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A well-designed nanostructure of transition metal oxides has been regarded as a key to solve their problems
of large volume changes during lithium insertion-desertion processes which are associated with
pulverization of the electrodes and rapid capacity decay. Here we report an effective approach for the
fabrication of porousiron oxide ribbons by controlling the nucleation and growth of iron precursor onto the
graphene surface and followed by an annealing treatment. The resultant iron oxide ribbons possess large
aspect ratio, porous structure, thin feature and enhanced open-edges. These characteristics are favorable for
the fast diffusion of lithium ions and electrons, and meanwhile can effectively accommodate the volume
change of iron oxides during the cycling processes. As a consequence, the graphene-induced porous iron
oxide ribbons exhibit a high reversible capacity and excellent cycle stability for lithium storage.

mendous attention as anode materials for lithium ion batteries owing to their high theoretical capacities

{1000 mAh g ). In particular, iron oxides (Fe,05 and Fe,0,) possess such abundant, inexpensive, and
nontoxic properties so that they are regarded as the most promising candidates for lithium storage™®, However, a
large specific volume change commonly occurs in the host matrix of iron oxides during the cyding processes,
resulting in pulverization of the dectrodes and rapid capacity decay™. To circumvent these obstacles, one
effective approach is to fabricate nanostructured iron oxides™. In well-designed nanostructures, not only the
strain associated with volume change during lithium insertion and extraction processes can be accommodated,
but also the lithium diffusion in electrodes becomes easy, leading to significantly improved dectrochemical
performance™.

‘I'wo-dimensional nanosheets, such as graphene, metal chalcogenides, titania and manganese oxide have
been recently explored and shown improved host capabilities and cyclabilities for lithium storage owing to their
limited volume change and short lithium diffusion pathway in matrix. In comparison, nanoribbons, stripes of
nanosheets, can provide more open edges and active sites", which would enhance their reactivity toward Li
adsorption as predicted by the recent computational studies™. However, the synthesis of nanoribbon materials,
especially of electrochemically active metal oxide ribbons remains challenging,

In this article, we will demonstrate an efficient synthesis of porous iron oxide ribbons by controlling the
nucleation and growth of iron glycolate onto the surface of graphene and followed by an annealing treatment
in air. Reduced graphene oxide (RGO) is employed as a substrate'™?, and iron acetylacetonate (FeAa)/ethylene
glycol as theiron oxide precursor. The resulting iron oxide ribbons possess large aspect ratio, porous structure and
thin feature. Such unique characteristics can not only provide numerous open channels for the access of elec-
trolyte and thus facilitate the rapid diffusion of lithium ions from electrolyte to electrode, but can also effectively
accommodate the volume change of iron oxides during the cycling processes. As a consequence, the porous iron
oxide ribbons exhibit a high reversible capacity of 1050 mAh g ' in the first 10 cycles, and over 1000 mAh g !
after 130 cycles, holding great potential as an anode material for lithium storage.

ransition metal oxides such as iron oxides', cobalt oxides® and molybdenum oxides® have attracted tre-
)
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Results

‘The overall synthetic procedure of porous iron oxide ribbons is schematically illustrated in Figure 1. Chemically
reduced graphene oxide was first dispersed in a solution of ethylene glycol to create a dark suspension with the aid
of a dispersant, polyvinylpyrrolidone (PVP). The suspension was then mixed with iron (1I) acetylacetonate via
ultrasonication, and then was heated to 170° C for the heterogeneous nucleation of the iron glycolate (FeG)
(demonstrated in Figure Sla and 82) onto the surface of RGO. As presented in Figure S1, once the nucleation
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Figure 1 | Fabrication of iron oxide ribbons. It includes (1) and {2} controllable nucleation and growth of the iron glycolate onto the surface of the
reduced graphene oxide at 170 C, and (3) thermal annealing at different temperatures (250-400"C) in air.

occurs, the residual iron precursor would further grow around the
nucleus to form iron glycolate ribbons with various lengths when
increasing the reaction time from 30 min 10 5 h. Subsequent thermal
annealing of the resulting ribbons at ditferent temperatures {250~
400 C) in air afforded the iron oxide ribbons, which are denoted as
FeO-X; X represents the annealing temperature.

Characterization of iron glycolate ribbons. The morphology of
the as-prepared iron glycolate ribbons was elucidated via trans-
mission electron microscopy (1'EM), scanning electron microscopy
(SEM) and high-resolution TEM (HRTEM) measurements. As
shown in Figure 2 and $3, a large number of ribbons with a width
from 50 to 500 nm and alength from 600 nm to several micrometers
on the surface of RGO can be observed. No other free ribbons or
nanoparticles appear in the TEM and SEM visualizations. This result
suggests that the complementary interaction between positively
charged iron ions and negatively charged RGO can direct the growth
of iron precursor ribbons on the surface of RGO during fabrication
process. Such a proposed procedure can be further confimed by our
control experiments (see Supplementary Information, Figure S4), in
which only iron precursor particles with irregular morphology are
produced under the same synthesis conditions without adding
reduced graphene oxide. Interestingly, the resulting ribbons possess
numerous pores as displayed in the HRTEM images (Figure 2b and
2¢). Closer inspection (Figure 2d) reveals that the porous architecture
is built of fine particles with crystallite sizes of about 5 nm. Cross-
sectional atomic force microscopy (AFM, Fgure 2e and 2f) mea-
surements were further conducted to reveal the structural features of
the ribbons. Typical AFM analyses disclose the same morphology of
rbbons as the observations from SEM and TEM, with a uniform
thickness of about 50 run.

Characterization of iron oxide ribbons. The as-prepared iron
glycolate ribbons were then annealed at relatively low temperatures
in air to generate iron oxide ribbons. Based on the element mapping
analysis (Figure 3), we can recognize the uniform distribution of Fe
and O elements in the iron oxide ribbons. Remarkably enough, when
increasing the annealing temperature from 250 to 350 C, the porous

architecture of the iron oxide ribbons including crystalline size and
porosity significantly changes (Figure 4), although their ribbon-like
shape is almost the same as that of the sample before oxidation. In the
case of FeO-250 ribbouns, the obvious lattice fringes show the uniform
interlayer distance of 0.25 nm as depicted in the HRTEM image
(Figure 4c), in good agreement with the spacing between (311)
planes of FeyOy crystals”. Such an assignment is further supported
by its X-ray diffraction (XRD) patterns {Figure S5), in which the
prominent diffraction peaks are perfectly indexed to Fe;O; ac-
cording to the standard card of Fe;0, (JCPDS 88-0315)% Notably,
two weak peaks at 35.6 and 49.6° in the XRD patterns of FeO-250
ribbons are visible, which can be attributed to the (012) and (024)
planes of Fe,Os, respectively (JCPDS 33-0664)". The presence of
FeaQs in FeO-250 ribbons should originate from the partial con-
version of I'e; 0y during the annealing process since the diffraction
peaks of Fe,OQ, become more dominant when the annealing
temperature is increased to 3507 C (Figure S5). Such conversion
phenomena are well consistent with the literatures®®®, In addition,
we noted that thermal treatment of iron precursor ribbons at 400 C
led to the complete transformation of Fe;O4 to pure a-Fe, Oy (see
Supplementary Information, Fgure $6).

The porous nature of iron oxide ribbons is further validated by
nitrogen physisorption measurements. Their adsorption-desorption
isotherm exhibits a type 1V hysteresis loop at a relative pressure
between 0.2 and 09 (Figure 3), characteristic for mesopores with
different pore sizes. A Barrett-Joyner-Halenda (BJH) calculation dis-
closes that the pore size distribution is in the range of 2-20 nm, in
good agreement with that estimated from the TEM images. A specific
surface arca of 115 m® g ' can be derived, which is much higher than
those reported for iron oxide/carbon composites (35-58 m® ¢ ')°** or
iron oxide nanodiscs (52 n* g '), and is even comparable to that
reported for mesoporous iron oxides (116-128 m* g '/ In com-
bination with the analysis based on TEM and HRTEM images, it is
reasonable to believe that the high surface area of iron oxide ribbons is
due to its small crystal grains, which give rise to a porous architecture.
‘Thermogravimetric analysis (TGA) (see Supplementary Information,
Figure S7) reveals that the weight content of iren oxide in the com-
posite is about 86 wi%. Such a high content of electrochemically
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Figure 2 | Morphological and structural analysis of iron glycolate ribbons after growth for 53 h. {a-c) Typical TEM images with different magnifications.
{d) HRTEM image reveal the monodispersed ribbons with porous architectures. (f) AFM image and the corresponding thickness analysis taken around
the white line in {f) reveals a uniform thickness of about 50 nm.

100 nm
S

Figure 3 | Elemental mapping images of iron oxide ribbons. (a) Typical scanning transmission electron microscopy (STEM} image and corresponding
elemental mapping images of (b) iron and {c) oxygen in the selected area {white rectangle in (a)), indicating the homogeneous dispersion of iron and
oxygen in the FeO ribbons.
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Figure 4 | Morphological and structural analysis of iron oxide ribbons annealed at various temperatures. (a,b) TEM images with different
magnifications and {(¢) HRTEM image of FeO-250, {d,¢) TEM images with different magnifications and () HRTEM image of Fe(-300, (g,h) TEM images
with different mognifications and (i) HRTEM image of FeQ-350. It discloses that the annealing tempature can effectively tailor the nanostructure ofiron

oxide ribbons,

active iron oxide ribbons with a unique nanostructure should result in-~— which largely exceeds the theoretical capacity of iron oxides
excellent electrochemical performance when they are applied as an  {~1000 mAh g ')*®. This suggests the existence of additional
anode material for lithium storage. lithium storagesites in the iron oxide ribbons. The detailed voltage

profile analysis of the iron oxide ribbons demonstrates that three
Electrochemical properties of iron oxide ribbons. The electrochemical — domains including an extended plateau and two slopes mainly con-
performance of the iron oxide ribbons was evaluated by galvanostatic  tribute to the overall discharge capacity of Fe(-250 ribbons during
discharge (Li insertion)-charge (Li extraction) measurements at a  the discharge process. The first slope between 2.0 and 0.8 V
current density of 74 mA g *. It is striking to note that a high first dis-  corresponds to the lithium insertion into the nanocrystals of iron
charge capacity of 1426 mAh g ' can be achieved (Figure 6a and 6b},  oxide and the conversion from Fe (I} to Fe (I)*. The long
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Figure 5 | Porous structure analysis of iron glycolate and iron oxide ribbons. {a) Nitrogen adsorption/desorption isotherm and (b) pore size
distribution of iron glycolate and iron oxide ribbons, respectively, further demonstrate the porous structure with high surface area.
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Figure 7 | Electrochemical impedance spectra of the iron oxide ribbon
electrodes. Comparison of the Nyquist plots of Fe(3-250, Fe()-300 and
Fe(3-350 electrodes obtained by applying a sine wave with amplitude of
5.0 mVY over the frequency range from 100 kHz to 0.01 Hz.

S10)7* and summarized in Figure S1. The values of the Ohmic
resistance and charge-transfer resistance are 34.0 and 15.2 Ohm,
respectively, for FeQ-250 ribbons, which are significantly lower than
those of FeO-300 (5.7 and 15.9 Ohm) and FeO-350 (70.6 and
29.8 Ohm) ribbons. These results suggest that the nanostructure of
iron oxide ribbons controlled by the annealing temperatures affects
not only the electrical conductivity of the overall electrode, but also
the electrochemical activity of iron oxide towards lithium during the
cycling processes.

Discussion

In summary, we have developed a simple approach to fabricate por-
ous iron oxide ribbons by controlling the nucleation and growth of
iron precursors onto the surface of graphene and subsequent thermal
annealing in air, The unique structural features of these iron oxide
ribbons incuding the hnite lateral size, high surface area, porous
structure and enhanced open-edges, lead to the superior electro-
chemical performance in terms of specific capacity and cyde per-
formance when they are used as anode materials for lithium storage.
We believe that such a straightforward and low-cost protocol will
provide a new pathway for the large-scale production of various
functional materials with controllable morphology and nanostruc-
ture for energy storage and conversions.

Methods

Fabrication of graphene oxide and reduced graphene oxide. Graphene oxide was
synthesized from natural graphite flakes by the Hummers method™, the details of
which have been described elsewhere®. Chemically reduced graphene oxide was
prepared as following: ina typical procedure, 25 mg of graphene oxide was
dispersed into the solution mixed with 100 mi of water, 50 ml of hydrazine solution
(35 wt%) and 350 ml of ammonia solution (28 wt%). After being vigerously stirred
for a few minutes, the dispersion was heated 0 95°Cfor 1 h

Fabrication of porous iron oxide ribbons. Above chemically reduced graphene
oxide was first dispersed in a solution of ethylene glycol to create a dark suspension
with a concentration of 0.1 wt¥ by the aid of palyvinylpyrrolidone. The suspension
was then mixed with iron (II) acetylacetonate (FeAa) via ultrasonication, in which the
weight ratio between reduced graphene and FeAa was fixed (o 1:11. After sonication
for 3 h, the dispersion was heated to 170 °C for the heteragencous nucleation of the
iron glycolate (FeG) onto the surface of reduced grapheme oxide. As increasing the
reaction time from 30 minto 5 h, the nucleuses were gradually replaced by the iron
glycolate ribbons with increasing lengths. Subsequent thermal annealing of the
resulting iren giycolate ribbons at different temperatures (250-100°C) with the
heating rate of 2°C/min in air afforded the porous iron oxide ribbons.

Morphology and structure studics. The morphology, microstructure and
compasition of the samples were investigated by SEM (LEQ 1530), TEM (Philips EM
120), HRTEM (Philips F20), AFM (Veeco Dimension 3100), XRD and TGA
measurements. The content of iron oxide ribbons in the composite was calculated by
subtracting the weight increase from the conversion of Fe;Oy to FeyQy during the
TGA process inair. Nitrogen sorptionisotherms and BET surface area were measured
at 77 K with a Micromeritcs Tristar 3000 analyzer (USA). The Raman spectra were
obtained on Lab-RAM HR800 with excitation by an argon ion laser (514.5nm).

Preparation of electrodes and cells. The working electrodes were prepared by
mixing the FeQ ribbons, carbon black and poly(vinyl difluoride) (PVDF) ata weight
ratio of 80:10:10 and pasted on pure Cu foil. Pure lithium foil (Aldrich) was used as
the counter electrode. The electrolyte consisted of a solution of 1 M LiPF, in ethylene
carbonate (EC)/dimethyl carbonate (DMC) (1:1 by volume) obtained from Ube
Industries Ltd. The standard R2032 type coin cells were assembled in an argon-filled
glove box.

Electrochemical performance tests. Galvanostatical discharge-charge experiments
were performed at different current densities in the voltage range of 0.01-3.00 V. All
the specific capacities of iron axide ribbons were calculated based on the total mass of
the composites. Electrochemical impedance spectroscopy (EIS) measurements of the
electrodes were carried cut on an electrochemical workstation (PARSTAT 2273). The
impedance spectra were recorded by applying a sine wave with amplitude of 5.0 mV
over the frequency range from 100 kHz to 0.01 Hz. Fitting of the impedance spectra
to the proposed equivalent circuit was performed by the code Z view.
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