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Abstract The three-dimensional high-resolution imaging of rock samples is the basis

for pore-scale characterization of reservoirs. Micro X-ray computed tomography (µ-

CT) is considered the most direct means of obtaining the three-dimensional inner

structure of porous media without deconstruction. The micrometer resolution of µ-CT,

however, limits its application in the detection of small structures such as nanochan-

nels, which are critical for fluid transportation. An effective strategy for solving this

problem is applying numerical reconstruction methods to improve the resolution of

the µ-CT images. In this paper, a convolutional neural network reconstruction method

is introduced to reconstruct high-resolution porous structures based on low-resolution

µ-CT images and high-resolution scanning electron microscope (SEM) images. The

proposed method involves four steps. First, a three-dimensional low-resolution tomo-

graphic image of a rock sample is obtained by µ-CT scanning. Next, one or more

sections in the rock sample are selected for scanning by SEM to obtain high-resolution

two-dimensional images. The high-resolution segmented SEM images and their cor-

responding low-resolution µ-CT slices are then applied to train a convolutional neural

network (CNN) model. Finally, the trained CNN model is used to reconstruct the

entire low-resolution three-dimensional µ-CT image. Because the SEM images are

segmented and have a higher resolution than the µ-CT image, this algorithm integrates

the super-resolution and segmentation processes. The input data are low-resolution µ-

CT images, and the output data are high-resolution segmented porous structures. The
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experimental results show that the proposed method can achieve state-of-the-art per-

formance.

Keywords Convolutional neural network · Porous structure reconstruction · µ-CT

1 Introduction

Three-dimensional pore-scale numerical modeling of reservoirs dates back to 1984,

when Quiblier generated a three-dimensional porous structure based on the measure-

ments of the characteristics using two-dimensional thin sections of porous media

(Quiblier 1984). This method involves successively passing a normalized uncorre-

lated Gaussian random field through a linear and then a nonlinear filter to generate the

discrete values that represent the phases of the structure (Yeong and Torquato 1998a).

This filtering method is quite general (Hiroshi 2004) and robust (Adler et al. 1990), and

is universally used to model various porous media from food to rock samples (Adler

et al. 1992; Frederic and Dominique 2004; Liang et al. 1998; Roberts 1997; Roberts

and Torquato 1999; Spanne et al. 1994). However, the use of only one- and two-point

probability functions has been found to be insufficient for reproducing more complex

porous structures (Yeong and Torquato 1998a), because the Gaussian filtering recon-

struction methods retain a similar degree of isotropy and homogeneity as the original

training image but do not reproduce the connectivity properties, which are critical for

transport (Biswal and Hilfer 1999). Additional morphological descriptors containing

some connected information were then introduced to import more constraints into the

reconstruction process, such as a two-point cluster function, lineal-path length and

chord-length function. Because it is difficult to incorporate these new descriptors into

the aforementioned filtering method, the simulated annealing (SA) method was pro-

posed to reconstruct the porous media subject to various statistical constraints (Pant

et al. 2015; Rintoul and Torquato 1997; Yeong and Torquato 1998a, b).

The SA algorithm allows arbitrary structural descriptors to be imported into the

reconstruction procedure as constraints, which improve the accuracy of the modeling.

Although this method has been used successfully for the reconstruction of several

materials, including sandstone (Manwart et al. 2000) and chalk (Talukdar et al. 2002),

the resulting images do not always capture the long-range connectivity of the pore

space, specifically for media exhibiting low porosity or small-scale connectivity (i.e.,

because of high pore–throat aspect ratios or the presence of fractures) (Čapek et al.

2009). This is because it is more difficult for these low-porosity media to obtain a global

minimum, since it requires the stepwise construction of small channels. The tedious

computation of the SA modeling is an additional obstacle to its practical application.

Another novel method for modeling porous structures is the process-based recon-

struction method, which numerically mimics the geological process of the formation

of sedimentary rocks (Bryant and Blunt 1992; Coelho et al. 1997; Latham et al. 2001;

Øren and Bakke 2002). However, a precondition for using this method is an adequate

understanding of the physical and chemical processes that are essential to the forma-

tion of the porous structure, which is always difficult (Lucia et al. 2003), especially in

carbonates and shale.
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In 2004, a pattern recognition approach that uses a small template was developed by

Wu et al. (2004). This approach is an effective method for generating a wide variety of

pore structures in two dimensions by replicating patterns in a five-point stencil using

a Markov chain Monte Carlo (MCMC) method. The authors subsequently extended

this algorithm to the modeling of three-dimensional porous structures by using three

perpendicular two-dimensional sections as training images. These three sections are

treated as priors to determine the transition probabilities that control the Markov chain

process (Wu et al. 2006). The MCMC algorithm was soon generalized to the multiple-

point statistics (MPS) method (Okabe and Blunt 2004; Tahmasebi and Sahimi 2016a,

b). In a later study, Okabe and Blunt (2007) expanded upon their work to enable the

recovery of small features that are lost in micro X-ray computed tomography (µ-CT)

images, by combining two-dimensional scanning electron microscopy (SEM) images

with three-dimensional low-resolution µ-CT images. In this approach, macro-pores

are identified by µ-CT, while micro-pores are generated by the MPS reconstruction

method based on an SEM image. The two images are then superimposed to obtain the

final image, which has improved image quality. This hybrid strategy has been extended

to multiresolution and multiscale modeling to address the problems associated with

the computational cost and multiscale feature reproduction (Tahmasebi et al. 2015,

2016, 2017). In this method, a low-resolution image is applied to reconstruct the

large-scale features in a shale sample, and high-resolution two-dimensional images

are used to reconstruct the nanoscale structures. The multiscale pore network is then

obtained by overlaying the micro and macro three-dimensional models. In some cases,

the macro-scale reconstruction can be skipped if a three-dimensional macro image

can be obtained directly. The MPS method can be further extended to a neighbor

embedding reconstruction method to improve the resolution of the µ-CT image, where

low-frequency information is provided by the µ-CT image itself, while high-frequency

information is supplemented by high-resolution SEM image(s) (Wang et al. 2018). In

theory, it is possible to perfectly reproduce the porous structure if the template size is

sufficiently large and the training image can provide a sufficient number of replicates

for the actual data events. However, due to limitations in computational resources

including computing time, random-access memory (RAM), and thus training image

size, the challenge of reproducing the long-range connectivity still exists in practice.

The deep learning algorithms in wide use today offer us a promising choice for

improving the resolution of the porous structure extracted from µ-CT images (Mosser

et al. 2017). The convolutional neural network (CNN) is one of the most notable deep

learning approaches, in which multiple layers are trained in a robust manner (LeCun

et al. 1998). It has been found to be highly effective and is also the most commonly used

approach in diverse computer vision applications (Guo et al. 2016). In addition, a large

number of studies have investigated the CNN model for image processing, including

image denoising (Jain and Seung 2008; Xuejiao et al. 2015; Zhang et al. 2017), image

restoration (Cheong and Park 2017; Deepak and Ghanekar 2017; Dong et al. 2016;

Jia et al. 2017; Liu et al. 2016; Samuel et al. 2015; Yamanaka et al. 2017) and image

segmentation (Liu et al. 2015; Long et al. 2015). In this paper, a convolutional neural

network reconstruction (CNNR) method that combines super-resolution and image

segmentation is used to generate high-resolution segmented images based on low-
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resolution tomographic µ-CT images and high-resolution two-dimensional sections

such as SEM image(s).

The remainder of this work is organized as follows. In Sect. 2, the architecture of a

typical CNN model and the training process are briefly expounded. In Sect. 3, a µ-CT

image of Indiana limestone is used as an example to illustrate the CNNR method, after

which the reconstructed image is evaluated in two respects, quantitative assessment

and morphological measurements, in Sect. 4. In terms of the morphological measure-

ments, local porosity theory and Minkowski functionals are applied to compare the

performance of the CNNR method with that of the popular MPS method. Finally, the

conclusions are given in Sect. 5.

2 Related Work

2.1 Architecture of the CNN Model

Convolutional neural networks can be dated back to 1989 (LeCun et al. 1989), but

were largely neglected for many years, their recent rise in popularity chiefly attributable

to two factors: (1) the efficient training implementation on modern powerful GPUs

(Krizhevsky et al. 2017) and (2) the easy access to an abundance of data for training

large models (Deng et al. 2009). Similar to the conventional neural network model, a

CNN model also has one input layer and one output layer, as well as a number of hidden

layers. In a typical CNN model, there are three main types of layers: convolutional

layer, pooling layer and fully connected layer (Guo et al. 2016). In some cases, a

flatten layer is needed between the fully connected layer and the convolutional or

pooling layer to reshape the two-dimensional or three-dimensional neural nodes to be

one-dimensional. A scheme was recently proposed in which pooling is replaced by

convolution with a stride of 2 to improve the training stability (Chaoben and Shesheng

2018; Springenberg et al. 2014). All of the layers in a CNN model will be stacked to

establish the convolutional neural network architecture. In general, most deep learning

applications use a feedforward neural network architecture, which learns to map a

fixed-size input (e.g., an image) to a fixed-size output (e.g., a probability for each of

several categories). To move from one layer to the next, a set of units computes a

weighted sum of their inputs from the previous layer and passes the result through a

nonlinear function (LeCun et al. 2015). Figure 1 illustrates the CNN model used in

this paper for high-resolution porous structure reconstruction (see Sect. 3).

The CNN model presented in Fig. 1 consists of an input layer, two convolutional

layers, two pooling layers, one fully connected layer and an output layer, which are

described in greater details as follows:

1. A 28×28×1 voxel grayscale image is inputted into the model. In this study, the

width and height of the input image are 28, and the color channel is 1.

2. Next, 16 filters 5×5 voxels in size convolve with the input layer to generate 16

feature maps (28×28 pixels) of the input layer. These feature maps extract features

of the input image under different frequency domains. The elements of these 16
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Fig. 1 A CNN model with two convolutional layers, two max-pooling layers and one fully connected layer

Fig. 2 Schematic graph of symmetric extension

filters are called “weights” in the CNN model. For example, the value of the (i, j)

voxel of the mth feature map is denoted by f m(i, j), which is given by

fm (i, j) � R ((I ∗ Wm) (i, j) + bm) , (1)

where R(*) is an activation function such as ReLU or Sigmoid (LeCun et al. 2015),

I is the input image, ∗ is the convolution operation, Wm is the mth filter and bm is

bias. Note that a symmetric padding method (see Fig. 2) is used to guarantee that

the output of the convolution has the same size as the input image.

3. The first convolutional layer is followed by a pooling layer that will perform

a downsampling operation along the spatial dimensions (width and height) and

result in a volume of 14×14×16 voxels. The most common conventional pooling

methods are max-pooling and average-pooling (Guo et al. 2016); in addition,

stochastic pooling (Zeiler and Fergus 2013), spatial pyramid pooling (Kaiming
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et al. 2015) and def-pooling (Ouyang et al. 2015) have been proposed for solving

various problems. In this paper, the max-pooling strategy is applied.

4. The second convolutional process is then conducted based on max-pooling layer

1. In this step, 32 filters 5×5 voxels in size are used to convolve with max-pooling

layer 1. The value of the (i, j) voxel of the mth feature map is denoted as f m(i, j)

and can be calculated by

fm (i, j) � R

(

T
∑

t�1

(Pt ∗ Wm) (i, j) + bm

)

, (2)

where R(∗) is the activation function, Pt is the tth image of max-pooling layer 1,

* is the convolution operation, Wm is the mth filter and bm is the bias.

5. Next, a pooling operation is undertaken based on convolutional layer 2. The kernel

size is set to 2×2, and the max-pooling method is selected.

6. Because max-pooling layer 2 is three-dimensional, a flatten layer is required to

convert the three-dimensional neural nodes into one dimension. Through the flat-

tening step, fully connected layers can be used after some convolutional layers or

pooling layers.

7. A fully connected layer with 100 elements then converts the two-dimensional

feature maps into a one-dimensional feature vector. Fully connected layers perform

like a traditional neural network and contain the main part of the parameters in the

CNN model (Guo et al. 2016). Fully connected layers can be either fed forward

into certain number categories for classification or used as a feature vector for

follow-up processing.

8. In Fig. 1, the fully connected layer is immediately followed by an output layer

with three categories.

2.2 Training

The entire network is composed of neurons that have learnable weights and biases.

Learning the end-to-end mapping function requires an estimation of the network

parameters θ , which can be described as

θ � {W1, W2, . . . , Wn, B1, B2, . . . , Bn} , (3)

where W i(i= 1,2,…, n) denotes the convolutional kernel of the ith layer (e.g., in Fig. 1,

the size of the kernel of the first convolutional layer W1 is 5×5×16). Bi(i= 1,2,…,

n) is the bias of the ith convolutional layer (e.g., in Fig. 1, the size of B1 is 16). The

parameter n defines the depth of the CNN model.

The training process is conducted via minimizing the loss between the estimated

result and the corresponding labels. In this paper, cross entropy is used as the loss

function

L (θ) � (−1/S)

S
∑

i�1

[Ei ln Oi + (1 − Ei ) ln(1 − Oi )] , (4)
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where S is the number of training images, Ei is the label of the ith training image, and

Oi is the predicted value. The loss is then minimized using stochastic gradient descent

with standard backpropagation (LeCun et al. 1998). Specifically, the weight matrices

are updated as follows:

�i+1 � 0.9 · �i + α ·
(

∂L/∂W l
i

)

, W l
i+1 � W l

i + �i+1, (5)

where l ∈ {1, 2, 3, . . . , n} is the index of the layers, and i is iteration index. Parameter

α is the learning rate, and ∂L/∂W l
i is the derivative. The filter weights of each layer

are initialized by drawing randomly from a Gaussian distribution with a zero mean

and a standard deviation of 0.001. Additionally, all of the biases are initialized as 0.

The learning rate is set to 0.001.

3 Convolutional Neural Network Reconstruction

In this section, an Indiana limestone sample is applied as an example to explain

the proposed CNNR method (see Fig. 3). First, a 5-mm-diameter and 10-

mm-long Indiana limestone sample is scanned by µ-CT under a resolution of

4.05×4.05×4.05 µm3/voxel and 16.2×16.2×16.2 µm3/voxel, respectively. Note

that the high-resolution µ-CT image is scanned to evaluate the performance of the

reconstruction. In practice, one or more high-resolution SEM images are scanned

for training the model instead of scanning the entire µ-CT sample in high resolu-

tion. The µ-CT imaging and the subsequent registration work are completed by the

Tyree X-ray CT Lab of the University of New South Wales. Two image subsets, a

1.62×1.62×1.62 mm3 low-resolution subset and its corresponding high-resolution

subset, are then extracted from the registered low- and high-resolution images and are

denoted by I l (100×100×100 voxels) and Ih (400×400×400 voxels). Second, the

high-resolution subset Ih is segmented into three phases: micro-pore, porous matrix

and solid. The segmented Ih is denoted as ISh. Third, the low-resolution subset I l is

interpolated to the 400×400×400 voxel size using a cubic spline interpolation algo-

rithm. Although the voxel size of this interpolated low-resolution image is identical

to that of the high-resolution image, it is still referred to as “low-resolution” image I l

for ease of presentation. Fourth, the first slice of I l and ISh is selected and treated as

the training image for the following training process of the CNN model. These low-

and high-resolution training image pairs are denoted by T l and Th, respectively. In

the fifth step, the training dataset is extracted from T l and Th. Every element of the

training dataset contains two parts: the training image and the label. For example, if a

28×28 voxel template is used to extract the training images from T l, the image patch

(i−13:i+14, j−13:j+ 14) in T l and the value of pixel (i, j) in Th consists of the train-

ing image and its label, respectively. In step 5 of Fig. 3, vectors [1, 0, 0], [0, 1, 0] and

[0, 0, 1] represent the labels of the pore space, porous matrix and solid phases, respec-

tively. To eliminate the influence of the boundary, i and j must satisfy the condition

that 14≤ i≤386 and 14≤ j≤386. In this study, 100,000 elements are prepared for the

CNN training. In the sixth step, the CNN parameters are trained based on the prepared

training dataset. Lastly, an empty grid system G with a size of 400×400×400 voxels
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Fig. 3 Schematic graph of the convolutional neural network reconstruction of the porous structure of rock
samples

is established. To any uncertain voxel (i, j, k) in G, its corresponding training image

is the image patch V (i:i+ 27, j:j+ 27, k) in I l. The estimation of G(i, j, k) is calculated

by the trained CNN model in the last step. This process is repeated until the whole

G is estimated. Considering the impact of the boundary, low-resolution image I l is

symmetrically extended 13 and 14 voxels in the head and tail along the i direction,

and then symmetrically extended 13 and 14 voxels in the head and tail along the j

direction.

Note that the reconstruction process is conducted layer by layer within a two-

dimensional plane (e.g., i−j plane), and every layer is reconstructed separately (see

Fig. 4). These reconstructed two-dimensional layers are then stacked to build a

three-dimensional high-resolution segmented image. Although the reconstruction is

undertaken within a two-dimensional plane (i–j plane), there is no discontinuity noise

in the i–k and j–k planes in the reconstructed image (see Sect. 4). This finding occurs

mainly because the interpolation process smooths the initial low-resolution µ-CT

image in the i, j and k direction.

Figure 5 illustrates the procedure for reconstructing a single layer of the grid system

G. Before reconstruction, the target low-resolution µ-CT image is interpolated from
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Fig. 4 Schematic graph of two-dimensional to three-dimensional reconstruction process

Fig. 5 Schematic graph of the reconstruction of a single layer

100×100×100 voxels to 400×400×400 voxels. This interpolated low-resolution

tomographic image is used as a constraint during the subsequent reconstruction work.

Note that the interpolated low-resolution µ-CT image has the same voxel size as that

of the fine grid system, which means that every empty layer in G has a corresponding

layer in the interpolated tomographic image. In Fig. 5, the reconstruction of the kth

layer of G is used as an example to demonstrate the reconstruction. In both the kth

layer of G and the interpolated µ-CT image, the voxels are labeled from 1 to 160,000

according to their location. For the first voxel in G, an image patch 3×3 voxels in

size is extracted from the kth layer of the interpolated µ-CT image, centered at the

first voxel. This image patch is used as the input data for the CNN model, and the

output value is the estimated phase of the first voxel in the kth layer of G. Note that

a symmetric extension (see Fig. 2) is applied for the boundary voxels to extract an

image patch. This process is undertaken voxel by voxel using a maximally overlapping

moving window scheme, until the whole kth layer of G is estimated.
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4 Results

Figure 6 depicts three slices that were extracted from a low-resolution tomo-

graphic image (LR_TOMO), low-resolution segmented image (LR_SEG), high-

resolution segmented image (HR_SEG) and high-resolution CNNR reconstructed

image (HR_CNNR) of Indiana limestone with three phases. These three phases are

pore, solid and an intermediate phase, which represents the sub-resolution porosity

that is typical for oolitic limestone. The three slices are extracted from the i–j plane

(top row), i–k plan (middle row) and j–k plane (bottom row), respectively. Because of

the insufficient resolution, the LR_TOMO image lost part of its high-frequency infor-

mation, and its segmented image (LR_SEG) lost some pore connections, which greatly

simplified the pore geometry features. In terms of the visual sensitivity, two conclu-

sions can be obtained from Fig. 6: (1) the CNNR reconstructed structure improved the

connectivity of the pore space, and (2) the reconstructed image successfully reproduced

the contact relationships among three phases. Here, “contact relationship” refers to the

spatial configuration of the different phases. The porous matrix occurs as an outer shell

for some special grains, but not all grains, which means that it is necessary to identify

which grain has a porous matrix shell when segmenting the tomographic images. In

this study, this problem is solved by setting a gradient threshold to determine whether

a grain has a porous matrix shell. The existing porous matrix increases the complex-

ity of the segmentation work. However, the proposed CNNR method reproduces this

feature very well.

From Fig. 6, it is obvious that the reconstructed image is “smoother” than the

segmented images. This arrangement occurs because the CNN model provides the

probability of every phase for every voxel, and the phase with the largest probability

is selected. A promising approach for solving this problem is to apply Monte Carlo

sampling according to the probability of every phase instead of selecting the phase with

the largest probability directly. However, this process will result in some unexpected

noise. Thus, further study is needed to explore ways to reduce the smoothness without

increasing the noise.

Except for the visual sensitivity analysis discussed earlier, this study also estimates

the performance of the reconstruction work based on two aspects: (1) quantita-

tive assessment via computing the Hamming distance between the CNNR-generated

image and the high-resolution reference image, and (2) comparing the morpholog-

ical measurements of the CNNR model with that of the low-resolution image and

high-resolution reference image, as well as models derived by MPS.

4.1 Quantitative Assessment

As discussed earlier, the first slice of the high-resolution segmented image is used as

a training image, and another part is preserved as reference images for validating the

performance of the CNNR method. In this paper, the Hamming distance dst is chosen

as the similarity measurement and is given by

dst �
(

#
(

xi jk �� yi jk

))

/n, (6)
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Fig. 6 Three slices of the HR_CNNR image, LR_TOMO image, LR_SEG image and HR_SEG image

Fig. 7 Calculation of the Hamming distance

where xijk and yijk are the elements that are located at voxel ijk of datasets X and Y ,

respectively, and i, j, k denote the grid indices. #
(

xi jk �� yi jk

)

is the number of non-

identical elements in X and Y (see Fig. 7). The Hamming distance thus measures the

fraction of the non-identical elements between two datasets; a Hamming distance of

0 shows that the two datasets are identical, and a Hamming distance of 0.1 shows that

ten percent of the elements of the two datasets are different. The Hamming distance

between the CNNR reconstructed image and the high-resolution reference segmented

image is 0.0523.
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Fig. 8 a) The HR image, with the top quarter of the HR selected as the training image; b–d three slices (z
�180) extracted from HR, LR and MPS, respectively

4.2 Morphological Measurements

The main goal with the improved µ-CT image resolution is to characterize the mor-

phological features of the porous structure. Compared to quantitative measurement of

the accuracy of the reconstructed image, its morphological measurements are more

concerned with being practical. In this section, the authors compare the morpholog-

ical measurements of the CNNR reconstructed image with those of the high- and

low-resolution segmented images, and also compare the performance of the proposed

method with the MPS method, which is currently the most popular applied reconstruc-

tion algorithm.

4.2.1 MPS Reconstruction

Because the MPS method is applied as a reference method to evaluate the proposed

CNNR method, and because the performance of the MPS method is highly dependent

on the implementation process, it is necessary to briefly introduce the MPS recon-

struction procedure. As Fig. 8 shows, the top quarter of the high-resolution image is

used as a training image to extract multiple-point statistics, and these statistics are

then used to reconstruct the whole low-resolution image. The detailed reconstruction

process is based on Comunian et al. (2012), with a 4×4×4 template size and three

multigrid levels. Figure 8 also illustrates a slice with z �180 of the high-resolution

(HR), low-resolution (LR) and MPS reconstructed image (MPS), respectively (see

Fig. 8b–d). The MPS reconstructed image appears to slightly improve the connec-

tivity of the porous structures compared with the low-resolution image, for which

there is quantitative proof via morphological measurements (local porosity theory and

Minkowski functionals), which is shown in the subsequent section.

4.2.2 Local Porosity Theory

Local porosity theory (LPT) is universally used to characterize porosity and connectiv-

ity fluctuations at different length scales in three-dimensional digitized models (Hilfer

1992; Latief et al. 2010). Here, the basic definitions of the quantities of LPT are briefly

introduced.
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Local Porosity Distribution A measurement cell K(r, L) denotes a cube that is centered

at the lattice location r with length L. Within the cubic measurement cell K(r, L), the

local porosity ∅ (r, L) is defined as

∅ (r, L) �
V [P ∩ K (r, L)]

V [K (r, L)]
, (7)

where V (K(r, L)) denotes the volume of cell K∈R3, and V (P∩K(r, L)) is the pore

space of K(r, L). The local porosity distribution µ(∅, L) is given by

µ (∅, L) �
1

N

∑

r

δ[∅ − ∅(r, L)], (8)

where N is the number of cells, and δ(∅ − ∅(r, L)) is the Dirac delta function.

Local Percolation Probabilities Local percolation probabilities characterize the con-

nectivity of the pore space, which controls the transport and propagation in porous

media. The connectivity function is defined as

Λc (r, L) �

{

1 : if there is path through K (r, L) in c direction

0 : otherwise
, (9)

where c denotes the direction of the measurement, including the x, y and z directions.

Additionally, Λ3 indicates that the cell is percolating in all directions, while Λα indi-

cates percolation in the x, y or z direction. The local percolation probabilities λc(∅, L)

are then given by

λc (∅, L) �

∑

r
Λc(r, L)δ∅∅(r,L)
∑

r
δ∅∅(r,L)

, (10)

where parameter λc (∅, L) describes the fraction of the analyzed cells with side length

L and porosity ∅ that are percolating in the c direction. δ∅∅(r,L) is the Kronecker delta

and can be calculated by

δ∅∅(r,L) �

{

1 : if ∅ � ∅(r, L)

0 : otherwise
. (11)

Total Fraction of Percolating Cells Total fractional of percolating cells Pc(L) describes

the percolating probability of measurement cells with side-length L in the c direction.

It is given by

Pc (L) �

1
∫

0

µ (∅, L) λc (∅, L) d∅. (12)

Figure 9 illustrates the local porosity distribution curve, the local percolation proba-

bilities curve, and the total fraction of the percolation cells curve of the porous structure
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Fig. 9 Local porosity theory of the CNNR image and its reference images

extracted from the high-resolution image (HR), low-resolution image (LR), CNNR

reconstructed image and MPS reconstructed image. The original low-resolution seg-

mented image (100×100×100 voxels) is interpolated to a 400×400×400 voxel

size via nearest-neighbor interpolation. Thus, all of the images have a voxel size of

400×400×400 voxels. Figure 9a presents the local porosity distribution of HR with

different cube sizes. Along with an increase in the cube size, the distribution curve of

the local porosity approaches stability, and the minimum stable size is approximately

330×330×330 voxels. Thus, the cube size of 330×330×330 voxels is applied to

compare the various LPT parameters of different images. The local porosity distribu-

tion curves of four images are very close to each other (see Fig. 9b). However, in terms

of the local percolation probabilities distribution (see Fig. 9c) and the total fraction

of the percolation cells curve (see Fig. 9d), the performance of the CNNR method is

significantly better than that of MPS, and both the CNNR and MPS methods improve

the connectivity of the porous structure significantly.

4.2.3 Minkowski Functionals

Minkowski functionals are used as basic integral geometric measures to quantify the

porous structure, and are known to be sensitive descriptors of the morphology (Arns

et al. 2004, 2010). After the segmentation, the images to be analyzed are segmented into

multiple phases. Integral geometry provides a complete set of d+ 1 additive Minkowski

functionals for each phase, where d is the dimension of the embedding space. For

ambiguous configurations on the cubic lattice, this study used 8 and 26 neighborhoods
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for the mean and total curvature, respectively, using the algorithm given in Arns

et al. (2001), and reports the Minkowski functionals normalized to the volume of

the considered domain V t . The first functional M0 is simply the total fraction of the

target phase, which is given by

m0X � M0 (X) /Vt � V (X) /Vt , (13)

where X ⊂	 (	 is the embedding space) is the space occupied by the target phase

(e.g., the pore space in the binary image). The other Minkowski functionals are defined

through integrals over the surfaces of the pores, denoted as δX, which unambiguously

defines the shape or morphology of the pore structure at the given resolution. It can

be described by

m1X � M1 (X) /Vt �
1

6
∫
δX

ds/Vt , (14)

where ds is a surface element. The second integral measures the mean curvature of

the interface

m2X � M2 (X) /Vt �
1

3π
∫
δX

(

1

r1
+

1

r2

)

ds/Vt , (15)

where r1 and r2 are the minimum and maximum radius of curvature for the surface

element ds. This radius is positive for convex curvatures and negative for concave

curvatures. The third integral measures the total curvature

m3X � M3 (X) /Vt � ∫
δX

(

1

r1r2

)

ds/Vt , (16)

which is related to the connectivity of the considered phase. For well-connected phases

and few isolated components, this measure is typically negative, and it crosses zero to

become positive close to the percolation threshold of the material.

Table 1 illustrates the Minkowski functionals of the high-resolution, low-resolution,

CNNR reconstructed and MPS reconstructed images of Indiana limestone. In general,

both reconstruction methods (CNNR and MPS) improve the Minkowski functionals,

except for the volume fraction of the porous matrix (m0i) and the mean curvature

of the pore space (m2p). Compared to the MPS method, CNNR performs better in

terms of the volume fraction of the pore space (m0p) and solid space (m0s), and the

surface density of the pore space (m1p), porous matrix (m1i) and solid (m1s). However,

in curvature-related measurements (m2x and m3x), the MPS method exhibits better

performance than the CNNR method. The reason is that the image reconstructed

using the CNNR method is “too smooth,” and the curvature-related measurements are

extremely sensitive to high-frequency information (noise and edges (Arns et al. 2010)).

As mentioned previously, further study is still needed to determine a reasonable means

of reducing the smoothness of the CNNR reconstructed image without increasing the

noise.
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Table 1 Minkowski functionals of Indiana limestone

Method HR CNNR MPS LR

mop 0.0707 0.0686 0.0542 0.0479

moi 0.0389 0.0614 0.0356 0.0365

mos 0.8895 0.870 0.9103 0.9156

m1p (µm−1) 0.0075 0.005 0.0047 0.0034

m1i (µm−1) 0.0119 0.0119 0.0076 0.0041

m1s (µm−1) 0.0134 0.0089 0.0079 0.0063

m2p (µm−2) 2.84E−05 5.93E−05 5.45E−05 3.04E−05

m2i (µm−2) 4.50E−04 1.74E−04 2.86E−04 1.12E−04

m2s (µm−2) − 2.00E−04 − 6.74E−05 − 1.05E−04 − 7.63E−05

m3p (µm−3) 1.36E−06 1.17E−08 5.61E−08 − 1.68E−08

m3i (µm−3) − 1.66E−06 − 8.88E−07 − 1.38E−06 − 5.91E−07

m3s (µm−3) 1.16E−07 − 3.11E−08 − 2.16E−08 − 4.00E−08

The reference phases are denoted as “p” (pore space), “i” (porous matrix) and “s” (solid)

5 Conclusions

In this paper, a convolutional neural network reconstruction method is introduced to

improve the resolution of the porous structure extracted from µ-CT images of rock

samples. A slice of a low-resolution tomographic µ-CT image and its correspond-

ing high-resolution segmented two-dimensional section (e.g., SEM image) are used

to train the neural network model. The trained model is then applied to estimate the

whole low-resolution µ-CT image to reconstruct a high-resolution porous structure.

The CNNR method integrates the super-resolution and segmentation processes. Its

application to Indiana limestone samples shows that the proposed method greatly

improves the connectivity of the pores and exhibits better performance than conven-

tional methods, including MPS. In addition, the reconstructed high-resolution porous

structure successfully reproduces the features of the contact relationships among the

three phases.
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