
Porosity Aware Buffered Steiner Tree Construction

Charles J. Alpert1, Gopal Gandham2, Milos Hrkic3, Jiang Hu4 and Stephen T. Quay1

1. IBM Corporation, Austin, TX 78758, {calpert,quayst}@us.ibm.com
2. IBM Corporation, Hopewell Junction, NY 12533, gopalg@us.ibm.com

3. University of Illinois at Chicago, CS Department, Chicago, IL 60607, mhrkic@cs.uic.edu
4. Texas A&M University, EE Department, College Station, TX 77843, jianghu@ee.tamu.edu

ABSTRACT
In order to achieve timing closure on increasingly complex IC de-
signs, buffer insertion needs to be performed on thousands of nets
within an integrated physical synthesis system. Modern designs
may contain large blocks which severely constrain the buffer loca-
tions. Even when there may appear to be space for buffers in the
alleys between large blocks, these regions are often densely packed
or may needed later to fix critical paths. Therefore, within physical
synthesis, a buffer insertion scheme needs to be aware of the poros-
ity of the existing layout to be able to decide when to insert buffers
in dense regions to achieve critical performance improvement and
when to utilize the sparser regions of the chip.

This work addresses the problem of finding porosity-aware buffer-
ing solutions by constructing a “smart Steiner tree” to pass to van
Ginneken’s topology based algorithm. This flow allows one to fully
integrate the algorithm into a physical synthesis system without
paying an exorbitant runtime penalty. We show that significant im-
provements on timing closure are obtained when this approach is
integrated into a physical synthesis system.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, Performance

Keywords
VLSI, interconnect, physical design, buffer insertion

1. INTRODUCTION
It has been widely recognized that interconnect becomes a dom-

inating factor for modern VLSI circuit designs. A key technol-
ogy to improve interconnect performance is buffer insertion. Cong
[4] speculates that close to 800,000 buffers will be required for 50
nanometer technologies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’03,April 6-9, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-650-1/03/0004 ...$5.00.

1.1 Previous Work
Early works on buffer insertion are mostly focused on improv-

ing interconnect timing performance. The most influential pioneer
work is van Ginneken’s dynamic programming algorithm [16] that
achieves polynomial time optimal solution on a given Steiner tree
under Elmore delay model[7]. In [13], Lillis et al. extended van
Ginneken’s algorithm by using a buffer library with inverting and
non-inverting buffers, while also considering power consumptions.

The major weakness of the van Ginneken approach is that it re-
quires a fixed Steiner tree topology has to be provided in advance
which makes the final buffer solution quality dependent on the in-
put Steiner tree. Even though it is optimal for a given topology, the
van Ginneken algorithm will yield poor solutions when fed a poor
topology. To overcome this problem, several works have proposed
simultaneously constructing a Steiner tree while performing buffer
insertion. Lillis et al. proposed the buffered P-Tree algorithm
which integrates buffer insertion into the P-Tree Steiner tree algo-
rithm[14]. Buffered P-Tree generally yields high quality solution,
but its time complexity is also high because candidate solutions
are explored on almost every node in the Hanan grid. In recently
reported S-Tree[9] algorithm, alternative abstract topologies for a
given Steiner tree are explored to promote solutions that are better
at dealing with sink criticalities. This technique is integrated with
P-Tree as SP-Tree algorithm in [8]. A different approach to solve
the weakness of van Ginneken’s algorithm is proposed by Alpert et
al [3]. They construct a “buffer-aware” Steiner tree, called C-Tree
for van Ginneken’s algorithm. Despite being a two-stage sequential
method, it yields solutions comparable in quality to simultaneous
methods, while consuming significantly less CPU time.

Recent trends toward hierarchical (or semi-hierarchical) chip de-
sign and system-on-chip design force certain regions of a chip to
be occupied by large building blocks or IP cores so that buffer in-
sertion is not permitted. These constraints on buffer locations can
severely hamper solution quality, and these effects need be consid-
ered. Thus buffer blockages are considered in the buffered path[17,
11, 12] class of algorithms. Though optimal, they are only applica-
ble to two pin nets. Works that handle restrictions on buffer loca-
tions while performing simultaneous Steiner tree construction and
buffer insertion are proposed in [5, 15]. Like buffered P-Tree, these
approaches can provide high quality solutions though at runtimes
too exorbitant to be used in a physical synthesis system. In [1], a
Steiner tree is rerouted to avoid buffer blockages before conducting
buffer insertion. This sequential approach is fast, but sometimes
unnecessary wiring detours may result in poor solutions. An adap-
tive tree adjustment technique is proposed in [10] to obtain good
solution results efficiently.

158

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

SourceSource

(b)(a)

(c) (d)

Figure 1: An arbitrary Steiner tree as shown in (a) and (c)
may force buffers being inserted at dense regions which is in-
dicated in blobs. A porosity aware buffered Steiner tree, which
are shown in (b) and (d), will enable buffers solution at sparse
regions.

1.2 The Importance of Porosity
In tradition design flows, buffer insertion is applied after place-

ment to optimize interconnect timing. As interconnect effects be-
come increasingly severe, buffer insertion needs to be pushed up
earlier in the design flow to help logic optimization and placement
algorithms on interconnect estimation and to reserve buffering re-
sources. The sheer number of nets that require buffering means
that resources need to be allocated intelligently. For example, large
blocks placed close together create narrow alleys that are magnets
for buffers since they are the only locations that buffers can be in-
serted for routes that cross over these blocks. But competition for
resources for these routes is very fierce. Inserting buffers for less
critical nets can eliminate space that is needed for more critical
nets that may require gate sizing or other logic transforms. Further,
though no blockages lie in the alleys, these region could already
be packed with logic and no feasible space for the buffer might ex-
ist. If the buffer insertion algorithm cannot recognize this scenario
then inserting a buffer into this space may cause placement legal-
ization to spiral it out to a region too far from its original location.
Hence, whenever possible one should avoid denser regions unless
absolutely critical.

For example, Figure 1(a) shows a 2-pin net which is routed
through a dense region (denoted by circles) or “hot spot”, and Fig-
ure 1(b) shows the net routed differently to avoid this congested
region. Both solutions have the same wirelength and timing char-
acteristics. Figure 1 (c) and (d) show another example for a multi-
pin net where the Steiner point needs to be moved outside of the
dense region to yield an improved buffer insertion result.

Figure 2: An example of tile graph.

The literature contains no buffering approach which addresses
these issues. Note that several algorithms (such as S-Tree and
SP-Tree) could be used to address porosity constraints since they
can be run on arbitrary grid graphs. However, the extensions are
hardly straightforward. One has to carefully consider the weight-
ing scheme for edges in the grid graph, how to sparsify the graph to
give reasonable runtimes, the appropriate cost functions, etc. Fur-
ther, any simultaneous approach is likely to require too much run-
time to be practically used within physical synthesis.

This work proposes a porosity aware buffered Steiner tree con-
struction and is the first buffer insertion work to address porosity
in the layout directly (as opposed to simply specifying a handful
of allowable buffer insertion locations). The approach begins with
a timing-driven but porosity-ignorant Steiner tree, then applies a
plate-based adjustment guided by length based buffer insertion. Af-
ter performing localized blockage avoidance, the resulting tree is
then passed to van Ginneken’s algorithm to obtain a porosity aware
buffered Steiner tree. Physical synthesis experiments on real indus-
trial circuits confirms the effectiveness of this framework.

2. PRELIMINARIES
The porosity is represented through a tile graph G(VG, EG)

where a node g ∈ VG corresponds to a tile and an edge euv ∈ EG

represents a boundary between two neighboring tiles u and v ∈
VG. An example of tile graph is provided in Figure 2. If the a tile
g ∈ VG has an area of A(g) and its area occupied by placed cells
are a(g), the placement density is defined as the area usage density
d(g) = a(g)

A(g)
of tile g. We address the following problem:

Porosity-aware Buffered Steiner Tree Problem: Given a net
N = {v0, v1, . . . , vn} with sourcev0 and sinks{v1, . . . , vn},
load capacitancec(vi) and required arrival timeq(vi) for 1 ≤ i ≤
n, tile graphG(VG, EG), and a buffer typeb, construct a Steiner
treeT (V,E), in whichV = N ∪ VSteiner and edges inE span
every node inV , such that a buffer insertion solution that satisfies
q(vi) may be obtained with a minimal porosity cost.

For porosity cost, one can sum the costs of the tiles that the routes
cross. We use the following function, though certainly others can
be used as well, depending on the application. For each buffer
inserted in a tile g, the cost is the square of the density d(g). Thus,
the more buffers inserted, the higher the cost, though buffers are
close to free in sparser regions.

159

(b)(a)

v3

Source

v2

v1 v4

Source

v2

v1

v3

v5

v4

v5

Figure 3: An example of local blockage avoidance. Shaded rectangles represent buffer blockages. The Steiner tree before blockage
avoidance (a) and after blockage avoidance (b).

Note, that we do not recommend using an infinite penalty if in-
serting a buffer exceeds the density target. It may be better to insert
a buffer into an over dense region and move other cells out of the re-
gion than to accept a significantly inferior delay result. Ultimately
the right trade-off between porosity cost and timing depends on the
criticality of the net and the design characteristics.

3. ALGORITHM DESCRIPTION

3.1 Overview
Since simultaneous Steiner tree construction and buffer insertion

is computationally expensive for practical circuit designs, we pre-
fer to first construct a Steiner tree followed by a van Ginneken style
buffer insertion algorithm that employs higher order delay models,
handles slew and load capacitance constraints, manages a library
of inverting and non-inverting buffers and trades off buffer resource
utilization with solution quality. Integrating a Steiner tree construc-
tion into this algorithm while maintaining all its features would be
prohibitive. However, just constructing a Steiner tree without per-
forming buffer insertions cannot possibly yield the best topology.
Therefore, we propose to solve the porosity aware buffered Steiner
tree problem through the following four stages:

1. Initial porosity ignorant timing-driven Steiner tree construc-
tion

2. Plate-based adjustment for porosity improvement

3. Local blockage avoidance

4. Van Ginneken style buffer insertion

For stage one, one can construct a timing-driven Steiner tree
through any heuristics. We choose to apply the “buffer aware” C-
Tree algorithm[3].

Stage 2 contains the key ideas behind the algorithm. The plate-
based adjustment phase modifies the existing timing-driven Steiner

in an effort to reduce congestion cost while maintaining the tree’s
high performance. One of the key elements is that it allows Steiner
points to migrate outside of high-porosity tiles into lower-porosity
tiles to reduce congestion while maintaining (if not improving) per-
formance.

After Stage 2, the Steiner tree is correct in that it goes through
the tiles that optimize performance while minimizing porosity cost,
though the routes may overlap blockages. Performing local block-
age avoidance in Stage 3, manipulates the routes within each tile
to avoid blockages, thereby allowing more buffer insertion candi-
dates. However, this stage does not disturb the tree topology un-
covered from Stage 2. An example of the local blockage avoidance
is illustrated in Figure 3.

Finally, in Stage 4 the resulting tree topology is fixed for van
Ginneken style buffer insertion.

Since we use known algorithms for Stages 1 and 4, the rest of
the discussion focuses on the other two stages.

3.2 Stage 2: Plate-based Adjustments
The basic idea for the plate-based adjustment is to perform a

simplified simultaneous buffer insertion and local tree adjustment
so that the Steiner nodes and wiring paths can be moved to regions
with greater porosity without significant disturbance on the timing
performance obtained in Stage 1.

The buffer insertion scheme employed here is similar to the length
based buffer insertion in [2]. However, we allow the Steiner points
and wiring paths to be adjusted. This approach is also distinctive
from a simultaneous buffer insertion and Steiner tree construction
approach[14] in which the Steiner tree is built from scratch. The
plate-based adjustment traverses the given Steiner topology in a
bottom-up fashion similar to van Ginneken’s algorithm. During
this process, Steiner nodes and wiring paths may adjusted together
with buffer insertion to generate multiple candidate solutions.

The range of the moves are restrained by the platesdefined as
follows. For a node vi ∈ T (V,E) which is located in a tile gk,
a plateP (vi) for vi is a set of tiles in the neighborhood of gk in-
cluding gk itself. During the plate-based adjustment, we confine

160

(b)(a) (c)

Source

v2

v3
v4

v5 v5

v4
v3

v2

v1

Source

v1

v2

v3
v4

v5 v1

Figure 4: (a) Candidate solutions are generated from v2 and v3 and propagated to every tile, which is shaded, in the plate for v4.
Solution search is limited to the bounding boxes indicated by the thickened dashed lines. (b) Solutions from v 1 and every tile in the
plate for v4 are propagated to the plate for v5. (c) Solutions from plate of v5 are propagated to the source and the thin solid lines
indicate an alternative tree that may result from this process.

the location change for each Steiner node within its corresponding
plate. If vi is a sink or the source node we let P (vi) = {gk}. For
example, when vi is a branch node, we set P (vi) to be the 3×3 ar-
ray of tiles centered at gk.1 Of course, if gk lies on the border of the
entire tile graph, P (vi) may include fewer tiles. Figure 4(a) gives
an example of the plate corresponding to Steiner node v4. The plate
indicates any of the possible location which the Steiner node may
be moved to. This example shows the Steiner node being moved
up one tile and right one tile.

The search for alternate wiring paths is limited to the minimum
bounding box covering the plates of two end nodes. In Figure 4,
such bounding boxes are indicated by the thickened dashed lines.
Therefore, the size of plates define the search range for both Steiner
nodes and wiring paths. Certainly, a plate may be defined to in-
clude more tiles or to even be a irregular shape. For example, if the
plate size is 1 × 1, our algorithm will basically reduce to a length
based/van Ginneken style buffer insertion algorithm along a fixed
topology. However, one could also choose the plate to be the entire
tile graph – this yields an algorithm similar to the S-Tree embed-
ding [9]. By choosing a plate of size larger than one but smaller
than the entire grid graph, we still obtain the ability to modify the
topology to move critical Steiner points into low-porosity regions
while also capping the runtime penalty. Hence, our experiments use
a 3× 3 tile size to capture this tradeoff. An example of how a new
Steiner topology might be constructed from an existing topology is
demonstrated in Figures 4(a)-(c).

Adopting a length-based buffer insertion scheme [2] makes the
adjustment simpler and thereby faster. Since this stage only pro-
duces a Steiner tree before buffering, the purpose of including buffer-
ing at this stage is for estimation purposes, hence a simplified scheme
should be adequate.

Alpert et al. [2] suggest that buffer insertion may be performed

1Note that the size of the plate depends on the quality of solu-
tion/runtime tradeoff desired by the user. Using a finer tile graph
will require a larger plate to push Steiner nodes outside of high den-
sity regions. One could alternatively use say a 5 × 5 array or even
an alternate shape such as a diamond of tiles all within distance 2
of the original tile.

in a simple way by just following a rule of thumb: the maximal
interval between two neighboring buffers is no greater than certain
upper bound. The interval between neighboring buffers is specified
in term of number of tiles. In this work, this constraint is modified
to be the maximum load capacitance U a buffer/driver may drive,
so that sink/buffer capacitance can be incorporated. To keep the
succinctness of the tile-based interval metric in [2], we discretize
the load capacitance in units equivalent to the capacitance of wire
with average tile size. If the average tile boundary length is λ and
the wire capacitance per unit length is ĉ, then a load capacitance is
expressed in the number of β = λĉ. This modification allows us
to use non-uniform sized tiles, even though we still assume such
non-uniformity is very limited.

Also for the sake of simplification, we assume a single “typical”
buffer type, the Elmore delay model for interconnect and a switch
level RC gate delay model for this plate-based adjustment.

Each intermediate buffer solution is characterized by a 3-tuple
s(v, c, w) in which v is the root of the subtree, c is the discretized
load capacitance seen from v, and w is the accumulated porosity
cost. A solution si(v, ci, wi) is said to be dominated by another
solution sj(v, cj , wj), if ci ≥ cj and wi ≥ wj . A set of buffer
solutions S(v) at node v is a non-dominating set when there is no
solution in S(v) dominated by another solution in S(v). Usually
S(v) is arranged as an array {s1(v, c1, w1), s2(v, c2, w2)...} in the
ascending order of load capacitance. The basic operations of the
length-based buffer insertion are:

• AddWire(si(v, ci, wi), u): grow solution si at v to node u
by adding a shortest distance wire between them. Node u
is either within the same tile as v or in the neighboring tile
of v. If the wire has capacitance C, we can get cj(u) =
ci(v) + C

β
and wj(u) = wi(v) + w(v, u) where w(v, u) is

the rectilinear distance between v and u times the placement
density.

• AddBuffer(si(v, ci, wi)): insert buffer at v. If buffer b
has an input capacitance cb, output resistance rb and intrinsic
delay tb, then the buffered solution sj(v, cj , wj) is character-

161

ized by cj(v) = cb/β and wj(v) = wi(v) + p(g) in which
p(g) = d2(g) is the porosity cost for tile g where node v
locates.

• Prune(S(v)): remove any solution si ∈ S(v) that is domi-
nated by another solution sj ∈ S(v).

• Expand(si(v, ci, wi), u): grow si(v) to node u by
AddWire to get solution sj(u, cj , wj), insert buffer for
sj(u) to obtain sk(u, ck, wk). Add the unbuffered solution
sj and buffered solution sk into solution set S(u) and prune
the solutions in S(v).

• Merge(Sl(v), Sr(v)): merge solution set from left child of
v to the solution set from the right child of v to obtain a
merged solution set S(v). For a solution si,l(v, ci,l, wi,l)
from the left child and a solution sj,r(v, cj,r, wj,r), they are
merged to sk(v, ck = ci,l + cj,r, wk = wi,l + wj,r) only
when ck ≤ U .

Procedure: FindCandidates(v)
Input: Current node v to be processed
Output: Candidate solution set S(P (v))
Global: Steiner tree T (V,E)

Tile graph G(VG, EG)

1. If v is a sink
S(v)← {(v, 0, 0)}
S(P (v))← {S(v)}
Return S(P (v))

2. vl ← left child of v
S(P (vl))← FindCandidates(vl)

3. Sl(P (v))← Propagate(S(P (vl)), P (v))
4. If v has only one child

Return Sl(P (v))
5. vr ← right child of v
S(P (vr))← FindCandidates(vr)

6. Sr(P (v))← Propagate(S(P (vr)), P (v))
7. S(P (v))←Merge(Sl(P (v)), Sr(P (v))
8. Return S(P (v))

Figure 5: Core algorithm.

Similar to the van Ginneken’s algorithm, starting from the leaf
nodes, candidate solutions are generated and propagated toward the
source in a bottom-up manner. Before we propagate candidate so-
lutions from node vi to its parent node vj , we first find both plate
P (vi) and plate P (vj) and define a bounding box which is the min-
imum sized array of tiles covering both P (vi) and P (vj). Then
we propagate all the candidate solutions from each tile of P (vi)
to each tile of P (vj) within this bounding box. Note that branch
nodes are allowed to be moved in a neighborhood defined by the
plate. Since the branch nodes are more likely to be buffer sites
due to the demand on decoupling non-critical branch load from the
critical path, allowing branch nodes to be moved to less congested
area is especially important. Moreover, such move is a part of a
candidate solution, thus such move will be committed only when
its corresponding candidate solution is finally selected at the driver.
Therefore, such move is dynamically generated and selected ac-
cording to the request of the final minimal porosity cost solution.
The complete description on the core algorithm is given in Figure 5
and the subroutine of solution propagation is in Figure 6.

Procedure: Propagate(S(P (vi)), P (vj))

Input: Candidate solutions at P (vi))
Expansion region P (vj)

Output: Candidate solution set S(P (vj))
0. S(P (vj))← ∅
B ← bounding box of P (vi) and P (vj)
Q← ∅

1. For each tile gk ∈ P (vi)
Q← Q ∪ S(gk)

2. While Q �= ∅
3. s← min cost solution in Q

gk ← tile where s locates
4. For each tile gl adjacent to gk

5. If gl ∈ B
Expand(s(gk), gl)

6. Return S(P (vj))

Figure 6: Subroutine of propagating candidate solutions from
one plate to another plate.

3.3 Stage 3: Local Blockage Avoidance
After the tree has been modify to route through the tiles with high

porosity, the tree still may overlap blockages. This is especially true
if one uses a sparse grid graph to begin with. This occurs because
the plate-based adjustment in Stage 2 is performed with respect to
a given tile graph, but large blockages themselves are managed as
part of a tile. For example, if a blockage occupies half the area of a
given tile, but the remaining half of the tile is empty, the tile’s den-
sity is 50%. Of course, a net that traverses through this tile should
be routed in the space not occupied by the blockage wherever pos-
sible. Thus, this stage performs local cleanup within tiles to achieve
blockage avoidance without changing tile assignment.

The local blockage avoidance is similar to the algorithm pro-
posed in [1]. The main idea is to divide each Steiner tree into a
set of non-overlapping 2-pathsand then perform local blockage
avoidance on each 2-path. A 2-path is a path of nodes for a given
Steiner tree such that both endpoints are either the source, a sink,
or a Steiner node. Thus, every internal node has degree two.

Each 2-path of a given Steiner tree is rerouted over an ex-
tended Hanan grid generated by drawing horizontal and vertical
lines through each pin and extending the borders of each rectangle
shaped buffer blockage. The extended Hanan grids are shown by
the dashed lines in Figure 7. In this grid, if an edge does not overlap
with any blockage, its cost is its geometric length. Otherwise, edge
cost will be geometric length timed by a penalty coefficient greater
than one. A minimal cost path is searched over this grid to replace
original 2-path to achieve blockage avoidance. The value of the
penalty coefficient controls the tradeoff between blockage avoid-
ance and total wirelength. A greater value of the penalty coefficient
implies a stronger desire to avoid the blockage and a greater wiring
detour is allowed. A small penalty coefficient will restrict the total
wirelength with a reduced blockage avoidance ability. Such trade-
off is illustrated in Figure 7.

During seeking the minimal cost path in [1], the entire region
covering the two endpoints are expanded properly and are searched.
For the example in Figure 3(a), when the 2-path between v3 and v5

is rerouted, the search region is indicated by the thickened dashed
lines in Figure 3(a). In our case, since the Steiner tree after stage 2
is already in high porosity regions, we may refine the search region

162

(a) (b)

(c) (d)

Figure 7: A path overlaps with a buffer blockage as in (a) can be moved out of the blockage with a small detour as in (b) with a small
penalty coefficient on cost. Only a greater penalty coefficient can allow a large detour like from (c) to (d).

to be the tiles the 2-path passing through as shown by the thickened
dashed lines in Figure 3(b). In this work, we define the penalty
coefficient to be 1.01 so that the wire detour from this rerouting
will be very small (no more than 1% wirelength increase) and the
disturbance to the timing performance of the tree is very limited.
In Figure 3, the rerouted path after blockage avoidance is shown in
(b).

4. EXPERIMENTAL RESULTS
For our experiments, we implement our porosity-aware buffered

Steiner tree algorithm into an industrial physical synthesis system
called PDS [6]. The system begins with a placed netlist and per-
forms several operations on critical paths to reduce timing closure,
such as gate sizing, pin swapping, logic transforms, and of course
buffer insertion. At the end of physical synthesis, PDS reports the
following statistics measuring the success of a run:

1. Slack: the minimum slack among all the timing paths,

2. # Neg: the number of timing paths with negative slack,

3. FOM(Figure of Merit): a measure of the cumulative slack of
all negative slack cells in the design and a greater value of
FOM is desired,

4. TWL: total wirelength,

5. CPU: total CPU time in seconds on an RS6000 595 machine
with 4 Gb or RAM.

For each of three industrial cases, we ran physical synthesis two
different ways:

1. Baseline: just Stages 1 and 4 in Section 3 are run.

2. Porosity: the porosity-based modifications of Stage 2 and 3
are included on top of the baseline.

We make the following observations. For each case, using the
porosity algorithm reduced the number of nets with negative slack
and also the FOM. For two of the three test cases, some difference
in the worst slack in the design was observed, though not enough
to be significant. The total penalty for wirelength is less than half a
percent. Finally, the CPU degradation was roughly a factor of 1.7
to 2.5.

To truly measure how effective the porosity algorithm is, we
should hopefully see improvements in routing results as well, as
the placement of buffers should cause the design to be more spread
out. We were unable to obtain this data in time for the submission
deadline.

In some sense, the ability to measure the effectiveness of the
algorithm is only as good as the design data. For truly chunky
semi-hierarchical designs, this technology should have a much big-
ger impact than for totally flat designs, since it is the alley space
problems that can significantly impact the ability to close timing.

Table 2 isolates the runtimes of just the buffer insertion parts
of the physical synthesis run. First, observe just how efficient the
baseline buffer insertion algorithm can be. It can perform buffer
insertion on roughly 5 to 30 nets per second. Using porosity aware
buffer insertion certainly is less efficient, though it is still efficient
compared to simultaneous approaches. For example, for test1 it
can process about seven nets per second, while test2 is about one
net per second and test3 is two nets per second.

Table 2: Detailed runtime analysis of just buffer insertion in
PDS.

test baseline porosity
case #nets CPU #nets CPU Stage 1,4 Stage 2 Stage 3
test1 31736 1081 47119 6989 1810 3794 1385
test2 37093 1630 37514 31101 2747 23601 4753
test3 12851 3247 12623 25543 3122 22190 231

When one breaks down the total runtime of the porosity algo-

163

Table 1: Physical synthesis on industrial designs.
testcase #cells #blockages grid size algorithm slack(ns) #Neg FOM TWL CPU

test1 155K 209 24 × 24 baseline -1.60 36827 -10995 122.5 9803
porosity -1.50 29112 -8224 122.7 17300

test2 334K 848 32 × 32 baseline -0.96 14885 -5209 205.4 19816
porosity -0.98 14115 -4896 206.2 49162

test3 293K 18 32 × 32 baseline -1.32 59525 -25870 111.4 16155
porosity -1.29 51743 -22213 111.7 38714

rithm into its various stages, we observe that the runtime is domi-
nated by Stage 2. We believe that there are significant speedups that
can be integrated into this stage to achieve runtimes comparable to
that of Stages 1, 3, and 4. In particular, the wavefront expansion
is currently stored as a linked list; using a priority queue should
result in significant savings. Stage 3 can also be sped up by per-
forming pre-processing on the tile graph and blockage map so that
the grid graph does not have to be constructed from scratch dur-
ing the re-routing of each 2-path. Ideally the runtime for porosity
aware buffer insertion should be about a factor of two worse than
the baseline.

Finally, Figure 8 and 9 illustrate the kind of impact the algorithm
can have. Figure 8 shows the baseline for an example 17-pin net for
test2, and 9 shows the net layout for the porosity-aware algorithm.
The circles along the topology indicate possible buffer insertion
points. Observe that the layouts are similar, but the porosity-aware
layout is able to better avoid blockages while maintaining the same
integrity of the timing-driven Steiner tree. After inserting buffers,
the worst case slack on the tree in Figure 9 is 150ps better than that
of the tree in Figure 8.

5. CONCLUSION
This paper is the first to address the problem that not just block-

ages, but the porosity of the entire layout affecting the quality of
buffer insertion algorithms, especially within a physical synthe-
sis environment. We presented a four stage algorithm to address
buffered Steiner tree design. The key idea in Stage 2 was to use
a plate to limit the solution space exploration for Steiner nodes
during tree adjustment, thereby permitting a fairly efficient algo-
rithm. We demonstrated the effectiveness of this technique in a
physical synthesis system. In future work, we seek to improve this
approach by tweaking the cost function to improve performance
and to achieve additional speedups via alternative data structures
and pruning schemes.

6. REFERENCES

[1] C. J. Alpert, G. Gandham, J. Hu, J. L. Neves, S. T. Quay, and
S. S. Sapatnekar. A Steiner tree construction for buffers,
blockages, and bays. IEEE Transactions on Computer-Aided
Design, 20(4):556–562, April 2001.

[2] C. J. Alpert, J. Hu, S. S. Sapatnekar, and P. G. Villarrubia. A
practical methodology for early buffer and wire resource
allocation. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 189–194, 2001.

[3] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng,
J. Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar, and A.J.
Sullivan. Buffered Steiner trees for difficult instances. IEEE
Transactions on Computer-Aided Design, 21(1):3–14,
January 2002.

[4] J. Cong. Challenges and opportunities for design innovations
in nanometer technologies. SRC Design Sciences Concept

Paper, 1997.
[5] J. Cong and X. Yuan. Routing tree construction under fixed

buffer locations. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 379–384, 2000.

[6] W. Donath, P. Kudva, L. Stok, P. Villarrubia, L. Reddy,
A. Sullivan, and K. Chakraborty. Transformational placement
and synthesis. In Proceedings of Design, Automation and
Test in Europe Conference, pages 194–201, 2000.

[7] W. C. Elmore. The transient response of damped linear
networks with particular regard to wideband amplifiers.
Journal of Applied Physics, 19:55–63, January 1948.

[8] M. Hrkic and J. Lillis. Buffer tree synthesis with
consideration of temporal locality, sink polarity
requirements, solution cost and blockages. In Proceedings of
the ACM International Symposium on Physical Design,
pages 98–103, 2002.

[9] M. Hrkic and J. Lillis. S-tree: A technique for buffered
routing tree synthesis. In Proceedings of the ACM/IEEE
Design Automation Conference, pages 578–583, 2002.

[10] J. Hu, C.J. Alpert, S.T. Quay, and G. Gandham. Buffer
insertion with adaptive blockage avoidance. In Proceedings
of the ACM International Symposium on Physical Design,
pages 92–97, 2002.

[11] A. Jagannathan, S.-W. Hur, and J. Lillis. A fast algorithm for
context-aware buffer insertion. In Proceedings of the
ACM/IEEE Design Automation Conference, pages 368–373,
2000.

[12] M. Lai and D.F. Wong. Maze routing with buffer insertion
and wiresizing. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 374–378, 2000.

[13] J. Lillis, C. K. Cheng, and T. Y. Lin. Optimal wire sizing and
buffer insertion for low and a generalized delay model. IEEE
Journal of Solid-State Circuits, 31(3):437–447, March 1996.

[14] J. Lillis, C. K. Cheng, and T. Y. Lin. Simultaneous routing
and buffer insertion for high performance interconnect. In
Proceedings of the Great Lake Symposium on VLSI, pages
148–153, 1996.

[15] X. Tang, R. Tian, H. Xiang, and D.F. Wong. A new algorithm
for routing tree construction with buffer insertion and wire
sizing under obstacle constraints. In Proceedings of the
IEEE/ACM International Conference on Computer-Aided
Design, pages 49–56, 2001.

[16] L. P. P P. van Ginneken. Buffer placement in distributed
RC-tree networks for minimal elmore delay. In Proceedings
of the IEEE International Symposium on Circuits and
Systems, pages 865–868, 1990.

[17] H. Zhou, D. F. Wong, I-M. Liu, and A. Aziz. Simultaneous
routing and buffer insertion with restrictions on buffer
locations. In Proceedings of the ACM/IEEE Design
Automation Conference, pages 96–99, 1999.

164

Figure 8: An example of Steiner tree from baseline methodology. The shaded rectangles are buffer blockages. The source is indicated
by a cross.

Figure 9: The Steiner tree obtained through porosity aware method on the same net as in Figure 8.

165

