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Porous and Ultra‑Flexible Crosslinked MXene/
Polyimide Composites for Multifunctional 
Electromagnetic Interference Shielding
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HIGHLIGHTS

• Large‑area, lightweight, ultra‑flexible, and robust crosslinked MXene‑coated PI porous composites were manufactured via a scalable 
and facile approach.

• In addition to the hydrophobicity, anti‑oxidation and extreme‑temperature stability, excellent electromagnetic interference shielding 
performance was achieved because of the high‑efficiency utilization of the building units and microstructure.

• Moreover, the highly flexible composite foams exhibited excellent electrothermal and electromechanical sensing performance, dem‑
onstrating promising perspectives in next‑generation flexible electronics, aerospace, and smart devices.

ABSTRACT Lightweight, ultra‑flexible, and robust 
crosslinked transition metal carbide  (Ti3C2 MXene) coated 
polyimide (PI) (C‑MXene@PI) porous composites are man‑
ufactured via a scalable dip‑coating followed by chemical 
crosslinking approach. In addition to the hydrophobicity, 
anti‑oxidation and extreme‑temperature stability, efficient 
utilization of the intrinsic conductivity of MXene, the 
interfacial polarization between MXene and PI, and the 
micrometer‑sized pores of the composite foams are achieved. 
Consequently, the composites show a satisfactory X‑band 
electromagnetic interference (EMI) shielding effectiveness 
of 22.5 to 62.5 dB at a density of 28.7 to 48.7 mg  cm−3, 
leading to an excellent surface‑specific SE of 21,317 dB 
 cm2  g−1. Moreover, the composite foams exhibit excellent 
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electrothermal performance as flexible heaters in terms of a prominent, rapid reproducible, and stable electrothermal effect at low volt‑
ages and superior heat performance and more uniform heat distribution compared with the commercial heaters composed of alloy plates. 
Furthermore, the composite foams are well attached on a human body to check their electromechanical sensing performance, demonstrating 
the sensitive and reliable detection of human motions as wearable sensors. The excellent EMI shielding performance and multifunction‑
alities, along with the facile and easy‑to‑scalable manufacturing techniques, imply promising perspectives of the porous C‑MXene@PI 
composites in next‑generation flexible electronics, aerospace, and smart devices.

KEYWORDS MXene; Polyimide; Electromagnetic interference shielding; Heater; Sensor

1 Introduction

Advances in electromagnetic interference (EMI) shielding 
materials have sparked considerable attention in almost 
every electronics industry for attenuating electromagnetic 
radiation of complex electronic systems [1, 2]. High‑perfor‑
mance EMI shields with lightweight, superior mechanical 
flexibility, and improved EMI shielding effectiveness (SE) 
are urgently required [3]. This promotes the development 
of numerous EMI shielding composites, involving porous 
architectures [4–7] or bulk shields [8–10], composed of 
lightweight, flexible polymers and highly conductive nano‑
materials, such as carbon nanotubes (CNTs) [9, 11, 12], 
metal nanofibers [6, 13], and/or graphene layers [10, 14, 
15]. Polymer matrices embedded with varieties of conduc‑
tive nanofillers give rise to efficient conductive networks 
and abundant interfaces, which are beneficial for achiev‑
ing high EMI shielding performance. Particularly, a porous 
architecture is remarkable in reducing the weight of the 
shields, and promoting multiple reflections (multi‑reflec‑
tions) of incident EM waves which consequently induces an 
increased EMI SE [4, 5, 11, 16–18]. For instance, we have 
reported a type of flexible CNT embedded polyurethane 
(PU) composite foams with EMI SE of 20–50 dB at den‑
sity of merely 20–126 mg  cm−3 [16]. After compressing the 
CNT/PU foams to exclude the micrometer‑sized pores, the 
corresponding composites show significantly reduced EMI 
SE [18], confirming the significance of the porous struc‑
ture in EMI shielding materials. Nevertheless, an efficient 
dispersion of the inherently inert conductive nanofillers in 
the polymer matrices accompanied by achieving effective 
porous structure to obtain high‑performance EMI shield‑
ing composites in a facile, scalable preparation approach 
remains a great challenge [15, 19].

Transition metal carbides and/or nitrides (MXenes), 
a novel kind of two‑dimensional (2D) nanomaterials, are 
famous for the “metal‑like” conductivity, large specific 

surface, excellent mechanical properties, and easy process‑
ability in aqueous dispersion derived from the hydrophilic 
functional groups (–O, –OH, –F) [20, 21]. These provide 
huge potentials of MXene flakes for bottom‑up construction 
of MXene‑based EMI shielding macrostructures [22–24]. 
However, the interactions formed among MXene flakes 
are generally very weak, which is against the formation 
of robust pure MXene porous structures [20, 22, 25], and 
consequently hinder its practical applications. Polymers act‑
ing as efficient ’binder phase’ are most widely employed to 
improve the mechanical strength and flexibility of MXene‑
based macrostructures [26, 27]. The poly (vinyl alcohol) 
(PVA) [28], sodium alginate (SA) [22], aramid fiber (ANF) 
[29, 30], and cellulose nanofiber (CNF) [26, 31–34] have 
been reported to achieve mechanical strong and flexible 
MXene‑based composites. However, the introduced poly‑
mers are generally electrical insulator, which inevitably 
compromise the full utilization of the electrical conductivity 
and EMI shielding properties of MXenes. Poor temperature 
tolerance of commonly utilized polymers also restricts the 
wide range applications of the MXene‑based EMI shielding 
composites [35]. Moreover, the high  H2O/O2 permeabil‑
ity in polymer‑MXene composites is critical for long‑term 
durability regarding the poor oxidation stability of MXene 
[36–38]. In short, preparing lightweight, flexible, durable 
MXene‑based porous architectures without compromising 
the excellent electrical conductivity of MXene in a scalable 
manufacturing approach remains challenging. In addition to 
EMI shielding performance, integrating multifunctionalities 
of devices is highly desirable with the rapid development of 
emerging multifunctional systems with internet of things 
(IoT) capabilities, such as wearable, flexible electronics 
including sensors [39–45] and heaters [46–52].

Here, we manufactured the lightweight, flexible, durable, 
and large‑area crosslinked  Ti3C2 MXene‑coated polyimide 
(PI) (C‑MXene@PI) composite foams based on a facile 
and scalable dip‑coating followed by chemical crosslinking 
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approach. Highly porous yet robust PI scaffolds rendered 
the composite foams with low density, ultra‑flexibility, and 
extreme‑temperatures tolerance. The entire covering of 
MXene flakes on continuous PI exoskeleton was beneficial 
for the retainment of high conductivity and EMI shielding 
performance of pristine MXene. Furthermore, the chemical 
crosslink of MXene (C‑MXene) contributed to the hydro‑
phobicity, waterproof capability, and the oxidation stabil‑
ity of the C‑MXene@PI composite foams, promoting their 
high durability and reliability in practical applications. The 
1.5‑mm‑thick C‑MXene@PI composite foams with a den‑
sity of 28.7 to 48.7 mg  cm−3 also exhibited a satisfactory 
X‑band EMI SE of 22.5 to 62.5 dB. Excellent specific SE 
(SSE, namely SE divided by the density) [4, 9, 19] and nor‑
malized surface‑specific SE (SSE/d, namely SE divided by 
the density and thickness) [16, 22, 53] values up to 1,971 
and 21,317 dB  cm2  g−1 were also achieved, respectively, 
for the C‑MXene@PI foams, which are significantly outper‑
forming porous architectures including PI‑based composites 
(Table 1) and other nanofiller embedded polymeric compos‑
ites (Table S1). Combined with the theoretical calculation, 
we attributed the excellent EMI shielding performance to the 
synergistic coactions of micrometer‑sized pores, the MXene‑
based conductive networks, and the interfacial polarization 
between the MXene and PI. Furthermore, we explored the 
excellent electrothermal and electromechanical sensing per‑
formance of the C‑MXene@PI foams, showing the multi‑
functionalities and the potentials for multifunctional elec‑
tronic devices. This work thus suggests a convenient, facile 
approach for large‑scale manufacturing high‑performance 
MXene‑based porous composites with potential applications 
in EMI shielding of all kinds of complex electronic systems, 
and next‑generation flexible electronic devices.

2  Experimental

2.1  Materials and Methods

2.1.1  Preparation of MXene Aqueous Dispersion

Aqueous dispersions of MXene were manufactured by etch‑
ing and mechanical delamination process of the  Ti3AlC2 
MAX as shown in our previous work [26]. Briefly, 2.0 g 
 Ti3AlC2 MAX (Laizhou Kai Kai Ceramic Materials Co., 

Ltd., China) was added to 40 mL hydrochloric acid (HCl, 
9 M, Sigma‑Aldrich, the USA) dissolved with 3.2 g lithium 
fluoride (LiF, Sigma‑Aldrich, the USA). After the reaction at 
35 ℃ for 24 h, the suspension was centrifuged at 3500 rpm 
and then redispersed to reach pH≈6. Afterward, the sus‑
pension was vigorously shaken for 30 min, and then, the 
supernatant MXene dispersion with a concentration of 0.1 
wt% was obtained.

2.1.2  Preparation of C‑MXene@PI Composite Foams

PI foams (Solimide® foam, BOYD Corporation GmbH) 
were immersed into the aforementioned MXene dispersion 
till the MXene dispersion was fully infiltrated into the PI 
foams and then dried in the 50 °C oven to get the MXene@
PI composite foams. The dip‑coating process was repeated, 
and the number was recorded. Afterward, the MXene@PI 
composite foams were chemically crosslinked by PMDI. 
Here, PMDI was first dissolved in acetonitrile/methyl 
caproate (4:1, v/v) solution at a volume ratio of 1:9, and 
then, the MXene@PI composite foams were immersed in 
this acetonitrile/methyl caproate (4:1, v/v) solution. After a 
reaction in the oven for 2 h at 70 °C followed by a acetone 
washing treatment, the freestanding C‑MXene@PI compos‑
ite foams were prepared.

2.2  Characterization

Scanning electron microscopy (SEM, FEI NanoSEM 
230), transmission electron microscopy (TEM, JEOL 
JEM2200fS) and atomic force microscopy (AFM, Bruker 
ICON3) were employed to characterize the morphol‑
ogy and microstructure. A drop shape analyzer (DSA 
30, Krüss, Germany) was utilized to measure the water 
contact angles (CA). A FTIR spectrometer (PerkinElmer 
Spectrum Two) with an attenuated total reflection acces‑
sory was used to perform the FTIR measurements. The 
resistances (R) were measured in a four‑probe method by 
a Keithley 4200 electrometer so as to calculate the elec‑
trical conductivity (δ). EMI SE in the frequency range of 
8.2–12.4 GHz (X‑band) was measured by a vector network 
analyzer (Agilent 8517A) in the waveguide method. More 
than three specimens were tested for each component. 
The S‑parameters were recorded and used to calculate the 
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 SET,  SER, and  SEA. To evaluate the electrothermal per‑
formance, various DC voltages were applied to the 10L 
MXene@PI composite foams using a DC‑regulated power 
supply. The temperature of the sample was measured by a 
digital thermometer (UT325) with its T‑type thermocou‑
ple contacting the surface of the sample. The electrome‑
chanical response of the composite foams was obtained by 
measuring the resistance change using the Keithley 4200‑
SCS electrometer in a two‑probe method.

3  Results and Discussion

3.1  Preparation and Structure of the Composite Foam

The manufacturing process of C‑MXene@PI composite 
foams is schematically displayed (Fig. 1a, b). First, a stable 
 Ti3C2Tx MXene (T represents the surface hydrophilic func‑
tional groups (‑OH, ‑O, and ‑F)) in an aqueous dispersion 
was prepared by etching and delamination of the precursor 

Table 1  EMI shielding performance of PI‑based macrostructures and some typical MXene composites

Materials EMI SE (dB) Density (mg  cm−3) Thickness (mm) SSE (dB  cm3  g−1) SSE/d (dB  cm2  g−1) Refs

C‑MXene@PI foam 43.7 41.0 0.5 1066 21,317 This work
80.8 41.0 3 1971 6569
62.52 48.7 1.5 1285 8567
60.04 43.0 1397 9315
59.17 41.0 1442 9612
52.51 38.0 1383 9217
45.54 35.6 1278 8519

Ag NWs/PI foam 17–23.5 22 5 1068–772 2136 ‑1544 [59]
CNT/PI foam 41.1 32.1 2 1280 6402 [60]
MWCNT/PI 13.0–14.3 470 0.5 28–30 553–609 [69]
rGO/PI foam 13.7–15.1 460 0.5 30–33 596–657 [69]
MWCNT‑CNT/rGO/PI foam 16.6–18.2 440 0.5 38–41 755–823 [69]
CNT/graphene/PI foam 28.2 20 2 1410 7050 [70]
Graphene/PI foam 22 280 0.8 78.6 982 [63]
Anisotropic graphene/PI foam 26.1–28.8 76 2.5 343–379 1373–1518 [71]
Graphene/PI foam 13.7 − 14.9 430 0.5 32–35 637 − 693 [72]
Graphene/PI film 31.3  ~ 1200 0.151 26 1727 [73]
Carbon nanofiber/PI film 12  ~ 1200 0.07 10 1429 [74]
Carbon nanofiber/carbon black/

PI film
23.9  ~ 1200 0.35 20 571 [75]

PI derived carbon foam 54 91 2 593 2965 [76]
Graphene/PI‑derived carbon foam 24 720 0.024 33 13,888 [77]
MXene/PI porous film 54.5 390 0.09 140 15,527 [78]
MXene/nanocellulose film 24 2000 0.047 12 2647 [31]
MXene/CNF film 33 2477 0.0009 37 148,000 [57]
MXene/CNF foam 75 0.008 2 9320 46,600 [26]
MXene/PVA porous film 26  ~ 545 0.1 48 4770 [28]
MXene/PVA foam 28 0.0108 5 2586 5136 [28]
MXene/ANF 28 1250 0.02 22 11,200 [29]
MXene/SA film 57  ~ 2317 0.008 25 30,830 [22]
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 Ti3AlC2 MAX with a compact rocklike microstructure 
(Figs. 1a and S1a) [26, 27]. After etching of Al layers of 
MAX precursor [26, 54], multilayer  Ti3C2Tx (m‑Ti3C2Tx) 
was obtained (Fig. S1b). Subsequent repeated washing 
with deionized water and vigorous shaking to swell the 
m‑Ti3C2Tx were carried out, leading to the preparation of 
aqueous dispersion composed of delaminated MXene nano‑
flakes. A high Zeta potential of around − 40 mV showed 
stability of the MXene in aqueous dispersion (Fig. S1c). 
Dominant single‑layer MXene flakes with an average lat‑
eral size of around 2 μm and a hexagonal atomic structure 
were observed in the TEM and electron diffraction images, 
respectively (Fig.  1c). AFM image is further provided, 

and the thickness of ~ 1.7 nm can be identified for a single 
MXene flake (Fig. 1d); this is consistent with the previous 
reports [26, 27, 55]. The pure PI foams showed micrometer‑
sized pores and smooth pore cell surfaces (Fig. S2a), which 
interconnected and sustained the low‑density (~ 25 mg  cm−3) 
porous scaffolds. The strong hydrogen bonding interactions 
formed between the imide rings of PI and MXene nanoflakes 
allowed for MXene adhered well to PI skeletons, leading to 
a successful preparation of MXene‑coated PI (MXene@PI) 
composite foams. The coated MXene flakes interconnected 
to form substantial conductive networks, which were instru‑
mental in significantly improving the electrical conductiv‑
ity of the PI scaffolds [56]. The MXene nanoflakes were 
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further crosslinked by the chemical crosslinking agent poly 
((phenyl isocyanate)‑co‑formaldehyde) (PMDI). The isocy‑
anate group of PMDI efficiently reacts with the hydroxyl 
groups on MXene, leading to the formation of strong pep‑
tide bonds. A typical, large‑area (60 × 60  cm2) crosslinked 
MXene‑coated PI (C‑MXene@PI) composite foams exhib‑
iting excellent mechanical robustness and flexibility were 
manufactured (Fig. 1e, f). Compared with the pure PI foams, 
the C‑MXene@PI foams showed the same micrometer‑sized 
pores yet rougher cell walls due to the crosslinked MXene 
layers on the PI cell walls (Figs. 1g, h and S2b). Element 
mappings of the C‑MXene@PI composite foams further 
demonstrated the successful composite and that the pore 
walls were coated with numerous MXene flakes (Fig. 1i).

The interfacial interactions between MXene and PI as 
well as the flexible and robust PI scaffolds endowed the 
C‑MXene@PI composite foams with excellent mechani‑
cal flexibility including bendability, rollability, twistabil‑
ity, and even foldability (Fig. 2a). Even though soaked in 
the liquid nitrogen at an extreme temperature of ‑196 ℃, 
the ultra‑flexibility of the C‑MXene@PI composite foam 
was still maintained (Fig. 2b, Video S1). In contrast, the 
commercial PU foams upon bending broke easily in this 
low‑temperature condition (Fig. S3, Video S2), proving the 
significance of PI scaffolds on our flexible and reliable com‑
posite foams especially for extreme conditions. Furthermore, 
the chemical crosslinking of MXene flakes increased the 
water contact angle from 0° to 118° (Figs. 2c and S4a, Video 
S3), which was mainly ascribed to the introduction of the 
hydrophobic backbone in the PMDI [57]. As displayed in 
FTIR curves (Figs. 2d and S5), the characteristic peaks of 
polyimide (1720, 1780  cm−1 for C=O and 1380  cm−1 for 
C‑N) presented in both pure polyimide and MXene‑coated 
polyimide foams (Fig. 2d). After incubated with chemical 
crosslinker PMDI, the emblematic bands (around 1410 and 
1504  cm−1) of benzene ring in PMDI can be observed on the 
spectra of C‑MXene@PI (Fig. S5a). The new appearance of 
characteristic benzene ring vibrations and a CO–NH mode 
(1700  cm−1 for C=O in the urethane bonding, Fig. S5b) 
in C‑MXene@PI showed the successful chemical coating 
of PMDI on the MXene. Consequently, such hydrophobic 
coating led to excellent stability and water resistance of the 
MXenes composites. After ultrasonic treatment for 20 min 
of the MXene@PI and C‑MXene@PI composite foams 
were immersed in water, the former deteriorated completely, 

while the latter stayed as one piece, and there was no MXene 
detachment (Figs. 2e and S4b).

3.2  EMI Shielding Performance of the Composite 
Foam

In addition to the significant color change of the PI scaffolds 
upon the coating of MXene nanoflakes (Fig. S6), the 2‑theta 
angle of ~ 7.22° in XRD pattern corresponding to the inter‑
layer gaps of 1.2 nm between the MXene nanoflakes further 
shows a well‑preserved structure of MXene flakes (Fig. 2f), 
which indicates a high utilization efficiency of MXenes’ 
conductivity and EMI shielding properties [22]. The coated 
MXene flakes on PI skeleton led to a remarkable increase 
in X‑band EMI SE from 1.4 to 60 dB for the MXene@PI 
composite foams at a thickness of 1.5 mm. It is worth noting 
that EMI SE describes the attenuation capability of samples 
to the incident EM waves (Table S2), and an EMI SE value 
of 20 dB corresponding to a 99% attenuation of the waves is 
generally required for commercial applications [13, 19, 22]. 
Apart from the satisfactory EMI SE, our composite foams 
showed larger SE values than other PI‑based composites 
(Table 1) and typical conductive nanomaterial embedded 
porous composites ever reported at similar thicknesses [58], 
e.g., 5‑mm‑thick AgNW/PI [59], 2‑mm‑thick CNT/PI [60], 
2.3‑mm‑thick CNT/PU [16], 2.3‑mm‑thick graphene/PEI 
[61] composite foams reached SE values up to 12.8, 41.1, 
50.5, and 12.8 dB, respectively. Chemical crosslinking of 
MXene flakes shown ignorable influence on the electrical 
conductivity and EMI SE properties (Figs. 2g and S7a), 
demonstrating the potentials of our C‑MXene@PI composite 
foams as high‑performance EMI shielding materials. More 
intriguingly, the chemical crosslink efficiently improved 
the oxidation stability of the C‑MXene@PI composites in 
 H2O/O2 environment (Fig. 2h–i), which is crucial for long 
durability of the composites in practical applications. After 
being stored in a 95% RH environment and a temperature 
of 60 ℃ for 2 days, EMI SE of the MXene@PI composite 
foams remarkably decreased and the shielding effect almost 
disappeared after 6 days in the same condition. In contrast, 
the C‑MXene@PI composite foams maintained a high EMI 
SE of 44.4 dB after being stored in the same condition 
for 6 days (Fig. 2j). The behavior for resistance change of 
the composite foam stored in such condition is consistent 
with that of EMI SE (Fig. S7b). Therefore, stable, durable 
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C‑MXene@PI composite foams with a remarkable EMI SE 
were achieved successfully.

In the facile and scalable “layer‑by‑layer” dip‑coating 
approach, EMI SE of C‑MXene@PI composite foams can 
be widely controlled by adjusting the coating layers/times 
with MXene suspensions (Fig. 3a). The EMI SE of the 
1.5‑mm‑thick porous composites increased with increas‑
ing coating layers, e.g., EMI SE reached a commercial SE 
value after a 4 times coating (namely 4 Layers MXene, 4L), 
while it increased to 41 and 60 dB after 10 and 16 times 
coatings, respectively. Nevertheless, when the composites 
were coated by 18 (18L) and more times, the increase of 
EMI SE reached a plateau. To better realize the behavior, 

we concluded the density and electrical conductivity of the 
C‑MXene@PI composite foams as a function of coating 
layer (Fig. 3b). The density increased with the increasing of 
the coating layers, which correlates to the increased MXene 
loading and related thickness on PI scaffolds. According to 
the MXene‑PDMI layer thickness (around 0.8 μm) identi‑
fied from the SEM image of a 14L C‑MXene/PI composite 
foam (Fig. S2b), we can easily calculate the MXene‑PDMI 
thickness on the PI skeletons based on the measured density 
of the composite foams. Furthermore, a clear observation in 
Fig. 3a, 1L C‑MXene@PI composite foams can already form 
sufficient conductive paths due to the efficient adhesion of 
MXene on the interconnected PI cell walls. This led to the 
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rapid transformation from insulation to conduction of the 
porous scaffolds. With increasing of coating layers, more 
MXene nanoflakes were stacked on the cell walls, forming 
improved conductive networks, which eventually affected 
the electrical conductivity and EMI SE of the composites. 
However, the changes of electrical conductivity, as well as 
EMI SE, were not remarkably, especially above 10L coat‑
ings, which indicates good compatibility between MXene 

and PI fibers, and abundant intact conductive paths have 
been well established during the initial several coating 
rounds. Additionally, the EMI SE was controlled by adjust‑
ing the thickness of the C‑MXene@PI composite foams, 
e.g., 16L composites reached an EMI SE value of 43.7 to 
80.8 dB at a thickness of 0.5 to 3.0 mm (Fig. 3c). Moreover, 
the porous composites showed excellent resistance and EMI 
SE stability upon mechanical deformation, the resistance 
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and EMI SE remained almost constant after the sample was 
bent for 1000 cycles (Figs. 3d and S7c). Briefly, the control‑
lable and stable EMI shielding performance further demon‑
strates the great promises of our C‑MXene@PI foams for 
practical applications.

In order to realize the EMI shielding mechanism of the 
C‑MXene@PI composite foams, we measured the shielding 
by absorption  (SEA) and reflection  (SER) (Fig. 3e). Gen‑
erally, EMI shielding performance of conductive porous 
composites is influenced by the reflection, absorption, and 
multi‑reflections, corresponding to the mobile charge carri‑
ers, electric dipoles, and interior interfaces/surfaces, respec‑
tively [19, 56, 62]. The micrometer‑sized pores induced 
more reflections or scatterings of incident EM waves, which 
had more interactions with the pore walls in the C‑MXene@
PI composite foams, efficiently increasing  SEA [16–18, 63]. 
The large mismatch of conductivity in the interfaces between 
the MXene and PI also led to high interfacial polarization 
[8], which combined with the abundant charge carriers from 
MXenes [23, 63, 64], resulting in increased  SEA of the pore 
walls. In addition, the MXene terminal functional groups 
were considered to give rise to electric dipoles under the 
electric field of the EM wave [17, 22, 26], improving the  SEA 
of the MXene‑based composites. Thus, the  SEA dominated 
the total SE  (SET), which sum up both  SER and  SEA. With 
increasing density of the C‑MXene@PI composite foams 
derived from increased MXene loadings,  SET and  SEA of the 
composites thus increased significantly and achieved maxi‑
mum values of 62.5 and 54.9 dB, respectively, at a density 
of 48.7 mg  cm−3. Furthermore, we had theoretically calcu‑
lated the EMI shielding performance (Th‑SET, Th‑SEA, and 
Th‑SER) (the details of the theoretical calculation method 
are shown in our previous work [13, 16]) of a homoge‑
nous shield based on the conductivities derived from our 
C‑MXene@PI composite foams (Fig. 3f). Obviously, apart 
from the similar  SER values, Th‑SEA was obviously lower 
than the experimentally tested  SEA. This was attributed to 
that the introduced multi‑reflections caused by the porous 
structure gave rise to more interactions of the incident waves 
with the MXene/PI composite cell walls, which effectively 
absorbed the EM waves derived from the conduction and 
polarization loss capability. As a consequent, the experimen‑
tally tested  SET was much higher than the Th‑SET. In short, 
we could efficiently demonstrate that the high EMI shielding 

performance of our C‑MXene@PI composite foams is attrib‑
uted to the synergistic interactions among MXene, PI skel‑
eton and the porous structure (Fig. 3g).

To better realize the lightweight EMI shielding architec‑
tures, we calculated the SSE of the C‑MXene@PI composite 
foams with various densities (Fig. 3e). Interestingly, the SSE 
initially had a significant increase with increasing density, 
and it reached the extremum of 1,442 dB  cm3  g−1 at a density 
of 41 mg  cm−3, and a further increase in density led to the 
drop of SSE. This illustrated that suitable coating times of 
the MXene nanoflakes on the PI skeleton were vital for bet‑
ter utilizing the MXene for the EMI shielding porous archi‑
tectures. Notably, the EMI SE reached a value of 59.2 dB 
at such a large SSE for the C‑MXene@PI composite foams, 
which showed opposite behavior with other composites hav‑
ing a higher SSE value with decreasing density or SE values 
[5, 16, 18]. Here, the efficient design of our C‑MXene@PI 
composite foams contributed both higher SE and SSE val‑
ues, which significantly outperformed that of other typical 
nanofiller embedded polymeric porous composites at similar 
thickness (Table 1), e.g., EMI SE was around 22, 41, and 
23 dB for the graphene/PI [65], CNT/PI [58], and CNT/
PU [16] porous composites at SSE values of 78.6, 1280, 
and 1184 dB  cm3  g−1, respectively. Certainly, a higher SE 
associated with a minimum material consumption is crucial 
for achieving high‑performance EMI shielding architectures, 
and thus, SSE/d was proposed in our previous work [13, 
16, 53] to efficiently evaluate the lightweight EMI shields. 
Herein, the SSE/d of C‑MXene@PI composite foams could 
reach 9,612 and 21,317 dB  cm2  g−1 at a SE of 59.2 and 
43.7 dB, respectively. This performance was superior to that 
of other porous EMI materials including commercial carbon 
foams, carbon nanotube sponges, graphene‑based foams, 
metal‑based foams, and other MXene‑based porous com‑
posites (Fig. 3h, Table S1). Particularly, the EMI shielding 
performance among the PI‑based architectures is compared 
in Table 1, effectively proving the superiority of EMI perfor‑
mance of C‑MXene@PI composite foams. Combined with 
the service stability, as well as the energy‑efficient, facile, 
and scalable preparation method, the lightweight, ultra‑flex‑
ible, and robust C‑MXene@PI composite foams with out‑
standing EMI shielding performance show huge potentials 
in the applications of aerospace, portable electronics and 
smart wearable devices.
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3.3  Electrothermal Performance of the Composite 
Foam

Besides the EMI application, multifunctionality is always 
expected for such lightweight conductors. First extension 
was on electrothermal materials, which convert electric 
power to thermal energy have attracted more and more atten‑
tion due to the rapid development of electronic engineering 
[47, 48, 51, 52]. Traditional electrothermal materials, includ‑
ing Fe–Cr–Al or Ni–Cr‑based alloys and electrothermal 
ceramics, suffer from complicated manufacturing process, 
heavy weight, inflexible shape and low heating efficiency. 
Here, thermogravimetric analysis (TGA) curves of pure PI 
and C‑MXene@PI foams showed the good thermal stability 
of the PI‑based architectures (Fig. 4a), in contrast to most 

polymers. Combined with the efficient conductive networks, 
the ultra‑flexible C‑MXene@PI composite foams showed 
great potentials for lightweight and stable electrothermal 
heaters. Therefore, various DC voltages were applied to 
the C‑MXene@PI composite foams (4 × 4 × 0.15  cm3), and 
the currents flowing through the foams were observed. Fig‑
ure 4b showed the effect of these low DC voltages on the 
temperature of the 10L C‑MXene@PI composite foams. The 
composites had evident, stable, and reversible electrothermal 
effect at these voltages. For example, the composite foams 
with a large size of 40 × 40 × 1.5  mm3 were able to reach up 
to 34, 53, 84, and 114 °C in tens of seconds at 4, 6, 8, and 
10 V, respectively. At the same time, the life‑time tests for 
the composite heaters had been carried out. As shown in 
Fig. 4c, a DC voltage of 6 V was applied to the composite 
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heaters for 24 h, and the temperature was measured every 
half hour. It was found that the steady‑state heating of the 
samples, which further demonstrated a stable electrothermal 
effect of the composite. A stable and remarkable electrother‑
mal performance of the C‑MXene@PI composite foams was 
achieved at low DC voltages, demonstrating the possibility 
and prospects in various application areas.

The equilibrium temperature of the composites showed 
a linear relation with the input power densities (Fig. 4d). 
The slope of the steady‑state temperature versus input power 
density revealed the heat performance (Hp = dT/dP) of the 
composite heater [53, 56], as the greater the Hp value, the 
higher the steady‑state temperature of the heater, at certain 
initial temperature and input electric power. The Hp value 
of the C‑MXene@PI composite samples was 253.1  °C 
 cm2  W−1, higher than that of other systems including CNTs, 
rGOs and metal thin films, as shown in Table 2. In addi‑
tion, the composite foam heaters reached higher tempera‑
ture than the typical commercial metal electrothermal heater 
Fe–Cr–Al and Ni–Cr alloy plates at the same input power 
density (Fig. 4e, f). In other words, the input power required 
for the composite foams was less than that of the commer‑
cial alloy‑based heaters in order to reach the same tempera‑
ture with the same heater area. More intriguingly, arising 
from the uniform distribution of MXene on PI skeleton, the 
lightweight C‑MXene@PI composite foam heaters had an 
even temperature distribution, which could not be achieved 
by the heavy commercial heaters composed of metal alloy 
strips which easily had local overheating (Fig. 4e, f). Based 
on the high electrothermal performance, a demonstration 
for a high‑performance deicing or anti‑icing application 
at low voltages is well shown (Fig. 3g, h). Combining the 

excellent flexibility, high heat performance, low working 
voltage and uniform temperature distribution under 12 V 
in the range of automobile power supply, and the robust 
behavior demonstrated by the life‑time test, the C‑MXene@
PI composite foam heaters show extended prospects in prac‑
tical applications and can be produced on large scale for 
health‑care‑related products. The combination of the excel‑
lent MI shielding and electrothermal performance further 
efficiently demonstrates the great application potentials of 
the C‑MXene@PI composites as multifunctional devices.

3.4  Electromechanical Sensing Performance 
of the Composite Foam

Since our C‑MXene@PI composite foams are highly flexible 
and robust, as the second extension, they can be effortlessly 
attached to human body as wearable sensors for detecting 
the human motions [43–45]. As the three‑dimensional (3D) 
composite samples were bent, stretching and compressing 
were caused in different sides (Fig. 5a). The stretched and 
compressed side of the 3D composite sensors corresponds 
to the formation of less and more conductive paths in the 
C‑MXene@PI composites, respectively, which correspond 
to the increased and decreased electrical resistance, respec‑
tively (Fig. 5b–d). The gauge factor corresponding to the 
sensitivity of the foam sensors is also calculated based on 
the bending angle (Fig. S8), and we can conclude that the 
bending‑induced stretching leads to a high sensitivity. When 
the composites bent to an angel and then kept steady, the 
resistance of the sensor initially changed due to the defor‑
mation and then kept stable. Moreover, a larger relative 
resistance change is observed for a larger bending angle, 

Table 2  Comparison of Hp of typical heaters

Heating material Substrate Hp [°C  cm2  W−1] Refs. Notes

SWCNTs Glass 212, 200 [51, 52] Spray method
/ 137 [67] Dip‑coating method

MWCNTs PET 94 [68] Yarn from vertical‑aligned
rGO Glass 163 [66] Spin‑coated GO/heat‑treated
Ag / 92 [52] Silver paste

54 Silver paste
Pt none 65 Sputtering
Fe–Cr‑Al alloy none 85 This work Commercial production
Ni–Cr alloy none 62
MXene PI foam 253 This study Scalable dip‑coating approach
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showing the usefulness of our sensors in the detection of 
various human motions, from small strain to large strain 
activities. Additionally, even the bending speed of the sam‑
ple was very fast, the change of the resistance could be well 
detected and distinguished. Therefore, the detected relatively 

resistance change’s signal of the sensor attached on a finger 
bending circularly can be displayed. When the finger bent to 
a fixed angel, then returned periodically, the resistance of the 
C‑MXene@PI composite foam sensor increased and recov‑
ered accordingly and periodically (Fig. 5e, f), ascribing to 
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the stretching caused by the bend of the composite foams. In 
contrast, when the composite foam was attached on the wrist 
bending circularly, the resistance decreased and recovered 
periodically due to the compression caused by the bend of 
the composite foams (Fig. 5g, h). According to the measured 
electrical signals from the composite sensor, we can easily 
deduce that in the testing period, the finger or wrist repeat‑
edly bends and moves back quickly with similar amplitude, 
and number and of bends in each interval.

4  Conclusion

Lightweight, ultra‑flexible, and large‑area C‑MXene@PI 
composite foams were prepared in a facile and scalable 
dip‑coating followed by a chemical crosslinking approach. 
The coactions of the highly porous yet robust PI scaffolds, 
coated MXene nanoflakes, and the effective chemical cross‑
link treatment rendered the C‑MXene@PI foams with hydro‑
phobicity, waterproof capability, anti‑oxidation and extreme‑
temperature stability. The combination also benefits high 
utilization of the MXene electrical conductivity, and an 
interfacial polarization between the MXene and PI. As‑pre‑
pared C‑MXene@PI foams show an ultrahigh EMI shielding 
performance accompanied by excellent durability and reli‑
ability. The 1.5‑mm‑thick C‑MXene@PI composite foams 
exhibit a satisfactory X‑band EMI SE of 22.5 to 62.5 dB 
at a density of 28.7 to 48.7 mg  cm−3. Excellent SSE and 
SSE/d values of 1,971 dB  cm3  g−1 and 21,317 dB  cm2  g−1 
are achieved, respectively, for the C‑MXene@PI foams, 
significantly surpassing other typical porous architectures. 
Furthermore, two possible extensions of the C‑MXene@PI 
foams were exanimated. A rapid reproducible, and stable 
electrothermal effect of C‑MXene@PI foams at low voltages 
is demonstrated, which shows ultrahigh heat performance 
and uniform heat distribution. Secondly, the excellent per‑
formance of the C‑MXene@PI foams as flexible wearable 
sensors is well demonstrated with sensitive and reliable 
detection capability of human motions. The integration of 
ultrahigh EMI shielding, electrothermal, and electromechan‑
ical sensing performances of the C‑MXene@PI foams as 
well as their facile and scalable production approach suggest 
the promising application potentials for next‑generation flex‑
ible and multifunctional electronic devices and aerospace.
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