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Abstract

In this paper, a pore-scale network modeling method, based on the flow con-

tinuity residual in conjunction with a Newton-Raphson non-linear iterative

solving technique, is proposed and used to obtain the pressure and flow fields

in a network of interconnected distensible ducts representing, for instance,

blood vasculature or deformable porous media. A previously derived an-

alytical expression correlating boundary pressures to volumetric flow rate

in compliant tubes for a pressure-area constitutive elastic relation has been

used to represent the underlying flow model. Comparison to a preceding

equivalent method, the one-dimensional Navier-Stokes finite element, was

made and the results were analyzed. The advantages of the new method

have been highlighted and practical computational issues, related mainly to

the rate and speed of convergence, have been discussed.

Keywords: fluid mechanics; one-dimensional flow; Navier-Stokes; distensible

network; compliant porous media; blood circulation; non-linear system.

1 Introduction

There are many scientific, industrial and biomedical applications related to the

flow of fluids in distensible networks of interconnected tubes and compliant porous

materials. A few examples are magma migration, microfluidic sensors, fluid filtering

devices, deformable porous geological structures such as those found in petroleum

reservoirs and aquifers, as well as almost all the biological flow phenomena like

blood circulation in the arterial and venous vascular trees or biological porous

tissue and air movement in the lung windpipes.

There have been many studies in the past related to this subject [1–10]; however

most of these studies are based on complex numerical techniques built on tortuous

mathematical infrastructures which are not only difficult to implement with expen-

sive computational running costs, but are also difficult to verify and validate. The
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widespread approach in modeling the flow in deformable structures is to use the

one-dimensional Navier-Stokes finite element formulation for modeling the flow in

networks of compliant large tubes [5, 11] and the extended Darcy formulation for

the flow in deformable porous media which is based on the poromechanics theory

or some similar numerical meshing techniques [12–15]. Rigid network flow models,

like Poiseuille, may also be used as an approximation although in most cases this

is not really a good one [16].

There have also been many studies in the past related to the flow of fluids in

ensembles of interconnected ducts using pore-scale network modeling especially in

the earth science and petroleum engineering disciplines [17–23]. However, there is

hardly any work on the use of pore-scale network modeling to simulate the flow

of fluids in deformable structures with distensible characteristics such as elastic or

viscoelastic mechanical properties.

There are several major advantages in using pore-scale network modeling over

the more traditional analytical and numerical approaches. These advantages in-

clude a comparative ease of implementation, relatively low computational cost,

reliability, robustness, relatively smooth convergence, ease of verification and val-

idation, and obtaining results which are usually very close to the underlying ana-

lytical model that describes the flow in the individual ducts. Added to all these a

fair representation and realistic description of the flow medium and the essential

physics at macroscopic and mesoscopic levels [24, 25]. Pore-scale modeling, in fact,

is a balanced compromise between the technical complexities and the physical re-

ality. More details about pore-scale network modeling approach can be found, for

instance, in [26].

In this paper we use a residual-based non-linear solution method in conjunction

with an analytical expression derived recently [27] for the one-dimensional Navier-

Stokes flow in elastic tubes to obtain the pressure and flow fields in networks of

interconnected distensible ducts. The residual-based scheme is a standard method

for solving systems of non-linear equations and hence is commonly used in fluid me-

chanics for solving systems of partial differential equations obtained, for example,

in a finite element formulation [11]. The proposed method is based on minimizing

the residual obtained from the conservation of volumetric flow rate on the indi-

vidual network nodes with a Newton-Raphson non-linear iterative solution scheme

in conjunction with the aforementioned analytical expression. Other analytical,

empirical and even numerical relations [28] describing the flow in deformable ducts

can also be used to characterize the underlying flow model.
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2 Method

The flow of an incompressible Newtonian fluid in a tube with length L and cross

sectional area A assuming a laminar axi-symmetric slip-free flow with a fixed profile

and negligible gravitational body forces can be described by the following one-

dimensional Navier-Stokes system of mass and momentum conservation relations

∂A

∂t
+

∂Q

∂x
= 0 t ≥ 0, x ∈ [0, L] (1)

∂Q
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+

∂

∂x

(
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A

)
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ρ
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∂x
+ κ

Q

A
= 0 t ≥ 0, x ∈ [0, L] (2)

where Q is the volumetric flow rate, t is the time, x is the axial coordinate along

the tube, α is the momentum flux correction factor, ρ is the fluid mass density, p

is the local pressure, and κ is the viscosity friction coefficient which is normally

given by κ = 2παν
α−1

with ν being the fluid kinematic viscosity defined as the ratio

of the dynamic viscosity µ to the mass density [11, 16, 29–31]. These relations

are usually supported by a constitutive relation that correlates the pressure to the

cross sectional area in a distensible tube, to close the system in the three variables

A, Q and p.

The usual method for solving this system of equations for a single compliant

tube in transient and steady state flow is to use the finite element method based

on the weak formulation by multiplying the mass and momentum conservation

equations by weight functions and integrating over the solution domain to obtain

the weak form of the system. This weak form, with suitable boundary conditions,

can then be used as a basis for finite element implementation in conjunction with

an iterative scheme such as Newton-Raphson method. The finite element system

can also be extended to a network of interconnected deformable tubes by imposing

suitable boundary conditions, based on pressure or flux constraints for instance,

on all the boundary nodes, and coupling conditions on all the internal nodes. The

latter conditions are normally derived from Riemann’s method of characteristics,

and the conservation principles of mass and mechanical energy in the form of

Bernoulli equation for inviscid flow with negligible gravitational body forces [32].

More details on the finite element formulation, validation and implementation are

given in [11].

The pore-scale network modeling method, which is proposed as a substitute for

the finite element method in steady state flow, is established on three principles:

the continuity of mass represented by the conservation of volumetric flow rate for
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incompressible flow, the continuity of pressure where each branching nodal point

has a uniquely defined pressure value [32], and the characteristic relation for the

flow of the specific fluid model in the particular structural geometry such as the

flow of power law fluids in rigid tubes or the flow of Newtonian fluids in elastic

ducts. The latter principle is essentially a fluid-structure interaction attribute of

the adopted flow model especially in the context of compliant ducts.

In more technical terms, the pore-scale network modeling method employs an

iterative scheme for solving the following matrix equation which is based on the

flow continuity residual

J∆p = −r (3)

where J is the Jacobian matrix, p is the vector of variables which represent the

pressure values at the boundary and branching nodes, and r is the vector of resid-

uals which is based on the continuity of the volumetric flow rate. For a network of

interconnected tubes defined by n boundary and branching nodes the above matrix

equation is defined by
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where the subscripts stand for the nodal indices, p and r are the nodal pressure

and residual respectively, and f is the flow continuity residual function which, for

a general node j, is given by

fj =
m
∑

i=1

Qi = 0 (5)

In the last equation, m is the number of flow ducts connected to node j, and Qi

is the volumetric flow rate in duct i signed (+/−) according to its direction with

respect to the node, i.e. toward or away. For the boundary nodes, the continuity

residual equations are replaced by the boundary conditions which are usually based

on the pressure or flow rate constraints. In the computational implementation, the

Jacobian is normally evaluated numerically by finite differencing [11].

The procedure to obtain a solution by the residual-based pore-scale modeling

method starts by initializing the pressure vector p with initial values. Like any

other numerical technique, the rate and speed of convergence is highly dependent

on the initial values of the variable vector. The system given by Equation 4 is then
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constructed where the Jacobian matrix and the residual vector are calculated in

each iteration. The system 4 is then solved for ∆p, i.e.

∆p = −J−1r (6)

and the vector p in iteration l is updated to obtain a new pressure vector for the

next iteration (l + 1), that is

pl+1 = pl +∆p (7)

This is followed by computing the norm of the residual vector from the following

equation

N =

√

r21 + · · ·+ r2n
n

(8)

where r is the flow continuity residual. This cycle is repeated until the norm is less

than a predefined error tolerance or a certain number of iteration cycles is reached

without convergence. In the last case, the operation will be deemed a failure and

hence it will be aborted to be resumed possibly with improved initial values or

even modified model parameters if the physical problem is flexible and allows for

a certain degree of freedom.

The characteristic flow relation that has to be used for computing Q in the resid-

ual equation is dependent on the flow model. As for the flow of Newtonian fluids in

distensible tubes based on the previously-described system of flow equations, the

following analytical relation representing the one-dimensional Navier-Stokes flow

in elastic tubes can be used

Q =

−κL+

√

κ2L2 − 4α ln (Ain/Aou)
β

5ρAo

(

A
5/2
ou − A

5/2
in

)

2α ln (Ain/Aou)
(9)

Other analytical or empirical or numerical relations characterizing the flow rate

can also be used in this context [28].

The flow relation of Equation 9 was previously derived and validated by a one-

dimensional finite element method in [27]. Equation 9 is based on a pressure-area

constitutive elastic relation in which the pressure is proportional to the radius

change with a proportionality stiffness factor that is scaled by the reference area,

i.e.
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p =
β

Ao

(√
A−

√

Ao

)

(10)

In the last two equations, Ao is the reference area corresponding to the reference

pressure which in this equation is set to zero for convenience without affecting the

generality of the results, Ain and Aou are the tube cross sectional area at the inlet

and outlet respectively, A is the tube cross sectional area at the actual pressure,

p, as opposed to the reference pressure, and β is the tube wall stiffness coefficient

which is usually defined by

β =

√
πhoE

1− ς2
(11)

where ho is the tube wall thickness at reference pressure, while E and ς are respec-

tively the Young’s elastic modulus and Poisson’s ratio of the tube wall.

With regard to the validation of the numeric solutions obtained from the fi-

nite element and pore-scale methods, the time independent solutions of the one-

dimensional finite element model can be tested for validation by satisfying the

boundary and coupling conditions as well as the analytic solution given by Equa-

tion 9 on each individual duct, while the solutions of the residual-based pore-scale

modeling method are validated by testing the boundary conditions and the conti-

nuity of volumetric flow rate at each internal node, as well as the analytic solution

given by Equation 9 which is inevitably satisfied if the continuity equation is sat-

isfied according to the pore-scale solution scheme. The necessity to satisfy the

analytic solution on each individual tube in the finite element method is based

on the fact that the flow in the individual tubes according to the underlying one-

dimensional model is dependent on the imposed boundary conditions but not on

the mechanism by which these conditions are imposed. In the case of finite el-

ement with tube discretization and/or employing non-linear interpolation orders,

the solution at the internal points of the ducts can also be tested by satisfying the

following analytical relation [11]

x =
−αQ2 ln(A/Ain) + β

(

A5/2 − A
5/2
in

)

/(5ρAo)

− [2παν/(α− 1)]Q
(12)

The derivation of this equation is similar to the derivation of Equation 9 but with

using the inlet boundary condition only. In fact even Equation 9 can be used for

testing the solution at the internal points if we assume these points as periphery

nodes [11].
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3 Implementation and Results

The residual-based pore-scale modeling method, as described in the last section,

was implemented in a computer code with an iterative Newton-Raphson method

that includes four numeric solvers (SPARSE, SUPERLU, UMFPACK, and LA-

PACK). The code was then tested on computer-generated networks representing

distensible fluid transportation structures like ensembles of interconnected tubes

or porous media. A sample of these networks are given in Figure 1. Because the

residual-based pore-scale method can be used in general to obtain flow solutions for

any characteristic flow that involves linear or non-linear fluid models, such as New-

tonian or non-Newtonian fluids, passing through rigid or distensible networks, the

code was tested first on Poiseuille and power law fluids in rigid networks [16, 33].

The results for these validation tests were exceptionally accurate with very low

error margin over the whole network and with smooth convergence.

We also used the one-dimensional finite element model that we briefly described

in the last section for the purpose of comparison. This model was previously im-

plemented in a computer code with a residual-based Newton-Raphson iterative so-

lution scheme, similar to the one used in the pore-scale modeling. Full description

of the finite element method, code and techniques can be found in [11]. A number

of pore-scale and one-dimensional finite element time independent flow simulations

were carried out on our computer-generated networks using a range of physical pa-

rameters defining the fluid and structure as well as different numeric solvers with

different solving schemes. Various types of pressure and flow boundary conditions

were imposed in these simulations, although in most cases Dirichlet-type pressure

boundary conditions were applied. The finite element simulations were performed

using a linear Lagrange interpolation scheme with no tube discretization to closely

match the pore-scale modeling approach. All the results of the reported and un-

reported runs have passed the rigorous validation tests that we stated earlier in

section 2.

Regarding the nature of the networks, several types of networks have been

generated and used in the above-mentioned flow simulations; these include frac-

tal, cubic and orthorhombic networks. The fractal networks are based on fractal

branching patterns where each generation of the branching tubes in the network

have a specific number of branches related to the number of branches in the par-

ent generation, such as 2:1, as well as specific branching angle, radius branching

ratio and length to radius ratio. The radius branching ratio is normally based on

a Murray-type relation [32, 34–36]. The fractal networks are also characterized by
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the number of generations. The fractal networks used in this study have a single

inlet boundary node and multiple outlet boundary nodes [16].

The cubic and orthorhombic networks are based on a cubic or orthorhombic

three-dimensional lattice structure where the radii of the tubes in the network

can be constant or subject to statistical random distributions such as uniform

distribution. These networks have a number of inlet boundary nodes on one side

and a similar number of outlet boundary nodes on the opposite side while the

nodes on the other four sides (i.e. the lateral) are considered internal nodes. The

boundary conditions are then imposed on these inlet and outlet boundary nodes

individually according to the need. A sample of the fractal, cubic and orthorhombic

networks used in this investigation are shown in Figure 1.

It is noteworthy that all the networks used in the pore-scale and finite ele-

ment flow simulations consist of interconnected straight cylindrical tubes where

each tube is characterized by a constant radius over its entire length and spa-

tially identified by two end nodes. These networks are totally connected, that is

any node in the network can be reached from any other node by moving entirely

inside the network space. As for the physical size, we used different sizes to repre-

sent different flow structures such as arterial and venous blood vascular trees and

spongy porous geological media. The physical parameters used in our simulations,

especially those related to the fluids and flow structures, were generally selected

to represent realistic physical systems although physical parameters representing

hypothetical conditions have also been used for the purpose of test and valida-

tion. However, since the current study is purely theoretical with no involvement

of experimental or observational data, the validity of the reported models are not

affected by the actual values of the physical parameters although this has some

consequences on the speed and rate of convergence in different physical regimes.

In Figures 2 and 3 we present a sample of the above mentioned comparative

simulations. In Figure 2 we plot the ratio of the flow rate obtained from the finite

element model to that obtained from the pore-scale model for a fractal network

with an area-preserving branching index of 2 [32] where the number of tubes in each

generation is twice the number in the parent generation. In these flow simulations

we applied an inlet boundary pressure of 2000 Pa on the single inlet boundary node

of the main branch and an outlet boundary pressure of 0.0 Pa on all the outlet

boundary nodes. The results of the pore-scale and finite element models are very

close although the two models differ due to the use of different branching coupling

conditions, i.e. continuity of pressure for the pore-scale model and Bernoulli for the
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finite element. The effect of the coupling conditions on the different generations of

the fractal network can be seen in Figure 2 where a generation-based configuration

is obvious. This feature is a clear indication of the effect of the coupling conditions

on the deviation between the two models.

In Figure 3 we compare the pore-scale and finite element models for an inho-

mogeneous orthorhombic network consisting of about 11000 interconnected tubes,

similar to the one depicted in Figure 1 (f), where we plotted the ratio of the flow

rate obtained from the two models as for the fractal network. The network is gener-

ated with a random uniform distribution for the tubes radii with a variable length

in different orientations and with a variable length to radius ratio that ranges be-

tween about 5-15. The dimensions of the flow structure are 2 × 1.5 × 1 m with

a constant inlet boundary pressure of 3000 Pa applied to all the nodes on the in-

let side and zero outlet boundary pressure applied to all the nodes on the outlet

side. The fluid and structure physical parameters for the flow model are selected

to roughly resemble the flow of crude oil in some elastic structure, possibly in a

refinement processing plant. As seen, the pore-scale and finite element results differ

significantly on most part of the network. The reason in our judgment is the effect

of the branching coupling conditions (i.e. continuity of pressure and Bernoulli)

which have a stronger impact in such a network than a fractal network due to the

inhomogeneity with random radius distribution on one hand and the high nodal

connectivity of the orthorhombic lattice on the other hand. The fluid property

which significantly differs from that of the fractal network simulation may also

have a role in exacerbating the discrepancy.

The results shown in these figures represent a sample of our simulations which

reflect the general trend in other simulations. However the agreement between the

pore-scale and finite element models is highly dependent on the flow regime and

the nature of the physical problem which combines the fluid, structure and their

interaction. As indicated early, the discrepancy between the two models reflects

the effect of the coupling conditions, i.e. the pressure continuity for the pore-

scale model and the Bernoulli condition for the finite element. The gravity of this

effect is strongly dependent on the type of fluid, flow regime, inhomogeneity and

connectivity.

It should be remarked that in these figures (i.e. 2 and 3) we used the volumetric

flow rate, rather than the nodal pressure, to make the comparison. The reason is

that comparing the pressure is not possible because nodal pressure is not defined

in the finite element model due to the use of the Bernoulli equation [32] where each
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node has a number of pressure values matching the number of the connected tubes.

4 Pore-Scale vs. Finite Element

It is difficult to make an entirely fair comparison between the pore-scale and finite

element methods due mainly to the use of different coupling conditions at the

branching junctions as well as different theoretical assumptions. Therefore, the

pressure and flow rate fields obtained from these two methods on a given network

are generally different. The difference, however, is highly dependent on the nature

of the specified physical and computational conditions.

One of the advantages of the pore-scale modeling method over the finite element

method, in addition to the general advantages of the pore-scale modeling approach

which were outlined earlier, is that when pore-scale method converges it usually

converges to the underlying analytic solution with negligible marginal errors over

the whole network, while the finite element method normally converges with signifi-

cant errors over some of the network ducts especially those with eccentric geometric

characteristics such as very low length to radius ratio [11]. It may also be argued

that the coupling condition used in the pore-scale modeling method, which is based

on the continuity of pressure, is better than the corresponding coupling condition

used in the finite element method which is based on the Bernoulli inviscid flow

with discontinuous pressure at the nodal points. Some of the criticism to the use

of Bernoulli as a coupling condition is outlined in [32]. Another advantage of the

pore-scale modeling is that it is generally more stable than the finite element with

a better convergence behavior due partly to the simpler pore-scale computational

infrastructure.

The main advantage of the finite element method over the pore-scale modeling

method is that it accommodates time dependent flow naturally, as well as time

independent flow, while pore-scale modeling in its current formulation is capable

only of dealing with time independent flow. Moreover, the finite element method

may be better suited for describing other one-dimensional transportation phenom-

ena such as wave propagation and reflection in deformable networks. However,

time dependent flow can be simulated within the pore-scale modeling framework

as a series of time independent frames although this is not really a time dependent

flow but rather a pseudo time dependent. Another advantage of the finite element

method is that it is capable, through the use of segment discretization and higher

orders of interpolation, of computing the pressure and flow rate fields at the inter-
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(a) 11-generation fractal (b) 13-generation fractal

(c) homogeneous cubic (d) inhomogeneous cubic

(e) homogeneous orthorhombic (f) inhomogeneous orthorhombic

Figure 1: A sample of computer-generated fractal, cubic and orthorhombic net-
works used in the current investigation.
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Figure 2: The ratio of flow rate of finite element to pore-scale models versus tube
index for a fractal network. The network consists of 10 generations with an area-
preserving branching index of 2 [32] and an inlet main branch with R = 5 mm
and L = 50 mm. The parameters for these simulations are: β = 236.3 Pa.m,
ρ = 1060.0 kg.m−3, µ = 0.0035 Pa.s, and α = 1.333. The inlet and outlet pressures
are: pi = 2000 Pa and po = 0.0 Pa. The fluid and structure parameters are chosen
to roughly resemble blood circulation in large vessels.

nal points along the tubes length and not only on the tubes periphery points at

the nodal junctions. However, due to the incompressibility of the flow, computing

the flow rate at the internal points is redundant as it is identical to the flow rate at

the end points. With regard to computing the pressure field on the internal points,

it can also be obtained by pore-scale modeling method through the application of

Equation 12 to the solution obtained on the individual ducts. Moreover, it can be

obtained by creating internal nodal junctions along the tubes through the use of

tube discretization, similar to the discretization in the finite element method.

With regard to the size of the problem, which directly influences the ensuing

memory cost as well as the CPU time, the number of degrees of freedom for the

pore-scale model is half the number of degrees of freedom for the one-dimensional

finite element model due to the fact that the former has one variable only (p)
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Figure 3: The ratio of flow rate of finite element to pore-scale models versus
tube index for an inhomogeneous orthorhombic network. The network consists of
about 11000 tubes with different lengths and length to radius ratios as explained
in the main text. The parameters for these simulations are: β = 236.3 Pa.m,
ρ = 860.0 kg.m−3, µ = 0.075 Pa.s, and α = 1.2. The inlet and outlet pressures are:
pi = 3000 Pa and po = 0.0 Pa. The fluid and structure parameters are chosen to
approximately match the transport of crude oil through an elastic structure.

while the latter has two variables (p and Q). This estimation of the finite element

computational cost is based on using a linear interpolation scheme with no tube

discretization; and hence this cost will substantially increase with the use of dis-

cretization and/or higher orders of interpolation. The computational cost for both

models also depends on the type of the solver used such as being sparse or dense,

and direct or iterative, as well as some problem-specific implementation overheads.

CPU processing time depends on several factors such as the size and type of the

network, the initial values for the flow solutions, the parameters of the fluid and

tubes, the employed numerical solver, and the assumed pressure-area constitutive

relation. Typical processing time for a single run of the pore-scale network model

on a typical laptop or desktop computer ranges between a few seconds to few

minutes using a single processor with an average speed of 2-3 gigahertz. The
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CPU processing time for the time independent finite element model is comparable

to the processing time of the pore-scale network model. In both cases, the final

convergence in a typical problem is normally reached within 3-7 Newton-Raphson

iterations depending mainly on the initial values.

5 Convergence Issues

Like the one-dimensional Navier-Stokes finite element model, the residual-based

pore-scale method may suffer from convergence difficulties due to the highly non-

linear nature of the flow model. The nonlinearity increases, and hence the conver-

gence difficulties aggravate, with increasing the pressure gradient across the flow

domain. The nonlinearity also increases with eccentric values representing the fluid

and structure parameters such as the fluid viscosity or wall distensibility. Several

numerical tricks and stabilization techniques can be used to improve the rate and

speed of convergence. These include non-dimensionalization of the flow equations,

using a variety of unit systems such as m.kg.s or mm.g.s or m.g.s for the input

data and parameters, and scaling the network flow model up or down to obtain a

similarity solution that can be scaled back to obtain the final solution. The error

tolerance for the convergence criterion which is based on the residual norm may

also be increased to enhance the rate and speed of convergence. Despite the fact

that the use of relatively large error tolerance can cause a convergence to a wrong

solution or to a solution with large errors, the solution can always be tested by the

above-mentioned validation metrics and hence it is accepted or rejected according

to the adopted approval criteria [11].

Other convergence-enhancing methods can also be used. In the highly non-

linear cases, the initial values to initiate the variable vector can be obtained from

a Poiseuille solution which can be easily acquired within the same code. The con-

vergence, as indicated already, becomes more difficult with increasing the pressure

gradient across the flow domain, due to an increase in the nonlinearity. An effective

approach to obtain a solution in such cases is to step up through a pressure ladder

by gradual increase in the pressure gradient where the solution obtained from one

step is used as an initial value for the next step. Although this usually increases

the computational cost, the increase in most cases is not substantial because the

convergence becomes rapid with the use of good initial values that are close to

the solution. The convergence rate and speed may also be improved by adjusting

the flow parameters. Although the parameters are dependent on the nature of the
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physical problem and hence they are not a matter of choice, there may be some

freedom in tuning some non-critical parameters. In particular, adjusting the cor-

rection factor for the axial momentum flux, α, can improve the convergence and

quality of solution. The rate and speed of convergence may also depend on the

employed numerical solver.

Another possible convergence trick is to use a large error margin for the residual

norm to obtain an approximate solution which can be used as an initial guess for

a second run with a smaller error margin. On repeating this process, with progres-

sively reducing the error margin, a reasonably accurate solution can be obtained

eventually. It should be remarked that the pore-scale and finite element models

have generally different convergence behaviors where each converges better than

the other for certain flow regimes or fluid-structure physical problems. However,

in general the pore-scale model has a better convergence behavior with a smaller

error, as indicated earlier. These issues, however, are strongly dependent on the

implementation and practical coding aspects.

6 Conclusions

In this paper, a pore-scale modeling method has been proposed and used to obtain

the pressure and flow fields in distensible networks and porous media. This method

is based on a residual formulation obtained from the continuity of volumetric flow

rate at the branching junctions with a Newton-Raphson iterative numeric technique

for solving a system of simultaneous non-linear equations. An analytical relation

linking the flow rate in distensible tubes to the boundary pressures is exploited

in this formulation. This flow relation is based on a pressure-area constitutive

equation derived from elastic tube deformability characteristics.

A comparison between the proposed pore-scale network modeling approach and

the traditional one-dimensional Navier-Stokes finite element approach has also been

conducted with a main conclusion that pore-scale modeling method has obvious

practical and theoretical advantages, although it suffers from some limitations re-

lated mainly to its static time independent nature. We therefore believe that

although the pore-scale modeling approach cannot totally replace the traditional

methods for obtaining the flow rate and pressure fields over networks of intercon-

nected deformable ducts, it is a valuable addition to the tools used in such flow

simulation studies.
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Nomenclature

α correction factor for axial momentum flux

β stiffness coefficient in pressure-area relation

κ viscosity friction coefficient

µ fluid dynamic viscosity

ν fluid kinematic viscosity

ρ fluid mass density

ς Poisson’s ratio of tube wall

A tube cross sectional area

Ain tube cross sectional area at inlet

Ao tube cross sectional area at reference pressure

Aou tube cross sectional area at outlet

E Young’s elastic modulus of tube wall

f flow continuity residual function

ho vessel wall thickness at reference pressure

J Jacobian matrix

L tube length

n number of network nodes

N norm of residual vector

p pressure

p pressure vector

pi inlet pressure

po outlet pressure

∆p pressure perturbation vector

Q volumetric flow rate

r flow continuity residual

r residual vector

R tube radius

t time

x tube axial coordinate
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