al., 2015; Cao et al., 2018).

According to the FE-SEM analysis of the shale samples from
well X2, the pore characteristics of pyrite framboids in shale are
studied. According to the research, the organic pores of pyrite
framboids in sample 1 are well developed and have a face rate
reaching 7.01%. The pore diameter is relatively dispersive and is
mainly divided into two categories: pores with a diameter of
<80 nm account for 72.12%, with an area frequency of 5.41%, and
pores with a diameter of 80–240 nm account for 22.96%, with an
area frequency of 47.68%. In sample 2, the pore diameters of
pyrite framboids are relatively dispersed and are within
0–280 nm, with a face rate of 3.35%; these pore diameters are
mainly divided into two categories: pores with a diameter of
<80 nm account for 61.94%, with an area frequency of 22.19%,
and pores with a diameter of 80–240 nm account for 37.17%, with

TABLE 3 | Quantitative statistical results of pores in pyrite framboids of shale samples from X2 well.

Sample Depth/m Average area
ratio of
pyrite/%

Pyrite framboids
average face

rate/%

Sample average
face rate/%

Pore contribution
rate/%

1 2330.46 0.95 5.37 1.97 2.59
2 2346.50 2.20 3.72 2.46 3.33
3 2366.74 1.33 1.47 1.8 1.09
4 2376.05 1.3 3.63 1.34 3.52
5 2385.42 1.5 4.10 1.68 3.66
6 2391.95 2.34 6.43 2.66 5.66
7 2402.55 1.28 4.7 2.86 2.10
8 2411.05 1.8 4.63 2.23 3.74
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an area frequency of 71.64%. In sample 3, pyrite framboids are
well crystallized in an ellipsoidal shape, with the face rate reaching
1.47%. The pore diameters of pyrite framboids are relatively small
overall and are <80 nm, with an area frequency of 58.44%. In
sample 5, pyrite framboids show relatively inferior crystallization,
with a face rate of 4.10%. The pore diameters are concentrated
within <80 nm and from 80 to 240 nm overall, with pore diameter
frequencies of 51.97 and 45.1% and area frequencies of 13.95 and
76.96%. In sample 7, organic pores are well developed within the
dispersive microcrystalline pyrite with a face rate reaching 4.70%.
The pores are mainly divided into two categories: pores with a
diameter of <80 nm account for 72.84%, with an area frequency
of 14.89% and pores with a diameter of 40–100 nm account for
22.22%, with an area frequency of 44.06% (Table 2; Figure 4).

Overall, pores in pyrite framboids mostly occur in triangular
and trapezoidal shapes, with diameters universally smaller than
320 nm. The diameters of pores in pyrite framboids are
0–240 nm, mostly within 0–120 nm. More than 95% of the
pores are smaller than 240 nm. Although most pores in pyrite
framboids are in the range of 0–80 nm, their pore area ratios are
relatively low, generally lower than 15%. Their contributions to
pyrite pores are also low. The pores in pyrite framboids with
diameters of 80–240 nm, which account for 40–75% of the pore
area, are the primary storage spaces for shale gas in the pyrite
framboids. Pores larger than 240 nm are less than 5%. In general,
the larger the pore is, the larger the face rate will be and the better
the storage property of pyrite will be.

Contributions of Nanopores in Pyrite to
Shale Reservoir Pores
Taking multiple photographs (greater than or equal to 200 for
every sample) of 8 shale samples in different visual fields by using
FE-SEM and then calculating observation statistics on the pores
in the pyrite framboids, the results showed that intracrystalline
and organic pores are developed in pyrite framboid aggregates,
with organic pores prevailing. For pyrite framboid aggregates
(containing pyrite microcrystals) in shale, the area ratio values are
0.95–2.34%, with an average of 1.59%, and the face rate values are
1.47–6.43%, with an average of 4.26%. In addition, the face rate
values of all pores in shale are 1.34–2.86%, with an average of
2.13%. The contribution of pores in pyrite to the pores in shale is
1.09–5.66%, with an average of 3.21%. These pores can not only
increase the shale reservoir space and specific surface area of shale
but also reserve free gas and promote the enrichment of shale gas
in the Longmaxi Formation. It is shown that the pores in pyrite in
shale have favorable contributions to the shale reservoir pore
system (Table 3).

CONCLUSION

The intergranular pores in pyrite and abundant organic pores in
the organic matter pyrite assemblages are well developed in the
Longmaxi Formation shale in the Upper Yangtze area of China.
Pyrite framboids are the major forms of pyrite in shale, and most
pyrite framboids pores occur in triangular or irregular
quadrilateral shapes, with pore diameters mainly between 0
and 240 nm. Pores with diameters of 80–240 nm are the major
reservoir spaces for shale gas in the pyrite framboids. For pyrite
framboid aggregates (containing pyrite microcrystals) in shale,
the face rate values are 1.47–6.43%, with an average of 4.26%, and
its contributions to the pores in shale are 1.09–5.66%, with an
average of 3.21%, which indicates that pyrite pores in shale may
be favorable to the shale reservoir pore system. These pores can
not only increase the shale reservoir space and specific surface
area of shale but also reserve free gas and promote the enrichment
of shale gas in the Longmaxi Formation.
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