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Porous Metals and Metallic Foams:
Current Status and Recent
Developments**
By Louis-Philippe Lefebvre,* John Banhart and David C. Dunand

1. Introduction

Cellular metals and metallic foams are metals with pores

deliberately integrated in their structure. The terms cellular
metals or porous metals are general expressions referring to

metals having large volume of porosities, while the terms

foamed metal or metallic foams applies to porous metals pro-

duced with processes where foaming take place. Besides, the

term metal sponge refers to highly porous materials with com-

plex and interconnected porosity where the porosity cannot

be subdivided into well defined cells.

Porous metals and metallic foams have combinations of

properties that cannot be obtained with dense polymers, met-

als and ceramics or polymer and ceramic foams. For example,

the mechanical strength, stiffness and energy absorption of

metallic foams are much higher than those of polymer foams.

They are thermally and electrically conductive and they

maintain their mechanical properties at much higher temper-

atures than polymers. Besides, they are generally more stable

in harsh environments than polymer foams. As opposed to

ceramics, they have the ability to deform plastically and ab-

sorb energy. If they have open porosity, they are permeable

and can have very high specific surface areas, characteristics

required for flow-through applications or when surface ex-

change are involved.
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Porous metals and metallic foams are presently the focus of very active research and development ac-
tivities. There are currently around 150 institutions working on metallic foams worldwide, most of
them focussing on their manufacture and characterisation. Various companies are developing and pro-
ducing these materials which are now being used in numerous industrial applications such as light-
weight structures, biomedical implants, filters, electrodes, catalysts, and heat exchangers. This review
summarizes recent developments on these materials, with particular emphasis on research presented at
the latest International Conference on Porous Metals and Metallic Foams (MetFoam 2007).
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the literature dates back to Pliny the Elder (77 AD) who

reported a process called granulation used by Etruscan gold-

smiths to produce fine jewellery pieces.[1] While some civili-

zations developed innovative processes to produce porous

metals, these techniques were, up to recently, mostly in-

tended for surface treatments and mainly used for aesthetic

purposes (jewellery, religious artefacts).

Indeed, porous metals only started to be used in engineer-

ing applications at the beginning of the 20th century. Sintered

powder and meshes were the first porous metals commer-

cially available and used in engineering applications. Sintered

powder has been used with success for the fabrication of fil-

ters, batteries and self lubricated bearing since the 1920’s.[2,3]

These materials are still in use today in high-volume applica-

tions.

The first reference to metallic foams (corresponding to fab-

rication processes where a material or material precursor is

foamed to create an expanded structure with high porosity) is

a French patent published in 1925.[4] The commercialisation

of metallic foams started three decades later in the late 1950’s

in the USA, where much research and development (R&D)

was carried out for about ten years.[5] Little activity remained

until a second surge of worldwide R&D activities started in

the 1990’s which is still ongoing. With those recent develop-

ments, these materials became commercially available in a

wide variety of structures and properties.

Figure 1 presents the evolution of the number of annual

publications on metallic foams since the early 1970’s. Scientif-

ic publications on the subject were very scares until the early

1970’s. The number of publications then increased slowly and

linearly to the mid 1990’s when the number of published arti-

cles on the subject surged strongly, with a 20 % annual

increase since 2000.

A series of international and national research and devel-

opment programs has recently focussed on cellular metals:

The US Multidisciplinary Research Initiative on Ultraligth

Metals (MURI) launched in 1996, different European research

projects funded within the 4th and 5th EU Framework pro-

gram and a research program funded by the German

Research Council in the late 1990’s.[6]

Since the late 1990’s, a biennial conference (Metfoam)

reviews the latest progress in this area.[7,8,9,10,11] This paper

presents the status of the cellular, porous or foamed metal

technology and some recent developments in this field in the

light of the latest, 5th MetFoam conference which took place

in 2007 in Montréal (Canada). The paper is divided into three

sections: materials development, characterization and appli-

cations. The list of references concentrates on recent articles,

with 115 of the 143 references given here published between

2006 and 2008.

2. Materials

The selection of the material structure is generally based

on the end-application. Closed-cell materials provide good

mechanical properties but do not allow access to their inter-

nal surface. Therefore, they are mostly used in structural,

load-bearing applications. In contrast, open porosity is gener-

ally required for functions associated with the interior of the

material. Accordingly, open-cell foams are mostly used in

functional applications where load-bearing capability is not

the primary goal. The present section is divided into these

two groups of applications, while keeping in mind that dual

or multiple uses are possible.

2.1. Materials for Structural Applications

2.1.1. Closed-Cell Metallic Foams

Closed-cell metallic foams can be manufactured in many

different ways as described in various reviews.[6,12,13] In most

cases, a metallic melt is stabilised with non-metallic particles,

foamed by a gas and solidified. Gas bubbles are created by

gas injection or by decomposing a chemical blowing agent in

the melt. These bubbles do not merge or rupture due to the

presence of stabilising particles.[14] The main R&D areas are

presently centred on the investigation of foaming and stabili-

sation mechanisms, the development of new blowing agents,

the optimisation of the fabrication processes and the reduc-

tion of the fabrication costs.

Some research is directed towards understanding in more

detail the complexities of foaming. Indeed, it is still not com-

pletely understood how metallic films are formed within liq-

uid metal foams and how foams are stabilised. Since foams

are complex mixtures of solid, liquid and gaseous phases,

their study is challenging, both experimentally and theoreti-

cally. Single liquid metallic films have been used to help

understanding the properties of the cell walls and better
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Fig. 1. Evolution of the annual number of publications on porous metals and metallic
foams. The numbers were obtained by searching publications with the concept porous
metal or metallic foams in the key words field in Scopus (i.e. KEY((metal* W/1
foam*) OR (cellular PRE/1 metal*) OR (porous PRE/1 metal*))). The evolution
of the total amount of publications listed in Scopus is presented for comparison.
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understand foaming and stabilisation.[15,16] X-ray imaging

techniques have also been utilized to reveal the inner volume

of expanding foam and to measure some structural parame-

ters, such as the rupture time of individual films.[17] Observa-

tion of metallic foams in other spectral ranges was also found

to yield useful information. An optical technique has been

used for the contactless imaging of expanding metal foams in

3D by placing the sample on a rotating plate inside a fur-

nace.[18] The temperature distribution in expanding alumi-

num foam was recorded in-situ using an array of micro-bol-

ometers operating in the far infrared regime and was

integrated in a commercial thermal camera.[19]

Foam stabilisation can be obtained by adding ceramic par-

ticles into the metallic melt, which adhere to the gas/metal in-

terfaces during foaming and prevent pore coalescence. One

foam production process (sometimes referred to as the ‘Alcan

process’) uses liquid metal matrix composites (MMCs) con-

taining 10–20 vol.% particles (typically 10 lm silicon carbide

or alumina particles) into which a blowing gas is injected.

Very regular and highly porous metal foams can be produced

with this method. However, the high particle content makes

the solid foams very brittle and hard to machine. Replace-

ment of the large particles in the MMCs by nanometric parti-

cles is a solution to overcome this problem. Using nanoparti-

cles, melts can be foamed at much lower particle loading.

Indeed, 5 % of 70 nm SiC particles dispersed ultrasonically in

the melt were shown to be sufficient to stabilised aluminum

foams.[20] Particles formed in-situ by chemical reactions have

also been used with success for the same purpose. As an ex-

ample, 4 wt.% of TiC particles (200–1000 nm) formed in-situ
in liquid aluminum resulted in stable aluminum alloy

foams.[21]

Another area of investigation involves the development

and improvement of the blowing agents. TiH2 has been in

use since the 1950’s[22] and is presently considered the most

powerful blowing agent available for the production of alu-

minum and magnesium alloy foams. Efforts to replace or to

improve this agent are important for two reasons. The first is

the high cost of this hydride (∼ 80 u /kg, 2008 price). Since

0.5 to 1.5 wt.% TiH2 are needed to produce an aluminum

foam, the blowing agent contributes significantly to the final

cost of the material. Taking into account the price of Al melt

(1.50 u/kg) or powder (3 u/kg), the blowing agent contrib-

utes to up to 25 % of total raw material costs. Replacing TiH2

by a less expensive blowing agent, namely CaCO3, is being

investigated by different researchers.[22,23,24,25] A second rea-

son for the replacement of TiH2 is associated with its decom-

position behaviour that does not perfectly match the melting

characteristics of most aluminum alloys used for foaming. In

fact, TiH2 decomposition starts at temperatures lower than

the melting temperature of aluminum or magnesium alloys.

This negatively affects foaming by premature hydrogen

release in the solid state and losses through the porosity net-

work between the aluminum particles. Various strategies are

currently under study to overcome this problem. One option

is to modify the TiH2 powder in order to alter its decomposi-

tion characteristics. This can be done by oxidation[26,27] or by

coating the particles with a thin layer of nickel.[28] Another

option is to work without blowing agent (see Fig. 2) and rely

on gas residues contained in powder or scrap that is added to

the melt. In this case, pressure is used to control the foaming

of the melt.[29,30,31]

Another cost reduction strategy is to use chip waste, e.g.

from machining, as replacement for the expensive aluminum

alloy powders. Chips are mixed with ceramic additives and

TiH2 and densified by compressive torsion processing[32] or

thixocasting[33] after which the compacted materials are

foamed in the usual manner. An open question remains,

however, whether the need for more expensive compaction

techniques contradicts the materials cost saving issue.

The fact that metal foam manufactured from powders in-

cludes many processing steps has been one of the motivations

of work focussing on integrating various steps into one. High

pressure moulding of structural foams was proposed in that

direction. The process consists of injecting an aluminum alloy

melt into a die casting machine together with the blowing

agent MgH2 and allowing the controlled foaming of the com-

ponents inside the die.[34] Structural foam components with a

closed outer surface can be manufactured using this method.

Most of the recent R&D activities on closed-cell metallic

foams have focussed on the development of aluminum based

foams. This is principally because the melting point of alumi-

num is low, the processing simple and aluminum foams pro-

vide favourable mass-specific mechanical properties. Efforts

to develop foams with other metals are nevertheless ongoing,

including steel, superplastic zinc,[35] magnesium[29] and even

heavy elements such as gold.[36]

2.1.2. Iron Based Materials

Iron based foams have been considered as an alternative to

aluminum foams, because steel has higher strength, higher

capability to absorb energy and is generally cheaper than alu-

minum. However, steel is denser than aluminum, and its

much higher melting temperature makes low-cost production

of foams a challenge. Various processes are presently in

ADVANCED ENGINEERING MATERIALS 2008, 10, No. 9 © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 777

Fig. 2. Al-Cu-Mg alloy foamed without blowing agent by pressure manipulation, i.e.
melting a powder compact under 6 bar pressure (Argon) and releasing pressure to
1 bar; a) visualisation of foam by X-ray tomography, b) computer-assisted segmenta-
tion of individual pores in the sample (Courtesy of F. García-Moreno, HMI Berlin).
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lowing ideas which have been proposed previously.[12] A pro-

cess was proposed to foam cold-pressed precursors made of

pure (electrolytic) iron, graphite and hematite powders,

between the solidus and liquidus temperatures. Foaming is

driven by the CO and CO2 generated by the reduction of the

iron oxide by carbon.[37] Iron foams with porosity of approxi-

mately 55 % were obtained using the process. An alternative

method uses less expensive powder (i.e., water atomized

powders) and a slip reaction sintering process to produce

steel foams with compressive strength significantly higher

than that of aluminum foams.[38] The material density

(2.3–3.0 g/cm3) is, however, also higher than that of alumi-

num foams. High strength stainless steel foams were also

produced with powder metallurgy approaches[39,40] that may

represent an interest when high mechanical strength and cor-

rosion resistance are required. Besides, steel hollow spheres

with high strength have been prepared and characterized.[41]

The densities of most iron based foams are still high and

additional work is required to develop steel foams with lower

density. Most work has been performed up to now in labora-

tories on small specimens and developments are still needed

to be able to produce large panels or structural parts with

homogeneous and reproducible structures, with good prop-

erties at reasonable costs.

2.1.3. Metal Foam-Based Composites

Combining metal foams with other materials offers unique

opportunity to tailor material properties. The simplest ap-

proach is to fill hollow sections with foam or to produce sand-

wich structures with a metal foam core and a variety of face

sheets, see Ref.[42] for a review. The potential for improve-

ments is still large as demonstrated by the combination of

aluminum foam and glass-fibre reinforced polymer compos-

ites and aluminum alloy sheets[43] or by composites contain-

ing aluminum foam spheres bonded together with a poly-

meric adhesive.[44] A related approach is to deposit a high-

strength coating on the struts of a foam, as demonstrated with

nanocrystalline Ni-W coated aluminum foams showing

improvements in strength and energy absorption.[45]

2.1.4. Amorphous Metallic Foams

As recently reviewed,[46,47] various liquid-state methods

have been demonstrated to create Pd- or Zr-based bulk metal-

lic glasses (BMG) foams. Porosity can be created by precipita-

tion of dissolved hydrogen during cooling,[48] gas entrapment

in the melt followed by expansion in the supercooled-liquid

state,[49] infiltration of a bed of hollow spheres to create syn-

tactic foams,[50,51] and infiltration of salt space-holder particles

which are removed by dissolution in acidic solutions.[52,53]

Solid-state methods have also been used: dissolution of crys-

talline phase from an extruded amorphous-crystalline com-

posite[54] and selective dissolution of one of the two amor-

phous phases of an alloy.[55] Beside reducing density, pores in

amorphous metals improve significantly their compressive

ductility, from near zero in the bulk to values as high as 80 %

for cellular architectures. This is explained by shear-band in-

terruption by individual pores at low porosities and stable

plastic bending of thin struts at higher porosities.[56,57]

2.1.5. Metallic Hollow Spheres

Research and development on metallic hollow spheres are

conducted in various research groups around the world. The

process has been used to produce high-strength steel hollow

spheres.[41] Composites and syntactic structures have also

been developed with hollow spheres for structural applica-

tions.[58,59] A process to produce hollow Cu2O and NiO nano-

particles via the oxidation of Cu and Ni nanoparticles has

also been presented.[60] Modelling has been used to study the

compression of hollow spheres. Maps showing the deforma-

tion mechanisms that govern the plasticity of the spheres

have been produced.[41,61]

2.1.6. Wire Mesh Structures

Recently, a technique to fabricate multi-layered Kagome

truss periodic structures named ‘Wire-Woven Bulk Kagome

(WBK) truss’ has been developed.[62,63,64,65] The fabrication is

based on the assembly of helical wires in six directions. The

structures are periodic and very uniform, have good specific

properties and are highly permeable (Fig. 3). Different mate-

rials have been produced with this process so far (iron, steel,

aluminum) and the production methods and techniques have

been studied for various applications. The properties of some

of these structures were compared to other periodic cellular

structures in Ref.[66] The compressive behaviour (apparent

moduli and peak stress) of stainless steel structures of differ-

ent sizes were studied and compared with analytically pre-

dicted values by Lee et al.[67] The results show that the effec-

tive modulus of the specimen is insensitive to the specimen

size while the peak stress rapidly increases with a reduction

of the specimen size. Similar cast aluminum lattice block

structures (LBS) have been studied in the past,[68] and have

recently been cast with Ti-6Al-4V titanium alloy.[69]
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Fig. 3. a) Wire-woven Bulk Kagome (WBK) structure and b) unit cell (Courtesy of
Y.H.Lee. Chonnam National University).
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2.2. Materials for Functional Applications

2.2.1. High Temperature Resistant Materials

There has been recently an interest for the development of

cellular metals for high temperature filtration and solid-oxide

fuel cells operating at elevated temperatures. The EURO IV

regulations recently imposed stricter particulate emission

limitations for passenger cars in Europe which will force

automotive manufacturers to adopt new solutions and tech-

nologies in the coming years to reach these objectives.[70] Fil-

ters trap soot particles produced by the diesel engines and

catalysts convert various toxic gases and lower the soot com-

bustion temperature allowing the filter to regenerate.

As the efficiency of the engine is affected by the pressure

drop at the exhaust, materials with good permeability are

required. Metallic foams with good corrosion resistance at

temperatures up to 600–800 °C, especially NiCrAl based

alloys, are being considered for these applications. Different

processes are being developed and new high- temperature

resistant foams are now being produced.

Walther et al. presented a process to produce high temper-

ature resistant Fe-Ni-Cr-Al foams using the deposition and

transient liquid phase sintering of fine pre-alloyed particles

onto thin commercially available nickel foam strip.[71] Filters

are produced either by coiling the foam strip or by sintering

the sheets in stacks. Long term stability, provided by a protec-

tive layer consisting of a-alumina on the surface, was demon-

strated at temperatures up to 950 °C. Compared to the state-

of the-art wall-flow filters, the regeneration of the foam filters

occurs faster and at lower temperatures because of the im-

proved soot-filter wall contact provided by the turbulent gas

flow. Choe et al. have proposed a similar approach to pro-

duce heat-resistant foams using vapour deposition of Al and

Cr (pack-aluminization and chromizing) on nickel foam strips

followed by a homogenisation treatment to produce Ni-Cr

and Ni-Cr-Al foams.[72] The foam yield strength was

increased three-fold compared to pure Ni foam and the oxi-

dation kinetics of Ni-Cr revealed similar behaviour to bulk

Ni-Cr alloys, after taking into account the higher surface area

of the foam. Angel et al. presented a process to produce In-

conel 625 foams using slurries of particles.[73] They showed

that the material maintains its compressive properties up to

600 °C and can withstand thermal shock up to 1000 °C. A

strategy proposed to enhance the chemical stability of the

material was to depose TiN on the surface using chemical

vapour infiltration (CVI) processes. Casting replication of an

oxide space-holder has also been demonstrated to create

sponges from an oxidation resistant Ni-Mo-Cr alloy devel-

oped for fuel cell interconnects.[74]

2.2.2. Materials with Elongated Pores

Important infrastructure and research activities have been

set up recently at the Osaka University in Japan on the devel-

opment of solidification techniques using a high-pressure gas

method (lotus materials or Gasar). These activities have sup-

ported the development of these processes and production

methods.[75,76] Various materials are now produced on a labo-

ratory/pilot plant scale (Cu, Ni, Mg, Al, Si, TiAl, alumina).

Recent work showed promising results on the use of chemical

foaming agents to avoid using large volume of pressurized

hydrogen, that represent potential hazard risks for the large

scale manufacturing with the traditional high pressure gas

methods.[77–79]

Koh et al. presented an alternative process to produce an-

isotropic porous tubular structures by extruding copper and

aluminum wires, followed by leaching of the aluminum to

produce tubes with long elongated pores.[80] The resulting

structures, shown in Figure 4, have low tortuosity and high

permeability. A similar approach, using polymer or organic

binders instead of aluminum followed by extrusion, has been

demonstrated for various metals including copper, with

applications for heat sinks and heat exchangers.[81] A related

approach consists of sintering titanium powders around steel

wires which are then removed electrochemically.[82] Titanium

with aligned, elongated pores has also been produced by di-

rectional freeze-casting of aqueous slurries.[83] Ice dendrites

grow directionally in a temperature gradient, pushing Ti par-

ticles into interdendritic spaces. After removal of the ice by

freeze-drying, the powders are sintered, forming walls sepa-

rating elongated pores which replicate the dendrites.

2.2.3. Biomaterials

Porous coatings have been initially proposed at the end of

the 1960’s to overcome problems encountered with bone ce-

ment. The goal was to produce a rough surface that increases

the friction forces between the implant and the surrounding

bone thus providing better initial stability to the implant.

After implantation, the bone grows into the porous surface

and helps to secure the long term stability of the implant.

These coatings are now extensively used in various orthopae-

dic applications. Research has recently switched from thin

porous bead coatings, sintered mesh and thermal sprayed

rough coatings to metallic foams (Fig. 5) and these materials

ADVANCED ENGINEERING MATERIALS 2008, 10, No. 9 © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim http://www.aem-journal.com 779

Fig. 4. Cross section of tubular structure obtained by extrusion and sacrificial leaching
(Courtesy of H. Koh from the Osaka University).
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have been used in the development of various new and im-

proved treatments (i.e. bone augmentation, graft free vertebra

fusion for the treatment of degenerative disk diseases for

example). Levine reviewed some uses of metallic foams in

joint replacements in Ref.[84] while Schiefer et al. presented

the development of porous titanium for the production of

dental implants in.[85]

Research now focuses on the development of new process-

es and materials to improve the performance of the materials

(better initial stability, faster bone ingrowth) and reduced

production cost. The materials being developed are mostly

titanium alloys and Nitinol (tantalum being already used

clinically). Heinl et al. presented a selective electron beam

melting technique to produce periodic titanium structures

with porosities ranging between 56 % and 86 %.[86] Directional

freeze-casting has also been applied to produce titanium

foams with 60 vol.% aligned pores.[87] The properties of Niti-

nol porous materials produced by injection molding with a

spacing agent were also reported.[88] The process allows pro-

ducing components to net shape and the resulting material

exhibits porosity up to 70 % and good mechanical properties.

The effects of the structure and composition on the proper-

ties of porous metals for biomedical applications have been

studied and documented by various researchers. The effect of

oxygen and oxygen distribution on the properties of titanium

foams has been documented.[89] Oxygen in solution affects

the yield strength and the ductility of the foams. In contrast,

oxygen coming from surface oxide has minimal effect on the

compression behaviour under monotonic loading. Since the

specific surface area of metallic foams can be high, the oxide

layer may be a significant contributor to the total oxygen con-

tent in the foam. Accordingly, it is important to discriminate

the amount of the oxygen coming from the solution and sur-

face oxide when controlling the amount of oxygen in the

foams. The effect of various surface modification treatments

(annealing, TiN, TiO2, and pre-treatments in simulated body

fluids (SBF)) on nickel ion release from porous Nitinol was

given.[90] The best results were obtained by combining a TiN

coating with SBF pre-treatment. This treatment brings the

nickel lifetime release for an average size spinal implant to

one eighth of the quantity of nickel absorbed in a one day

normal diet.[90] Li et al. presented the properties of titanium

foams produced with different processes and having differ-

ent structures.[91] Their results indicated that cells grows (i.e.

bone area and depth of bone ingrowth) was not necessarily

linked to permeability but to material porosity and surface

area. Since cells are growing on surfaces, larger surface area

is believed to promote cell ingrowth. This should be valid as

long as the connectivity between the cells allows the migra-

tion of the cells from pores to pores.

2.2.4. Nanoporous Materials

Nanoporous metallic structures have recently attracted the

interest of the scientific community. These materials, charac-

terized by very high specific surface area and fine pore size,

have been considered in electrodes, catalyst, sensors, actua-

tors and filtration applications.[92,93,94] Most research is pres-

ently done using leaching or de-alloying techniques. While

dealloying techniques applied to gold, silver and copper

alloys have been studied for many years by various research-

ers, the mechanisms responsible for their formation remained

not well understood until recently. A model of selective dis-

solution where the atom clusters and forms islands rather

than being uniformly distributed over the surface was pro-

posed.[95] Monte Carlo simulations of the dissolution of silver

and diffusion of silver and gold during Ag-Au dealloying

allowed for reproducing the mechanisms of dealloying (mor-

phology and kinetics).[96]

In addition to dealloying, other processes are being devel-

oped to produce materials with submicron porosities, e.g. a

selective dissolution technique to leach Ni-based superalloys

that contain c’-precipitates in a c-matrix.[97] The resulting

material (Fig. 6) has fine and regular submicron porosity, is

permeable and is mechanically strong. The materials could be

suited in membrane applications where fine porosity, thermal

stability, mechanical strength and ductility are required.

Amorphous metals with submicron porosity have also been

achieved by selective leaching in amorphous/crystalline or

amorphous/amorphous metal composites.[98,99] Finally, Utsu-

nomiya et al. recently presented the formation of submicron

pores on the surface of carbon steel using oxidation/reduc-

tion treatments.[100]
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Fig. 5. Porous titanium coating on an acetabular cup for hip replacement (Courtesy of
National Research Council Canada, Industrial Materials Institute) and b) porous Niti-
nol for cervical vertebra fusion (Courtesy of Biorthex).

Fig. 6. Microstructure of a c-membrane with submicron aligned porosity obtained after
dissolution of the c′-phase in Ni-based superalloys [97].
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3. Characterisation, Modelling, and Methodology

3.1. Structure

Modelling the properties of porous materials highly relies

on the characterization of the material structure. Because me-

tallic foams and porous metals have complex architectures

and microstructures, the measurement and parameterization

of their structural characteristics still represent important

challenges. Besides density and pore size, the properties of

the material are strongly affected by many structural parame-

ters such as the shape of the pores, the window and strut size,

distribution, shape and density, the tortuosity, surface rough-

ness, surface area, etc.

Application of X-ray tomography with laboratory X-ray

tubes to characterize foam structures is now common prac-

tice. Figure 2 shows an example of how a metal foam can be

visualised in 3D with these techniques. Structures were stud-

ied in a similar way using synchrotron X-rays to achieve bet-

ter image quality.[61] Measuring density profiles[24,34] or cell

shape anisotropies[18] by means of X-ray tomography is now

becoming a routine investigation. The densification process

of foams has also been analysed using deformation stages[101]

and even in-situ.[102] Data acquisition and reconstruction lead-

ing to the image is now a well-established procedure unless

very high spatial resolutions (i.e. well below 1 lm) or good

contrast between similarly absorbing phases is required.

New analytical tools, especially high resolution tomogra-

phy, have been recently developed and optimised to help

quantify the complex structure of metallic foams. Recent de-

velopments include the work by Toda et al.[103] on the use of

K-edge subtraction imaging on synchrotron X-ray microto-

mography to map 3D Zn distribution in aluminum foams.

Electron tomography was used to obtain 3D images on nano-

porous materials with excellent resolution,[104] as shown in

Figure 7.

The extraction of reliable structural parameters from

porous materials still remains a challenge. Image analysis

techniques have been used with success on 2D images.

Savard et al.[105] used automated image analysis to quantify

pore diameter on open cells foams with simple structure

using optical images. Image analysis techniques allow elimi-

nating subjective selection criteria, speed up measurement

procedures and help getting better statistical results. Contrast

being less defined than on polished cross section, special care

must be taken during sample selection and preparation, anal-

ysis routine construction, implementation and validation. For

3D images, the complexity of the algorithm, the contrast level

and the large size of the image to analyse remain challeng-

ing.[106] With standard equipment, the resolution may not be

sufficient to characterize some features of the material (sur-

face area, pores in the strut wall, cracks, etc.).

Blouin et al.[107] developed laser-ultrasonics tools to moni-

tor the bonding between porous and dense materials. The

technique uses the monitoring of the vibration frequencies to

determine the presence of unbound regions. The method has

been used with success on porous and dense surfaces and

could be used to monitor the bonding between a porous core

and face sheets in sandwich panels or to determine the

quality of bonding between porous coating and solid sur-

faces.

3.2. Mechanical Properties

The study of mechanical properties of metallic foams re-

mains an important topic, given that most foam applications

are primarily load-bearing (e.g., for sandwich structures).

Even foams whose main properties are functional (e.g.,

acoustic, thermal or surface area) require minimal mechanical

properties to prevent damage or failure. Age-hardening of

aluminum foams[108] was shown to improve strength of foams

with large cell sizes (400 mm) but not with fine cell sizes

(75 mm), an effect attributed to damage accumulation. Den-

sity-graded aluminum foams were found to exhibit a

smoothly rising plateau stress, unlike uniform foam with a

near constant plateau stress. This behaviour was modelled

with a simple series model based on semi-empirical scaling

relationships for the compressive behaviour of uniform

foams.[109] In-situ X-ray tomography has been used recently

by various groups, allowing for correlation with mechanical

properties and deformation mechanisms. This method could

elucidate deformation mechanisms of aluminum foams un-

der monotonic or cyclic loading with lateral constraint.[110] It

was also applied to hollow-sphere foams, so as to determine

the main deformation mechanisms and compare with results

of finite element modelling (FEM) calculations.[61,111] The me-

chanical properties of such hollow sphere foams[112] and other

adhesively bonded hollow spheres were further modelled by

the FEM method alone.[113] FEM was also applied to investi-

gate the effects of open-cell metallic foam irregularity on de-

formation behaviour and energy absorption during impact

loading.[114] Multi-scale modelling has been used to study the

effect of precipitates, heat treatment and relative density on
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Fig. 7. Transmission electron microscope (TEM) tomographic reconstruction of nano-
porous gold (Courtesy of M. Chen, Materials Research Tohoku University).
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structures.[115] Another advanced imaging technique – digital

image correlation – was utilized for foams cycled under ten-

sion/compression loading or uniaxial tensile loading, to cap-

ture localized deformation (crush or tensile bands), cell wall

fracture and global foam failure.[116,117]

3.3. Acoustic Properties

Metallic foams have been considered in various acoustic

applications. On one hand, the unique structure of these ma-

terials can provide good sound absorption characteristics.[118]

On the other hand, their acoustic properties can be combined

with other characteristics of the metallic foams (i.e. thermal

and chemical stability, mechanical properties) to make them

more attractive than common sound absorbers such as miner-

al wool or polymer foams. Budget associated with sound

management being generally low, metallic foams will find

applications when substantial improvements are observed or

when the combination of the properties of the metallic foams

represents an important benefit (i.e. standard sound

absorbers are generally much cheaper than most metallic

foams).

Tang et al. recently presented the effect of layered struc-

tures on the acoustic absorption of fibrous structures and

showed that better sound absorption was obtained by apply-

ing materials with the area of higher porosity facing the

sound wave.[119] Modelling the acoustic properties of metallic

foams is presently an area of development. Perrot et al. were

able to model acoustic absorption in open-cell aluminum

foams using reconstructed tetrakaidecahedron unit cells.[120]

The unit cells with ligaments of triangular cross-sections were

produced using measurements on X-ray microtomography

images. The agreement with experiments was good in the

medium-high frequency range. Other experiments are, how-

ever, required to optimize the model in the low frequency

range and to validate the model for foams having more com-

plex structures.

3.4. Thermal Properties

Metallic foams are conductive, permeable and have high

surface area. This combination of properties makes them at-

tractive for various thermal applications (heat exchangers,

heat sink, heat pipes). Various research centres are presently

working on the characterisation[121–127] and modelling[128,129] of

heat transfer and thermal exchanges in metal foams with var-

ious structures.

Heat exchanges and conduction in metallic foams are com-

plex phenomena. Heat exchange efficiency is affected by the

conductivity of the foam, the heat exchange between the foam

and the surrounding fluid and the pressure drop in the foam.

These characteristics are all affected by various structural

parameters (density, pore size distribution, cell connectivity,

tortuosity, strut size, density and geometry, surface rough-

ness, etc.) that are difficult to measure and integrate. Accord-

ingly, the thermal properties and efficiency of metallic foams

are still not very well characterized. Hopefully, the on-going

research will provide new data and tools for engineers and

designers that will help better assess the performance of these

materials in thermal applications.

3.5. Permeability

Permeability is an important property for flow-through

foam applications such as thermal applications, filtration,

electrochemistry, acoustic absorption, porous implants. Re-

cent investigations showed that classical models such as

Darcy’s or Forchheimer’s models do not describe appropri-

ately the pressure drop in porous solid, especially at high

fluid velocity. It was shown that the pressure drop cannot be

normalised by the material thickness since entrance and exit

effects can significantly affect the pressure drop.[130] Accord-

ingly, new models should be developed and the methods to

measure permeability should be re-evaluated, especially

when the material thickness is small and the fluid velocity

high. Bonnet et al. analyzed biphasic (air-water) flow in me-

tallic foams and studied the effect of pore size and flow rate

on pressure drop.[131] Models were compared to experimental

results and reasonable agreements were obtained. Zhang et

al. presented the effect of surface modification and wettability

on the permeability of Fe-Cr-Al fiber mats.[132] The results in-

dicated that the material’s wettability affects significantly the

permeability of the materials. This demonstrated that control-

ling the interaction forces between the porous media and

working fluid may be used to control pressure drop in porous

media. The effect of a perforation on the pressure drop and

gas diffusion in metallic foams has been studied.[133] The

work suggested that gas diffuses from the perforation into

the foam and perforations can be used to reduce pressure

drop while giving access to the internal surface of the foam.

More work needs to be done to better understand gas diffu-

sion in complex systems and to optimize the performance of

flow through devices such as heat exchangers, electrodes or

catalysts.

3.6. Standardisation

Besides characterising the properties of cellular metals in

detail, a very important issue is the standardisation of mea-

surement procedures. End-users of cellular metals will only

rely on properties measured in a standardised way. For this

reason, initiatives have been started to define such standards

both in Europe and Japan.[134,135]
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4. Applications and Commercialisation

Porous metals and metallic foams have been commercially

used for many years and various companies are producing

these materials for different applications. Important commer-

cial developments took place in the last 15 years on closed cell

aluminum foams and sandwich panels for structural applica-

tions and various companies are now commercializing these

materials. The most important commercial applications of

porous metals and metallic foams remain open-cell materials

for the production of filters, gas-flow controlling devices, bat-

teries, biomedical implants and bearings. This section pre-

sents some recent developments on applications and com-

mercialisation of cellular metals.

4.1. Aluminum Foams

Aluminum foam is currently produced by a number of

companies worldwide. It is, however, sometimes difficult to

assess how sustainable a commercial activity is because pre-

cise information about production volumes and markets are

not available. The activities of four companies are described

below. Beside those, there are other companies in Canada,

Austria, Korea and China that are producing aluminum

foams.

Shinko Wire in Japan is the aluminum foam manufacturer

with the longest track record, having started production in

the 1990’s. Gleich (Germany) is the European distributor of

Alporas foams produced by Shinko.[136] Gleich develops parts

in co-operation with end-users and presented some new

applications in the past years.[137] One part, presented in Fig-

ure 8, is a vacuum elevator tool manufactured for Pilkington,

a large manufacturer of flat glass products. The tool is used to

lift glass panels produced in the floating glass process. The

replacement of the full aluminum part by Alporas foam led

to a weight reduction from 82 to 32 kg. Since the change of

these tools is carried out manually, this reduced weight facili-

tates handling. The production is still small scale (i.e.,

5–6 pieces per year) but demonstrates the benefit of using

aluminum foam for light-weight structural components. In

this case, the heat resistance of aluminum foams plays an im-

portant role since tool temperatures can be as high as 400 °C.

The excellent machinability of Alporas foam further promotes

the use of this material for this type of application.

Alulight (Austria) is now producing a crash element for an

Audi car with 100,000 parts per year. This is currently the

only large-scale application of closed cell aluminum foams.

This production required the development of an automatised

production technology.[138] Applied Light-Weight Materials
(‘alm’) in Saarbrücken (Germany) is the leader on the field of

in-situ bonded, i.e. metallically bonded, aluminum foam

sandwich products. Their technology and some applications

are described in detail in this issue of AEM. ‘alm’ recently

merged with Alulight and the companies are now jointly

developing the market. Applications are still small-scale (e.g.

lifting arm for elevating platform, Alimex plates) but various

new products are now in the prototyping stage (rocket cone,

bicycle crank arm, cookware).[42]

Alcoa (USA) is a new player in the aluminum foam market.

In 2006, they presented a new process based on the continu-

ous casting of the foam using CaCO3 as blowing agent.[24]

One of the objectives is to reduce the cost of aluminum foams

and use them in cost-driven products. Price estimation at

5 US$/kg is considered realistic after the technology has

reached large-scale production.

Another closed cell aluminum foam part in production is

the girder shown in Figure 9. It contains two Alporas foam

cores encased in a cast aluminum alloy produced by low

pressure die casting. The part is used in cutting and milling

machines and serves as a load-bearing structure with a good

vibration damping capacity in the frequency regime around

370 Hz. Vibrations level can be reduced by 60 % compared to

the conventional part without foam. Since 2004, 2,500 pieces

weighing 21 kg each have been manufactured by the com-

pany Gleich.

Due to their good deformability and high energy absorp-

tion capability, aluminum foams have been considered for

the production of crash energy absorbers for many years. A

crash bumper has been in use in light city railways for some

years.[139] Other applications are being investigated such as

an Alporas metal foam crash element in the front tip of the
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Fig. 8. Vacuum lifting tool for Pilkington containing an Alporas aluminum foam ring
(Courtesy of Sönke Reinhardt).

Fig. 9. Girder with Alporas foam core. The entire part length is 1900 mm; the foam
core length is 1580 mm (Courtesy of Sönke Reinhardt).
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fulfil the requirements of a limitation of de-acceleration to

< 20 g at 7 m/s impact velocity for a vehicle weight of

300 kg. Costs still prevent, however, the use of aluminum

foams for those applications in mass markets.

Aluminum foam sandwiches (AFS) manufactured by ad-

hesive bonding of flat Alporas panels and aluminum sheets

(0.7 to 5 6mm thick) are produced for various applications in

mechanical engineering and transport industry. Bonding

adds about 1 kg to the weight of 1 6m2 panels and represents

about 10-30 % of the final product costs.

4.2. Open-Cell Materials

Electrodes for NiMH and NiCd batteries are probably

the largest industrial applications of metallic foams nowa-

days. Vale Inco produces annually about 4 millions square

meters (4 square kilometres) of nickel foams for these applica-

tions.[71] With the current development of other types of

batteries (lithium ion batteries for example), demand will

eventually be reduced. But, as these Ni foams are currently

produced in large volume with uniform and controllable

structure and properties at acceptable cost, they will surely

find other large scale applications in the coming years. Fig-

ure 11 shows a production plant located in China.

Another important commercial application of metallic

foams and porous metals are the production of biomedical

implants. Porous coatings (sintered beads and meshes) have

been used with success for the last 20 years in orthopaedic

applications and most orthopaedic implant manufacturers

are using these coatings on many of their implants. The com-

panies are now developing metallic foams to improve the

performance of their implants and to develop implants for

new and improved surgical treatments. Major orthopaedic

implant manufacturers are now bringing these materials into

the market (Hedrocell from Zimmer, Tritanium from Stryker,

Regenerex from Biomet, Gription from DePuy).

Important commercial developments also took place in the

automotive industry. Nett Technologies Inc. is presently

using open-cell metallic foams for the production of their cat-

alytic converters for diesel engines.[140] Vale Inco Ltd and

Süd-Chemie AG have recently agreed to establish a joint ven-

ture, Alantum, for the production and marketing of catalyzed

diesel emission control materials. The company will concen-

trate initially on diesel oxidation catalysts (DOC) and diesel

particulate filters (DPF) applications for European passenger

car and light truck markets. The pilot plan is set to produce

100,000 m2 of foams annually and the commercial scale pro-

duction is expected to begin in 2008.[141]

Dynapore® porous 304L/316L stainless steel laminates

(from MKI Corp) have found successful applications for the

thermal management, flow distribution, membrane support

and current collection components of fuel cell stacks.[142] Fuel

cell still being in the early commercialization stage, they are

not yet used in large volume. With the expected large scale

commercialization of fuel cells, this may, however, become a

large scale application of metallic foams.

Degussa AG recently developed low-density hollow

spheres Raney-type catalysts. The hollow spheres produced

with activated nickel or cobalt metals have high surface area.

The material offers an increase in volumetric activity at lower

catalyst bulk density without the presence of expensive, but

not utilized, materials.[143]

New companies are still emerging and offering novel

materials with different structures for different applications.

Metafoam (Canada) for example, is a new company commer-

cializing highly porous foams with open structures and high

specific surface areas. The company focuses on the develop-

ment of high efficiency heat exchangers for thermal manage-

ments (copper) and electrodes (nickel). Using metallic foams,

the company states that they significantly improved both the

critical heat flux and surface superheat in two phase liquid

cooling systems. This should help manage increasing heat

flux in electronic devices cooling.

5. Summary

The technology of porous, foamed or spongy metals is still

evolving at a fast pace. This research area is highly interdisci-

plinary and requires chemistry, physics and materials engi-

neering to be applied jointly to achieve integrated solutions

that ensure that these materials can be produced economic-

ally with the required quality and reproducibility and that

their integration into engineering systems makes full use of
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Fig. 10. Crash protector in a model racing car built by students at the University of
Technology of Stralsund, Germany; a) view of car with the front encasement taken off,
b) full view (Courtesy of Sönke Reinhardt).

Fig. 11. Nickel foam production unit at the Inco Advanced Technology Materials, Da-
lian, China (Courtesy of V. Paserin).



Lefebvre et al./Porous Metals and Metallic Foams: Current Status and Recent Developments

R
E
V
I
E
W

S

their unique property spectrum. It is anticipated that the fast

development of the past years will continue.
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