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Abstract

The authors have derived macroscale poromechanics parameters for chemically active saturated 

fibrous media by combining microstructure-based homogenization with Hill's volume averaging. 

The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber 

behavior. The constitutive relationships applicable to saturated media are then derived in the 

poromechanics framework using Hill's Lemmas. The advantage of this approach is that the 

resultant continuum model assumes a form suited to study porous materials, while retaining the 

effect of discrete fiber deformation. As a result, the model is able to predict the influence of 

microscale phenomena such as fiber buckling on the overall behavior, and in particular, on the 

poromechanics constants. The significance of the approach is demonstrated using the effect of 

drainage and fiber nonlinearity on monotonic compressive stress-strain behavior. The model 

predictions conform to the experimental observations for articular cartilage. The method can 

potentially be extended to other porous materials such as bone, clays, foams, and concrete.
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Introduction

The theoretical analysis of the mechanical behavior of saturated chemically active fiber 

networks such as soft tissue and hydrogels is an active area of research. Most of the existing 

models for these materials are generally based on the continuum mixture theory (Truesdell 
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and Toupin 1960). The application of the continuum mixture theory to saturated, chemically 

active media such as biological tissue and hydrogel polymers has been made by numerous 

authors, notable among them being the biphasic and triphasic theories (Lai et al. 1991; Mow 

et al. 1980; Wang and Hong 2012; Yoon et al. 2010). These methods have employed 

continuum mixture theory to determine the constitutive behavior from the Helmholtz free 

energy. More recently, the influence of fiber orientation and local compression-tension 

nonlinearity has been implemented into constitutive models (Ateshian et al. 2009; Loret and 

Simoes 2010).

Saturated fibrous network can be described as porous solid and modeled using principles of 

poromechanics pioneered by Biot (1941, 1972), who developed the stress-strain 

relationships for infinitesimal and finite deformations of soil under three-dimensional 

consolidation. The constitutive relationships in poromechanical theory involve additional 

material constants apart from the stiffness tensor of the solid matrix phase. These 

poromechanical parameters, denoted in this paper by Bij and Γ, are necessary to account for 

the additional degrees of freedom, viz the fluid pressure and the change of fluid content. For 

linear isotropic materials, parameters Bij and Γ correspond to the constants α and 1/Q 

introduced by Biot (1941). In the models based on the continuum mixture theory, Bij has 

generally been assigned a value of identity corresponding to Terzaghi's (1925) stress, and 

the influence of the compressibility of the solid network on Γ is not accounted for explicitly.

In contrast to poromechanics models for chemically inert materials, development of 

constitutive models for chemically active networks involves additional considerations 

because of a pore-pressure dependence on chemical potential. Along these lines, models of 

swelling porous media, such as chemically active clays, that incorporate microscopic 

considerations of chemical activity and fluid transport have been developed following 

homogenization methods and continuum mixture theory [see, for example, Bennethum and 

Cushman (1996), Bennethum et al. (1997), and Moyne and Murad (2003, 2002)]. In 

addition, there is need to account for (1) nonuniform strain distribution between the solid 

matrix and pore space; and (2) the effect of nonlinearity of the solid matrix and the influence 

of evolution in fiber network properties with loading on Bij and Γ. These aforementioned 

aspects have not been universally accounted for in the existing literature relevant to 

chemically active fibrous media. In contrast, micromechanics-based approaches have been 

developed to obtain the poromechanical parameters (de Buhan et al. 1998; Dormieux et al. 

2002; Lydzba and Shao 2000) and recently applied to the swelling of bentonite clay (Cariou 

et al. 2009). These approaches account for nonuniform strain distribution through strain 

concentrations tensors and the compliance of the solid matrix. For example, strain 

concentration tensors were determined using self-consistent homogenization, and the 

resulting model was applied to study the poroelastic behavior of dentin and clays (Dormieux 

et al. 2003; Misra et al. 2012).

The present work extends the micromechanics-based poromechanics models to fibrous 

networks by (1) incorporating the discrete nature of the individual fibers through 

micromechanics-based homogenization; and (2) relating the fiber network description with a 

poromechanics description. The derived model is applied to investigate the free swelling and 

the drained and the un-drained behavior of fibrous media, in which the swelling is induced 

Misra et al. Page 2

J Nanomech Micromech. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



by chemical activity. A macroscopic chemical potential approach is used to model the effect 

of chemical activity. The continuum law derived incorporates the effects of fiber elongation 

properties, buckling, and chemical activity on the coupling constants and the overall 

material behavior. Consequently, the authors show that while Bij and Γ may be 

approximated as unity and zero, respectively, at large strains, it is necessary to obtain more 

accurate estimates, especially when the applied strain is below fiber prestrain.

In the subsequent discussion, the authors first derive the stress-strain relationship for a fiber 

network using kinematically driven micromechanical methodology (Chang and Misra 1990; 

Misra and Chang 1993). The homogenized network is then superposed with the fluid phase 

to derive the overall constitutive relationship, including expressions for the poromechanical 

parameters Bij and Γ. Finally, the variation in Bij and Γ is investigated for cases of drained 

and undrained loading with varying fiber nonlinearity for chemically active fiber networks. 

The intent of the developed model is to describe the observed macroscale mechanical 

behavior such as (1) postyield stiffening and reduction in Poisson's ratio under drained 

conditions or slow loading rate (Chahine et al. 2004); and (2) relatively stiff behavior 

without any yielding and constant Poisson's ratio under undrained conditions and fast 

loading rates (Oloyede et al. 1992). The developed model shows that these macroscale 

phenomena are related to the microscale mechanisms such as osmotic swelling because of 

chemical activity, swelling induced fiber prestrain, fiber-bucking under compression 

because of the high fiber aspect ratio, and nonuniform strain distribution between the solid 

and fluid phases. It was found that the developed model predictions show similarity to the 

experimentally observed data for drained and undrained cases of loading.

Micromechanical Model

A porous material is considered whose solid matrix is a fibrous network as shown 

schematically in Fig. 1, which depicts the microscopic and continuum scales of dry and 

saturated fibrous porous media. In general, saturated chemically active porous media have a 

nonlinear behavior accompanied by large strains. Therefore, an incremental form of Biot's 

constitutive equations is sought for this media. In this paper, only the nonlinearities that 

originate from fiber buckling, elongation dependent fiber stiffness, and charge density 

dependent chemical potential are treated. Nonlinearities from dissipative processes that lead 

to plastic deformations will be treated in future work. In this case, linearity can be assumed 

for small increments in stress and strain; thus, superposition is used to derive the incremental 

constitutive behavior. To proceed, the general loading increment is considered to be a 

superposition of two cases. In case 1, an increment of Green-Lagrange strain is applied 

while the increment of interstitial fluid pressure is held at zero, denoted as (ε˙ ≠ 0, p˙ = 0). In 

case 2, the increment of Green-Lagrange strain is held to be zero while an increment of 

interstitial fluid pressure is applied, denoted as (ε˙ = 0, p˙ ≠ 0). Similar superposition has 

been used for modeling porous media previously (Dormieux et al. 2003, 2002; Misra et al. 

2012).
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Case 1: (ε˙ ≠ 0, p˙ = 0)

Fiber Network Stress—First the macroscopic Cauchy stress, σij, of a representative 

volume element (RVE) of the dry fiber network is written as the volume average of 

microscopic stresses

(1)

where V = RVE; and  = stress in infinitesimal volume dV. Using Signorini's (1932) 

theorem and applying Gauss' divergence rule, Eq. (1) can be written as [see Chang and 

Misra (1989)]

(2)

In the absence of body forces and inertial effects, 

(3)

where the traction vector ; the position vector xi = Ri + ri, the centroid of the RVE 

is denoted by Ri; xi = position vector of one end of the intercepted collagen fiber; and ri = 

radius vector of the spherical RVE as shown in Fig. 2. Eq. (3) can now be simplified as

(4)

because  for centro-symmetrical RVE. Further, the force acting on the 

infinitesimal area dA, defined as , is given by

(5)

as the product of (1) the force in the fiber, Afσfni, where Af = fiber area; σf = fiber stress; and 

ni = unit normal vector expressed in spherical coordinates as the triad 〈cos θ; sin θ cos φ; sin 

θ sin φ〉; and (2) the number of fibers intersecting the infinitesimal area, dA = sin θdθdφ, 

given by Nξ(θ; φ) sin θdθdφ, where ξ(θ; φ) = probability density of the fiber distribution 

along (θ, φ); and N = total number of fibers. Because the average length of a fiber is given as 

r, the total volume of fibers in the RVE is NAfr. Expressing fiber volume in terms of the 

fiber volume fraction, γf, gets

(6)
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Combining Eqs. (4), (5), and (6) obtains the following relationship for the RVE Cauchy 

stress

(7)

The relationship for the increment of the RVE Cauchy stress, σ˙ij, is now obtained as 

follows from Eq. (4):

(8)

where the terms with an over dot (\skew2\dot) denote incremental quantities throughout the 

paper. From the definition of the Second Piola Kirchhoff stress, , where the 

force  expressed with respect to the current configuration is related to the force 

expressed with respect to the undeformed configuration through the deformation gradient, 

Fik. Thus

(9)

Further, from the definition of the deformation gradient 

(10)

where = position vector in the undeformed configuration. Eq. (8) can now be written as 

follows:

(11)

where V0 = undeformed volume of the RVE; J = Jacobian of the deformation gradient such 

that V = JV0 and . The Cauchy stress defined in Eq. (4) can be expressed in 

terms of the Second Piola Kirchhoff stress as follows:

(12)

Thus, Eq. (11) can be written as

(13)
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Using the spatial velocity gradient defined as  and increment of Jacobian 

given as J˙ = δrsLrsJ, Eq. (13) can be written as

(14)

From which the well-known Truesdell stress increment is obtained

(15)

The Truesdell stress increment can be further simplified analogous to Eq. (7) as follows:

(16)

where the fiber stress increment, σ̂f, can be related to the fiber strain increment by the 

following one-dimensional nonlinear constitutive equation considering a slender fiber 

element:

(17)

where Cf = constant; and exponent α ≥ 0. Further, the fiber strain increment, e˙f, can be 

expressed in terms of the overall RVE strain increment, ε˙kl, using the following kinematic 

assumption:

(18)

Thus, the tangential stress-strain relationship for the RVE can be written as follows:

(19)

where Cijkl = γf∫∂VCf[ef(θ,φ)]αninjnknlξ(θ,φ) sin θdθdφ; and the probability density of the 

fiber distribution, ξ(θ, φ), is discussed in the appendix. The derived relationship has 

similarities with those obtained using the virtual internal bond and granular micro-

mechanics methods (Chang and Misra 1990; Gao and Klein 1998; Misra and Singh (2013); 

Misra and Yang 2010). The approach presented here can also be applied to obtain higher-

order stiffness tensors of relevance to second-gradient and higher-gradient theories 

(dell'Isola et al. 2009b; Yang et al. 2011; Yang and Misra 2012).

Volumetric Water Content—For the case 1 loading increment, because the fluid 

pressure increment is held at zero, the incremental change in volumetric water content is the 

same as the incremental change in volume of pore space, thus
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(20)

where ς˙ = incremental change in volumetric water content; φ = pore volume fraction 

(porosity) referred to the deformed configuration at the beginning of the strain increment; 

and = increment of average pore space strain. The fiber volume fraction, γf, and porosity, 

φ, satisfy the relationship γf + φ = 1. Further, the incremental average pore space strain can 

be expressed in terms of the average incremental Green-Lagrange strain of the RVE as 

follows:

(21)

where  = strain concentration tensor for the pore space. The average incremental fiber 

strain  can also be expressed in terms of the average incremental Green-Lagrange strain of 

the RVE as follows:

(22)

Following Hill's volume averaging principle expressed as

(23)

the following identity is obtained:

(24)

Noting that the increment of the pore stress is zero, the volume average incremental stress 

for the RVE can be written as

(25)

Using the constitutive relationship for the fiber material, written as , and 

combining Eqs. (19), (22), and (25), it is found that

(26)

Further, using Eqs. (20), (21), (24), and (26), the incremental change in volumetric water 

content, ς˙, can be expressed in terms of the average incremental Green-Lagrange strain of 

the RVE as
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(27)

Case 2: (ε˙ =0, p˙ ≠ 0)

Because the incremental strain is held to zero during case 2 loading, the increment of 

Cauchy stress is considered, given as

(28)

where p˙ = increment of the pore fluid pressure; and Bij = poromechanical parameter. 

Further, the incremental change in volumetric water content is given as

(29)

where the first term arises from the volume change of the pore spaces; and the second term 

is contributed by the fluid compressibility. In addition, the volume average incremental 

stress for the RVE can be written as

(30)

Because the fiber material is expected to be considerably (order of magnitude) stiffer than 

the RVE such that it suffers small deformations, it is assumed that , which leads 

to the following relationship in light of Eq. (28):

(31)

Now, using Eq. (23) for this case gets

(32)

Thus, from Eq. (29), the incremental change in volumetric water content is obtained as

(33)
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Superposition of Case 1 and Case 2

Case 1 and 2 results, given in Eqs. (19), (27), (28), and (33), are now superposed to obtain 

the incremental stress-strain relationship for the general case of applied loading, (ε˙, p˙), as 

follows:

(34)

(35)

where σ̄ij = effective stress obtained from accretion of Eq. (14), and

(36)

It now remains to define Bij, to which end the following second-order virtual work 

expression is considered:

(37)

where 〈.〉 = volume-averaged quantities; and superscripts represent cases 1 and 2. In light of 

Eqs. (28), (30), and (31), Eq. (37) becomes

(38)

It is straightforward to show that the first term of the right-hand side vanishes, that is 

 by considering the second-order virtual work  Now, using Eq. (21), 

the second-order virtual work expression in Eq. (38) is simplified as follows:

(39)

Because Eq. (39) must hold for all virtual strain increments, , the following expression is 

obtained for Bij using Eqs. (24) and (26):

(40)

Thus, Eqs. (34)–(36) can be written as follows:

(41)
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(42)

(43)

Comparison of Drained and Undrained Compression

For the examples discussed hereafter, the RVE is subjected to unconfined uniaxial loading 

in two separate phases: the free swell phase followed by either drained or undrained loading 

under uniaxial stress conditions.

Loading Conditions

Free Swelling—In the free swell phase, the RVE undergoes prestrain because of swelling 

caused by water migration in response to the chemical potential difference between the 

material and the environment under an overall stress-free condition. The phenomena results 

in an osmotic pore pressure in the RVE fluid phase. At equilibrium, in which chemical 

potential difference vanishes, osmotic pore pressure, pc, can be obtained using Donnan's 

method as follows: (Overbeek 1956)

(44)

where CF = fixed charge density of the material; Co = molarity of the salt solution in which 

the RVE is immersed; R = universal gas constant; and T = temperature. The prestrain and 

pore pressure increments can now be obtained from Eqs. (41) and (42) by setting the stress 

increment to zero, such that

(45)

(46)

where the incremental volumetric water content ς˙ is specified using suitable step size. To 

estimate the step size, the prestrain is approximated using Eq. (41) and the total volumetric 

water content change under small-strain linear assumption. The step-size ς˙ is then taken as 

a fraction (typically 1=100th) of the approximated total volumetric water content change. 

The incremental strains are accumulated to obtain the prestrain corresponding to the 

equilibrium osmotic pore pressure.

Undrained Loading—During undrained loading, there is no ingress or egress of water, 

and the incremental volumetric water content, ς˙, is set to zero. Thus, from Eqs. (41) and 

(42)
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(47)

(48)

Further, the volume fractions of the constituents change during loading. From Eq. (29), the 

incremental change of porosity is given as

(49)

The volume fraction of the fiber is calculated from the identity, γf + φ = 1, and the increment 

of fixed charge density is given as

(50)

Drained Loading—During drained loading, ingress or egress of water is permitted such 

that when equilibrium is reached for an applied load, the pore pressure is the same as the 

osmotic pore pressure. In this case, Eqs. (41) and (42) apply directly. Further, the 

incremental change of porosity is obtained from Eq. (29), and the increment of fixed charge 

density is given by Eq. (50).

Results and Discussions

The parameters used for the calculations described subsequently are taken to be as follows: 

one-dimensional constitutive law for fiber −α = 0.5, Cf = 1,200 MPa, fiber volume fraction 

in the reference state γf = 0.55, porosity in the reference state, φ = 0.45, fixed charge density 

in the reference state CF = 330 meq⁄m3, external salt concentration Co = 15 meq⁄m3, fiber 

material properties—Young's modulus = 200 MPa, Poisson's ratio = 0.2, bulk modulus of 

water Kf = 2,200 MPa, and the probability density function of initially isotropic fiber 

distribution given by Eq. (52). These model parameters are chosen to enable a qualitative 

comparison with the behavior of articular cartilage, which is an example of a chemically 

active water saturated fibrous material (Oloyede et al. 1992).

Fiber Stress and Induced Anisotropy

In the free swelling phase, during which water is free to drain, an isotropic prestrain of 

1.27% develops. Thus, at the end of the free swelling phase, all the fibers in the network are 

under equal tension, as shown in Fig. 3, which gives the directional fiber stress distribution 

at 0, 0.8, 2.5, and 10% axial strain, respectively. Under free swelling conditions, the fiber 

network behaves as an isotropic material. Because the RVE is subjected to compressive 

uniaxial stress loading, fibers oriented closer to the loading direction experience unloading, 

whereas those closer to the lateral direction experience further tensile loading, as shown by 
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the directional fiber stress distribution in Fig. 3. Consequently, the fiber network behaves as 

a transverse isotropic material, although the degree and the nature of this induced anisotropy 

depend on the drainage condition. The predicted overall stress-strain behavior and the 

evolution of material parameters for the two drainage conditions are shown in Figs. 4 and 5. 

In Figs. 3–6, the axial strain is expressed with respect to the free swollen configuration, such 

that 0% axial strain corresponds to the end of the free swelling phase.

Stress-Strain and Pore Pressure-Water Content

Fig. 4(a) gives the plot of the axial stress, σ11, with axial strain, ε11, and lateral strain, ε22, 

during the uniaxial loading. Fig. 4(a) shows that in the initial stages of loading, for axial 

strain magnitude, ε11, below the tensile prestrain, the overall stress-strain behavior of the 

drained and undrained cases are close. However, the drained and undrained behaviors 

deviate considerably once the fibers oriented closer to the axial direction completely unload. 

Further, from Fig. 4(b), it is observed that for the drained case, the axial effective stress 

attributable to the fiber network decreases rapidly from its initial tensile state. In this case, 

the applied axial stress is increasingly supported by the pore pressure, which for the drained 

case is contributed to exclusively by the osmotic pore pressure, as seen from Fig. 4(d). The 

rise in osmotic pore pressure for the drained condition is not unexpected because there is a 

considerable increase in fixed charge density because of the volume compression and 

change in porosity, as shown in Figs. 4(c and d), respectively.

In contrast, for the undrained case, the axial effective stress first decreases and then begins 

to increase, as seen from Fig. 4(b). In this case, the large tensile loading that the lateral fibers 

experience makes increasing contribution to the axial component of the effective stress. This 

aspect is further expounded on in the subsection “Evolution of Stiffness and Poromechanical 

Parameters.” The contribution of the pore pressure in supporting the applied stress is 

significantly higher for the undrained case, as seen in Figs. 4(e and f). In this case, the 

osmotic pore pressure contribution is insignificant because there is negligible change in 

fixed charge density and the porosity [Figs. 4(c and d), respectively].

The uniaxial stress-strain behavior for the undrained and drained cases closely resemble the 

bounds of experimental data presented by Oloyede et al. (1992) for extremely low (close to 

drained conditions) and extremely high (close to undrained conditions) loading rates, 

respectively. The absence of an initially stiff region in the data presented by Oloyede et al. 

(1992) is expectant because of the relatively high bath salt concentration of 0.15 M in their 

experiments. In this example's calculations, given in Fig. 3, a lower bath salt concentration 

of 0.015 M is used to demonstrate the effect of higher prestrain. Similar results to Oloyede 

et al. (1992) are obtained for higher bath salt concentration. Further, the apparent yielding in 

the stress-strain curve for the drained case predicted by the model has also been observed in 

experiments on free-swollen articular cartilage (Chahine et al. 2004). According to this 

model prediction, the postyield behavior is primarily governed by the osmotic pressure. 

Similar postyield behavior has also been observed in experiments under drained conditions 

(Chahine et al. 2004). Moreover, the stiffness in the postyield regime is found to have a 

small increase (DiSilvestro et al. 2001) that agrees with the prediction shown in Fig. 4(a). 

The apparent yielding is absent at a higher rate of loading (Li et al. 2003), which is similar 
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to the undrained behavior predicted by this model. Further, the load sharing between the 

fiber network and the pore fluid predicted for undrained compression agrees with the well-

accepted hypothesis that the pore-pressure largely supports the applied load in the early part 

of the time response of the articular cartilage (Li et al. 2003; Li and Herzog 2004; Soltz and 

Gerard 1998).

Evolution of Stiffness and Poromechanical Parameters

The behavior in the two drainage conditions is further described by considering the 

evolution of the material parameters during loading. Figs. 5(a–c) give the plots of 

normalized fiber network stiffnesses, C1111 and C2222 and Poisson's ratio, ν12, respectively. 

The pore pressure in the RVE is governed by the parameter, Γ, whereas its contribution to 

the overall stress is modulated by the parameter Bij. Figs. 5(d–f) give the plot of the 

evolution of normalized Γ, B11, and B22, respectively.

Fig. 5(a) shows that the fiber network stiffness C1111 decays for both drained and undrained 

conditions to an asymptotic value. For the drained case, the stiffness C1111 is generally 

smaller than that of the undrained case, except in the initial part of the loading. In 

comparison, Fig. 5(b) shows that fiber network stiffness C2222 increases monotonically for 

the undrained case. For the drained case, C2222 first increases and then decreases in a 

comparatively narrow range. The differences in fiber network stiffness can be attributed to 

the fiber stress distribution in the two cases shown in Fig. 3. In the early stages of loading, 

the fibers oriented closer to the loading direction resist a significant part of the applied axial 

stress for the two cases. As the axial strain increases, the fibers oriented close to the loading 

direction completely unload, whereas those oriented closer to the lateral direction experience 

further tensile loading. However, the fiber stresses for the undrained case remain generally 

larger than that for the drained case, as seen from Fig. 3. The increase in the tensile loading 

of the fibers oriented laterally is predicted by Eq. (41), which says that the pore pressure and 

the fiber stress must equilibrate one another in the lateral direction in the unconfined case. 

As a result, the fibers oriented laterally become stiffer. Because the pore pressure increase is 

substantially greater in the case of undrained loading, the fiber network stiffness is also 

larger. For the drained loading case, the stiffening effect in the lateral direction is relatively 

smaller.

Fig. 5(c) gives the apparent Poisson's ratio, ν12, for the two drainage conditions. This 

apparent Poisson's ratio is computed as the ratio of the lateral to the axial strain with 

reference to the free swollen state as typically done in experiments. For the un-drained case, 

it is observed that this Poisson's ratio rapidly asymptotes to 0.5. For the drained case, the 

apparent Poisson's ratio decreases from a value of approximately 0.3 as fluid is squeezed out 

during compression. Similar strain dependence of Poisson's ratio has been reported from 

drained uniaxial compression of articular cartilage (Chahine et al. 2004). The decrease in 

Poisson's ratio is attributed to the rapid loss in overall stiffness in the direction of loading 

relative to the lateral direction. The absence of the mechanical pressure in pore fluid as seen 

from Fig. 4(f) also contributes to the loss of stiffness in the drained case.
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Figs. 5(d and e) give a plot of the evolution of parameters B11 and B22. Recall from Eq. (40) 

that Bij represents the relative stiffness of the fiber network with respect to the fiber material. 

When the fiber network stiffness is small relative to the fiber material, Bij tends to identity. 

Therefore, it is not surprising that in the drained case, both B11 and B22 tend to increase as 

the fiber network stiffness generally decreases with loading. A similar damage-induced 

increase in the values of B11 and B22 has been predicted for poroelastic solids (Lydzba and 

Shao 2000). Moreover, B11 and B22 reflect the effects of loading-induced anisotropy similar 

to that predicted for linear poroelastic material undergoing damage (Lydzba and Shao 2000). 

In contrast, for the undrained case, B11 increases as the fiber network softens in the axial 

direction; however, B22 decreases in response to the stiffening of the fiber network in the 

lateral direction discussed previously. Similarly, parameter Γ increases for the drained case 

as the fiber network becomes soft and more compressible with loading. However, for the 

undrained case, parameter Γ first increases, but then decreases as the overall compressibility 

of the fiber network also changes in a similar manner. In this case, the fiber network 

stiffness in the axial direction decreases, whereas that in the lateral direction increases. The 

overall effect of these competing phenomena is represented in parameter Γ. In traditional 

models for these types of materials, it is typical to assume Bij = δij and Γ = 0. Although these 

may be reasonable approximations at large strains, it is important to have a more accurate 

value at smaller strains to obtain correct effects of the pore pressure.

Effect of Fiber Nonlinearity

The fiber has been assumed to have a nonlinear behavior under tension arising from 

geometrical effects such as fiber crimping, braiding, or folding. Here the effect of fiber 

nonlinearity is explored by investigating the drained behavior for exponent α = 0, 0.1, and 

0.5. So that the comparison is on a similar footing, it is assumed that the fiber behavior is the 

same at a fiber strain of 30%, as shown in Fig. 6(a), such that the parameter Cf = 666.7, 

827.2, and 1,800 MPa, respectively, for the three cases. From Fig. 6(b), it can be seen that 

the fiber nonlinearity significantly affects the stiffness in the drained condition. Because of 

different nonlinearity, the prestrain in the three cases is different. Therefore, the softening of 

the fiber network commences at different applied axial strain, as seen from Fig. 6(c). The 

behavior of the RVE for linear fiber is stiffer than that of the nonlinear fiber, although the 

prestrain for linear fiber is smaller. Such a result is expected because the linear fiber is 

generally stiffer at small strains compared to nonlinear fiber. In addition, Fig. 6(b) shows 

that the behavior at larger strains is primarily governed by the osmotic pressure and has 

insignificant influence of the fiber-nonlinearity. Clearly, the fiber stiffness and nonlinearity 

has impact on the prediction of swelling and stress-strain behavior. Such prediction can be 

of significance in assessing disease states of soft tissues (Bank et al. 2000).

Fig. 6(d) also shows that the lateral stiffness varies little for RVE with nonlinear fiber, but 

decreases significantly for linear fibers. The lateral stiffness evolution is a complex function 

of the osmotic pressure and the fiber unloading. Further, from Figs. 6(e and f),it is noted that 

the RVE with nonlinear fibers are relatively softer than the fiber material; therefore, 

parameter B11 is closer to 1, and parameter Γ is larger because the fiber network is more 

compressible at the prestrained condition. As the loading progresses, the fibers unload, and 

RVE stiffness becomes smaller for all cases. Thus, parameter B11, for all three cases, 
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approaches unity. Similarly, the parameter Γ also tends to a common compressibility with 

loading. The comparison of behavior for different fiber nonlinearity shows that the overall 

material nonlinearity can be attributed to two phenomena: (1) fiber buckling as the fibers 

unload; and (2) intrinsic fiber nonlinearity. The former is a purely microstructural 

phenomenon resulting from the high aspect ratio of a fiber, whereas the latter is attributable 

to the nonlinearity in the fiber.

Summary and Conclusions

The authors have presented a derivation of poromechanical theory of fluid-saturated 

chemically active fibrous media. In the derived theory, the tangent stiffness of the dry fiber 

network is obtained using the framework of granular micromechanics. The poromechanics 

constitutive relationships are then obtained using Hill's volume averaging principles for 

strain-free and pore-pressure free conditions. To account for fiber nonlinearity and large 

deformations, the equations are formulated in an incremental form. The resultant model 

gives expressions for (1) the fiber network tangent stiffness, Cijkl, in terms of the fiber 

mechanical properties and fiber directional distribution; (2) the poromechanical parameter, 

Bij, in terms of the relative stiffness of the fiber network with respect to the fiber material; 

and (3) the poromechanical parameter, Γ, in terms of the relative compressibility of the fiber 

network and the fluid phase. The osmotic pressure that develops because of the chemical 

activity of the fiber network is modeled using Donnan's method. Thus, the derived theory 

provides a method determining the contributions of the mechanical aspects and chemical 

aspects to the load-bearing abilities of these materials.

The applicability of the model is demonstrated by comparison with the observed drained and 

undrained behaviors of articular cartilage under uniaxial compressive stress. The model 

predictions are found to show similar trends of stress-strain behavior, as experimentally 

observed. The model is able to predict the apparent yield observed under drained conditions, 

and its absence in the undrained condition. The model also exhibits the postyield stiffening 

behavior and the reduction in Poisson's ratio in the drained conditions. The authors also 

demonstrated the effect of microscale phenomena such as fiber buckling on the macroscale 

stiffness tensor and poromechanics parameters. In addition, the authors demonstrated the 

effect of fiber nonlinearity on the overall behavior. Traditionally, the constitutive laws used 

to describe these materials have assumed poromechanical parameter B to be unity and Γ to 

be zero. In the theory presented here, the poromechanical parameters can be calculated 

under a given set of loading conditions.

In this paper, only results for monotonic static loading under drained or undrained 

conditions have been presented. The model can be utilized to obtain the rate-dependent 

behavior of poromechanical materials. For example, the derived model provides a method 

for determining the load sharing between the fiber network and the pore fluid, which is of 

interest in transient behavior of these materials (Li and Herzog 2004). It is further noted that 

the analysis presented here is focused on a system in which the solid matrix is composed of 

a fibrous network. However, the presented methodology can be extended to other materials 

such as clays, polymers, and hydrogels. Furthermore, it is noted that for the porous materials 

of the type considered here, the behavior may be affected by other microscale phenomena, 

Misra et al. Page 15

J Nanomech Micromech. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



such as capillarity, and by occurrence of thin boundary layers that are best modeled using 

higher-gradient approaches (dell'Isola et al. 2009a; Madeo et al. 2008; Sciarra et al. 2008). 

The present methodology can be potentially applied to obtain the relevant constitutive 

parameters for these higher-gradient poromechanical theories.
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Appendix. Fiber Orientation Density Function

The fiber orientation density function expressed in spherical coordinates, ξ1(θ; φ), is written 

in a discrete form as follows:

(51)

where M = total number of fibers; δ(n − nj) = δ(θ − θj) δ(φ − φj)/sin θ; δ = Dirac delta; and 

the superscript j refers to the observed fiber directions. The observed discrete directional 

density of the type given by Eq. (51) can be estimated as a smooth orientation distribution 

function by fitting with parametric forms discussed by (Kanatani 1984). Other forms of 

smooth orientation distribution functions, particularly exponential forms that appear as 

extensions of von Mises or Fisher distributions, may be used, especially when they are 

needed to represent highly directional data (Cortes et al. (2010); Federico and Herzog 2008a, 

b). For practical calculations, transversely isotropic fiber orientation can be expressed as 

(Chang and Misra 1990)

(52)

where a20 = anisotropy factor, such that the isotropic fiber orientation can be expressed as 

(a20 = 0)

(53)
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Fig. 1. 
(a) Schematic of dry fibrous network at the microscale; (b) schematic of saturated fibrous 

network at microscale by zooming in to a homogenized representative volume element at the 

macroscale
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Fig. 2. Fiber traction in an RVE
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Fig. 3. 
Predicted fiber stress distribution with increasing compressive applied strains of 0, 0.8, 2.5, 

and 10% for (a) undrained; (b) drained conditions (plotted to the same scale)
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Fig. 4. 
Evolution of (a) stress, (b) effective stress, (c) volume change and porosity, (d) osmotic 

pressure and fixed charge density, (e) pore pressure and (f) mechanical pressure under 

uniaxial compression for drained and undrained cases of loading
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Fig. 5. 
Evolution of stiffness and poromechanical parameters under uniaxial compression for 

drained and undrained cases of loading: (a) fiber network stiffness C1111; (b) fiber network 

stiffness C2222; (c) apparent Poisson's ratio; (d) poromechanics parameter B11; (e) 

poromechanics parameter B22; and (f) overall compressibility
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Fig. 6. 
Effect of fiber nonlinearity on drained behavior under unconfined compression: (a) fiber 

behavior; (b) stress-strain behavior; (c) fiber network stiffness C1111; (d) fiber network 

stiffness C2222; (e) poromechanics parameter B11; and (f) overall compressibility
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