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Pore-scale dynamics and the multiphase Darcy law
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Synchrotron x-ray microtomography combined with sensitive pressure differential mea-

surements were used to study flow during steady-state injection of equal volume fractions

of two immiscible fluids of similar viscosity through a 57-mm-long porous sandstone

sample for a wide range of flow rates. We found three flow regimes. (1) At low capillary

numbers, Ca, representing the balance of viscous to capillary forces, the pressure gradient,

∇P, across the sample was stable and proportional to the flow rate (total Darcy flux)

qt (and hence capillary number), confirming the traditional conceptual picture of fixed

multiphase flow pathways in porous media. (2) Beyond Ca∗ ≈ 10−6, pressure fluctuations

were observed, while retaining a linear dependence between flow rate and pressure gradient

for the same fractional flow. (3) Above a critical value Ca > Cai ≈ 10−5 we observed a

power-law dependence with ∇P ∼ qa
t with a ≈ 0.6 associated with rapid fluctuations of

the pressure differential of a magnitude equal to the capillary pressure. At the pore scale

a transient or intermittent occupancy of portions of the pore space was captured, where

locally flow paths were opened to increase the conductivity of the phases. We quantify the

amount of this intermittent flow and identify the onset of rapid pore-space rearrangements

as the point when the Darcy law becomes nonlinear. We suggest an empirical form of the

multiphase Darcy law applicable for all flow rates, consistent with the experimental results.

DOI: 10.1103/PhysRevFluids.5.013801

I. THE MULTIPHASE DARCY LAW

The multiphase Darcy law for flow in porous media is [1–3]

qp = −
kr pK

μp

(∇Pp − ρpg), (1)

for phase p. kr p is the relative permeability, μp is the fluid viscosity, Pp is the pressure, and ρp is the
fluid density for phase p. g is the acceleration due to gravity, while K is the absolute permeability.
qp is the Darcy flux defined as the volume of fluid phase p flowing per unit area per unit time.
Equation (1) is an empirical expression relating the average flow rate to the pressure (or potential)
gradient averaged over many individual pore spaces. It is used to predict flow in a variety of natural
and engineered processes, including oil recovery and carbon dioxide storage deep underground in
porous rocks [4], as well as flow in membranes, catalysts, and fibrous systems, with application in
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fuel cells [5] and filtration, for instance. The saturation and flow-history dependence of the relative
permeability and its impact on trapping, which governs the security of carbon dioxide storage and
the efficiency of oil recovery, for instance, has been widely studied [6–9]. However, the link between
pore-scale displacement and averaged flow properties is still not fully understood, particularly when,
with increasing flow rate, viscous effects become significant.

In this paper we will consider one example of multiphase flow: the simultaneous flow of two fluid
phases, oil, o, and water, w, of similar viscosity through a porous rock at steady state as the flow rate
is increased. The oil will be the nonwetting phase, with a tendency to occupy the wider pores, while
water will be wetting, and will occupy the smaller pores, as well as corners and roughness. We will
observe that the average saturation is approximately uniform across the sample. In this case, the
macroscopic capillary pressure Pc(Sw ) = Po − Pw will be constant. Since there is flow from high to
low pressure, there will be a pressure gradient in each phase. However, since the pressure difference
between the phases is fixed, the pressure gradients in the oil and water phases will be the same
(∇Po = ∇Pw = ∇P); however, the flow rates of each phase and their saturations can be different.
We assume that the sample size exceeds a representative elementary volume, REV, so that averaged
saturation-dependent macroscopic flow properties can be defined [3]. We also consider fluctuations
in pore-scale configurations that occur below the REV. In this case, and ignoring the effects of
gravity, from Eq. (1) we can write the total Darcy flux, qt = qo + qw as

qt = −λt∇P, (2)

where λp = Kkr p/μp is a mobility and the total mobility λt = λo + λw. We will quantify the
relationship between total flux, qt , and pressure gradient, ∇P. We will keep the fractional flow,
the ratio of the volume of water injected to the total injected volume, fw = qw/qt , fixed.

First, we theoretically examine the effect of flow rate, captured by the balance of viscous to
capillary forces, using a capillary number, defined here as Ca = μqt/σ where μ is the average
viscosity of the two fluids, σ is the interfacial tension between water and oil in what follows (σ is
the interfacial energy per unit area of the fluid-fluid interface). Viscous forces dominate at the pore
scale for Ca > Cav ≈ K/lr, where l is a typical distance between pores and r is the mean radius of a
restriction, throat, separating them [10,11]. The term K/lr is a geometric factor which means that the
transition from capillary-controlled to viscous-controlled displacement does not occur when Ca ≈

1, but for a much lower value. We will study Bentheimer sandstone, with K = 1.9 × 10−12 m2,
l = 79 μm, and r = 24 μm [4]. Hence, Cav ≈ 10−3. For Ca ≪ Cav capillary forces dominate at
the pore scale and it is traditionally considered that viscous effects can be ignored. It is assumed that
the fluids occupy fixed pathways, in that the pore-occupancy does not change in steady-state flow,
and Eq. (1) is valid.

However, recent advances in pore-scale imaging using x-rays and confocal microscopy, com-
bined with micromodel experiments and dynamic pore-scale simulation, have demonstrated that
multiphase flow in porous media experiences a complex dynamics even for Ca < Cav [12–21].
Specifically, it has been shown that there is an intermittent flow regime, where locally regions of the
pore space are periodically occupied by one phase and then the other, even though averaged over
many pores, the fluid saturations remain constant [14,17]. Furthermore, the degree of intermittency
has been measured as a function of Ca and the mobility ratio between the fluids, with more
intermittency observed for larger Ca and when the injected phase is less viscous [22,23]. However,
the pore-scale behavior has not been linked to a quantitative assessment of macroscopic flow
properties, and in particular, how the pressure gradient varies with Ca for a fixed fractional flow
and how this is linked to the pore-scale dynamics.

Sinha and coworkers have suggested, based on experiments in bead packs [24] and associated
simulations [24,25], that for Ca < Cav there is a power-law scaling of flow rate with pressure drop,
�P: qt ∼ (�P − Py)1/a with an exponent a ≈ 0.5 and a yield pressure for either phase, Py: there
is no flow for �P � Py. While a yield pressure may be needed to mobilize trapped ganglia for
Ca > Cav , Sinha et al. predict a finite threshold for the whole saturation range. This model also
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implies that at low flow rates the Darcy law, with a linear relationship between pressure gradient
and flow rate, is not valid.

This paper aims to study the relationship between flow rate, pressure gradient and pore-scale
fluid occupancy using synchrotron x-ray imaging with a high spatial and temporal resolution. We
investigate the behavior when an equal volume of oil and water at steady-state is injected through
a sandstone for a range of flow rates to determine flow regimes. While only a single rock type
and fractional flow is studied, we seek to uncover the evolution of a complex pore-scale dynamics
by quantifying time-dependent fluid rearrangements in the pore space. We propose a mathematical
model for the rate dependence of the pressure gradient that is consistent with our measurements,
bearing in mind that further work is required to test its general applicability.

The structure of the rest of the paper is as follows. We first describe the experimental methods
in Sec. II. We then place the results in context in Sec. III A by providing a theoretical analysis for
the threshold capillary numbers when viscous forces have an effect, based on a pore-scale energy
balance. We then delineate our proposed flow regimes using the measured pressure gradients in
Sec. III B. We follow this by a quantitative analysis of pore-scale fluid occupancy provided by our
time-resolved imaging in Sec. III C.

II. IMAGING EXPERIMENTS

We imaged steady-state two-phase flow at the Diamond synchrotron in Oxfordshire, UK. The
methods and apparatus are described in detail elsewhere [17,26]; using pink-beam radiation with
a range of x-ray energies [14] images were acquired every 60 s. High-precision pumps injected
both brine, the wetting phase (deionized water with 15 weight % potassium iodide, KI, dissolved
to improve image contrast), and oil (n-decane), the nonwetting phase, at a fractional flow of 0.5
through a cylindrical sample of water-wet Bentheimer sandstone of diameter 6.01 mm and length
57.11 mm. The experiments were conducted at ambient temperature, 20 ◦C, and a fluid pressure of
2 MPa. The measured viscosity of the water was 0.83 ± 0.01 mPas, while n-decane had a viscosity
of 0.838 mPas (PubChem, open chemistry database).

The flooding sequence was as follows:
(1) A dry scan was taken with 2 MPa confining pressure, which compresses the Viton sleeve

outside the core to avoid fluid bypass.
(2) CO2 was injected into the sample for half an hour to displace air.
(3) The 15 wt% brine was injected to completely saturate the sample: any trapped CO2 was

dissolved. A differential pressure transducer was installed in the tubing (Keller PD-33X). The
measurement accuracy was ±250 Pa up to 500 kPa. This pressure differential was continuously
monitored with readings taken every 2 s.

(4) The brine-saturated sample was scanned. A back pressure of 2 MPa was set for the whole
system.

(5) Oil was injected at 2 ml/min for 30 min to reach the initial brine saturation.
(6) Then brine and oil were injected for fractional flows fw of 0.15 and 0.3 by keeping the total

volumetric flow rate fixed at 0.02 ml/min. Each fractional flow was injected for 90 min.
(7) Brine and oil were injected at an equal flow rate of 0.01 ml/min each: the fractional flow

was 0.5. At the same time, the pressure drop across the whole sample was recorded during the
experiment. Injection continued for at least two hours to allow the pressure to stabilize. Three-
dimensional images were taken every minute for the final 30 min of flow.

(8) The total flow rate was increased to 0.04 ml/min, 0.08 ml/min, 0.4 ml/min, 0.8 ml/min,
1.2 ml/min, and 4 ml/min step by step while the fractional flow was kept at 0.5. For each flow rate,
we waited 2 h until steady state was reached. Scans were taken every minute for the final 30 min
during injection at each flow rate.

(9) After cleaning all the tubing and end fittings used in the experiment, steps 5 to 8 were
applied to the whole system without the rock sample. The pressure drops of the apparatus itself
were recorded at all flow rates.
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(10) The pressure differences were calculated by subtracting the pressure drops along the tubing
measured at step 9 from the total pressure drops measured from steps 7 and 8. The pressure gradients
were computed as the average of these pressure differences during the final 30 min at each steady-
state divided by the length of the sample, 57.11 mm.

Images were acquired using 1 000 projections with an exposure time of 0.04 s. The total
acquisition time for each image was 1 min: 40 s to take the projections and around 20 s to transfer
the data from camera to computer and rotate the sample back to the starting position. The number of
projections was chosen to optimize the resolution of the final images without significantly increasing
the acquisition time. The lowest flow rate corresponded to Ca = 2.1 × 10−7, while the highest rate
had Ca = 4.2 × 10−5.

III. DETERMINATION OF FLOW REGIMES

A. Critical capillary numbers derived from energy balance

To provide a theoretical foundation to identify flow regimes, we first perform an analysis of pore-
scale dynamics based on an energy balance and then compare with experiment. When a nonwetting
phase is displaced by a wetting phase (oil by water in this paper), the nonwetting phase can become
trapped, meaning that it is completely surrounded by wetting phase [4]. For flow rates below Cav

viscous forces are insufficient to mobilize these trapped ganglia, that is, to push them through the
pore space [27]. Instead viscous effects allow interfaces to be formed and then destroyed to facilitate
flow, which can be understood from an energy balance [14,28].

Instead of calculating the pressure necessary to force a fluid through a throat, we find the
interfacial energy needed to create an interface at the pore scale and relate this to the energy provided
by fluid injection. This interfacial energy is approximately σ r2 (the energy per unit area times a
typical area of an interface in a single pore), while the energy added to the system due to the flow
�PdV is, over a length l , equal to −∇Pφl4, where φ is the porosity (the pore volume dV = φl3

while �P = −l∇P). Therefore, the interfacial energy needed to create an interface is balanced by
the work done by the flow when

σ r2 ∼ −∇Pφl4. (3)

Then using ∇P ∼ −μqt/K from from Eq. (2) this occurs at a threshold capillary number

Ca ≈
Kr2

φl4
. (4)

The intermittent creation and destruction of interfaces can lead to two effects which we will
describe in more detail later, based on an analysis of our pore-scale images. The first one is a
rearrangement of fluids in the pore space, which may lead to a shift in saturation, but without
changing the flow conductance: we define Ca∗ as the capillary number at which this occurs.
The second effect is to cause a noticeable change in both saturation and conductance, facilitating
the flow of both fluids for Cai

� Ca∗. We hypothesize that Cai has a value less than or equal to the
threshold given by Eq. (4) and hence

Ca∗
� Cai

�
Kr2

φl4
. (5)

For Bentheimer sandstone Cai
� 10−4 for φ = 0.2, at least one order of magnitude lower than Cav

due to different geometric scaling factors.
Note the extreme sensitivity to l in Eq. (5): we provide a conservative limit on the threshold

capillary numbers, but cannot be more quantitative without direct experimental measurements,
which we present next.

This interpretation of pore-scale dynamics is related to the concept of a macroscopic capillary
number [29]: viscous forces allow the periodic connection and disconnection of clusters of the
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FIG. 1. Experimentally measured pressure gradient, ∇P, as a function of capillary number, Ca = μqt/σ

plotted on base-10 logarithmic axes. (1) For Ca � Ca∗ ≈ 10−6, ∇P ∼ Ca with fixed flow paths of the phases,

consistent with the traditional multiphase Darcy law, Eq. (1). (2) For Cai
� Ca > Ca∗ we observe the onset of

dynamics, defined as when there is some intermittency but the Darcy law remains valid. (3) For Cav > Ca >

Cai ≈ 10−5 intermittent flow occurs where ∇P ∼ Caa, Eq. (6), with an empirical exponent a = 0.60 ± 0.01.

The dotted lines are fits to the data assuming Eq. (1) for the first five points and Eq. (6) for the three points

with the highest flow rate. The error bars reflect the standard deviation in the pressure measurements, evident

in Fig. 2, and the measurement accuracy.

nonwetting phase. In this work we study steady-state flow and quantify the relationship between
flow rate and pressure gradient: A theoretical framework to describe a wider range of phenomena
including the reduction in trapped saturation with flow rate and its relationship to displacement
cycles is presented elsewhere [30,31].

This analysis has only provided an upper bound on the threshold capillary numbers. Next we
present the pressure measurements which we use to identify flow regimes and to quantify the values
of Ca∗ and Cai. This analysis is then further supported through a quantification of fluid occupancy
based on pore-space images.

B. Measurements of pressure gradient

At the lowest flow rates Ca is proportional to the pressure gradient, ∇P, Eq. (1), followed by a
transition to the intermittent flow regime with a nonlinear relationship between pressure gradient
and Ca, ∇P ∼ Caa, as demonstrated in Fig. 1. In the Darcy regime we consider the five points
with the lowest flow rates and find the best-fit straight line on linear axes with an intercept of zero,
where R2 = 0.995. We estimate Cai = 10−5 as the value when we first see a deviation from the
linear Darcy law, and we fit a power-law to the three points with the highest flow rates to find
a = 0.60 ± 0.01.

The measured Cai is ten times lower than the upper bound given by Eq. (5). However, note the
fourth-power scaling with l . As shown later, intermittency allows a significant rearrangement of
fluid configurations over a few pore lengths – this regime starts when the viscous dissipation is
equivalent to the interfacial energy over approximately 2 pore lengths.

In the capillary-controlled limit (1), the pressure differential shows only tiny deviations of
around 0.5 kPa, the sensitivity of the transducer, Fig. 2. However, at higher flow rates we see the
onset of pressure fluctuations [16,17,24,32]; their magnitude, around 10 kPa, is consistent with
the independently measured capillary pressure [26]. These fluctuations start at around Ca = 10−6,
below Cai but initially do not affect the flow conductance. At the highest rates, the fluctuations
are smaller: The fluid rearrangements may be too rapid for the pressure transducer to respond. The
typical period of these oscillations was around 10 s; however, we cannot capture fluctuations that
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FIG. 2. The pressure differential as a function of time; the capillary numbers are also indicated. At the

lowest flow rates, in the capillary-dominated regime (1), the trace is constant, indicating a fluid configuration

that does not change over time, or when the flow rate is altered. At Ca∗ ≈ 10−6 we see the onset of pressure

fluctuations and pore-scale dynamics, regime (2). A significant impact on flow conductance is seen for Ca >

Cai ≈ 10−5, regime (3). These fluctuations are of a magnitude equal approximately to a characteristic capillary

pressure, indicative of local pore-scale displacement, shown in the inset.

occur more rapidly than the 2 s sampling time. Since these rearrangements can occur anywhere in
the pore space, their frequency is dependent both on the number of pores (and hence the size of the
system) and on the period of the individual events themselves.

Based on these measurements our suggested flow regimes are shown in Fig. 1. We assume that
transient effects have dissipated [12,32].

(1) For Ca � Ca∗ we have capillary-dominated flow described by Eq. (1): ∇P ∼ Ca. This
regime is identified by a constant pressure differential as a function of time, shown in Fig. 2.

(2) For Cai
� Ca > Ca∗ we retain a linear Darcy law, Eq. (1), for fixed fractional flow, but with

some rearrangement of fluids in the pore space which may change the saturation. However, there is
no significant impact on conductance. We call this the onset of dynamics. In the experiments Ca∗ ≈

10−6 identified as when the first pressure fluctuations are observed, which indicate the presence of
pore-scale displacements even at steady state, Fig. 2.

(3) For Cav > Ca > Cai we observe similar behavior to that described by Refs. [24,33], which
we call intermittent flow, albeit with no yield pressure. ∇P ∼ Caa with an exponent a = 0.60 ± 0.01
based on the data shown in Fig. 1. Cai is identified when there is first a deviation from a linear
relationship between Ca and ∇P: in our experiments this occurs at Cai ≈ 10−5 as shown in Fig. 1.

In regime 3 for fixed fractional flow and ignoring gravity we propose that the scaling between
total Darcy flux and pressure gradient is written as follows:

qt | fw = −λt

∇P1/a

∇Pi(1/a−1)
, (6)

where ∇Pw = ∇Po ≡ ∇P. ∇Pi is the pressure gradient at the beginning of the intermittent flow
regime when Ca = Cai: the term in the denominator ensures that Darcy flow, Eq. (2), is obtained
smoothly for Ca � Cai. We assume that λt = λ0

t , its value in the slow-flow Darcy regimes (1) and
(2) for a fixed value of fw. We encapsulate the rate dependence through a nonlinear scaling of the
pressure gradient, see Fig. 1, rather than writing the total mobility as a function of flow rate.

For Ca � Cav there is the viscous limit when capillary forces are weak at the pore scale, which
has been studied previously [10,24,25,34]. Here again the flow rate is proportional to the pressure
gradient and Eq. (2) is obeyed, with qt = −λv

t ∇P where λv

t is the total mobility in the viscous limit.
Capillary forces still play a role: for instance, the fluid patterns are sensitive to wettability [35].
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However, the emphasis of this paper is to study the flow regimes for which viscous forces are small
at the pore scale, Ca < Cav , yet influence the fluid dynamics.

The exponent a in the scaling law, Eq. (6) is an empirical fit to the measurements. The exponent
can be obtained by considering the behavior for the capillary and viscous limits. For Ca < Cai the
total mobility is λ0

t while for Ca > Cav the total mobility is λv

t . Then for continuity when Ca = Cav ,
and the pressure gradient is ∇Pv , Eqs. (2) and (6) imply

λo
t

∇Pv(1/a)

∇Pi(1/a−1)
= λv

t ∇Pv, (7)

which, since in the viscous and capillary limits Cav ∼ λv

t ∇Pv and Cai ∼ λ0
t ∇Pi respectively, Eq. (7)

becomes

λv

t

λ0
t

=

(

Cav

Cai

)1/a−1

. (8)

All the terms in Eq. (8), except a, are fixed by the porous medium geometry, the viscous limit and
the Darcy flow configurations. Hence, a is an empirical fit, extrapolating between well-established
limits.

While the evidence for regime 3 is based on only a few data points in Fig. 1, it is possible to argue
that it has to exist, even if a strict power-law dependence between flow rate and pressure gradient
is not observed. This is because the total mobility in the capillary limit is lower than in the viscous
limit: λv

t > λ0
t [10,36]. Hence, the total mobility has to vary between these two values as flow rate

is increased which requires a nonlinear scaling between Ca and ∇P.
The flow regimes displayed in Fig. 1 are supported not just by the pressure measurements, but

by direct pore-space imaging of the displacement, shown next. However, these are hypothesized
based on simple scaling arguments and energy balance: it is likely that if the full range of flow
conditions, namely, different fractional flows, viscosity ratios, rocks types, and wettability, an even
richer behavior may emerge. We cannot, for instance, in these experiments determine the saturation
dependence of fractional flow and relative permeability.

C. Pore-scale imaging

Three-dimensional images with 109 voxels of size 5.2 μm were acquired every minute. The final
30 images at each flow rate were used for quantitative analysis. These tomograms were segmented to
show the solid, brine, and oil phases using differential imaging; the details are provided elsewhere
[17,37]. The saturation averaged in slices perpendicular to the flow direction was constant in all
cases: we saw no capillary end effect.

At the lowest flow rates, the fluid configurations remained fixed in time, even when the flow rate
was increased. As illustrated in Fig. 3, the oil may follow tortuous paths through the largest regions
of the void space. In the intermittent regime, there is sufficient energy to allow the oil to short circuit
some of these pathways to decrease the overall flow resistance. However, these connections are not
fixed. Oil moves, not as disconnected ganglia [38] but along pathways that intermittently connect
and reconnect at critical junctions, like cars controlled by traffic lights [14].

From the final 30 images at each flow rate the average saturation was recorded. The results are
shown in Table I together with the observed flow regimes. At the lowest flow rates, under capillary
control, regime (1), the saturation remains constant, within the measurement uncertainty, while the
pressure trace, see Fig. 2, was constant. Then we observe a shift in both saturation and the onset of
dynamic effects, regime (2), with pressure fluctuations and local rearrangements of the pore space,
but without a deviation from Darcy flow. At the highest flow rates the saturation change is more
significant, indicating the intermittent flow regime (3).

We measured the fraction of the pore space in which the fluids rearranged. We observed two
types of fluctuation: type 1, is when we see a change in the phase occupying a voxel from one scan
to the next, representing variations in configuration that occur over a minute or more. Type 2 is when
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FIG. 3. Segmented images of selected regions of the pore space. (a) A two-dimensional cross-section of a

three-dimensional image in the capillary-dominated regime, Ca = 2.1 × 10−7, with oil shown in red, solid in

gray and brine in black. (b) An example three-dimensional configuration where only oil is shown in red, also for

Ca = 2.1 × 10−7 in the capillary controlled regime 1. The oil is constrained to occupy only the larger portions

of the pore space and has insufficient energy to connect the two regions shown by the ellipse. (c) The same

portion of the sample is shown at a higher flow rate, with intermittent flow, regime (3), where Ca = 4.2 × 10−5.

Here the oil has sufficient energy to make the short-cut to open up a more conductive flow path. The colors

indicate different isolated clusters of oil. (d) This pathway is not fixed, however, and an image, taken 10 min

later, at the same flow rate, Ca = 4.2 × 10−5, shows that the connection has been temporarily broken. The

numbers in brackets refer to the flow regime, while the times shown refer to when the scan is taken; see Fig. 2

for the corresponding pressure signal.

the fluctuations are sufficiently rapid that they occur within 1 minute: we cannot explicitly see the
changes; instead a voxel has an intermediate gray-scale value between water and oil. The fraction
of the number of void-space voxels that are type 1 or type 2 are shown as a function of capillary
number in Fig. 4(a). For type 1 we measure the fraction of the voxels that change occupancy from
oil to water or vice versa between two consecutive scans, averaged over the final 30 scans at each
flow rate. For type 2 we record the fraction of intermediate gray-scale voxels. The error bars indicate
the standard deviations in these measurements from image to image.

TABLE I. Calculated water saturations, Sw , at the capillary numbers, Ca, indicated. The uncertainty in

saturation is approximately ±0.015. The observed flow regimes, see Fig. 1, are also shown.

Ca 2.1 × 10−7 4.2 × 10−7 8.3 × 10−7 4.2 × 10−6 8.3 × 10−6 1.3 × 10−5 2.6 × 10−5 4.2 × 10−5

Regime 1 1 1 2 2 3 3 3

Sw 0.528 0.528 0.555 0.561 0.595 0.609 0.680 0.700
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FIG. 4. (a) The fraction of void-space voxels for which the fluid occupancy changes from one scan to the

next (type 1, left axis) and during a scan (type 2, right axis) as a function of capillary number Ca. The scans

were taken every 60 s. The values are averaged over the final 30 images at each Ca. The error bars indicate

the standard deviation. Regime 1 has no rapid oscillations (type 2) and very few type 1 changes. Regime 2

again has no type 2 intermittency, but more sustained low-frequency rearrangements, while in regime 3 we see

significant fluctuations of both types, leading to a change in flow conductance. (b) The fraction of void-space

voxels for which the fluid occupancy changes from one scan to the next (type 1) as a function of time during

the final half hour of the scans. In regime 1 there are periods with no changes in fluid configuration, while in

regime 2 there are always some low-frequency periodic rearrangements.

In regime 1, capillary controlled, we see no rapid type 2 fluctuations and only occasional,
low-frequency alterations, as shown in Fig. 4(b) which shows the fluid occupancy as a function
of time during the final 30 min of the scans; in fact, there are periods when there is no change in
the pore-scale occupancy at all. The fluids effectively move through fixed pathways. Regime 2 is
characterized by more frequent type 1 rearrangements that are seen between every scan, but there
are no high-frequency fluctuations and there is no apparent impact on the linearity of the Darcy law.
In regime 3, rapid, type 2, changes in occupancy occur. These are sufficiently extensive to alter the
flow conductance.

IV. DISCUSSION AND CONCLUSIONS

We have studied the relationship between flow rate (total Darcy flux) and pressure gradient for the
simultaneous flow of oil and water of similar viscosity through a small sandstone sample. We have
also simultaneously used fast synchrotron imaging to study the fluid configurations at the pore scale.

We observed three flow regimes.
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(1) The first regime is capillary-controlled flow where, for capillary numbers Ca < 10−6 in these
experiments, our results are consistent with the traditional multiphase Darcy law, showing a linear
relationship between flow rate and pressure gradient where the phases follow fixed pathways. At
the pore scale we see only rare changes in fluid configuration with significant time periods with no
rearrangements at all.

(2) The second regime marks the onset of dynamics, where at a capillary number, Ca∗ ≈ 10−6,
fluctuations in local pressure are observed with an overall shift to lower oil saturation at constant
fractional flow, while the total mobility is approximately unchanged. This is accompanied, at the
pore scale, by low-frequency changes in fluid configuration in a small fraction of the pore space.

(3) At a critical Cai ≈ 10−5 the third regime, intermittent flow, leads to an increased flow
conductance and the onset of a nonlinear relationship between flow rate and pressure gradient. Here
we see rapid, subminute, changes in fluid configuration in a significant fraction of the pore space.
The results were fitted to a power-law relationship between flow rate and pressure gradient.

We suggest that the same flow regimes are seen for different porous systems, fluid pairs, and over
the whole range of fractional flow, albeit with different threshold capillary numbers and exponents,
a. We do not expect to see a threshold pressure gradient for flow at low flow rates if the fluids are
connected.

Future work could study microporous carbonates [39], different fluid viscosity ratios [22,23], the
full range of fractional flows and mixed-wet media [39–42], where intermittent flow may be more
significant than in the water-wet rock studied here [43,44]. Further experimental work could also
determine the saturation and rate dependence of relative permeability for the different flow regimes
outlined here. We propose that accurate pressure measurements during steady-state flow, combined
with pore-scale imaging, allows a detailed characterization of multiphase flow under the conditions
encountered in the subsurface [26,45,46].
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