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POROUS RIGID~ PLA STIC .MATERTALS CONTAINING RIGID INCLUSIONS --

4 . © YIELD FUNCTION, PLASTIC POTENTIAL, AND VOID NUCLEATION

Arthur L. Gurson1

INTRODUCTION

Development of theories of ductile fracture require constitutive relations
which show details of material behavior. Engineering materials frequently
are aggregates of several phases of widely varying properties, making the
constitutive behavior of an aggregate more complex than that of any of the
individual phases, In this paper, the effect on constitutive behavior of
the presence of rigid particles, embedded in and bonded to a rigid-plastic
porous matrix, is examined. It is shown that the yield function is
altered, and that the familiar concept of the yield function as a plastic
potentlal must be used more carefully, The results also show how a void
nucleation mechanism could destabilize, cau51ng rapid bulk softening and
failure [1, 3].

YIELD FUNCTION AND PLASTIC POTENTIAL
Strictly speaking, a yield function defines a locus of points in stress

space for which a body, at a certain state of plastic deformation, will
attain plastic yield. A plastic potential is a function of stress (at

'yield) which gives the direction of plastic flow via normality. In the

conventional theory of rigid-plastic flow, the yield function ¢ is used as
a plastlc potential [2]

LY (1)
dg ' \

where o is Lhe microscopic (p01ntw1se) stress tensor, ¢ is the microscopic

deformation rate tensor, and A is a scalar multiplier determined from

boundary conditions or hardening data. It can be shown [3, 4] that this

concept carries over to macroscopic measures of stress (2 and deformation

rate () in a wide class of porous rigid-plastic materials:

i - Aa—g[d)(ay,g,f)} | | o

where oy, the equivalent tensile flow stress of the matrix, is assumed
(for simplicity) to be uniform. The theory which led to Eq. (2) will be
extended here to include the effects of void nucleation at rigid particles
embedded in the matrix. Special attention is paid to a modification of
the s;ress~dependent nucleation criterion developed by Argon, et al. [6].

Consider the general case of a rigid, work hardening ductile

matrix containing both voids and rigid particles, the latter debonding

from the matrix when some critical stress is reached at the particle-
matrix interface. One can then write the general expression

df = df(nucl.) + df (growth) = b;;d X, + b3 dA. ‘ (3)
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f is v01d volume fraction;-d indicates an increment, and b,..and b3 are
w%fferénLlal coefficients. df (nucl.) is the part of df due to void
nucleation at rigid particles; df (growth) is the part of df due to void -
growth, and is rclated to macroscopic plastic dilatancy. (See Eq. (22).)
Consider also a yield function for this material, approximated as de-
pendent on f, oy, and the first two invariants of X:

C 0 = @ (Seqy S0y O =0, ()
1 , , 3 - \V2
21=7 e Zij = ~ Sy 8 3 qv=(—2- i; 2;,‘)

(Figure 1 contains a schematic of this type of yield function; specific
examples were developed in refs. [3, 4]. One is shown in Eq. (11).) It is
a reasonable approximation to limit the stress dependence of df to the
first two invariants of stress also:

df = bfldzeqv+bf2dzﬂ+bf3dA, - . (5)

where- bf i =1, 3 are dlfferentlal coeff1c1ents. For a work hardening

materlal, one may write

' doy i T : ) ' .
do, = dA ‘ (6)

y dA

Now, using Eqs. (4) and (5) and applying consistency to the yield‘function
(commas denote partial differentiation):

. ) f N
'5q>=o:=<q>,zeqv+q>,fbfl) dSeqy+ (@5 + b)) dTy o

. . f .

+ (@,oy OY."A+(D'fb3) dA
: When moving along the yield function of a work hardening mate-
rial, no plastic flow takes place, so dA = 0, Equation 7 then gives the
tangent to the yield function as -

| f
ds (‘D’EHJf d”fb2>‘ o , ,
G2eqv . ‘ | 8)

dX :

H f

. ((I), Eeqv + d), fb 1) .

Using the derivation of a flow rule in refs. [3, 4], and assuming that void
nucleation affects only the rate of change of ¢ and not £ itself, it can be

shown that the plastic potential.is equivalent to the yield function with
nucleation ignored. The tangent to the plastic potential is thus

dZ, S :
qV .
o (9
dEH (I), Eeqv

Thus, with nucleation as a mechanism for increasing f, the yleld functlon
is no longer strictly equivalent to a plastic potential.

In a specific form of Eq. (5) (developed in [3] and discussed

' f .
bf, = 0, bfy, = 0ifas, <o, bfy>0ifdsy>0- ]
L ' @10)
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Nuclea ion (the breaking of a matrix-particle bond) is considered-.irrevers-
1ble, and canncot take place when the increment of hydrostatic stress is
negative.

In [3, 4], specific forms of the yield function were developed
which did not take nucleation into account. These can be used to calculate
the derivatives in Eqs. (8) ‘and (9). An example is given below; it is an
upper bound yield function for a ductile matrix containing spherical voids,
with the assumptions of a fully plastic flow field in the matrix (upper
bound calculation), and uniform oy :

Eequ 3 24\ 5 . . ‘
+ 2fcosh 3 5 -1-1f=0 o (11

2 o
9 y

d =

The following are true for Eq. (11), and are reasonable to expect from any
other forms of ¢: : '

’ ‘Df> 0, (D’EEqv> 0, and «D,‘EH >0 for 2y >0 (12)

Using Eqs. (10) and (12) in Eq. (8), the slope of the yield function is
shown to be equal to (d2y< 0) or more negative than (dSy > 0) that of the
plastic potential. Thus, given a state of yield in stress space, the yield
surface will lie on or inside the plastic potential. - (See figure 1.)

Only the portion of the yield functlon for which dX¥H < 0 can be used as a
plastic potential.

NUCLFATION CRITERTA

Two specific void nucleatlon criteria were 1nvest1gated in [3], and w1ll

be outlined here. The first, based on the experimental work of Gurland [5]

‘on particle cracking in spheroidized 1.05% carbon steel, favors a criterion

based on the strain increment. When a cracked particle is presumed to be-
have like a void of equal size, and fUP is the volume fraction of unbroken
particles, the criterion is

df(nucl) = Cy fup dE, where K = (g Eij E ii) : . |
Cy* is a material constant calculated from the experimental data; Gurland's
data gave CI* = 0.29,

The second criterion is based on the work of Argon et al. [6]

who favor a critical normal interfacial (matrix-particle) stress condition

for nucleation. Their calculations show that for a single rigid particle,
embedded in an infinite matrix undergoing plastic flow under pure shear
stress, the normal interfacial stress is very close to oy in the matrix.
(Note: here, o, is the current value, increased by work hardening.) ~They
also study the stress amplifying effect of a second particle in close prox-
imity to the first. Based on their work, the following form is suggested

[3]:

s

L o aw

o: = M(c) oy 1%

1
M(c) is a stress amplification factor (a function of the local particle
concentration ¢) , and '0; is the normal interfacial stress. The final term
represents, in an approximate way, the microscopic tensile stress at the

interface due to Xy. Matrix-particle separation (Void nucleation) results
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yhen o} reaches o,¢, the critical value. (Note: ref. [7] shows that

o, < 0;¢ < 6oy’ where oy* is the initial tensile yield stress of the
matrix, is a reasonable range of values for engineering materials.) M)
is calculated as the ratio of upper bound values of the interfacial stress
for interacting partic¢les with local concentration ¢ to the upper bound
stress when no interaction takes place. Calculations of the upper bound
stresses were based on [6], as modified in [3]. (In [3], the plastic drag
(k¢) at a displacement incompatibility is a work hardening quantity; in
[6], it is a material constant.) Curves of M(c) versus c¢ are shown in
fig. 2 for various values of n, the matrix hardening exponent.

Define c* as the value of ¢ at which 0i is reached (Eq (14)). A
statistical calculation is done in [6], resulting in the fraction of ran-
domly distributed particles which are in local concentration of c¢* or more.
Assuming that a separated particle behaves like a void of equal volume, the
following incremental form results (via Leibnitz's rule for dlfferentlatlon
of definite integrals).

0.4412 : ' a
'df(nucl.) =Tf__'— dC*, ’ . ' . . (15)

c*
F(—;— + 1)
C .

‘where I is the Gamma function and ¢ is the volume average of c. c* de-

creases as Oy, the average hardening state of the matrix, increases. (See
Eq. (14) with o¢; = 0;® , and fig. 2.) Increments in oy can be estimated

‘from the macroscoplc behavior of the material, the current state, and the
matrix propertles ' ' - :

Xy dEg - d 2 )1/2' ‘
T e T @G i | 16)

\

Given doy, dc* can be calculated numerically from Eq. (14), where oj is
kept constant at ¢;€ I

- 2y : ‘ ,
- d(g;) = 0‘= — | - oydct+ M(c*) day +d 17 : ~(17)
o ' c* : :
The last term above must be expanded in detall Using the non-
dlmen31onal macroscopic stress S, where

= /0 ’ ' i (18)
: s =y , . e ‘
the chain rule gives - ‘
i\ Sm o - oysy | o
d|{-—}= —— -do,+ ——..dSy + LdfE : (19)
1-f/ (-6 Y 1-f (1-f2 : )
Given enough 1nformat10n about a particular problem, dSy can be put in
terms of df Then, Eq. (17) can be written as '
- — o, df (nucl) + — Th + T df(nucl) + df (growth

0.4412 . 1-f
det 0441z - (20)

+ M(c*) day =0 .

doy and'-df(growth) are both linear functions of the flow parameter. - (See
Egqs. (1), (16), and (22).)A Rearranging terms gives




: df (nucl) = - = |----) aa
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NUCLEATION INSTABILITY

. Nucleation becomes unstable if the coefficient of df(nuclu) goes to zero,
The burst of nucleation would cause instantaneous bulk softening, which
under the proper circumstances [1, 3] could lead to an unstable macroscopic
flow field bifurcation (ductile fracture). Note that unstable nucleation
.of the type suggested in Eq. (21) could not occur given the flow dependent
nucleation mechanism of Eq. (13). (A similar type of instability, corres-
ponding to a macroscopic non-hardening state [1, 3], could still occur.)

df(growth) can be expressed in terms of dE as follows:
df(growth) = (1-DdEy, = (1-Hd,5 dA 4 o (22)

In fig. 3, this is compared to df(nucl.) over a range of matrix hardening
levels, for several values of ¢ij° . The instability suggested in Eq. (21)
is quite evident. @ as used in the calculation of these curves was derived
in [3, 4] for a long circular cylindrical void geometry. The form is
similar to Eq. (l1). Note that quantities on the vertical axis are
normalized by f and €. '

. The effect of nucleation on the slope of the yield function can
be seen from fig. 4, for a specific case of Eq. (l1). Note that here, o;€
is normalized by oy, the current state of matrix hardening.” As 3y in-
‘creases, the value of M(c*) (and thus c¢*) needed to attain nucleation de-
creases, until M(c*) == 1 and nucleation takes place at all particles not
~yet debonded from the matrix. df(nucly, ), as calculated in Eq. (21), again
becomes unstable., When this happens, b2 in Eq. (8) becomes infinite and
the slope of the yleld function becomes negative 1nf1n1te, as suggested in
the figure.
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