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POROUS RIGID-PLASTIC .MATERIALS CONTAINING RIGID INCLUSIONS —  
6 YIELD FUNCTION, PLASTIC POTENTIAL, AND VOID NUCLEATION

Arthur L. Gurson*

INTRODUCTION

Development of theories of ductile fracture require constitutive relations 
which show details of material behavior. Engineering materials frequently 
are aggregates of several phases of widely varying properties, making the 
constitutive behavior of an aggregate more complex than that of any of the 
individual phases. In this paper, the effect on constitutive behavior of 
the presence of rigid particles, embedded in and bonded to a rigid-plastic 
porous matrix, is examined. It is shown that the yield function is 
altered, and that the familiar concept of the yield function as a plastic 
potential must be used more carefully. The results also show how a void 
nucleation mechanism could destabilize, causing rapid bulk softening and 
failure [l, 3].

YIELD FUNCTION AND PLASTIC POTENTIAL

Strictly speaking, a yield function defines a locus of points in stress 
space for which a body, at a certain state of plastic deformation, will 
attain plastic yield. A plastic potential is a function of stress (at 
yield) which gives the direction of plastic flow via normality. In the 
conventional theory of rigid-plastic flow, the yield function $ is used as 
a plastic potential [2]:

. A <3$ (1)
* »  A  ~  >

aa \

where a is the microscopic (pointwise) stress tensor, c is the microscopic 
deformation rate tensor, and A is a scalar multiplier determined from 
boundary conditions or hardening data. It can be shown [3, 4] that this 
concept carries over to macroscopic measures of stress (X) and deformation 
rate (E) in a wide class of porous rigid-plastic materials:

E  = A  —  
<32

(2)

where <7y, the equivalent tensile flow stress of the matrix, is assumed 
(for simplicity) to be uniform. The theory which led to Eq. (2) will be 
extended here to include the effects of void nucleation at rigid particles 
embedded in the matrix. Special attention is paid to a modification of 
the stress-dependent nucleation criterion developed by Argon, et al. [6].

Consider the general case of a rigid, work hardening ductile
matrix containing both voids and rigid particles, the latter debonding
from the matrix when some critical stress is reached at the particle- 
matrix interface. One can then write the general expression

'd f = d f(n u c l. )  + d f (g row th ) = b - d 2 j j  + b ^  d A  . ( 3 )
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f is void volume fraction;-d indicates an increment, and b;j . and bj are 
differential coefficients. df(nucl.) is the part of.df due to void 
nucleation at rigid particles; df (grox̂ th) is the part of df due to void • 
groxvth, and is related to macroscopic plastic dilatancy. (See Eq. (22).) 
Consider also a yield function for this material, approximated as de
pendent on {., Oy , and the first two invariants of 2:

  0  =  < D  ( 2 e q v ,  2 H ,  O y ,  0 = 0 ,  '  ' ( 4 )

 ̂ ^kk’ ̂ ij ~ îj* ̂ eqv-^
1 /2

(Figure 1 contains a schematic of this type of yield function; specific 
examples were developed in refs. [3, 4], One is shoxm in Eq. (11).) It is 
a reasonable approximation to limit the stress dependence of df to the 
first two invariants of stress also:

d f  =  b ^ d S c q v  +  b ^ d S n  +  b ' j d A ,  ( 5 )

where b ^  i = 1 , 3  are differential coefficients. For a work hardening 
material, one may write

doy
iai - dA (6)

Now, using Eqs. (4) and (5) and applying consistency to the yield function 
(commas denote partial differentiation):

8 < $ >  =  0  =  ( 5 > ,  £  +  < * > , f  b j )  d  2  +  ( $ ,  v  + ' J ’ . f  b f2 )  d £ H

eqv H (7)

+ (<l>,ff a .. + $>f bf2 ) dA y " A ->

When moving along the yield function of a work hardening mate
rial, no plastic flow takes place, so dA = 0. Equation 7 then gives the 
tangent to the yield function as

— ^  = - : —    (8)
H (̂ ' seqv + e bfi)

Using the derivation of a floxv rule in refs. [3, 4], and assuming that void
nucleation affects only the rate of change of £ and not £ itself, it can be
shoxm that the plastic potential is equivalent to the yield function with
nucleation ignored. The tangent to. the plastic potential is thus

dS eqv 2 h  .
 1  = ____________________________________________________ (9)
dSH ^ ’ 2  eqv

Thus, with nucleation as a mechanism for increasing f , the yield function 
is no longer strictly equivalent to a plastic potential.

In a specific form of Eq. (5) (developed in [3] and discussed
below),

b f x = 0, b f2 =■ 0 i f  d 2 H < 0 ,  b f 2 > 0 i f  d 2 H > 0

■ • ' (10)
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^ucleafion (the breaking of a maitrix-par ticle bond) is considered-irrevers
ible, and cannot take place when the increment of hydrostatic stress is 
negative.

In [3, 4], specific forms of the yield function were developed 
which did not take nucleation into account. These can be used to calculate 
the derivatives in Eqs. (8) and (9). An example is given below; it is an 
upper bound yield function for a ductile matrix containing spherical voids, 
with the assumptions of a fully plastic flow field in the matrix (upper 
bound calculation), and uniform cry :

$ + 2f cosh (ID
The following are true for Eq. (11), and are reasonable to expect from any 
other forms of $:

<Z>,f  > 0, <!>,< > 0 , and<D ,v > 0 f o r % >  0 ( 1 2 )eqv H
Using Eqs. (10) and (12) in Eq. (8), the slope of the yield function is 
shovm to be equal to (dS^< 0) or more negative than (d2^ > 0) that of the 
plastic potential. Thus, given a state of yield in stress space, the yield 
surface will lie on or inside the plastic potential. (See figure 1.)
Only the portion of the yield function for which dE^ < 0 can be used as a 
plastic potential.

NUCLEATION CRITERIA

Two specific void nucleation criteria were investigated in [3], and will 
be outlined here. The first, based on the experimental work of Gurland [5] 
on particle cracking in spheroidized 1.05% carbon steel, favors a criterion 
based on the strain increment. When a cracked particle is presumed to be
have like a void of equal size, and fUp is the volume fraction of unbroken 
particles, the criterion is

d f ( n u c l ) ~ C i  f  m d E , where E  = f — E '. E ' . . )  ( 1 3 )
1 UP \3 ij *)/

Of is a material constant calculated from the experimental data; Gurland * s
data gave Cf = 0.29.

The second criterion is based on the work of Argon et al. [6], 
who favor a critical normal interfacial (matrix-particle) stress condition 
for nucleation. Their calculations show that for a single rigid particle, 
embedded in an infinite matrix undergoing plastic flow under pure shear 
stress, the normal interfacial stress is very close to ay in the matrix. 
(Note: here, Oy is the current value, increased by work hardening.) They
also study the stress amplifying effect of a second particle in close prox- 
imity to the first. Based on their work, the following form is suggested 
[3]:

SH
= M(C) Oy + — - (14)

M(c) is a stress amplification factor (a function of the local particle 
concentration c) , and o; is the normal interfacial stress. The final term 
represents, in an approximate way, the microscopic tensile stress at the 
interface due toEyj. Matrix-par ticle separation (void nucleation) results



vjhen oil reaches of , the critical value. (Note: ref. [?] shows that
Oy* < ojc < 6 Oy , xvhere Oy* is the initial tensile yield stress of the 
matrix, is a reasonable range of values for engineering materials.) M(c) 
is calculated as the ratio of upper bound values of the interfacial stress 
for interacting particles with local concentration c to the upper bound 
stress when no interaction takes place. Calculations of the upper bound 
stresses were based on [6], as modified in [3]. (In [3], the plastic drag 
(ks) at a displacement incompatibility is a work hardening quantity; in 
[6], it is a material constant.) Curves of M(c) versus c are shown in 
fig. 2 for various values of n , the matrix hardening exponent.

Define c* as the value of c at which of is reached (Eq. (14)). A 
statistical calculation is done in [6], resulting in the fraction of ran
domly distributed particles which are in local concentration of c* or more. 
Assuming that a separated particle behaves like a void of equal volume, the 
following incremental form results (via Leibnitz's rule for differentiation 
of definite integrals).

0.4412df(nucl.) :  dc*, zic\
/c* \ '• '

: 'V r  • :)
where T is the Gamma function and c is the volume average of c. c* de
creases as ay , the average hardening state of the matrix, increases. (See 
Eq. (14) with - of , and fig. 2.) Increments in ay can be estimated 
from the macroscopic behavior of the material, the current state, and the 
matrix properties: ’

dE

\

Given doy , dc* can be calculated numerically from Eq. (14) , where o[ is 
kept constant at of •

1/2

dM
d (o -c ) = 0 j =  —— 

1 - dc
■ Oy d c * + M (c*) d o y + d y - — -  J ( 1 7 )

. *

The last term above must be expanded in detail. Using the non- 
dimensional macroscopic stress S , where

S = 2 / ctv C l 8 )— X •
the chain rule gives

/Sjj \ SH a y °y
d I  } = ---  • dzr +  . dSu +    . df (19)

V - f /  ( i - o  y i - f  H  ( i - f)2
Given enough information about a particular problem, dS^ can be put in 
terms of df . Then, Eq. (17) can be written as

dM r  ( c * / c  + 1)
—  . — ----------------  . d f
dc* 0.4412

°y /dSH SH V  X
(n u c l) + -— -  I -- --- + - —  lu l f ( n u c l)  + d f(g ro w th l

(20)
+ M (c*) dOy = 0

dOy and df (growth) are both linear functions of the flow parameter. (See 
Eqs. (1), (16), and (22).) Rearranging terms gives



d f(n u c l)  =
dM r  ( c V c  + 1)

.d c *  0.4412 

N UC LEATIO N  IN S T A B IL IT Y

a /d S H SH V I  /  \

b r  + - V ' " 7  dA : (21)

Nucleation becomes unstable if the coefficient of df (nucl,.) goes to zero. 
The burst of nucleation would cause instantaneous bulk softening, which 
under the proper circumstances [1, 3] could lead to an unstable macroscopic 
flow field bifurcation (ductile fracture). Note that unstable nucleation 
of the type suggested in Eq. (21) could not occur given the flow dependent 
nucleation mechanism of Eq. (13). (A similar type of instability, corres
ponding to a macroscopic non-hardening state [l, 3], could still occur.)

d f (growth) can be expressed in terms of dE as follows:

d f (g row th ) = ( 1 - 0  dEkk> = (1 — f) £  d A  ( 2 2 )

In fig. 3, this is compared to d f(nucl.) over a range of matrix hardening 
levels, for several values of <?ic . The instability suggested in Eq. (21) 
is quite evident. O as used in the calculation of these curves was derived 
in [3, 4] for a long circular cylindrical void geometry. The form is 
similar to Eq. (11). Note that quantities on the vertical axis are 
normalized by f and c .

The effect of nucleation on the slope of the yield function can 
be seen from fig. 4, for a specific case of Eq. (11). Note that here, of 
is normalized by oy, the current state of matrix hardening. As 2h in
creases, the value of M(c*) (and thus c*) needed to attain nucleation de
creases, until M(c*) 1 and nucleation takes place at all particles not
yet debonded from the matrix. df(nucl'.), as calculated in Eq. (21), again 
becomes unstable. When this happens, in Eq. (8) becomes infinite and
the slope of the yield function becomes negative infinite, as suggested in 
the figure.
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