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SUMMARY 
Deformation of porous rocks is investigated by experts of various fields. This is 
probably the reason why poroelastic parameters are neither uniformly defined nor 
represented by standard symbols in the literature, and why inconsistencies have 
appeared in some publications. This paper is intended to clarify the use of material 
properties in order to facilitate application of poroelasticity theory. The key 
parameters referenced from a selection of mostly recent papers are: drained and 
undrained moduli and Poisson ratios, grain and pore compressibilities, the 
coefficient of effective stress, the Skemption ratio (pore pressure parameter), 
storage parameters, the Darcy conductivity, and the hydraulic diffusivity. The latter 
parameter governs the diffusional behaviour of poroelastic processes, as has been 
demonstrated by Rice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cleary (1976). Herein, their formulation of the theory is 
used. References to Biot’s (1941) parameters, which may be more familiar to some 
researchers, are given for completeness. A variety of extensions of the theory that 
have been elaborated by others is outlined in the last section. 

Key words: Biot’s theory, consolidation of saturated media, drained and undrained 
parameters, mechanical properties of porous rocks, poroelasticity , quasi-static 
deformation. 

1 INTRODUCTION 

Deformation of porous media is of fundamental interest in a 
variety of fields, like soil mechanics, fluid reservoir 
production, and crustal dynamics. It is also believed to play 
a major role in phenomena related to failure of rocks and 
sediments, e.g. in the tectonic earthquake cycle, in fluid 
pressure induced seismicity, or landslides. Since Biot (1941) 
formulated the ‘General Theory of Three-Dimensional 
Consolidation’, progress has been made in identifying 
various poroelastic material properties and in applying 
the theory to physical processes that are observed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin 
situ or in laboratories. Probably because the behaviour of 
porous rocks is studied by experts of diverse branches, 
namely rock and soil engineers, hydrologists, and 
geophysicists, material parameters are neither uniformly 
defined nor represented by standard symbols in literature. 
For the non-expert, in particular, it is an arduous task to 
identify the various rock parameters from different 
references and to verify slight distinctions that occasionally 
occur. This article outlines poroelasticity in its most 
elementary form and attempts to expose the different uses 

of individual parameters in order to promote clarity and 
reduce confusion. 

The resistance of rocks to deform under mechanical stress 
is characterized by various material parameters. If the entire 
volume of the rock consists of solid phase material, the rock 
is called compact, otherwise porous or cracked. All rocks 
known to occur in the Earth’s crust are in fact (more or less) 
porous and cracked. Generally, the more complex are the 
constituents and the internal structure of the rock, the 
higher is the number of independent parameters necessary 
to identify its properties. As is well known, two mechanical 
parameters are required to describe the state of deformation 
of a compact medium if utmost simplifications are adopted; 
if porosity is accounted for, at least four parameters are 
needed. The subject of this paper is restricted to the latter 
type of media, i.e. to poroelasticity based on quasi-static, 
infinitesimal, isothermal, reversible deformation of fully 
saturated, macroscopically homogeneous and isotropic 
porous rocks with a connected pore structure. Whether 
these simplifications are suitable for evaluation of field tests 
has to be proven in practice. 

Throughout the paper, the term ‘rock’ refers to both 
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consolidated and unconsolidated rocks. Thus, it also applies 
to sediments that are aggregates of solid grains. The 
poroelasticity concept used here is phenomenological and is 
independent from mixture theories. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA priori, no restrictions 
are made as to the shape of pores or cracks. Isotropic 
behaviour of representative rock volumes, however, 
demands any voids to be arranged in some statisticzlly 
balanced, omnidirectional order. 

Each of the mechanical parameters to be discussed in 
subsequent sections allows the description of a state of 
deformation due to steady pressure conditions. As in 
elasticity theory, a fundamental prerequisite to this is the 
existence of equilibrium between stresses and deformation. 
In poroelasticity, the conservation of pore fluid mass is of 
similar importance. Biot (1941) succeeded in combining this 
principle with the elasticity equilibrium conditions to a 
conclusive theory. Previously, Terzaghi (1923) established a 
formulation for 1-D deformation. 

In naming his work Theory of Consolidation, Biot (1941) 
applied the term ‘consolidation’ in its soil-mechanical sense, 
according to which a sedimentary rock consolidates through 
the loss of pore fluid. When using this term, it is often 
implied that the solid and fluid phases of the rock are 
incompressible. In  its geological sense, consolidation also 
means solidification through diagenetic processes such as 
cementation and recrystallization (American Geological 
Institute 1976). To avoid confusion, the term poroelasticity 
theory is preferred (see also Geertsma 1973). Recent studies 
on poroelastic phenomena often apply Rice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cleary’s 
(1976) formulation of the theory. This makes use of rock 
parameters which are more easily interpreted than those 
introduced by Biot. Both the solid and the fluid phases are 
assumed to be compressible. 

Sections 2 ,  3, and 4 form the main part of the paper. 
First, the governing equations for 3-D  poroelastic 
deformation are given. Then, the mechanical rock 
parameters are described in some detail. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 deals 
with the hydraulic diffusivity of poroelastic phenomena. In 
Sections 5 and 6, various extensions of the theory are 
outlined, and the more frequently used parameters are 
presented in a table. Further useful relations are noted in 
the Appendix. (Annotations regarding nomenclature or 
special conventions are inserted in square brackets.) 

2 GOVERNING E Q U A T I O N S  

In continuum mechanics, grossly speaking, it is common to 
define stress normal to the surface (tensile stress) to be 
positive. This convention is also used here. Then, 
compressive stress, a,,, is negative and has a different sign 
than pore pressure, P ,  and confining pressure, P, (Fig. 1). In 
fields like rock or soil mechanics, tectonics, and seismology, 
compressive stress is generally agreed to be positive, and 
thus has the same sign as pore or confining pressure. The 
sign of normal strain, e,,, is almost always defined in the 
same sense as that of its generating stress. [An exception is 
e.g. the work of Narasimhan, Kanehiro & Witherspoon 
(1984).] The convention adopted here is the same as in 
articles of Biot (1941), Bredehoeft (1967), Rice & Cleary 
(1976), Rudnicki (1985), and others. Jaeger & Cook (1979), 
Turcotte & Schubert (1982), Van der Kamp & Gale (1983), 
and Hsieh, Bredehoeft & Rojstaczer (1988), for instance. 

P 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ti,, -b 

Figure 1. Slgn conventions for pore pressure, P, confining pressure, 
P,. normal stress, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa,,, and normal strain, err,  due to u,,. The rock 
sample (shaded) is placed in a vessel completely filled with liquid. 
(1) Common in continuum mechanics, (2) common in rock/soil 
mechanics, tectonics and seismology. Convention ( I )  IS adopted 
here. 

note compressive stress and volume reduction to be positive. 
With this convention, the signs of the relevant expressions in 
the following equations alter accordingly. 

If a (porous) rock is fully saturated, macroscopically both 
.isotropic and homogeneous, and if solid and fluid phases are 
chemically inert, and inertia forces and temperature changes 
negligible, the complete set of differential equations for 
variations of stress or pressure in regimes of constant rock 
parameters and constant hydraulic diffusivity reads 

G a~~ a p  
GV’u, + - - -a- - 

1 - 2 v  ax, ax, 

Q~’ -+a(yv= x V 2 P  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAap S A  

at at 

with x ,  = coordinate in orthogonal, spatially fixed system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( i  = I ,  2 ,3 ) ,  V’ = a 2 / a x :  + a 2 / a x :  + a 2 / a x :  = Laplacian 
operator, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt = time, u, = displacement of a matrix particle 
parallel to the axis x , ,  Av = e l ,  + e,, + e33 = volume 
dilatation (e,, = du , /dx , ) ,  P = excess pore pressure (=excess 
pressure of the pore fluid), G = shear modulus, v = Poisson 
ratio for drained conditions, a = dimensionless coefficient of 
effective stress, Q - ’  = compressibility introduced by Biot 
(1941), and x = Darcy conductivity (in length3 X time x 
mass-’). The variables are the three displacements u, and 
the excess pore pressure P with respect to an initially static 
situation. P does not comprise parts of the increase in 
hydrostatic pressure with depth. In Rice & Cleary’s (1976) 
notation, a and Q -  I are expressed by vu r  the Poisson ratio 
for undrained conditions, and the Skempton ratio (or pore 
pressure parameter) B ,  where 

3(vu - v )  
(1 - 2 v ) ( l +  v, )B’  

a =  

and 

9 (1 - 2vu)( v, - v )  
2 (1 - 2v)(  1 + vu)2GB2 . 

Q - l =  - 

(3) 

(4) 
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permeability, k ,  to dynamic viscosity of the pore fluid, q ,  
e.g. in units Darcy/Poise (1 Darcy/Poise = 0.98697 X 

10-Hcm3sg-'). The properties k and q do not appear as 
individual parameters in poroelasticity. [The term 'Darcy 
conductivity' is actually suggested here, because no other 
term seems to be agreed upon. Biot (1941) names zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx (his k )  
'coefficient of permeability'. This expression, however, is 
usually taken as an equivalent of the hydraulic conductivity, 
the dimension of which is length x time-' (Davis & De 
Wiest 1966). In Rice & Cleary (1976), and Rice, Rudnicki & 
Simons (1978), x (their K )  is named 'permeability'.] 

Since Darcy's Law is only valid for saturated media, the 
above equations cannot simply be applied to rocks which are 
partially saturated or dry. Also, only in saturated media can 
the parameters for undrained conditions, v, and B, assumed 
to be constant. Both are functions of the compressibility of 
the pore filling which strongly depends on pressure when gas 
is present. [Formulations of the theory regarding partially 
saturated media can be found in many text books of 
petroleum science. They usually ignore compressibility of 
the solid phase and of the matrix.] 

Rice & Cleary propose to use the stresses uij as unknowns 
alongside P, rather than the displacements ui. Then, in 
addition to the equations below, the compatibility 
conditions for strains must be fulfilled for evaluating the 
altogether seven unknowns (e.g. Jaeger & Cook 1979). The 
six independent equations replacing equation (1) become 

vu and B are more easily obtained from laboratory 
experiments, e.g. from undrained tests, than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ I .  The 
exact meanings of the parameters will become clear in 
Section 3. 

Equation (1) results from combining the equilibrium 
conditions for volume elements, 

with Hooke's generalized linear law, extended for 
poroelastic bodies, 

2Ge, = ui, + 3v/ ( l+  v)P, 6, + (1 - 2v)/(l + v)aP 6,, (6) 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui, (=a,; for i Zj) are shear strains, 
P,' -( uI1 + u22 + u,,)/3 is the increase in confining 
pressure or decrease in total normal stress, 2ei, = duj/dxi + 
3ui/dxj =2eji for i # j  are shear strains, and 6, is the 
Kronecker symbol. Biot (1941) extended Hooke's Law for 
elastic bodies (a) by adding the pore pressure term to the 
stress-strain relations which include dilatational components 
and (b) by replacing the shear modulus and the Poisson 
ratio of compact bodies through the rock parameters G and 

Appearance of P as an additional variable to the 
displacements ui requires introduction of a fourth relation 
aside the three versions of equation (1); that is equation (2). 
It is obtained by substituting Darcy's Law for laminar flow 
through a hydraulically isotropic matrix (absence of body 
forces), 

V.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qi = - %  3P/dXi, (7) 

into the linearized relation for fluid mass conservation (Rice 
& Clearly 1976), 

(m - mo)/po = a c ( P / B  - P,), (8) 

i.e. by setting 

(9) 

m - m, denotes the increment of fluid mass per unit rock 
volume, po is the density of the pore fluid for zero excess 
pore pressure, qi is the specific discharge or Darcy velocity 
of the pore fluid (i.e. the loss of fluid volume per time and 
per unit rock area normal to x i ) ,  and c = 3(1 - 2v)/[2(1+ 
v ) G ]  is the compressibility of the matrix for drained 
conditions. P, in equation (8) may be found to be 
a P - c - ' A ,  by summing up equation (6) for the normal 
components, and a c / B  is equivalent to Q - ' +  a%. 
[(m - m , ) / p ,  corresponds to the 'variation in water 
content', 8, of Biot (1941). He originally introduced new 
material parameters R and H in expressing the right-hand 
side of equation (8) as P / R  - Pc/H. ]  

Equations (6) and (8) are the constitutive equations in 
poroelasticity. G, v, v,, R (or G, v, a, Q) are the four 
independent poroelastic parameters which describe the 
behaviour of porous rocks within this theory. The fifth 
parameter in equations (1) and (2), the Darcy conductivity 
x ,  reflects a hydraulic property of the system. It enters 
through Darcy's Law and denotes the ratio of intrinsic 

d2P, 
V2[(1 + v)u, + 3vPc 6,] - 3 - 

axi axi 

a2P + 3(V" - v) ( VZP 6, + -) = 0. 
(1 + vu)B axi ax, 

The seventh equation is equation (2) in P and Pc, that is 

9(v,-v) d 
- ( P / B  - P , )  = x V'P, 

2(1 + v)(l + vJGB dt 

whereby the useful relation 

A" = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC( CUP - p,) (12) 

following from Hooke's generalized linear law and 
equations (3) and (4) have been applied. 

Unlike static deformations of purely elastic media, 
poroelastic deformations are time-dependent phenomena. 
They show complete analogy with linear, fully coupled 
thermoelastic deformations. There, Fourier's law of heat 
flux takes a role similar to Darcy's Law (Biot 1956a; Rice & 
Cleary 1976). Formulations for plane strain and axisym- 
metric poroelastic conditions are given in Appendix A. 
Tables of equivalent expressions for the coefficients in 
equations (1) and (2) may be found in Appendix B (Tables 
B1 and B2). Analytical solutions of the governing equations 
only exist for simple geometrical configurations. Solutions 
for fluid injection through point sources, for instance, were 
published by Rice & Cleary (1976), Cleary (1977; but see 
Rudnicki, 1981), or Rudnicki (1986a). Many solutions have 
been calculated using numerical techniques (e.g. Christian 
& Boehmer 1970; Yokoo, Yamagata & Nagaoka 1971a,b; 
Safai & Pinder 1980; Lewis & Schrefler 1987; Shi & Wang 
1988.) 
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3 MECHANICAL ROCK PARAMETERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1 Regimes of validity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Some general notes on (poro)elastic parameters, the 
conditions of drainage, and consequences of static and 
dynamic evaluation techniques will help to clarify the 
circumstances under which the parameters are applicable. 

Elastic and poroelastic parameters 

The simplest model of a rock is a compact, macroscopically 
isotropic and homogeneous body. If exposed to small, 
quasi-static, mechanical forces, its state of deformation can 
be described by using any two of the five mechanical 
parameters of compact media, which are in common use, 
namely: E,, the modulus of elasticity or Young’s modulus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c,, the compressibility or inverse of the bulk modulus, G,, 
the shear modulus or modulus of rigidity, or first Lame 
parameter, A,, the second Lam& parameter, and v,, the 
Poisson ratio (e.g. Jaeger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cook 1979). [The index ‘,’ is 
set to expose the distinction between compact and porous 
medium parameters.] A table of all possible relations among 
these parameters is given by Gassmann (1951). 

Generally, E, ,  c,, G,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA*, and v ,  are not constants but 
depend on the prevailing stress and the body’s temperature. 
Yet, for minor pressure changes under isothermal conditions 
they can be regarded as approximately constant. The body’s 
behaviour is then named ‘linear’. The body itself is called 
‘elastic’, and the five parameters ‘elasticity parameters’. The 
relationship between pressure increments and deformation 
is reversible. In many problems, rocks react like compact, 
elastic bodies. A sufficiently accurate description of their 
state of deformation can be obtained when the confining 
pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, and any stresses uij on the surfaces are known. 

In the Earth’s crust, all rocks are porous. They comprise a 
solid phase, the rock matrix or skeleton, and a liquid and/or 
gaseous phase, the pore fluid. The rock is called saturated 
when the pore volume is entirely filled with pore liquid. We 
will assume that all constituents of the rock are chemically 
inert and that neither additional pores nor cracks are 
created by dissolution or stress changes. If V,, denotes the 
pore volume and V, the volume of the solid phase, 
V =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,+ V ,  is the bulk volume, and n = V,,/V is the 
(volume) porosity of the rock. 

The pore volume of a rock may not be totally connected; 
in particular may individual pores be isolated from each 
other. Rocks of this type will not explicitly be considered 
here. Their behaviour can be described when the terms 
porosity and pore volume are redefined in that they only 
refer to pore space containing mobile pore fluid; i.e. to 
volume, which significantly contributes to the rock’s 
permeability. In such case, the rock’s matrix is in- 
homogeneous, and V,  is the volume of both the solid phase 
and the immobile fluid phase. However, equations (1) and 
(2) assume a connected pore structure (Rice & Cleary 
1976). 

In pressure and temperature ranges, in which the 
appropriate rock parameters can be regarded as being 
constant, they are named ‘poroelasticity parameters’. 
Correspondingly, a porous body is termed ‘poroelastic’, 
when the relationship between increments of pore and 

confining pressures on the one hand, and deformation on 
the other, is reversible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA frequently used lax term is 
‘poroelastic parameters’ (and ‘elastic parameters’, 
respectively). 

Drained and undrained parameters 

The behaviour of rocks, the porosity of which cannot be 
neglected in context of an investigated phenomenon, may be 
studied under drained and undrained conditions. Accord- 
ingly, two sets of mechanical rock parameters appear. The 
parameters will be denoted as E, c, G, A, v for the drained 
case and E,, c,, G,, A,, v, for the undrained case. Again, 
somewhat lax but common terms are ‘drained’ and 
‘undrained’ parameters. Within each group, the same 
dependences among individual parameters exist as for the 
parameters of compact media. 

Both draining conditions are best understood from 
jacketed laboratory tests. Undrained conditions prevail if 
the rock sample is subjected to a change in confining 
pressure and the pore fluid is prevented from escaping or 
entering by a thin, impermeable skin (Fig. 2a). If, instead, 
the pore fluid is enabled to leave or enter the probe, e.g. via 
a drainage tube, so that after some time of adjustment the 
pore pressure attains its original value in all parts of the 
sample, conditions are drained (Fig. 2b). Immediately after 
a change in confining pressure, i.e. before the pore fluid 
starts to flow, undrained conditions also exist in this case. 
Obviously, pore pressure and confining pressure are 

-independent variables. In poroelasticity, they are coupled 
through the equations (6) and (8). 

As pointed out by Rice & Cleary (1976) and Rice & 
Rudnicki (1979), the term ‘undrained deformation’ can only 
be applied to a rock volume in which uniform (with respect 
to hydrostatic) pore pressure prevails, i.e. in which P can be 
represented by a single figure. Since our approach is 
macroscopic, we are not dealing with an arbitrarily small 
volume. Instead, we may only consider volumes that are 
large compared to the size of the largest pore contained 
therein. 

A fundamental prediction of Biot’s theory is that shear 
stresses are decoupled from pore pressure [see equation (6) 
for i f j ]  and, hence, the shear modulus does not depend on 
the conditions of drainage. Consequently, the drained shear 
modulus must equal the undrained shear modulus, 

G = G,. (13) 
From the interdependencies among the parameters follow 

1 + v, 
E ” = -  E ,  

l + v  

(1 - 2v,) (1 + v )  
c,=-- (1 - 2v)  (1 + v,) cy 

(1 - 2v)  v, 
Au=-- A. 

(1 - 2v,) v 

Since the ratio between lateral extension and longitudinal 
shortening is always larger for undrained than drained con- 
ditions, we have v z ~ v ~ ~ O . 5 ,  and E s E , ,  A s k u ,  c z c , .  
Differences between values of drained and undrained param- 
eters become smaller, the more the draining conditions 
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P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Schematics of compressibility measurements. Rock samples in (a), (b), (d) are sealed by thin, impermeable skin (jacketed tests), 
sample in (c) is unsealed (open pressure test). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, = undrained compressibility, c = drained or matrix compressibility, c, = grain compressibility, 
c ,  = pore compressibility. cbcr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcpc, cbp. cpp = compressibilities discussed by Geertsma (1957) and Zimmerman er al. (1986). 

become irrelevant; that is, the less compressible the matrix 
is (v-+0.5) ,  the more compressible the pore filling is 
(v,+O), the more the structure of the matrix prevents fluid 
flow, OJ the higher the viscosity of the pore filling is ( x + O ,  
respectively). [Skempton (1954) expresses a possible 
coupling between shear stresses and pore pressure by his 
dimensionless parameter A ,  whereby A = 1/3 denotes 
complete decoupling, equivalent to equation (13). In shear 
tests with unconsolidated sediments he showed that A can 
significantly differ from 1/3, depending on the confining 
pressure or on the degree of deformation; thus, equation 
(13) appears to be a stringent condition for real rocks.] 

Equation (6) reveals that internal pore pressure 
disturbances may also deform a rock. A pore pressure 
disturbance exists, if the pore pressure within the rock is not 
hydrostatically balanced, i.e., if in some part of the rock the 
pore pressure deviates from the product of the gravitational 
acceleration, the density of the pore fluid, and the distance 
to the relevant equipotential surface. In such a case, the 
excess pore pressure attempts to displace material to (re-) 
establish hydrostatic conditions. Since the pore fluid is more 
mobile than the rock matrix, relative movements occur, 
leading to friction. The greater the pore pressure gradient, 
the viscosity of the pore fluid, and the contact area between 
pore fluid and rock matrix, the stronger are frictional forces 
and rock deformation during pore pressure equalization. A 
comprehensive article on these phenomena is that of Rumer 
( 1969). 

Static and dynamic parameters 

The compressibility and the shear modulus of a rock sample 
(likewise the other dependent parameters) are related to the 
seismic P-wave and shear-wave velocities, u p ,  us, by 
u p  = [ ( E ; ’  + 3/4C?)/p]”’ and us = (C?/p)”*. p is the bulk 
density of the rock. The tilde sign is used to indicate that 
both moduli are of seismic, i.e. dynamic origin, as opposed 
to static origin when deduced from conventional undrained 

compression and shear tests. Comparison of values obtained 
from both techniques shows considerable scattering, in 
particular for unconsolidated sediments (Ohkubo & 
Terasaki 1977; Schon 1983). Depending on the frequency of 
the deforming forces, rock parameters can therefore be 
classified into ‘static’ and ‘dynamic’ parameters. Static and 
dynamic processes in this context generally differ in the 
drainage conditions, the relevance of turbulent flow in the 
pore space, the amplitudes of stresses and strains, and the 
significance of inertia terms. The first two points are 
inherent to porous media; the latter two equally apply to 
compact elastic bodies. 

Clearly, drained conditions do not prevail during the 
passage of a seismic wave. Deformation from high- 
frequency (short wavelength) seismic waves may not meet 
the criteria of undrained conditions either, as only volumes 
of large extent (compared to the size of the largest pore or 
crack) are considered. According to Rice & Rudnicki 
(1979), an estimate of the drained rock parameters can 
nevertheless be obtained from seismic measurements, when 
the measurements are carried out  on equivalent gas- 
saturated (dry) samples, because the gas offers little 
resistance to deformation forces. Similarly, resistance to 
pore fluid flow during slow loading of saturated rock is slight 
under drained conditions. Turbulent flow in any case is 
neglected when Darcy’s Law is used in the form of equation 
(7). We merely point out here that discrepancies may occur 
when investigations are extended over different frequency 
regimes. All parameters discussed in the subsequent are 
meant to reflect rock properties under quasi-static 
conditions. 

3.2 Compressibility parameters 

The significance of different types of compressibilities is of 
fundamental importance in poroelasticity. It is therefore 
sensible to look at them in more detail. 

Different ways exist to arrive at parameters denoting 
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relations between volume dilatation of a rock sample and 
the generating pressure change: a phenomenological one, 
from the analysis of laboratory tests, a physical one, from 
investigation of formal relationships between the involved 
quantities, and an analytical one, as from application of the 
mixture theory. Parameters derived from laboratory tests 
are widely used in literature and will be discussed in the 
following. Expressions obtained in the other ways will be 
mentioned for comparison reasons, only. 

Phenomenological approach 

The undrained Compressibility, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,, may be obtained from a 
jacketed test like that in Fig. 2(a). It is defined by 

Since the volume change is negative for increasing confining 
pressure, the minus sign ensures that numerical values of c ,  

will be positive. [The notation is consistent with that of Rice 
et al. (1978). Likewise, Palciauskas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Domenico (1982) 
refer to K u = c i l  as the ‘undrained bulk modulus’. In 
Brown & Korringa (1975), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, (= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK* in their paper) is named 
‘effective compressibility’. Other authors use the symbol 
K - ‘  (Thomsen 1985). or 6 (Rojstaczer & Agnew 1989).] 

The drained compressibility or matrix Compressibility, c ,  is 
defined by 

It may be measured in a drained jacketed test as in Fig. 
2(b). [Some authors, like Narasimhan ef al. (1984). use c 

with subscript ‘m’ to show that c is a parameter of the 
matrix, and not of the solid phase. If no subscript is written, 
the connection to c ,  for ‘undrained compressibility’ is 
emphasized. Skempton (1960) uses C in such a way (C, ,  in 
Skempton 1954). Accordingly, many authors use K for c- ’  
(Nur & Byerlee 1971; Cornet & Fairhurst 1974; Rice & 
Cleary 1976; Rudnicki 1985). Instead of c .  one also finds K 

(Biot & Willis 1957), K~ (Brown & Korringa 1975), K~ 

(Morland & Donaldson 1984), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc h  (Geertsma 1957; 
Domenico 1977), 1/K* (Thomsen 1985), /3 (Green & Wang 
1986; Rojstaczer 1988), or ah (Shi & Wang 1986, 1988). The 
subscript ‘h’ stands for ‘bulk’.] 

Another measure of compressibility, mostly referred to as 
grain compressibility, c, ,  is defined by 

It may be obtained from an open pressure test. In such a 
set-up, the rock sample is not jacketed so that incremental 
confining pressure may enter the rock via both the matrix 
and the pore fluid (Fig. 2c). Due to differing compres- 
sibilities, the liquid and solid phases reallocate the available 
space. After a period of adjustment, the change in pore 
pressure will be the same everywhere inside the sample and 
thus be identical to the change in confining pressure. 

Unless the rock contains unconnected pores, c, is identical 
to the compressibility of a compact medium solely made of 
the rock’s solid phase, c, = -l/V,(dV,/dP,). In fact, few of 
the authors dealing with deformation of porous media 

distinguish between c, and c,. As noted above, equations 
(1) and (2) implicitly assume that the deformation of the 
solid material under various combinations of normal stress 
and pore pressure can be characterized by the single 
parameter c, (Rice & Cleary 1976; Van der Kamp & Gale 
1983). 

[Skempton (1960) and Biot (1973) use the symbol C,. The 
subscript ‘s’ stands for ‘solid phase’. Nur & Byerlee (1971) 
use K, for c;’, naming it ‘grain modulus’, whereas Green & 
Wang (1990) note ‘unjacketed bulk modulus’. Rice & 
Cleary (1976), and Rudnicki (1985), who reserve K, for c;’,  

use KI instead. Other symbols for grain compressibility 
found in the literature are 6 (Biot & Willis 1957; Morland & 
Donaldson 1984), K~ (Brown & Korringa 1975), K,:’, with 

for ‘intrinsic’ (Cornet & Fairhurst 1974), c,, with ‘r’ for 
‘rock’ (Geertsma 1957; Zimmermann, Somerton & King, 
1986), a, (Shi & Wang 1986, 1988), ps (Hamilton 1971), and 
p, (Green & Wang 1986; Rojstaczer 1988). The latter 
choose the subscript ‘u’ referring to ‘(drained) unjacketed 
test’.] 

The compressibility of the pore space, or pore 

compressibility (Biot & Willis 1957; Brown & Komnga 
1975), may be derived from the porosity change in an open 
pressure test (Fig. 2c). Its defining relation is 

In case the porosity does not vary for equal changes in P 
and P, we find 

This applies when the immobile part of the rock is 
homogeneous. Then, identical pressure increments act on all 
internal and external surfaces of the matrix, producing 
homogeneous deformation, which reduces the matrix 
linearly. i.e. n = constant. Values of c ,  and c, for real rocks 
are mostly in the same order of magnitude or even quite 
similar to one another (Rice & Cleary 1976). This explains 
why both compressibilities are frequently used as equiv- 
alents in literature. Green & Wang (1986) point out that 
considerable differences may also occur. [c ,  does not 
explicitly appear in the paper of Biot & Willis (1957); 
instead, they express it as c f -  y / n  (=c  - y/f in their 
article), whereby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy is introduced as ‘coefficient of fluid 
content’. In a more recent paper, Biot (1973) uses the 
symbol c ,  (cc Brown & Korringa 1975). Other authors use 
K~ (Brown & Korringa 1975) or &, (Green & Wang 1986). 
with ‘,,,’ being another common symbol for porosity, or K;’ 
(Thomsen 1985). Rice & Cleary (1976) and Rudnicki (1985) 
note K: for c,’.] 

Neither the fluid compressibility ct = -l/VdaV,/aP), nor 
the pore compressibility c,, nor the porosity n are individual 
parameters in poroelasticity. Instead they appear as 
constituents of the expression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y = n(c,  - C”) (20a) 

(Biot & Willis 1957; Green & Wang 1986). We will name y 
the ‘Biot-Willis parameter’ hereafter. When used as a 
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altered pressure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘c ’  for ‘confining pressure’ and ‘p’ for ‘pore 
pressure’. The first two compressibilities are referred to as 
‘bulk compressibilities’ by Zimmerman et al. (1986), the 
latter two as ‘pore compressibilities’.] Experimentally, the 
situations described in equations (23a,c) are established by 
drained jacketed tests (Fig. 2b), those described in (23b,d) 
are represented in Fig. 2(d). 

From differential calculus follows 

poroelastic parameter in equations (1) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2), 

Y = n(c‘ - 4 (20b) 

is assumed. 
In summary, three compressibilities can be used as 

poroelastic parameters: the undrained compressibility, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,, 
the drained or matrix compressibility, c, and the grain (or 
solid phase) compressibility, c,. They may be used to 
replace three of the parameters G, v, v,, B in the governing 
equations. As a fourth parameter reflecting some volume 
strain property of saturated rock, the Biot-Willis parameter 
y may be chosen. Conforming expressions are given in the 
Appendix (Table B3). Note that c and c, exclusively reflect 
properties of the solid phase; c, and y also depend on the 
compressibility of the pore filling. 

As mentioned in Section 2, Biot (1941) introduced the 
compressibilities H -  ’, named ‘a measure of the compres- 
sibility of the soil for a change in water pressure’, and R - ’ ,  
which ‘measures the change in water content for a given 
change in water pressure’. According to Biot & Willis 
(1957), Geertsma (1957), and Green & Wang (1986), these 
parameters are related to the aforementioned compres- 
sibilities by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H-‘ = C  -c, (21a) 

R-- ’  = c - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, + y. (21b) 

and 

Utilizing the relation Q - ’ =  R-’ - CUH-’ of Biot (19411, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q-’ can be written as 

Q-’ = CUC, + y. (22) 

[In his classical paper, Biot (1941) assumed the pore fluid to 
be incompressible (cf = 0), but did not explicitly make use of 
this. He later realized that the theory in its original form is 
applicable to saturated (!) porous media containing 
compressible fluid (e.g. Biot 1955; Biot & Willis 1957). Rice 
& Cleary (1976) erroneously stated R - ’  = H - ’  - nc,, 
instead of equation (21b) (Green & Wang 1986).] 

Other approaches 

A more physical access to rock compressibilities has been 
presented by Geertsma (1957) and Zimmerman et al. 

(1986). They define four parameters, only one of which, the 
drained compressibility c ,  has already been considered. 
The parameters result from the various relationships between 

changes in V ,  V, and P ,  P,: 

[Left subscripts denote the reference volume, i.e. ‘b’ for 
‘bulk volume’ and ‘p’ for ‘pore volume’, right subscripts the 

Zirnmerman et al. (1986) also show, that in case of elasticity 

cpc = (c - cJn,  

cpp = [c - (1 + n)c, ] /n  

cpp = ( c  - c,) /n - c, 

(26a) 

(26b) 

(26c) 

for c, = c,, 

for c, # c,. 

[Equation (26b) was also given by Brown & Korringa (1975) 
and by Morland & Donaldson (1984). The former use K ’ / n  

instead of cpc, the latter use K ~ .  Morland & Donaldson call 
cpc ‘formation compaction’. Moreover, they use K, for ncpp, 
naming it ‘effective rock compressibility’. Together with c 
and c, (K, and 6 in their article), Morland & Donaldson 
(1984) thus use the same compressibilities as Geertsma 
(1957) and Zimmerman et al. (1986), which they. however, 
deduce from the mixture theory.] 

An expression for rock compressibility based on the 
mixture theory is 

cmiX = ncf + (1 - n)c, (27) 

(e.g. Hamilton 1971). Herein, the compressibilities of the 
fluid and solid phases are averaged according to their 
volume proportions. This neglects pore fluid mobility and a 
possible dependence of porosity on pressure. Obviously, 
c,,, expresses some sort of rock compressibility for constant 
porosity n,  under undrained conditions. It equals Biot’s Q-- ’  
when c >> c, = c, (see equation 22). 

3.3 Parameters of effective pressure, pore pressure and 
fluid storage 

Other parameters often utilized to describe poroelastic 
phenomena are the coefficient of effective stress, a, the 
Skempton ratio, B, and various storage coefficients. Their 
significance in poroelasticity, like that of the compres- 
sibilities, deserves a closer look as well as notification of 
interrelations with other parameters. 

The coefficient of effective stress 

The principle of effective stress (or effective pressure) states 
that deformation and strength of porous bodies are neither 
proportional to the confining pressure nor to the pore 
pressure but to the difference between them, named 
‘effective pressure’, P,. The principle was established 
empirically by Terzaghi (1925) for saturated clay. 

Geertsma (1957) and Skempton (1960) base the following 
relation on experiments with various rocks: 

(28) P, = P, - (1 - c , /c )P  = P, - CUP. 

It does not contradict Terzaghi’s results because, in case of 
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saturated clay, c,<<c.  Nur zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Byerlee (1971) have 
theoretically established this relation. Garg & Nur (1973) set 
out the importance of constant matrix compressibility c for 
the validity of equation (28), i.e. that it only holds for 
infinitesimal changes of P, and P. The coefficient 

a = (1 - C J C )  (29) 

is also called ‘effective stress coefficient’ (Zimmerman et al. 
(1986); see their paper for a more general form of the 
effective stress concept], ‘soil-water interaction Coefficient’ 
(Schiffmann 1970; Morland 1978) or ‘coefficient of internal 
deformation’ (Christensen & Wang 1985). Green & Wang 
(1990) apply the term ‘effective stress’ to any linear 
combination of stress and pore pressure, suggesting 
interpretation of this term within the context of the physical 
property being discussed. Then the coefficient of effective 
stress needs to be specified, respectively. Note that by 
application of the effective stress concept, the number of 
pressure variables can be reduced from two to one. For 
instance, from (12), the matrix compressibility may be 
written as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc = -A, /Pc.  

From equations (23a,c) and (26a) follows 

Accordingly, a indicates the change in pore volume per unit 
change in bulk volume under drained conditions. Because 
c z c s ,  a takes values between 0 and 1. Schiffmann (1970) 
found that values of a generally fall in the range between 
porosity n and 1. Given that the microstructure of the rock 
is isotropic (as e.g. for a collection of spherical grains), a 
more sharply defined lower limit for a, resulting from the 
Hashin-Shtrikman bound for porous material, is 

[after Zimmerman et al. (1986), by rearranging their 
equation (15); see also Watt, Davies & O’Connell (1976)). 
Herein, v, is the Poisson ratio for the solid fraction of the 
rock. Equality of all terms only holds for n = 1. A value 
close to 1 (c >> c,) is typical for unconsolidated Sediments. 
[Less frequently used symbols for a are n ,  x and 5.1 

The Skempton ratio 

Another rock property of fundamental interest is the ‘pore 
pressure parameter’, B, introduced by Skempton (1954). It 
is defined as the change in pore pressure per unit change in 
confining pressure under undrained conditions, i.e., 

Other terms for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB are ‘induced pore pressure parameter’ 
(Cleary 1977), ‘Skempton’s pore pressure Coefficient’ (Segall 
1985; Rudnicki 1986a; McTigue 1986). ‘undrained pore 
pressure buildup coefficient’ (Green & Wang 1986), 
‘three-dimensional loading efficiency’ (Neuzil 1986), or 
‘Skempton’s coefficient’ (Rojstaczer & Angew 1989; Green 
& Wang 1990). Palciauskas & Domenico (1982) and 
Narasimhan ef al. (1984) refer to B as the ‘tidal efficiency’, a 
term introduced by Jacob (1940). In view of an increasingly 

wide use of B as a poroelastic parameter, the notion 
‘Skempton ratio’ as a precise and seasonably short term is 
suggested here. [Van der Kamp & Gale (1983) note /I for B ;  
they also discuss the form B takes for 1-D deformation, 
naming it ‘loading efficiency’.] 

Like (Y, B takes values between 0 and 1. An exact relation 
may be derived from the elaboration of Brown & Komnga 
(1975), namely, 

lYC c - c ,  
B = - -  - 

ac + y c - c,  + n(c ,  - c,)  
(33) 

[see Green & Wang (1986), for a detailed discussion]. For 
c,<<c (or a = 1) and c, <<cf, (33) is equivalent to the 
empirically found relation of Skempton (1954), B = 
(1 + nc,/c)- ’ .  The expression 

B = (C - c,)/(c - cS), (34) 
given by Brown & Korringa (1975), yields c ,  = (1 - B)c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
Bc, and aB = 1 - c,/c.  Consequently, c, = c, requires 
B = 1, and c,  = c holds if B = 0. As a function of v, v,, a, 
the Skempton ratio may be obtained from equation (3), 
given by Rice & Cleary (1976). B is related to Biot’s 
compressibilities H - ’ ,  R-I ,  Q - ’  through B = R/H= 
a c / ( Q - ’  + CY’C). 

Since the Skempton ratio is less frequently used than 
other rock parameters, some of its values for real rocks may 
be of interest. Laboratory techniques for determining B are 
described by Green bi Wang (1986). Skempton (1954) 
showed experimentally that B lies close to 1 for ful ly 
saturated, unconsolidated sediments. For increasing gas 
saturation, B falls rapidly to low values. Various authors 
found a marked dependence on the effective pressure, P,. 

For P, = 0 MPa, B values close to 1 have been observed for 
sandstones, limestone, dolomite, marble, granite, halite, 
and clay (Mesri, Adachi & Ullrich 1976; Green & Wang 
1986; McTigue 1986). Effective pressures around 10 MPa 
yield values between 0.33 and 0.69 (not determined for 
halite and clay). Calculated B values for three sandstones, 
two granites and a marble, deduced from other rock 
parameters that were obtained for low to moderately high 
effective pressures, are found to lie between 0.51 and 0.88 
(Rice & Cleary 1976). but yield values as low as 0.23 when 
P, goes up to 200 MPa (Roeloffs 1988). 

In situ techniques to determine B are not yet known. 
Estimates from well level fluctuations induced by atmos- 
pheric pressure changes or tidal strain require assumptions 
of other formation parameters, like the grain compressibility 
and the Poisson ratio, and of a fixed ratio of horizontal to 
vertical strains (Bredehoeft 1967; Rhoads & Robinson 1979; 
Rojstaczer & Agnew 1989). Interpretation of tilt signals 
observed in the vicinity of pumped wells give in sifu values 
of the quantity B = (1 + vu)/( l  - v,)B/3 (Kumpel 1989). By 
this technique, B values ranging from 0.08 to 0.7 were found 
for saturated glacial deposits at shallow depth, and a value 
close to 0.6 for a granodiorite at 400 m depth, respectively. 

Storage parameters 

The potential for storage capacity of pore fluid reflects a 
rock property that, like (Y and B, is best understood as a 
function of compressibility. The ‘storage Coefficient’, 
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sometimes called ‘hydraulic capacity’, is traditionally used 
by hydrologists when making statements about the 
productivity of aquifers. It was introduced as a dimension- 
less quantity by Theis (1935). According to Jacob (1940), it 
corresponds to ‘the volume of water of a certain density 
released from storage within the column of aquifer 
underlying a unit surface area during a decline in 
(piezometric) head of unity’. When this parameter is divided 
by the thickness of the aquifer, the so-called ‘specific storage 
coefficient’ results, in dimension length-’. 

Bodvarsson (1970) adopts as storage coefficient the 
volume of pore fluid which per unit rock volume and unit 
pore pressure increment is stored in the aquifer. In this 
form, the parameter takes the dimension pressure ~ ’ . The 
relationship between the various definitions is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S, = MS, = prgMS, (35) 

whereby S, represents the storage coefficient after Theis, M 
is the thickness of the aquifer, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, is the specific storage 
coefficient, pr the pore fluid density, g the gravitational 
acceleration, and S the ‘storage coefficient’ according to 
Bodvarsson. We herein use Bodvarsson’s notion because of 
formal advantages when relating it to other compressibilities 
and to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY and B; but we will name it storage compressibility 
to expose its dimension. 

Expressions for the storage compressibility found in the 
literature are 

s = c + nc, 

[e.g. Cooper (1966), Bredehoeft (1967), KrauB (1974), Bear 
& Corapcioglu (1981a,b), Hsieh el al. (1988). Shi & Wang 
(1988); also Bodvarsson (1970), but he erroneously places 
c, ,  his ‘c,’, instead of c ] ,  or 

(36) 

s = ( 1  - n)c  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt nc, (37) 

(Davis & De Wiest 1966; Robinson & Bell 1971; Rhoads & 
Robinson 1979), or 

S’ = (1 - p ) ( c  - c,)  + y, (38) 

with B =2(1 -2v)(ul[3(1 - v)] (Van der Kamp & Gale 
1983). Equations (36) and (37) assume incompressible grains 
(c,=O) and differ in that equation (36) expresses storage 
compressibility for a deforming rock matrix whereas (37) 
refers to a stationary system (Cooper 1966; De Wiest 
1966; Delcourt-Honorez 1988). Both equations are often 
written with the vertical matrix compressibility, 
c’ = ( ~ ( 1  + v)c/[3(1 - v)] (Geertsma 1973), instead of c 
[which occasionally leads to confusion; see e.g. Narasimhan 
et al. (1984) and Hsieh et al. (1988)). Equation (38) is 
derived from Rice & Cleary’s (1976) work, assuming zero 
horizontal strain ( e , ,  = eZ2 = 0) and constant vertical load 

= 0). Such conditions are conventionally applied to 
aquifers in hydrology. S‘ reduces to the expression of (37), 
written with c’, if the matrix is much more compressible 
than the grains (c >> c,, i.e. (Y = 1). Rojstaczer & Agnew 
(1989) deduce a modified form of (38), which is applicable 
to vertical (e.g. barometric) loading of horizontally layered 
aquifers. 

If no restrictions with regard to the geometry and 
boundary conditions are made, the storage compressibility 

takes the ‘3-D’ form 

S = ( Y c + y = C - C , + n ( c , - c , )  (39) 

(Van der Kamp & Gale 1983; also used by Neuzil 1986), 
which is identical to Biot’s R - ’ ,  see equation (21b). [Note 
that Van der Kamp & Gale (1983) set S’ for the 3-D specific 
storage coefficient, that is prgS here, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, for the 1-D 
coefficient, which is p,gS‘ here.] To avoid ambiguity, Green 
& Wang (1990) suggest using solely S‘ as in (38) as the 
storage parameter, i.e. to restrict its definition to the 
conventional aquifer conditions. 

When taken as a poroelastic parameter in the constitutive 
equations, expressions with S’ are naturally more complex 
than those with S in the form of equation (39). Because in 
the latter form S is related to c ,  (Y and B by 

S = LYCJB, (40) 

(m - m,)/p, = S ( P  - Bp,) (41) 

(Brockhoff 1990). Thus, S can be regarded as the fluid mass 
(of density po) released from a unit rock volume for a 
pressure change of amount P - BP,. Van der Kamp & Gale 
(1983) showed that (11) also takes a simple form with S, 
namely, 

substitution in equation (8) yields 

(42) 
a 

S-(P - BP,) = xV2P.  
at 

Moreover, since the validity of the conventional aquifer 
conditions is questionable in many, even classical hydrologi- 
cal problems (like fluid reservoir production or aquifer 
recharge), it is felt that the storage compressibility in the 
solely general case, i.e. in its 3-D form, is most appropriate 
when using it as a poroelastic parameter. 

In principle, S may be determined through well testing 
(e.g. Brown et al. 1972: Krusemann & De Ridder 1973; 
Matthelj & Ubell 1983), or by analysing tidally or 
atmospherically forced well level fluctuations (e.g. Jacob 
1940; Brcdehoeft 1967; Robinson & Bell 1971; Van der 
Kamp & Gale 1983; Narasimhan et af .  1984; Rojstaczer & 
Agnew 1989). The latter procedures are restricted to 
confined aquifers and require an estimate of its compres- 
sibility. As shown by Hsieh, Bredehoeft & Farr (1987), the 
sensitivity of natural well level fluctuations for determining S 
is, however, low. 

4 HYDRAULIC  DIFFUSIVITY 

By simple manipulations it is possible to derive a diffusion 
equation for the term PIB - P, (Rice & Cleary 1976). 
Summing up equation (10) for i = j yields 

or rather 

(43) 

Substituting V2P of the right-hand side into equation (11) 
and combining the coefficients leads to 

alat(plB - P,) = DV~(P IB  - PJ, (45) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
5
/3

/7
8
3
/5

8
6
7
6
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



792 H.-J. Kiimpel 

whereby 

Rice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cleary apply equations (10) and (45) to calculate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, 
and P. The solutions are dependent on the three rock 
parameters v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv,, B, and on the hydraulic property D (or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
xG). Dependence on one of the moduli E, G, c,  or A 
appears only if displacements or strains are to be calculated. 

In literature, the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is named ‘dihsion 
constant’, ‘hydraulic diffusivity’, ‘fluid diffusivity’ (of the 
term P / B  - Pc, respectively), ‘consolidation constant’, or 
‘consolidation coefficient’. [c is another frequently used 
symbol for D ,  but conflicts with the matrix compressibility 
here.] Biot (1941) derived it in the equivalent form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2(1 - V ) X G  
D =  

(1 - 2 v ) d  + 2(1 - V)GQ-” 
(47) 

for the diffusion equation in P ,  that is a P / a t  = D a2P/axT.  

This equation follows from (45), when the conventional 
aquifer conditions e , ,  = ez2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; 033 = 0 hold (Van der 
Kamp & Gale 1983). 

It is useful to examine the forms D takes for some 
particular cases: when the compressibilities of the solid and 
liquid phases are neglected (c, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf = 0; LY = B = 1; v, = 
1/2), D reduces to the simple form 

1 - v  

1 - 2 v  
D = 2 -  XG = X / C ‘  

(c‘ = vertical compressibility). If in (47) Q-’ is eliminated 
by making use of equation (22), we obtain 

D = x [ y  + a(c‘ + cS)]-’. (49) 

Neglecting grain and matrix compressibilities, given that the 
fluid compressibility is rather high (ac, ac,, nc,<< nc,),  

yields 

D = x / (nc , ) .  (50) 

This form is often used in petroleum sciences, together with 
the diffusion equation in P (e .g .  Dake 1978). 

From equation (49) it is evident that the hydraulic 
diffusivity is not only influenced by x and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, but also by the 
compressibilities c ,  and c. In most cases, ( a - n ) c ,  will be 
much smaller than nc, + LYC’. Therefore, a widely applicable 
form of D ,  not simplifying as strongly as equation (50), is 

D = x / ( n c ,  + (YC’). (51) 

If, at least, c’ is of the same magnitude as c,, the diffusivity 
of pressure anomalies is significantly lower than expected 
from (50): or, deformation of the rock matrix retards the 
settling of a pore pressure anomaly. 

A frequently used, simplified d ihs ion equation in 
hydrology is 

d P  T d2P -=-- 
at s; ax;  

(e.g. Davis & De Wiest 1966; MattheO & Ubell 1983). 
Here, T = KM denotes the ‘transmissivity’ of a formation of 
thickness M, K = p , x g  is the medium’s hydraulic conduc- 
tivity [also named ‘coefficient of permeability’, ‘effective 
permeability’, or ‘seepage coefficient’ (Davis & De Wiest 
1966)], and S; = p,gMS‘ is the dimensionless storage 
coefficient for I-D deformation after Theis (cf. equations 35 
and 38). Comparison of coefficients shows that in this case 

(53) D = K M / S ;  = XIS’. 

The various measures of hydraulic properties of rocks 
together with the different notions in use are summarized in 
Table 1. 

Under natural conditions, the values of D cover a wide 
range. This is not surprising, since the intrinsic permeability 
k of rocks ranges from lo-’’ to lop3 cm2, that is from 
to lo5 Darcy (Davis 1969; Brace 1984; Schopper 1984), and 
k is directly proportional to D .  In situ values D may be 
obtained from pump tests. They are mainly established from 
the ratio of the transmissivity to the storage coefficient, 
according to equation (52), and are representative for the 
region in which pore pressure changes are distinct. 
Estimates for larger rock complexes are given by Li 
(1984185). These are obtained from observations .of induced 

Table 1. Parameters of hydraulic rock properties and pore fluid flow. The first of several notions (if any) has 
been used in this text. 

Parameter Dimension 

D LZT - I  

x LVM-~ 
k L* 

K LT ’ 

Notions 

hydraulic diffusivity, 
fluid diffusivity, 
diffusion constant, 
consolidation constant, 
consolidation coefficient 
Darcy conductivity 
(intrinsic) permeability 

hydraulic conductivity, 
coefficient of permeability, 
effective permeability, 
seepage coefficient 
Darcy velocity, 
specific discharge 
(aquifer) transmissivity 

Remarks 

coefficient in diffusion equation 

coefficient in Darcy’s Law 
x q .  where 
q = dynamic fluid viscosity 
prxg, where 
p,  = fluid density, and 
g = gravitational acceleration 

loss of fluid volume per unit time 
and unit rock area (normal to xi) 
K M ,  where 
M = aquifer thickness 
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seismicitydue to water injection into boreholes, or water 
level changes in reservoirs-of transient seismic vp/vs 
anomalies, and the migration of underground explosion 
aftershocks. The values reported by Li fall in the range from 
100 to 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo5 cm2 s-’, independent of the rock type. 

5 EXTENSIONS 

Biot’s and Rice & Cleary’s equations portray a strongly 
simplified model of natural processes. Indeed, many authors 
have worked on extensions of the poroelasticity theory. The 
purpose of such efforts is to account for as broad a spectrum 
of observed physical phenomena as possible. This section 
aims to outline the variety of extensions that have been 
elaborated. 

5.1 Anisotropy 

Elastic properties of the solid phase and flow conditions for 
the pore fluid will seldom be isotropic. In orthotropic 
(= 3-D) anisotropy, the number of independent mechanical 
parameters for compact elastic bodies increases from 2 to 
21; that for poroelastic media increases from 4 to 28. If 
anisotropic flow conditions prevail, Darcy’s generalized Law 
could be applied. Herein, the Darcy conductivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx appears 
as a symmetrical tensor of six different components. As a 
result, the number of differential equations to be resolved 
increases by two. The three gradients d P / d x i  may be 
introduced as unknowns, replacing the excess pore pressure, 
P (Biot 1955; Oda, Hatsuyama & Ohnishi 1987). 

The principle of effective pressure, too, may be extended 
to meet anisotropic conditions. According to Carroll (1979), 
three coefficients of effective pressure are needed for 
orthotropic anisotropy, and two for transversal (= 2-D) 
anisotropy. The relations between these coefficients and the 
poroelastic parameters are particularly simple, if the solid 
fraction of the rock is isotropic, that is, if anisotropy is solely 
caused by the structure of the pore space. 

5.2 Non-Lineanties 

Deviations from linear stress-strain behaviour may be due 
to various causes. Accordingly, different approaches are 
suggested for the modelling. Walsh (1965), O’Connell & 
Budiansky (1974), and Mavko & Nur (1978) describe 
pressure-dependent parameters for rocks with ‘penny- 
shaped’ cracks. Walsh & Grosenbaugh (1979) derive an 
effective compressibility for rocks with cracks of arbitrary 
form. Zimmerman et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1986) examine the dependence of 
compressibilities on effective pressure, P,. The dependence 
of permeability on P, is studied by Walsh & Brace (1984). 
Narasimhan & Kanehiro (1980) consider the variability of 
the storage coefficient as function of pore and confining 
pressure. Non-linear effects associated with the long-term 
compaction of sedimentary basins are studied by Bethke & 
Corbet (1988). Rice (1975,1979) and Rice & Rudnicki 
(1979) deal with non-linear deformation prior to failure. 
Non-linear phenomena due to partly gaseous pore fluids in 
porous rocks are covered in text books of petroleum science 
(for instance Dake 1978; see also Narasimhan & 
Witherspoon 1977). 

5.3 Inelasticity 

If viscoelasticity plays a significant role, Geertsma (1957) 
suggests to introduce three ‘poroviscous’ material para- 
meters, in addition to the poroelastic ones. According to 
Biot (1973), viscoelastic rheology of ‘semi-linear’ media- 
the solid and liquid phases of which react elastically if 
separated-can be described by frequency-dependent 
operators. O’Connell & Budiansky (1977) obtain relations 
that can be used to derive viscoelastic moduli of cracked 
rocks, whereby dissipation occurs either by viscous shear 
relaxation within the cracks, or by fluid flow between them. 
Small, Booker & Davis (1976) report that the transition 
from undrained to drained deformation can be described as 
elastoplastic behaviour of the rock matrix. Cleary (1977) 
presents equations for plastic deformation in anomalous 
regions of otherwise poroelastic media. Dislocations in 
poroelastic rocks are treated, for instance, by Rice & Cleary 
(1976), Roeloffs & Rudnicki (1984/85), Rudnicki (1985, 
1986b, 1987), Advani et al. (1987), and Rudnicki & Hsu 
(1988). 

5.4 Rapid pressure changes 

A multitude of publications deals with the propagation of 
seismic waves in porous media. When modelling dynamic 
pressure changes, the equilibrium equations are expanded 
by inertial forces, being proportional to the acceleration of 
the rock particles, and Darcy’s Law is modified to account 
for turbulent flow. A small selection of the discourses in this 
field are the articles of Biot (1956b, 1962), Bodvarsson 
(1970), Thomsen (1985), Boutin, Bonnet & Bard (1987), 
and the books of BourbiC, Coussy & Zinszner (1987) and 
Stoll (1989). Cleary (1978) points out some inherent 
difficulties that occur with rapid deformations in poroelastic 
media. 

5.5 Thermal effects 

Thermal effects may be of great importance for specific 
problems such as heat steam injection for enhanced 
recovery of hydrocarbons, underground nuclear waste 
storage, exploitation of geothermal reservoirs, dewatering of 
subducted sediments, vulcanism, metamorphism, etc. They 
can be incorporated in poroelasticity when expanding the 
stress-strain relationship by the product of the bulk 
modulus, the thermal expansion coefficient, and the excess 
temperature. The temperature anomaly, as the fourth 
unknown, must fulfill the heat conduction equation (e.g. 
Carslaw & Jaeger 1959). Some recent papers about thermal 
effects in saturated porous media are those of Morland 
(1978), Bear & Corapcioglu (1981c), Palciauskas & 
Domenico (1982), Delaney (1982), Noorishad, Tsang & 
Witherspoon (1984), Booker & Sawidou (1985), Hart & 
John (1986), McTigue (1986), and those of Shi & Wang 
(1986,1988). 

6 CONCLUSIONS 

Pore pressure phenomena have long since been investigated 
in soil mechanics and fluid reservoir engineering. They also 
receive increasing attention in geophysics. Precise notations 
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of rock parameters as well as usage of standard terms and 
symbols could help to reduce existing confusions and 
facilitate application of the poroelasticity theory. Table 2 
resumes the parameters presented in some detail here. The 
Biot compressibility Q - '  and the Biot-Willis parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 
have been included to allow for an easy reference to earlier 
papers in this field. Both Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' and y are of less experimental 
interest than the other parameters. There are 330 
possibilities to choose different sets of four independent 
poroelastic rock parameters out of the 11 noted in Table 2. 
This also documents that adding a single variable (i.e. pore 
pressure) to elasticity results into an amazing multitude of 
valid notations. Equivalent expressions for four different 
sets are listed in Appendix B (Table B3) as examples. 

Irrespective of the feasibility and the necessity for 
extension in certain cases, the linear theory of poroelasticity 
for quasi-static pressure changes in isotropic media will 
continue to be widely applied. There are at  least two 
reasons for this: first, models involving simple physical 
mechanisms, in general, can be calculated more easily than 
models based on complex theories. Linear theories have the 

advantage over non-linear ones in that fundamental 
solutions, such as of point or line sources. can be simply 
added up. In this way, even complicated boundary 
conditions may be approximated. Secondly, detailed 
theories are not suitable if applied to a region, the internal 
structure of which is not well known, for instance, when the 
course of internal boundaries or  gradient layers is uncertain. 
Likewise, the obviousness of anisotropy by itself does not 
justify application of an anisotropic version of poroelasticity. 
The many rock parameters entering into the formulation 
will often have to be fixed rather arbitrarily, and control 
over essential features of the examined process might get 
lost. 

Rice Kc Cleary (1976) point out that the potential of 
'simple linear isotropic models seems by no means 
exhausted either as to identification, even of primary 
aspects, of porous media effects or as to availability of 
convenient analytical formulations'. Of course, the decision 
of whether dynamic, thermal or other effects can be 
disregarded has finally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto be based on estimates of their 
(potential) influence on the variables. 

Table 2. List of significant parameters of saturated porous media. Any one except zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. n. x may be used as one of 
four independent mechanical parameters in poroelasticity. (L, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ,  = length and width of rock sample, parallel and 
perpendicular to uniaxial stress.) 

Notion 

Skempton ratio 

Definition Dimension 

- 

Parameter 

B 

Remarks 

Skempton's (1954) second pore 
pressure parameter, aside A 

no index denoting drained con- 
dition, as opposed to undrained 

' f )  for fluid 

ML-'T-* matrix compressibility C 

ML-'T-' fluid compressibility Cf 

ML - 'T-* 

ML-1T-2 

pore compressibility '"' for porosity C" 

grain compressibility '<' for solid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-1 (") 

V apc m 

a / a f ( P  - BP,) 

V 2 ( P  - BP,) 

undrained compressibility 

hydraulic diffusivity 

shear modulus 

porosity 

Biot compressibility 

storage compressibility 

coeff. of effective stress 

Biot-Willis parameter 

Darcy conductivity 

'"' for undrained C" 

D 

G 

(Rice & Cleary 1976) 

identical to undrained shear 
modulus G, in poroelasticity 
- 

coefficient of a P / a f  in equation (2) 

'3-D' version, 
identical to R ' of Biot (1941) 

- 

n ( c ,  - cn) for inhomogeneous 
matrix (Biot & Willis 1957) 

k = intrinsic permeability, 
q = dynamic fluid viscosity 

no index denoting drained condition, 
as opposed to undrained 

0.5 a,l/e,l, i # j 

VJV 

Q,cs + Y 

n 

0-' 

S 

(Y 

Y 

- 

ML -  IT-^ 

ML-'T-* 

- 

M L - I T - ~  

L?M-~ x 

drained Poisson ratio V 

undrained Poisson ratio '"' for undrained 
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APPENDIX A: PLANE STRAIN A N D  AXIAL 
SYMMETRY FORMULATIONS 

Governing equations for plane strain conditions 
Introducing e33 = eI3 = eZ3 = 0; e , , ,  eZ2, e ,2  # 0 in equation 
(6) yields 

a33 = Y(Ull + Uz2) - (1 - 2 v ) f f P ,  

(713 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu'23 = 0. 

P, = [(l - 2 Y ) f f P  - (1 + Y)(UI I  + U 2 J ] / 3 .  

(Al) 

(A21 
With equation (Al), the  confining pressure is 

(A31 

Since also d P / d x , = O ,  insertion into the equations of 
stress-strain equilibrium and fluid mass conservation leads 
for plane strain condit ions again to equations (1) and ( 2 ) ,  

whereby now V2 = d2/dx :  + a2 /ax : ,  Av = e , ,  + e Z 2 ,  and 
i = 1, 2. 

Governing equations for axial symmetry 

In  cylindrical coordinates ( r ,  8, z) and  for du,/d8 = 
au,/d@ = du, /d8  = 0;  d P l d 0  = 0 ,  the  equilibrium equa- 
tions become 

da,, 3% 02, +-+-=O 
dz dr r 

(Verruijt 1969). Since eeH = (du, /aO + u,) /r  = u,/r ,  we 
obtain from equation (6) 

a,, = ~ ( a , ~  + uZz) + 2(1 + v)Gur/r  - (1 - 2v)(uP, (A5) 

and for the  confining pressure 

P, = [( l -  2v)aP - (1 + v)(urr + 2Gu,/r + u2,)]/3. (A6) 

If we proceed as in Section 2, t he  resultant governing 
equations for axial symmetry become 

G i3Av d P  

1 - 2 Y  dz d2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGV2u, +--= f f - - ,  

a Av - XV2P, 
d P  

dt dt 
Q-l-+a-- 

with V 2  = d2/dr2 + r-' d / d r  + d2/dz2 and Av = du,/dr  + 
u,/r + du, /dz .  

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
0
5
/3

/7
8
3
/5

8
6
7
6
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



798 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH.-J. Kiimpel 

APPENDIX B: P A R A M E T E R  C O N V E R S I O N  TABLES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB1. Simple equivalent expressions for the coefficients 
of the left-hand side of equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1). See Section 3.1 for the 
meaning of the parameters. 

G G/(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2 v )  

- A4-G 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2v 2 v  

E E 

A(1- 2v)  - 

2(1 + v )  2(1 + v ) ( l  - 2 v )  

3( 1 - 2 ~ )  3 

2( 1 + v ) c  2( 1 + v ) c  

G' 

3 G - E  
.~ - 

3 + G c  

3c 
_ _  

3( 1 - A c )  3 - l c  __ 
2c 2c 

9 ___ 3 E  ~- 
9 - E C  (9 - EC)C 

Table B2. Simple equivalent expressions 
replacing the Biot compressibility Q ' in 
equation (2 ) .  c ,  c , ,  S =drained, un- 
drained and storage compressibility. 

c ,  c , ,  s 

Q '  

( B - '  - a ) a c  

ac,lB 

s - a2c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f fz ___ 

C,SlC 

( 1  - a E ) S  

CCU 

c - C" 

( 1  - BZS/C)S 
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