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[1] Pore pressure changes are rigorously included in Coulomb stress calculations for fault
interaction studies. These are considered changes under undrained conditions for analyzing very
short term postseismic response. The assumption that pore pressure is proportional to fault-
normal stress leads to the widely used concept of an effective friction coefficient. We provide an
exact expression for undrained fault zone pore pressure changes to evaluate the validity of that
concept. A narrow fault zone is considered whose poroelastic parameters are different from those
in the surrounding medium, which is assumed to be elastically isotropic. We use conditions for
mechanical equilibrium of stress and geometric compatibility of strain to express the effective
normal stress change within the fault as a weighted linear combination of mean stress and fault-
normal stress changes in the surroundings. Pore pressure changes are determined by fault-normal
stress changes when the shear modulus within the fault zone is significantly smaller than in the
surroundings but by mean stress changes when the elastic mismatch is small. We also consider an
anisotropic fault zone, introducing a Skempton tensor for pore pressure changes. If the anisotropy
is extreme, such that fluid pressurization under constant stress would cause expansion only in the
fault-normal direction, then the effective friction coefficient concept applies exactly. We finally
consider moderately longer timescales than those for undrained response. A sufficiently
permeable fault may come to local pressure equilibrium with its surroundings even while that
surrounding region may still be undrained, leading to pore pressure change determined by mean
stress changes in those surroundings. INDEX TERMS: 7209 Seismology: Earthquake dynamics
and mechanics, 7260 Seismology: Theory and modeling, 7215 Seismology: Earthquake
parameters; KEYWORDS: Fault interaction, fluid flow, poroelasticity, effective friction, crustal
anisotropy

1. Introduction

[2] Earthquakes produce changes in the state of strain and
stress in the volume surrounding the causative faults. Coseismic
stress and strain changes caused by shear dislocations are
usually calculated using the numerical procedure proposed by
Okada [1985, 1992]. This approach is based on the solution of
the elastostatic equations in an elastic, isotropic homogeneous
half-space. The coseismic strain and stress fields can be
computed if the geometry and the slip distribution on the
rupturing fault plane are known (see Okada [1992], Stein et
al. [1992], King et al. [1994], Stein [1999], and King and
Cocco [2000], among several others). In the near field the
induced coseismic stress consists both of a dynamic (transient)
and a static (permanent) perturbation. The calculation of
dynamic stress changes requires the solution of the elastody-
namic equations. It implies that both shear and fault-normal
stresses can vary as functions of times reaching the static
configuration after a few tens of seconds [Harris and Day,
1993; Cotton and Coutant, 1997; Belardinelli et al., 1999, and
references therein].
[3] Fault interaction is currently investigated by means of these

analytical formulations and using the induced stress on a specified

fault plane to compute Coulomb stress changes. In the framework
of the Coulomb criterion, failure on a fault occurs when the applied
stress increment, defined as

�CFF ¼�tþ m �sþ�pð Þ; ð1Þ

overcomes a stress threshold, where. �t is the shear stress change
(computed in the slip direction), �s .is the fault-normal stress
change (positive for extension), �p .is the pore pressure change
within the fault, and m is the friction coefficient which ranges
between 0.6 and 0.8 for most rocks [see Harris, 1998, and
references therein]. The quantities included in (1) should be
considered as functions of time.
[4] Earthquakes perturb the state of stress of a crustal volume,

and they cause a variety of hydrologic phenomena [Scholz, 1990;
Sibson, 1994; King and Muir-Wood, 1994; Roeloffs, 1996, 1998;
Roeloffs and Quilty, 1997]. Some of these effects can be explained
by the poroelastic response to the earthquake-induced strain field.
Pore pressure changes modify the coseismic stress redistribution,
and for this reason they are included in the definition of the
Coulomb failure function (1). Because the coseismic stress changes
occur on a timescale that is too short to allow the loss or gain of
pore fluid by diffusive transport (fluid flow), the pore pressure
changes included in (1) on that timescale are associated with the
undrained response of the medium [Rice and Cleary, 1976]. Later,
we discuss somewhat longer timescales for which the fault is no
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longer undrained. The undrained conditions are those for which
there is no fluid flow. From an analytical point of view the
undrained response implies that the fluid mass content per unit
volume is constant (�m = 0), but the pore pressure is altered.
Under these conditions the relationship between stress and strain
for a fluid-infiltrated poroelastic material is equivalent to an
ordinary elastic material with appropriate coefficients for the
undrained conditions [Rice and Cleary, 1976; Roeloffs, 1996].
[5] According to Rice and Cleary [1976] the pore pressure

change resulting from a change in stress under undrained con-
ditions is given by

�p ¼ �B
�skk
3

; ð2Þ

where B is the Skempton coefficient [Skempton, 1954; Kuempel,
1991]. Rice and Cleary [1976], Roeloffs and Rudnicki [1985], and
Roeloffs [1996] present a compilation of experimental determina-
tions of B indicating a range between 0.5 and 0.9. In Coulomb
stress analysis [see Stein et al., 1992; Harris and Simpson, 1992;
King et al., 1994; Harris, 1998, and references therein] it is
assumed that for plausible fault zone rheologies the change in pore
pressure becomes proportional to the fault-normal stress:

�p ¼ �B̂�s: ð3Þ

This is certainly true if in the fault zone �s11 = �s22 = �s33, so
that �skk/3 = �s and (2) becomes (3) [see Simpson and
Reasenberg, 1994; Harris, 1998]. By substituting (3) in (1), we
obtain

�CFF ¼�tþm0�s; ð4Þ

where m0 = m(1�B̂) is the effective (or apparent) friction coefficient.
Equation (4) is very common in the literature, and it has been
widely used to calculate Coulomb stress changes [see Harris,
1998, and references therein]. A variety of values are used for these
calculations: the friction coefficient m ranges between 0.6 and 0.8,
while B ranges between 0.5 and 1 [Green and Wang, 1986; Hart,
1994]. The resulting values for the effective friction coefficient
range between 0.0 and 0.75 (0.4 has been used in many
calculations by Stein et al. [1992] and King et al. [1994]). Several
studies have concluded that Coulomb stress modeling is only
modestly dependent on the assumed value of the effective friction
coefficient [see King et al., 1994]. This result might depend on the
choice of the poroelastic model (equation (2) or (3)) in Coulomb
stress analyses. It is important to emphasize that the effective
friction coefficient m’ is not a material property, but it depends on
the ratios of stress changes in the medium [Byerlee, 1992; Hill et
al., 1993; Beeler et al., 2000].
[6] Several recent papers have focused attention on the corre-

lation between fault-normal stress changes and earthquake loca-
tions as well as seismicity rate changes [see Perfettini et al., 1999;
Parsons et al., 1999; Cocco et al., 2000, and references therein].
However, it is still not well understood why these fault-normal
stress changes should provide a better explanation of this correla-
tion than Coulomb stresses. Fluid flow (time-dependent) as well as
the choice of the proper expression for �p in Coulomb analyses
might help to explain some aspects of this paradox.
[7] Beeler et al. [2000] pointed out that using the constant

apparent friction model (equation (4)) in Coulomb analyses may
provide a misleading view in estimating stress changes. They
compare that model with an isotropic and homogeneous (same
properties within the fault as outside) poroelastic model, equations
(1) and (2), and conclude that Coulomb failure stress shows
considerable differences for different tectonic environments. It is
important to emphasize that because of fluid flow the induced pore

pressure changes are time-dependent; therefore it is necessary to
specify the timescale during which the poroelastic model is
applied.
[8] This paper discusses the assumptions required to correctly

include the pore pressure changes in Coulomb stress modeling
and provides a more general expression for the effective normal
stress for different timescales. We start investigating the short-
term postseismic period, in which both the fault zone and the
adjoining lithosphere respond under undrained conditions. In this
case we first assume that the fault zone is a poroelastic isotropic
medium, but we will also consider the effect of anisotropy
within the fault zone. Then we study an intermediate timescale,
which will exist for a sufficiently permeable fault, during which
the fault core reaches a local pressure equilibrium with its
lithospheric surroundings, while the adjoining lithosphere is still
responding as if it were undrained. We will not consider here
longer timescales during which the transition from short-term
undrained response to long-term drained response takes place
also in the surrounding lithosphere.

2. Poroelastic Constitutive Relations

[9] The stress-strain relation for an ordinary isotropic linearly
elastic solid can be expressed as

2Geij ¼ sij �
l

3lþ 2G
skkdij; ð5Þ

where eij and sij are the strain and stress tensors, respectively; G
and l are the Lamé parameters (G is the rigidity) and dij is the
Kronecker delta. Hooke’s law (5) can be rewritten using the
Poisson ratio v.. as

2Geij ¼ sij �
v

1þ v
skkdij: ð6Þ

Because here we consider linear elasticity, these constitutive
relations must be applied to small stress-strain magnitudes. We
assume that they are valid in such isotropic form for coseismic
stress-strain changes caused by shear dislocations, which are of
interest since we do not know the absolute value of the regional
remote tectonic stress.
[10] Because compact rocks consisting of solid phase materials

are not an appropriate model for the crust, we have to consider our
medium as porous or cracked. The stress-strain relations for a
poroelastic medium are slightly different from (6) because they
include the pore pressure term [Biot, 1941, 1956; Rice and Cleary,
1976]. According to Rice and Cleary [1976], these constitutive
relations are

2Geij ¼ sij �
v

1þ v
skkdij þ

3 vu � vð Þ
B 1þ vð Þ 1þ vuð Þ pdij ð7aÞ

m ¼ m0 þ
3r0 vu � vð Þ

2GB 1þ vð Þ 1þ vuð Þ skk þ
3

B
p

� �
; ð7bÞ

where m0, r0 are the fluid mass content and the density measured
with respect to a reference state at which we take P = 0. Here v is
the Poisson ratio under drained conditions, whereas the term vu
represents the undrained Poisson ratio, which is a function of v, the
bulk modulus (K), and the Skempton coefficient (B) of the medium
[see Rice and Cleary, 1976; Kuempel, 1991]. Equation (7b) shows
that for undrained conditions (�m = 0), �p = �B�skk/3 yielding
(2) when pore pressure and mean stress changes are considered.
Equation (7a) is equivalent to (6) for a poroelastic medium if v in
(6) is replaced by vu. In fact, using the relation (2) in (7a) to
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describe undrained (e.g., coseismic) strain and stress changes, we
get the following constitutive relation:

2G�eij ¼ �sij �
vu

1þ vu
�skkdij: ð8Þ

Equation (8) is equivalent to (6) but now represents a poroelastic
medium under undrained conditions.
[11] The following relation [Rice and Cleary, 1976] relates the

undrained Poisson ratio to the other poroelastic parameters:

vu ¼
3vþ B 1� 2vð Þ 1� K

Ks

� �
3� B 1� 2vð Þ 1� K

Ks

� � ; ð9Þ

where K is the bulk modulus of the saturated rock under drained
conditions and Ks is a modulus which, for certain simple materials
(uniform properties of solid phase in response to hydrostatic
stressing, fully interconnected pore space), can be equated to the
bulk modulus of the solid grains in the rock. We emphasize that if
K = Ks, then vu = v. In general, the undrained bulk modulus is
larger than the drained one, and Ks > Ku > K. According to (9) the
undrained Poisson ratio is larger than the drained Poisson ratio (vu
> v). The same is true for the Lamé parameter, lu > l. The rigidity,
on the contrary, remains the same, Gu = G. These considerations
suggest that the fault stiffness for undrained conditions is larger
than that for drained ones.

3. Pore Pressure Changes in an Undrained
Poroelastic Fault Model

[12] We investigate the stress conditions for a fault in a
poroelastic medium. The fault zone materials have different
properties with respect to the surroundings. Let 1 and 2 represent
the coordinate directions in the fault zone and 3 represent the
coordinate direction perpendicular to the fault plane (Figure 1).
The stress-strain relations for the medium are given by (8). We
interpret the elastic moduli here as moduli for undrained defor-
mation. We indicate with G0, lu

0 , K 0
u, v 0u the Lamé and bulk

moduli and the Poisson ratio within the fault zone, while G, lu,
Ku, vu denote the parameters in the surrounding crust. In the
following, we use the stress-strain relation for a poroelastic
medium in the form of (5), using the Lamé moduli.
[13] Considering the conditions of mechanical equilibrium and

strain compatibility, there exist equality conditions for strain and
stress components within the fault zone and outside it, in the cases
that we consider here, for which fault zone thickness is much less
than length scales over which stress and strain vary outside the
fault. We indicate with eij

0 and sij
0 .the strain and the stress tensors

within the fault zone. Kinematic compatibility implies that certain

strain components are the same inside and outside the fault zone
[Rice, 1992], namely, e11

0 = e11, e22
0 = e22, e12

0 = e12. Similarly,
conditions of mechanical equilibrium require that certain stress
components must be the same everywhere within the fault zone as
in the nearby crust outside it, namely, s33

0 = s33, s31
0 = s31, s32

0 =
s32. In other words, the equilibrium conditions on the problem
restrict s33 .to continuity but leave the other normal components
unrestricted. This means that the other stress components inside the
fault zone may be different from those outside it. They are
determined from mechanical constitutive relations.
[14] According to (5) we have the following relations:

2 e11 þ e22ð Þ ¼ 1

G
s11 þ s22 �

2lu

3lu þ 2G
skk

� �
ð10aÞ

2 e011 þ e022
� �

¼ 1

G 0 s011 þ s022 �
2l0

u

3l0
u þ 2G 0 s

0
kk

� �
; ð10bÞ

where primes denote quantities inside the fault zone. Using the
continuity conditions for the strain components appearing in (10a)
and (10b) and for the fault-normal stress, we can write

1

G

lu þ 2G

3lu þ 2G
skk � s33

� �
¼ 1

G 0
l0
u þ 2G

3l0
u þ 2G0 s

0
kk � s33

� �
: ð11Þ

[15] For a slightly more concise notation, let M = l + 2G be the
modulus for one-dimensional strain and recall that K = l + 2G/3.
Then (11) becomes

1

G

Mu

Ku

skk
3

� s33

� �
¼ 1

G 0
M 0

u

K 0
u

s0kk
3

� s33

� �
;

where the quantity Mu/Ku corresponds to (1 � vu)/(1 + vu), which
might be alternatively used in the following equations (with primes
denoting the values within the fault zone). Solving the previous
relation for skk

0/3 within the fault zone, we get

s0kk
3

¼ K 0
u

M 0
u

G0

G

Mu

Ku

skk
3

þ G� G0

G
s33

� �
: ð12aÞ

To emphasize that this applies for the stress changes caused by a
nearby earthquake, we write

�s0kk
3

¼ K 0
u

M 0
u

G0

G

Mu

Ku

�skk
3

þ G� G0

G
�s33

� �
ð12bÞ

and understand the unprimed stress changes (�sij) to be those
conventionally computed by elastic dislocation theory. For
Coulomb analysis we need to know the pore pressure changes
induced in the fault zone, which we obtain by substituting (12b)
in (2):

�p0 ¼ �B0 �s0kk
3

¼ �B0 K
0
u

M 0
u

G0

G

Mu

Ku

�skk
3

þ G� G0

G
�s33

� �
; ð13Þ

where B0 is the Skempton coefficient in that fault zone. Equation
(13) shows that induced pore pressure changes depend both on the
mean stress and the fault-normal stress changes. The relevant
effective normal stress change for Coulomb stress analysis is thus

�seff33 ¼ �s033 þ�p0 ¼ �s33 � B0 �s0kk
3

¼ �s33 � B0 K
0
u

M 0
u

G0

G

Mu

Ku

�skk
3

þ G� G0

G
�s33

� �
: ð14Þ

G', λ'u,K'u, ν'u

G, λu,Ku, νu

2

3
1

homogeneous
isotropic 
medium

h

Surrounding Crust

Fault Zone Parameters

Figure 1. Undrained poroelastic fault model.
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[16] Equations (13) and (14) give the relative weights of fault-
normal and mean stress perturbations in determining the pore
pressure and Coulomb stress changes. In general, the pore pressure
changes depend on both these quantities. In particular, the pore
pressure changes are related to the fault-normal stress changes
through the rigidity contrast between fault zone materials and the
surrounding crust.
[17] We can recognize two limiting cases for (14). The first one

holds when G0 = G and the mean stress is the relevant quantity.
Thus (14) becomes

�seff33 ¼ �s33 � B0 K
0
u

Ku

Mu

M 0
u

�skk
3

; ð15Þ

the second limiting case is obtained when G � G0, and (14)
becomes

�seff33 ¼ 1� B0 K
0
u

M 0
u

� �
�s33: ð16Þ

[18] Equations (15) and (16) express the effective normal stress
changes for the case where pore pressure changes depend solely on
mean or fault-normal stress changes, respectively. Equation (16) is
equivalent to the effective friction approach of (4) if the Skempton
parameter is given by B̂ = B0K0

u/M
0
u.

4. Elastic Moduli in the Fault Zone

[19] Equation (13) relates pore pressure changes to fault-
normal and mean stress changes through two factors, which
depend on the elastic parameters in the fault zone and in the
surrounding crust. The variation of these elastic parameters is
reflected in the variation of P and S wave velocities. There-
fore information on shear wave velocity anomalies in the fault
zone might be used to constrain numerical values of the
factors appearing in (13) and to discuss the two limiting
cases reported in (15) and (16). In particular, the following
relations hold (assuming that measured P wave speeds corre-
spond approximately to undrained response in the sense of
poroelasticity):

Mu

G
¼ VP

VS

� �2

;Ku ¼ G
Mu

G
� 43

� �
¼ G

V 2
P

V 2
S

� 4

3

�
;

�
ð17Þ

and the same relations with primes (K0
u, M

0
u) indicate the moduli

inside the fault zone. This equation yields

Ku

Mu

¼ 1� 4

3

VS

VP

� �2

ð18Þ

for the quantity which appears in (14). The square of the S wave
velocity anomaly of the fault zone with respect to the
surrounding crust is related to the density and rigidity of the
two media:

V 2
S � V 0

S
2

V 2
S

¼ r0G� rG0

r0G
;

where r is the density. A similar relation holds for the
modulus for one-dimensional strain M and the P wave velocity
anomaly:

V 2
P � V 0

P
2

V 2
P

¼ r0Mu � rM 0
u

r0Mu

:

[20] If the density contrast between the fault zone materials and
the surrounding crust is not very large (r � r0), the relative
variation of G and M can be expressed as

G� G0

G
¼ rV 2

S � r0V 0
S
2

rVS
2

� VS
2 � V 0

S
2

V 2
S

;

G0

G
¼ V 0

S

VS

� �2

; ð19Þ

M 0
u

Mu

¼ V 0
P

VP

� �2

:

[21] An opposite limiting case exists when the rigidity contrast
is negligible (G0 approximately equal to G), and therefore we have

V 2
S � V 0

S
2

V 2
S

� r0 � r
r0

:

[22] This latter case represents the limiting case (G0 approxi-
mately equal to G) yielding (15), and mean stress perturbations are
the only contribution to the effective normal stress changes.
[23] In a first simplified model we assume that the fault zone is a

solid of the same lithology as the adjoining crust, densely fractured
with an isotropic distribution of cracks saturated by fluids, while
the crust is considered as a much less cracked but still saturated
Poissonian body (l = G). We consider that none of the crack walls
can open or close toward one another when an isotropic stress is
applied, so they produce no change in volume and hence no
alteration of K0

u. We can thus observe that the bulk modulus K0
u

is unaffected by the presence of saturated cracks, at least assuming
that their aspect ratio is much less than the ratio of liquid bulk
modulus to solid bulk modulus, as pointed out by O’Connell and
Budiansky [1974]. Assuming that the fault zone has the same
lithology as the surroundings, just much more cracked, implies that
K0

u = Ku. This also means that r = r0, neglecting the crack space
contributions to volume. In these conditions the crack walls can
slide in shear, so that G is reduced (G0 < G), yielding (19).
[24] We use seismic evidence for P and S wave velocity

variations to infer possible values of the elastic moduli in the fault
zone. Studies of local crustal tomography provide evidence on the
body wave velocity variations in fault zones. Although several
studies (mostly based on VP tomographic images) interpreted the
fault zone as a high-velocity body [Lees, 1990; Lees and Nich-
olson, 1993; Zhao and Kanamori, 1993, 1995], many others have
suggested the presence of fluids within the fault zone [Eberhart-
Phillips and Michael, 1993; Johnson and McEvilly, 1995; Thurber
et al., 1997]. Zhao et al. [1996] and Zhao and Negishi [1998]
found evidence of low P and S wave velocities and high Poisson
ratio at the hypocenter of the 1995 Kobe earthquake. We remark
that VS and the Poisson ratio. vu (or VP/VS) are much more
sensitive to fluids than VP [see also Eberhart-Phillips and Reyners,
1999].
[25] Studies on fault zone trapped waves yield more useful

constraints to the quantities defined in (17) and (19) because they
have an optimal resolution of the inner structure of fault zones
whose thickness can range between 20 and 400 m [Li et al., 1990,
1994]. Li and Leary [1990] have shown the fracture density and the
S wave velocity model for the Oroville (California) fault zone as
determined by body wave travel time modeling. They clearly show
that the fault zone corresponds to a reduction in shear wave
velocity (roughly 50%) and an increase of the crack density (up
to 0.75). Li et al. [1990, 1994] point out that the reduction in S
wave velocity inside the fault zone ranges from 30 to 50%.
According to Mooney and Ginzburg [1986] and Li and Leary
[1990] the velocity structure of the Calaveras fault shows a P wave
velocity reduction of nearly 30%.
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[26] Although our review of velocity models of fault zones is far
from complete, we use these representative values to estimate the
quantities defined above. According to the aforementioned studies
and to relations (17), (18), and (19) if V 0

S /VS ranges between 0.5
and 0.7, the rigidity ratio G’/G ranges between 0.25 and 0.5. This
implies that the rigidity reduction (G � G0)/G is between 0.75 and
0.5. As expected, if the reduction in S wave velocity within the
fault zone is very large (50–70%) the ratio G0/G becomes much
smaller than (G� G0)/G. Moreover, if we assume that the reduction
in S wave velocity is larger than that in P wave, then the V 0

P/V
0
S

ratio inside the fault zone is larger than the corresponding value in
the surrounding crust. We consider the simplified model described
above, which yields K 0

u = Ku (= 5G/3 in a Poissonian surrounding
crust), and then given G0/G, we can calculate M 0

u:

M 0
u ¼ K 0

u þ
4

3
G0 ¼ Ku þ

4

3

G0

G
G ¼ 5

3
þ 4

3

G0

G

�
G:

�

[27] This results in

K 0
u

M 0
u

¼ Ku

M 0
u

¼ 5

3

G

M 0
u

¼ 5

5þ 4 G0

G

:

[28] According to this relation the ratio K 0
u/M

0
u ranges between

0.714 and 0.883 for G0/G between 0.5 and 0.25, while it is equal to
0.556 for G0/G = 1. As an example, we provide a tentative estimate
of the two proportionality factors that appear in (13). We assume a
reduction in P and S wave velocities in the fault zone of 18% and
50%, respectively. These assumptions yield

G� G0

G
¼ 0:75;

G0

G
¼ 0:25;

Ku

Mu

¼ 0:556;
K 0
u

M 0
u

¼ 0:883:

[29] Using these values, the constants which multiply the mean
and the fault-normal stress changes in (13) and (14) are 0.45 and
0.75, respectively. The latter does not seem to be negligible at all,
and for this illustration,

�p0 ¼ �B0 0:375
�skk
3

þ 0:625�s33

� �
¼ �B0 0:125 �s11 þ�s22ð Þ þ 0:750�s33½ 
:

[30] Thus the assumption that �p0 is proportional only to �skk/
3 does not seem to be strongly supported by observation of P and S
wave velocities, but at the same time, neglecting this term may be
justifiable only if the reduction in S wave velocity is much larger
than 50%, at least under the conditions assumed in the simplified
model considered here. This model can be reasonable for faults that
have experienced little slip, but it might be not reliable for a
relatively mature fault zone. In this latter case, the presence of a
fault gouge with a different porosity, and possibly fluid-altered
composition, with respect to the host lithology might be more
properly represented by a density contrast [Mooney and Ginzburg,
1986], so that r0 < r. Even in this case, we can show that the change
in the one-dimensional strain modulus M is larger than the change
in density. According to Mooney and Ginzburg [1986] we can
assume that �VP/VP = F�r/r, with F � 1, and write

�VP

VP

¼ 1

2

�M 0
u

M 0
u

��r
r

�
�M 0

u

M 0
u

¼ 1þ 2Fð Þ�r
r

:

�

[31] This gives a greater change in modulus M0
u rather than in r

so that, approximately, neglect of r .changes in our estimate of
modulus changes, as in (19), is still valid. Note that for a given G0/
G, a different reduction from Mu to M0

u than what we have

estimated does not affect the relative importance of mean stress
and fault normal stress in (13) for�p0; it only affects the factor K0

u/
M 0

u in front.

5. Modeling Static Stress Changes
From Shear Dislocations

[32] In this section we aim to compare the shear, fault-
normal, and mean static stress changes caused either by a
vertical strike-slip fault or a normal fault in an elastic homoge-
neous half-space. We use the three-dimensional (3-D) dislocation
code developed by Nostro et al. [1997], which is based on
numerical representation provided by Okada [1985, 1992].
Again, our discussion here is directed to the short timescale
for which the fault and its surroundings respond as if undrained.
The elastic stress changes caused by shear dislocations illustrate
the spatial variability and absolute values of the different terms
in (1), (2), and (4) and allow a comparison between the
Coulomb stress changes resulting from the application of (1)
as opposed to (4). Figure 2a shows the shear, normal, and
Coulomb stress changes caused by a vertical strike-slip fault
mapped both on a horizontal layer at 6 km depth as well as on
a vertical cross section A-A’ perpendicular to the fault strike.
Coulomb stress changes have been computed by means of (4)
on secondary faults having the same orientation and mechanism
of the causative fault and using a constant effective friction
equal to 0.4 (corresponding to m = 0.75 and B = 0.47). King et
al. [1994] have already discussed these stress patterns in detail;
here we only remark that positive stress changes can favor
failures on appropriately oriented planes. We also point out that
the variability of the stress patterns on the horizontal maps,
where both s1 and s3 lie, is more evident for strike-slip faults
than on the vertical cross sections. Moreover, the amplitudes of
fault-normal stress changes at depth are quite small. It is
important to remark that the cross section is not taken in the
middle of the rupturing fault because such a direction is nodal
for fault-normal stress changes, as shown in the map view.
Figure 2b shows similar results for a normal fault dipping 70� to
the east; we only show the E-W vertical cross section calculated
in the middle of the fault. As expected for a normal fault, the
largest spatial variability of stress changes occurs on the vertical
plane used for the sections where both s1 and s3 lie.
[33] Figure 3 shows the mean stress changes caused by the

vertical strike-slip fault as well as the stress changes along the fault
plane directions (1 and 2 in Figure 1). The stress changes in the
direction perpendicular to the fault plane (fault-normal stress) are
shown in Figure 2a (middle). It emerges from these calculations
that the three diagonal terms of coseismic stress changes (�sii) are
substantially different in amplitude. In particular, the largest
amplitudes are found for the component oriented along the slip
direction and that perpendicular to the fault plane, respectively.
Similar results have been obtained for a normal fault. The stress
change is maximum in the direction of slip; this means �s11 for a
strike slip fault. This result is also evident at depth, as shown in the
vertical cross sections in Figure 3. This implies that the condition
�s11 = �s22 = �s33, which leads to (4), is not satisfied in the
volume surrounding the fault; moreover, the spatial variations of
these stress components are quite different. This observation
further supports the conclusion that (3) must be justified by
different considerations, rather than assuming �s11 = �s22 =
�s33.
[34] In Figure 4 we show the Coulomb stress changes calculated

both by (4) (the constant effective friction model) and by (1) and
(2) (the isotropic model, see Beeler et al. [2000]). The two maps on
the top of Figure 4 represent the Coulomb stress changes computed
using the same values of friction and Skempton parameters (0.75
and 0.47, respectively). In Figure 5 we show a similar comparison
for a normal fault in vertical cross section. It emerges from these
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Figure 2. Shear, normal, and Coulomb stress changes caused by (a) a vertical strike-slip fault and (b) a 70� dipping
normal fault calculated using the constant effective friction model of equation (4). The amount of slip on the rupturing
fault is 50 cm. Coulomb stress changes have been computed on secondary fault planes having the same geometry and
mechanisms as the causative faults. For all these calculations, m0 = 0.4, which corresponds to m = 0.75 and B = 0.47.
The vertical cross section for the normal fault case shown in Figure 2b is taken in the middle of the causative fault.
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Figure 3. Map view and vertical cross section of mean stress changes (�skk/3) and induced stress perturbations for
the two isotropic components oriented along the fault directions (1 and 2 of Figure 1) caused by a vertical strike-slip
fault as shown in Figure 2a.
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Figure 4. Coulomb stress changes at 6 km depth caused by a vertical strike-slip fault computed with the constant
apparent friction model (equation (4)) and the isotropic friction model (equations (1) and (2)). For this latter model we
show the calculations using different values of the friction and Skempton coefficients.
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calculations that the equation adopted for computing Coulomb
stress affects the resulting spatial patterns. Such a result has been
already discussed by Beeler et al. [2000], who also quantified the
amount of such variations. They concluded that these two pore
pressure models yield considerable differences in the calculated
Coulomb stress changes for reverse, normal, and strike-slip faults.
They also suggest that the use of the constant effective friction
model (equation (4)) could lead to errors in estimating coseismic
stress changes. The calculated Coulomb stress changes also depend
on the assumed value of the Skempton parameter B [see also
Beeler et al., 2000]. In Figures 4 and 5 we show the results of
calculations using three different values of B between 0.2 and 1. As
expected, increasing B increases the Coulomb stress changes in the
off-fault lobes. This emphasizes the role of pore fluid pressure in
earthquake failure [see, e.g., Segall and Rice, 1995] but also brings
up the question of which is the most appropriate way to represent
coseismic pore pressure changes. The differences among the
Coulomb stress changes shown in Figures 4 and 5 can be as large
as several bars.
[35] To summarize, we have calculated the ratio between the

mean stress (changed in sign: ��skk/3) and the fault-normal stress
changes �s(= �s33)(see Figure 6a). Figure 6a shows that there is
a region along the fault strike direction where this ratio is highly
variable. Outside this region, on the two opposite sides of the fault,
this ratio is negative and smaller than unity: This means that the
mean stress and the fault-normal stress changes have the same sign
but the latter is larger than the former. On the contrary, in the area
where the ratio is positive they have opposite sign. A unitary value
for this ratio would imply that �p0 = �B0�s. The strike direction
and that perpendicular to it are nodal for both these stress changes;
thus, in these zones the amplitudes of both mean stress and fault-
normal stress changes are very small (see Figures 2a and 3). In the
off-fault lobes, where both mean and fault-normal stress change
amplitudes are relevant, this ratio is negative and smaller than
unity. This is quite evident in Figure 6b, where we plot the
difference between normal and mean stress changes. These two
terms differ mostly at the ends of the slipped zone. The implication
of these calculations is that the effective friction coefficient is not
constant in the volume surrounding the causative fault. This is
expected, since from its definition it is a function of ratios of all the
fault-normal stress changes to one another in the medium.
[36] The considerations discussed above point out that in a

poroelastic isotropic medium the relation used to compute pore
pressure changes affects the calculation of Coulomb stress changes.
Effective normal stress depends on both mean stress and fault-
normal stress changes, and the proportionality factors do not
vanish, except in very special situations that might not be realistic
for actual fault zones. Moreover, the amplitudes of these stress
changes show different spatial patterns, depending on the faulting
mechanism [see also Beeler et al., 2000]. Therefore, in order to
choose the appropriate equation to compute Coulomb stress it is
necessary to consider more complex situations and different
properties for the fault zone materials.

6. Effects of Anisotropy Within the Fault Zone

[37] The results discussed above have been obtained under the
assumption that the fault zone materials are isotropic, i.e., that they
are permeated by an isotropic distribution of cracks that are
saturated by fluids. However, anisotropy within the fault zone
caused by aligned fractures may lead to different conclusions
concerning the proportionality between pore pressure and fault-
normal stress changes. Here we examine the effect of an aniso-
tropic distribution of cracks within the fault zone, and we derive an
alternative formulation for the pore pressure changes for undrained
deformation. Because we are interested here in the undrained
response of the medium, we do not discuss the anisotropy of
permeability of the fault zone materials.

Figure 6. (a) Spatial pattern of the ratio between mean stress
perturbations (changed in sign: ��skk/3) and fault-normal stress
changes (�s = �s33) for a vertical strike slip fault. (b) Spatial
pattern of the difference between normal and mean stress changes
(�skk/3). Worthy of note is the amplitude of such a difference.
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[38] In the general case, possibly anisotropic, equation (2),
which introduces the Skempton coefficient, must be generalized
to the statement that a pore pressure change

�p ¼ �Bij

�sij
3

ð20Þ

is induced by application of stress changes �sij under undrained
conditions. The set of coefficients Bij constitute what we propose to
call a Skempton tensor. They reduce, of course, to Bij = Bdij in the
isotropic case. If we regard P as a function of the set of stresses [s]
and of the fluid mass m, per unit volume of reference state,
contained in the porous material, that is, p = p([s], m), then Bij

satisfy

Bij ¼ 3 @p s;m½ 
ð Þ=@sij
	 


: ð21Þ

[39] We show in Appendix A that an alternative, and instructive,
interpretation can be obtained for that partial derivative once we
recognize [Rice and Cleary, 1976] that sijdeij + pd(m/r) must be a
perfect differential, where r is the density of the pore fluid
(conceptually in a reservoir of pure fluid at local equilibrium with
the porous medium). Here it may be noted that m/r is the fluid
volume fraction (fluid volume per unit of reference state volume of
the porous material) in the case considered, when all pore space is
connected and fluid-infiltrated. The mass of fluid per unit reference
state volume is m and r .is the density of pore fluid at pressure p,
and we assume r = r( p). The differential form sums the work of
stresses in moving the boundaries of an element of the porous
material and the work of pore pressure in enlarging the boundaries
of the pore space. Together the terms constitute the change dU in
the strain energy U of the solid phase, which must be a function of
state. As developed in Appendix A, this is equivalent to the
familiar notion from the thermodynamics of mixtures that sijdeij
+ m̂dm sijdeij + m̂dm is a perfect differential, where m̂ is the
chemical potential of the pore fluid.
[40] By either route, the existence of the perfect differentials

implies a Maxwell reciprocal relationship, which is shown in
Appendix A to give the alternative interpretation of Bij as

Bij ¼ 3r @eij s;m½ 
ð Þ=@m
	 


: ð22Þ

The derivative corresponds to the change as fluid mass is pumped
into the porous material under conditions for which all of the
stresses skl are held fixed.
[41] Thus, for example, in the isotropic case B/(3r) is the

increase of each extensional strain per unit of increase dm of fluid
mass pumped into the material, under conditions for which the total
stresses are held constant. Equivalently, B/3 is the increase of each
extensional strain per unit increase dm/r of fluid volume pumped in
under constant stresses.
[42] Let suppose that within the fault zone there is a highly

anisotropic distribution of cracks or flattened pores, lying so that
their long directions are approximately parallel to the fault plane.
We isolate a sample of material of the fault and subject it to its in
situ stress state s0kl. Then, holding those stresses constant, we
pump an increment dm0 of fluid mass into the porous material. In
that case, because of the assumed orientations of the flattened
pores we would expect the fault-parallel strain increments de011
and de022 to be much smaller than the fault-normal component
de033 because it is the latter which would be primarily influenced
by fluid injection into the fault parallel-crack and pore space.
That means B0

33 is much larger than the other components of B0
ij,

and therefore that

dp0 ¼ �B0
ij

ds0ij
3

� �B0
33

ds033
3

¼ �B0
33

ds33
3

: ð23Þ

Hence, for that type of anisotropy of pore space, which may be
appropriate for a fault zone, it is correct to use the simplified
concept that induced pore pressure under undrained conditions is
determined solely by the change in fault-normal stress. In other
words, if the anisotropy of the fault zone material is so extreme that
when extracted from the fault and held at constant stress while fluid
is pumped into it, it expands only in the 3 direction, then p0 would
be determined solely by s033 = s33, and then the m0 concept would
apply exactly with B̂; = B0

33/3 in equation (3).
[43] It might be interesting to know how much anisotropy is

needed to justify the effective friction concept in the way just
discussed. Recent papers on fault zone trapped waves [Leary et al.,
1987; Zhao and Mizuno, 1999] have shown very good quality data,
but unfortunately, there is still no answer to this question. Zhao and
Mizuno [1999] found a crack density distribution for the 1995
Kobe (Japan) earthquake that is smaller (0.2) than that expected for
a fracture zone (0.6–0.75). It is important to point out that the
presence of anisotropy within the fault zone may justify variations
of shear wave velocity of 50% and larger. Future observations are
needed to shed light on this problem; they will be helpful to
reconstruct the inner structure and mechanical properties of fault
zone materials.

7. Short Time Pore Pressure Equilibrium Between
Fault Zone and Adjoining Rock Mass

[44] We have focused thus far on the postseismic period, in
which the fault zone behaves as if it is undrained. However, if the
fault zone is moderately thin and has some permeability, then it is
reasonable to expect that on what is also a relatively short time-
scale, the fault zone will act as if it were locally drained and reach
pressure equilibrium with its surroundings, so that �p0 evolves
toward �p. �p itself will be time-dependent because of the pore
fluid fluxes set up by the gradients in the coseismically induced
pore pressure field, but unless the fault zone is very thick and/or is
very impermeable compared to its surroundings, that variation of P
in the adjoining rock will have a much longer timescale than for
local drained response of the fault. In such cases it is reasonable to
expect that �p0 will have relaxed to �p well before �p itself has
relaxed much from its undrained value just after the earthquake
stress change. So, on such short but not extremely short timescale
in which the fault acts as drained, but its surroundings remain
undrained, we get �p0 � �p and thus �p0 is proportional to the
mean stress change outside the fault zone, �p0 � ��skk/3.
[45] In order to model this behavior in a simple way, we

consider a fault zone of thickness h (see Figure 1) having a
uniform permeability k0, fluid viscosity h0, and storage modulus
N0. The surrounding crust is modeled as a pair of semi-infinite
domains with corresponding parameters N, k, h. The storage
modulus is just the inverse of the storage coefficient (called S by
Wang [2000]), in response to pore pressure changes, for one-
dimensional straining under constant stress in the straining
direction. See Appendix B for its precise definition and expres-
sion in terms of moduli already introduced. As shown in Figure
1, the axis 3 is perpendicular to the fault. The diffusivity inside
the fault zone (c0) and in the surrounding medium (c) can be
respectively defined as

c0 ¼ k 0N 0=h c ¼ kN=h;

which depend on the viscosity, the permeability, and the storage
modulus (the increase of fluid mass content when the pressure
varies under one-dimensional strain conditions) of the fault and of
the surrounding crust.
[46] By solving the one-dimensional consolidation problem for

a layer of one porous medium within an effectively infinite outer
one, we model the evolution of the pore pressure within the fault
zone toward its longer time limit �p. The pore pressure inside the
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fault zone (�p0) is a function of time and position in the fault zone,
but for simplicity, we solve the problem at the center of the fault
zone (Appendix B). However, in the following, we will derive an
analytical expression for the pore pressure at any point inside the
fault zone. Our analysis of short-time undrained response shows
that at time t = 0+ the fault zone has the pore pressure change �p0

(given by equation (13)), whereas the surrounding crust has the
change �p = �B�skk/3. We determine the subsequent temporal
evolution by finding the difference between the pore pressure
inside and outside the fault zone, normalized by its value just after
the time of the main shock (t = 0+):

�~P ¼ �p0 tð Þ ��p

�p0 0þð Þ ��p
: ð24Þ

[47] Here the notation �p0(t) denotes �p0(z, t)jz=0,i.e.,the pore
pressure change at the center of the fault zone. In AppendixB
we solve simple diffusion equations using the Laplace transform
and its Bromwich inversion to find an expression for the
variable defined in (24)that depends on the parameter r, which
is the ratio of diffusivities and storage moduli inside and outside
the fault zone:

r ¼
k 0
.
h
0

k
.
h

0
@

1
A N

N 0 ¼
c0

c

N

N 0

� �2

:

[48] Once the solution is found (equation(B2) in Appendix B),
we estimate what parameters control the timescale over which the
fault zone reaches pressure equilibrium with its surroundings. In
Appendix B we show that the time at which the pore pressure at the
center of the fault has evolved approximately half way toward its
longer time limit of �p is given by

td ¼ h2

8c0
þ h2

8c

N

N 0

� �2

¼ h2

8c0
1þ rð Þ: ð25Þ

[49] This time constant is the sum of a characteristic drainage
time for the fault core plus a characteristic time for the crust. Two
limit cases exist: whenr=0, the crust is much more permeable
than the fault zone, and more interesting ly, when r!1, the fault
zone is much more permeable than the surrounding crust. In the
former case the time constant is simply td=h

2/8c0, while the latter
condition yields

td ¼
h2

8c

N

N 0

� �2

:

[50] In Figure 7 we show the temporal evolution of the
normalized pore pressure alteration (defined in (24)) for short
and long timescales and for different values of the parameter r.
Figure 7 shows that the solution for r�4 is almost identical to
that obtained for r = 1. The pore pressure alteration at the fault
center is halfway toward its longer time limit after a time which
varies from 0.75 td when r = 0, to 1.20 td when r = 1. This
property is what motivated our definition of td. We may also note
that for all cases except r = 0, there is a slow evolution at long
times, and thus the process is not readily characterized solely by
td. Indeed, the asymptotic evaluation of the solution (B2) for large
t shows that

�p0 tð Þ ��p

�p0 0þð Þ ��p
!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rtd

p 1þ rð Þt

s
¼ h

2
ffiffiffiffiffiffiffi
pct

p N

N 0 ;

representing a slow temporal decay as t�1/2. This slow asymptotic
decay rate is independent of the permeability within the fault
zone, although the time at which that asymptotic expression
becomes accurate does depend on fault permeability, since it
enters in the ratio r. Infact, that asymptotic form, which is
instructively written as

�p0 tð Þ ��p ! N

2
ffiffiffiffiffiffiffi
pct

p �p0 0þð Þ ��p

N 0 h;

is valid in the generalized form

�p0 tð Þ ��p ! N

2
ffiffiffiffiffiffiffi
pct

p
Z þh=2

�h=2

�p0 z; 0þð Þ ��p

N 0 zð Þ dz ð26Þ
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Figure 7. Temporal evolution of normalized pore pressure
alteration at a (a) short and (b) long timescales for different
values of the parameter r(see text for its definition). The time
variable is normalized using the characteristic time for pore
pressure equilibrium, while the pore pressure alteration is
normalized at its initial value at the instant of application of
the induced stress.
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when we do not assume that the poroelastic material properties are
uniform within the fault zone. Rather, in (26) we assume that all
material properties vary with position z within the fault zone, such
asN0 = N0(z)but are uniform outside it (atjzj>h/2). Here
�p = �B�skk/3 as before in the adjoining crust, and (26)applies
on a sufficiently long timescale that local pore pressure equilibrium
is achieved within the fault zone, with �p0(t) denoting that value.
Also, �p0(z, 0+) is the pore pressure change that would have been
induced at position z (which coincides with the axis 3 in Figure 1)
within the fault zone in undrained response to the stress change. It is
given by our earlier expression for �p0 as a linear combination of
�skk/3 and �s33 but now written as

�p0 z; 0þð Þ ¼ �B0 zð Þ K
0
u zð Þ

M 0
u zð Þ

G0 zð Þ
G

Mu

Ku

�skk
3

þ G� G0 zð Þ
G

�s33

� �

This allows, for example, for a fault core and bordering zone with
damage degrading gradually toward that appropriate for the
surrounding crust.
[51] It is interesting to provide a tentative evaluation of the

characteristic time values for local pressure equilibrium. It
emerges from (25) that the characteristic time will be dominated
by the smallest value of diffusivity, c or c0, which effectively
means the smallest permeability, since it is reasonable to assume
that the storage modulus and the fluid viscosity do not signifi-
cantly change between the fault zone and the surrounding crust.
In Table 1 we list the values of td = h2/8cmin, understanding for
cmin the smaller diffusivity value. We assume a fluid viscosity of
2 � 10�4 Pa s and a storage modulus of 100 GPa. We have
calculated the characteristic times for two values of permeability:
10�18 m2 and 10�21 m2, respectively, and for fault thickness in
the interval 1 mm � h � 1 km. As expected, the resulting values
of the characteristic time for local pressure equilibrium change
from seconds to years. This suggests that it is really difficult to
exclude a priori the contribution of time-dependent pore pressure
equilibrium in the analysis of stress redistribution. Moreover, a
complex fault network will inevitably have segments at different
stages of their relaxation from undrained conditions to local
pressure equilibrium with the nearby materials.

8. Discussion and Concluding Remarks

[52] Postseismic stress redistribution is a time-dependent
process, and at short or intermediate timescales (from minutes
to few years after a seismic event), fluid flow can be one of the
most important factors in contributing to this temporal variation
of the stress perturbation [Nur and Booker, 1972; Hudnut et al.,
1989; Noir et al., 1997]. In order to properly include a pore
pressure model in Coulomb analysis through equation (1) it is
necessary to choose the timescale during which the stress
changes are modeled as well as to make a few assumptions
on the material properties of the medium. In this study we have
investigated two different timescales. We have first focused our
attention on the short-term postseismic period, in which both the
fault zone and the adjoining lithosphere respond under undrained
conditions. Thus we neglect the alteration of pore pressure
caused by fluid flow. In this first configuration we discuss the
pore pressure changes both in an isotropic poroelastic medium
and in an anisotropic fault zone.
[53] That first condition allows a comparison with most of the

Coulomb stress studies. We have derived an analytical expression
that relates pore pressure changes for undrained deformation within
the fault zone to mean and fault-normal stress changes for an
isotropic poroelastic medium. Both these terms contribute to the
variations of pore pressure caused by the stress redistribution
process. Their relative weight in the derived equation depends on
the contrast between the elastic parameters inside the fault zone

and those of its surroundings. We have shown that if the rigidity
inside the fault zone is much smaller than that in the surrounding
crust, which should correspond to a large reduction of S wave
velocity within the fault zone, the pore pressure is primarily
controlled by the fault-normal stress changes and the definition
of the effective friction coefficient given in literature is tenable.
However, we emphasize that if the fault zone is an isotropic
poroelastic medium permeated by fluids, the fault-normal stress
changes are the most important factor controlling the pore pressure
changes only when the reduction in S wave velocity is >50%. A
limiting case, for which only the mean stress (i.e., the first
invariant) controls the pore pressure, is found for faults whose
rigidity is equal to that of the surrounding crust. However, such a
condition appears inconsistent with observations of fault zone
structure resulting from seismic tomography and fault zone trap-
ped-wave studies. These studies consistently show that body wave
velocities within the fault zone are different from those in the
surrounding crust. In particular, fault zone trapped-wave studies
indicate that shear wave velocities in fault zones are as much as
50% smaller than in their surroundings. If the fault zone materials
do not behave as in these extreme conditions, both the mean stress
and the fault-normal stress changes contribute together to the pore
pressure changes for undrained deformation during such a short
timescale.
[54] Calculations of Coulomb stress changes caused by shear

dislocations in an elastic isotropic half-space show that the
choice of the pore pressure model influences the results
significantly. In particular, we show that the use of a constant
effective friction model (equations (3) and (4)) as opposed to
an isotropic and homogeneous pore pressure model (equations
(1) and (2)) implies very different Coulomb stress changes [see
also Beeler et al., 2000]. These stress changes also depends on
the assumed values of friction and Skempton parameters.
[55] We also briefly investigated the effect of anisotropy in the

cracked region forming the fault core. In this case, the Skempton
parameter becomes a tensor. However, it is plausible to assume that
the strain component normal to the fault is much larger than those
in the fault-parallel directions. In that case, the pore pressure
should be solely dependent on the fault-normal stress, and the
definition of the effective friction coefficient should be correct.
Thus we can conclude that at very short postseismic time periods in
which the fault zone obeys undrained conditions, the constant
effective friction model could be an acceptable approximation only
under quite extreme conditions, such as if the fault zone rigidity is
<50% that of its surroundings or if the fault zone is strongly
anisotropic. This latter configuration would be approached if
porosity is dominated by an oriented distribution of cracks or
flattened pores aligned with their long directions subparallel to the
fault plane.
[56] We have also discussed an intermediate timescale, which

will exist only for a sufficiently permeable fault that is locally
drained and reaches pressure equilibrium with its surroundings. In
this time period the adjoining lithosphere is still responding as if it
were effectively undrained. In this case, we assume that the fault
zone is moderately thin and has some permeability. During this

Table 1. Characteristic Times for Local Pressure Equilibrium

Fault Thickness h, m Permeability

k = 10�18 m2 k = 10�21 m2

0.001 2.5 � 10�4 s 0.25 s
0.01 2.5 � 10�2 s 25.0 s
0.1 2.5 s 42 min
1. 4.2 min 2.9 days
10 6.9 hours 9.7 months
100 29 days 80 years
1000 8.0 years 80 centuries
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relatively short timescale, �p0 evolves toward �p, the former
being time-dependent due to the pore fluid fluxes generated by
gradients in the coseismically induced pore pressure field. This
variation of P in the adjoining rock will be slower than the local
drained response of the fault. Therefore, on such a short but not
extremely short timescale, during which the fault acts as drained,
but its surroundings do not, we get �p0 � �p, and thus �p0 is
proportional to the mean stress changes. The characteristic time of
this local pressure equilibrium depends on the permeability and the
fault thickness.
[57] The transition from short-term undrained to drained

response in the adjoining lithosphere occurs in general on a yet
longer timescale. This should always occur as time increases,
except when the fault zone is hydrologically isolated from its
surroundings. In these circumstances, the stress changes �sij
approach the values that would be calculated from elastic disloca-
tion theory using drained, rather than undrained, elastic moduli.
The drained response is elastically less stiff than the undrained
response: K < Ku, v < vu, G = Gu. In general, we might expect that
this transition from undrained to drained response modestly
reduces the stress changes. For a mode II shear crack, in a plane
strain condition, the reduction scales as (1 � vu)/(1 � v). For
Westerly granite this value is close to 0.9; thus the stress reduction
at longer time periods seems almost negligible. However, a
complete recognition of this behavior during such longer timescale
is beyond the aims of the present study.
[58] The time dependence is included in the Coulomb failure

function not only through the pore pressure changes �p (equation
(1)). In fact, poroelastic theory shows that there is a time
dependence of all the stress components sij (we have considered
here only timescales for which those sij are effectively constant
outside the fault zone). Nur and Booker [1972] pointed out that
the time dependence of pore pressure changes can interact with
seismicity explaining aftershocks, and Rice [1980] evaluated the
resulting time-dependent postseismic shear stress history on a
fault surface. Further observations are needed to image the inner
structure of fault zones and therefore to verify the most appro-
priate pore pressure model. In absence of constraining evidence
we cannot exclude any model for including pore pressure in
Coulomb failure. However, at least in a homogeneous and
isotropic poroelastic medium, the influence on pore pressure of
the mean stress is well established.

Appendix A. Induced Pore Pressure for
Undrained Stressing of an Anisotropic
Medium and Interpretation
of a Skempton Tensor

[59] An increment of work (per unit volume of the reference
state) done on a poroelastic material, precisely on its solid phase, is
given by sijdeij + pd(m/r)[e.g., Rice and Cleary, 1976], where m/r
is the fluid volume fraction defined as in the text. We recall that m
is the mass of fluid per unit reference state volume of porous
material and r .is the density of pure fluid at pressure p, and we
assume r = r(p). This increment of work must be a perfect
differential of a function of state (i.e., of the strain energy U of
the solid phase, or of its Helmholtz free energy, at the constant
temperature conditions considered), and so

sijdeij þ pd m=rð Þ ¼ dU : ðA1Þ

[60] Introducing the ‘‘chemical potential’’ m̂ = m̂(p) by

m̂ ¼ m̂ pð Þ ¼
Zp
p0

1

r p̂ð Þ dp̂; ðA2Þ

where p0 is an unessential reference pressure, we may use the
property that d m̂ = dp/r to obtain

pd
m

r

�
¼ d

pm

r

�
� m

r

�
dp

���
ðA3Þ

¼ d
pm

r

�
� md m̂ð Þ ¼ d

pm

r
� m̂m

� �
þ m̂dm:

�

Thus (A1) can be transformed to another perfect differential
which is well known in the thermodynamics of mixtures,
namely,

sijdeij þ m̂dm ¼ d U þ m̂m� p
m

r

�
:

�
ðA4Þ

[61] While it is unessential for what follows, the expression
of (A2) for m̂ may be seen to be consistent with interpreting
m̂dm as the total reversible work of extracting an element of
mass dm from a reservoir of fluid at a reference pressure and
fluid density ( p0, r0 = r(p0)), and inserting it (say, through a
porous screen) into a porous medium at a place where the
pore pressure and fluid density are (p, r). We assume that
temperature is the same in the reservoir as in the place of
insertion and calculate the work in three steps, as follows: (1)
work of withdrawal from reservoir, �p0dm/r0 (note that dm/r0
is the volume withdrawn from the reservoir), (2) work of
changing density from r0 to r, which is �dm

R
r0
rpd(1/r). (3)

Work of inserting the fluid at the place where pressure is p,
which is pdm/r (dm/r is the volume inserted). The sum is
m̂dm, so that

m̂dm ¼ �po
dm

ro
� dm

Zr
ro

pd 1=rð Þþp
dm

r
¼ dm

Zp
po

1=rð Þdp; ðA5Þ

which is consistent with the expression for m̂ in (A2).
[62] By a final rearrangement, we obtain

�eij dsij þ m̂dm ¼ dV ðA6Þ

as a perfect differential, where V = U + m̂m � p(m/r) � sijeij.
Regarding V as a function of the set of stresses [s] and fluid mass
m, V = V([s], m), it therefore follows that

m̂ ¼ @V s½ 
;mð Þ
@m

; eij ¼ � @V s½ 
;mð Þ
@sij

: ðA7Þ

Recognizing that @2V([s], m)/@mdsij must be independent of the
order of differentiation, the Maxwell reciprocal relation

@m̂ s½ 
;mð Þ
@sij

¼ � @eij s½ 
;mð Þ
@m

ðA8Þ

must be valid. Its left side can be rewritten as

@m̂ s½ 
;mð Þ
@sij

¼ @m̂ pð Þ
@p

� �
@p s½ 
;mð Þ

@sij
¼ 1

r
@p s½ 
;mð Þ

@sij
; ðA9Þ

and so the Maxwell relation is equivalent to

@p s½ 
;mð Þ
@sij

¼ �r pð Þ @eij s½ 
;mð Þ
@m

: ðA10Þ
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[63] We recognize that @p([s], m)/@sij as being a generalization
of the Skempton coefficient B, valid for the anisotropic case as
well, and make the definition

Bij

3
¼ @p s½ 
;mð Þ

@sij
ðA11Þ

to define a Skempton tensor, with property that �p = �B�sij/
3 under undrained conditions. (Of course, in the isotropic case,
Bij = Bdij.) The Maxwell relation then gives us an
interpretation of, and alternative way of understanding, the
Skempton tensor as

Bij ¼ 3r
@eij s½ 
;mð Þ

@m
: ðA12Þ

Appendix B. Short-Term Pore Pressure
Equilibrium Between Fault Zone
and Surrounding Crust

[64] The fault is modeled as a zone of thickness h (see Figure 1),
which has uniform permeability k0, fluid viscosity h0, and storage
modulus N0 (defined below). The surrounding crust is modeled as a
pair of semi-infinite domains with corresponding parameters k, h,
N. Our analysis of short-time undrained response shows that at
time t = 0+ the fault has the pore pressure change �p0 (which we
have calculated in (13) as �B0 times a linear combination of �s33/
3 and �s33), whereas the surrounding crust has the change �p =
�B�skk/3.
[65] The poroelastic equations then allow us to model the

evolution of the pore pressure in the fault toward its longer time
limit �p = �B�skk/3. Recognizing that only e33 and no other
strain varies with time, and noting that s33 is uniform, the same
inside and outside the fault, the problem is recognized as one of
one-dimensional consolidation. The governing equations within
the fault and the crustal domains, respectively, incorporating
Darcy’s law and conservation of mass of the diffusing fluid, for t
> 0 take the forms of

�

dz
k 0

h0
dp z; tð Þ

dz

� �
¼ 1

N 0
dp z; tð Þ

dt
; �h=2 < z < h=2

d
dz

kh
dp z; tð Þ

dz

� �
¼ 1

N

dp z; tð Þ
dt

; z > h=2; z < �h=2;

where z is the spatial coordinate in the 3 direction, perpendicular to
the fault. These are homogeneous diffusion equations for p. The
general consolidation equations instead involve a homogeneous
diffusion equation for m [Rice and Cleary, 1976], not p, but reduce
to such an equation for P in the case of one-dimensional straining,
like here. The diffusivities c0 = k0N0/h0 and c = kN/h. Their solution
will be even in z and must satisfy, for t > 0,

p
h�

2
; t

� �
¼ p

hþ

2
; t

� �
k 0

h0
dp z; tð Þ

dz

� �
z¼h

��
2

¼ k

h
dp z; tð Þ

dz

� �
z¼h

þ�
2

The storage modulus N (inverse of the storage coefficient) is
defined such that dm = r0dp/N is the increase in fluid mass content
when the pressure varies under conditions of one-dimensional
strain, with s33 held constant. Expressions for it can be extracted
from those for c in the sources mentioned on poroelasticity [Biot,
1941, 1956; Rice and Cleary, 1976; Kuempel, 1991; Wang, 2000],

since N = ch/k. Thus, from equation (17) of Rice and Cleary
[1976], but with their expressions in terms of Poisson ratios
rewritten in terms of moduli used earlier here, we have N =
B2Ku

2M/(Ku � K)Mu.
[66] Measuring P relative to its value at time t = 0� (just before

the earthquake), so that p = �p0 in the fault zone and �p outside in
the crust at t = 0+, and letting

p̂ z; sð Þ ¼
Z1
0

p z; sð Þe�stdt

be the Laplace transform, the solution of the above equation set is

p̂ z; sð Þ ¼ dp0 0þð Þ
s

�
�p0 0þð Þ ��p½ 
cosh z

ffiffiffiffiffiffiffiffi
s=c0

p� �
s cosh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �
þ

ffiffi
r

p
sinh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �	 
 zjzj < h=2

p̂ z; sð Þ ¼ �p

s
þ

�p0 0þð Þ ��p½ 

ffiffi
r

p
sinh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �
exp � jzj � h=2ð Þð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �
s cosh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �
þ

ffiffi
r

p
sinh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �	 
 jzj > h=2;

where now �p0(0+) is the same as �p0 of (13), and the parameter:

r ¼
k0
h0

� �
N

k
h

� �
N 0

¼ c0

c

N

N 0

� �2

:

[67] It is simplest to invert the transform solution for the pore
pressure at the center of the fault zone, and we use the notation

�p0 tð Þ � p 0; tð Þ;

so that

�p̂0 sð Þ � p̂ 0; sð Þ:

Then

�p̂0 sð Þ ��p=s

�p0 0þð Þ ��p
� 1

s
1� 1

cosh h=2ð Þ
ffiffiffiffiffiffiffiffi
s=c0

p� �
þ

ffiffi
r

p
sinh h=2ð Þ

ffiffiffiffiffiffiffiffi
s=c0

p� �
 !

:

The Bromwich inversion integral is then

�p0 tð Þ ��p

�p0 0þð Þ ��p
¼ 1

2pi

Z0þþi1

0þ�i1

�p̂0 sð Þ ��p=s

�p0 0þð Þ ��p

� �
estds: ðB1Þ

Since the integrand vanishes rapidly enough as jsj !1 and has no
poles (at least when r > 0) but has a branch cut along the negative
real S axis, the inversion path can be distorted to run from �1 to 0
along the lower side of the cut and from 0 to �1 along the upper
side. We make the substitution s = �4c0x2/h2 in the inversion
integral, where x is real and nonnegative along the distorted
inversion path, and note that

est ¼ exp �4c0t=h2
� �

¼ exp � 1þ rð Þx2t=2td
� �

;

where

td ¼
h2

8c0
þ h2

8c

N

N 0

� �2

:
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We find from numerical evaluations that td gives the time at which
the pore pressure at the center of the fault has evolved
approximately halfway toward its longer time limit of �p =
�B�skk/3. Hence

�p0 tð Þ ��p

�p0 0þð Þ ��p
¼ 2

ffiffi
r

p

p

Z1
0

sin xð Þexp � 1þ rð Þx2t=2td½
x cos2 xð Þ þ r sin2 xð Þ
� �

 !
dx: ðB2Þ

The integral converges rapidly for t > 0 and can be evaluated by
standard numerical integration schemes, although the number of
numerical subdivisions becomes very large when r is either very
large or small compared to unity. Fortunately, the limit cases can be
treated separately. We find that when r = 0 (crust very much more
permeable than the fault zone), the branch cut changes into a row
of simple poles, giving

�p0 tð Þ ��p

�p0 0þð Þ ��p
¼ 4

p

X1
n¼0

�1ð Þn

2nþ 1
exp � 2nþ 1ð Þ2 p

2t

8td

� �
r ¼ 0;

in which case td = h2/8c0. That is just the classical Terzaghi one-
dimensional consolidation solution for a layer which is freely
drained at both sides.
[68] Also, either direct treatment or use of the substitution y =

x
p
r and taking the limit r ! 1 (fault zone very much more

permeable than crust) gives

�p0 tð Þ ��p

�p0 0þð Þ ��p
¼ 2

p

Z1
0

exp �y2t=2tdð Þ
1þ y2

� �
dy

r ¼ 1;

in which case,

td ¼
h2

8c

N

N 0

� �2

:

The above expressions have been plotted in Figure 7 for various
values of r on short and long timescales.
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ERRATA CORRIGE  (this compilation: 4 October 2002)

1. James R. Rice's correct affiliation (first page, just below title) is:
Department of Earth and Planetary Sciences and Division of Engineering and Applied
Sciences, Harvard University, Cambridge, Massachusetts.

2. There is a mistake in the equation included in Figures 4 and 5 for the isotropic
poroelastic model. The correct equation is: ∆ ∆ ∆ Β∆CFF n kk= + −( )τ µ σ σ / 3 .  The
figures were computed with the proper sign and are correct; only that equation is
misprinted.

3. Paragraph [38], Equation (21) should be: B p mij ij= 3∂ σ ∂σ([ ], ) /  (correcting the

placement of the closing square bracket and eliminating the unnecessary curly brackets).

4. Paragraph [40], Equation (22) should be: B m mij ij= 3ρ∂ε σ ∂([ ], ) /  (again, correcting the

placement of the closing square bracket and eliminating the unnecessary curly brackets).

5. End of paragraph [44]:  The correct relation is: ∆ Β∆′ = −p kkσ / 3  (instead of
∆ ∆′ ≈ −p kkσ / 3).

6. Appendix A, Equation (A3): The expression following the last equal sign should be:

d
pm

m dm
ρ

µ µ−








+ˆ ˆ

7. Appendix B, paragraph [65]: The upper case P which appears between the two sets of
equations in that paragraph should instead be lower case p.

8. Appendix B, paragraph [65]: Last member of second set of equations has the lower
case deltas within both parentheses. All four such deltas should be the partial derivative
sign (δ  should be replaced by ∂).

9. Appendix B, paragraph [66]: The first term on the right of the second equation has a
lower case delta in the numerator which should be an upper case delta (δ  should be
replaced by ∆).
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[1] In the paper ‘‘Pore pressure and poroelasticity effects
in Coulomb stress analysis of earthquake interactions’’ by
Massimo Cocco and James R. Rice (Journal of Geophysical
Research, 107(B2), 2030, doi:10.1029/2000JB000138,
2002), there are several corrections as follows:
1. James R. Rice’s correct affiliation (first page, just

below title) should be Department of Earth and Planetary
Sciences and Division of Engineering and Applied
Sciences, Harvard University, Cambridge, Massachusetts.
2. There is a mistake in the equation included in Figures

4 and 5 for the isotropic poroelastic model. The correct
equation is �CFF = �t + m(�sn � B�skk/3). The figures
were computed with the proper sign and are correct, only
the text is wrong.
3. Paragraph [38], Equation (21) should be Bij = 3@p([s],

m)/@sij (correcting the placement of the closing bracket and
eliminating the unnecessary curly brackets).

4. Paragraph [40], Equation (22) should beBij= 3r@eij([s],
m)/@m (again, correcting the placement of the closing bracket
and eliminating the unnecessary curly brackets).
5. End of paragraph [44]: The correct relation is �p0 =

�B�skk/3 (instead of �p � ��skk/3).
6. Appendix A, equation (A3): The expression following

the last equals sign should be d
�
pm
r � m̂m

�
þ m̂dm.

7. Appendix B, paragraph [65]: The capital P that appears
between the two sets of equations in that paragraph should
instead be lowercase p.
8. Appendix B, paragraph [65]: Last member of second set

of equations has the lower case deltas within both
parentheses. All four such deltas should be the partial
derivative sign (d should be replaced by @).
9. Appendix B, paragraph [66]: The first term on the right

of the second equation has a lowercase delta in the numerator
which should be an capital delta (d should be replaced by�).
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