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Periodontal diseases initiate on epithelial surfaces of the subgingival compartment,

while the gingival epithelium functions as an epithelial barrier against microbial infection

and orchestrates immune responses. Porphyromonas gingivalis is a major pathogen of

periodontal diseases and has an ability to penetrate the epithelial barrier. To assess the

molecular basis of gingival epithelial barrier dysfunction associated with P. gingivalis, we

newly developed a three-dimensional multilayered tissue model of gingival epithelium

with gene manipulation. Using this novel approach, P. gingivalis gingipains including Arg-

or Lys-specific cysteine proteases were found to specifically degrade junctional adhesion

molecule 1 and coxsackievirus and adenovirus receptor in the tissue model, leading to

increased permeability for lipopolysaccharide, peptidoglycan, and gingipains. This review

summarizes the strategy used by P. gingivalis to disable the epithelial barrier by disrupting

specific junctional adhesion molecules.
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SIGNIFICANCE OF PORPHYROMONAS GINGIVALIS INFECTION
IN HUMAN GINGIVAL EPITHELIUM

Epithelial cells are located on the front line of infection defense, and function as a physical
barrier against pathogenic bacteria and their products. The epithelial barrier is formed by cell-cell
adhesion, and consists of tight junctions that prevent leakage of transported substances, and seal the
paracellular pathway. Human gingival epithelial cells have been reported to express tight-junction
associated proteins, such as claudin, occludin, junctional adhesion molecule 1 (JAM1), and zonula
occludens-1 [1], among which JAM1, an immunoglobulin superfamily protein, reportedly localizes
in mucosal epithelium of numerous organs [2].

Periodontitis is basically an infectious disease that causes destruction of periodontal tissues
by interactions between periodontal pathogens and host cells [3]. Since gingival epithelial
cells are the first to face periodontal pathogens, gingival epithelial tissues are potentially
involved in the pathogenesis and progress of periodontitis. Porphyromonas gingivalis, a
Gram-negative anaerobe, is a periodontal pathogen that expresses a variety of virulence
factors, such as lipopolysaccharide (LPS), peptidoglycan (PGN), and gingipains. Periodontal
diseases are multispecies infections involving pathogenic communities in which P. gingivalis
can increase the pathogenicity of the entire multispecies periodontal community [3].
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Various studies have shown that P. gingivalis occurrence is
significantly associated with initiation of periodontitis, with odds
ratios of 11.788 [4], 12.3 [5], and 5.6 [6] reported. It is also known
that an increase in amount of “red complex” species, consisting
of P. gingivalis, Treponema denticola, and Tannerella forsythia,
in subgingival biofilm is related to initiation and progression
of periodontitis [7]. A cross-sectional study revealed that P.
gingivalis is the most influential pathogen among red complex
bacteria [8]. However, it is ethically difficult to analyze the effects
of P. gingivalis infection on tight junction-associated proteins
using human gingival epithelium specimens. Hence, features of
the physiological function related to tight junction-associated
proteins in the oral cavity have become an interesting focus
of research.

ADVANTAGES OF 3D-TISSUE MODELS OF
HUMAN GINGIVAL EPITHELIUM

From the standpoint of replacement, reduction, and refinement
(3Rs), alternative methods for animal experiments are needed
for medical research studies [9]. Physiological tissues are
composed of various types of cells and connective tissues, thus
how to construct three-tissue models with similar functions
in living tissues has been investigated. Within an organism,
the extracellular matrix has an important role to regulate the
interface-surface structure of host cells. We previously reported
that a cell-accumulation technique [10] using fibronectin and
gelatin, extracellular matrixes, was useful to re-construct human
gingival epithelial tissues [11, 12]. The advantages of this
technique include (1) development of healthy human tissues, (2)
genemanipulation including overexpression and knockdown, (3)
direct measurement of fluorescent-tracer transmission in human
tissues, (4) time-course observations of pathological condition
before disease onset, and (5) administration of LPS and PGN,
for examining PAMPs and infection by P. gingivalis. We have
found that 3D-tissue models of gingival epithelium are useful for
defining the cause-and-effect relationships of risk factors in terms
of elimination of potential confounding factors.

P. GINGIVALIS GINGIPAINS DEGRADE
JAM1 AND CXADR

P. gingivalis secretes Arg- and Lys-specific cysteine proteases,
termed Arg-gingipains (RgpA and RgpB) and Lys-gingipain
(Kgp), respectively, which are major virulence factors [13, 14].
In a previous study, to clarify which tight junction-associated
protein(s) are degraded by P. gingivalis infection, we infected
immortalized human gingival epithelial (IHGE) cells [15] with P.
gingivlis ATCC 33277 or KDP136, a 1kgp 1rgpA 1rgpBmutant
[16], for 1 h. Immunoblot and confocal microscopic analyses
revealed that P. gingivalis apparently degraded JAM1 and
coxsackievirus and adenovirus receptor (CXADR), another JAM-
family protein [17], but not claudin 1, claudin 4, E-cadherin,
occludin, or zonula occludens-1, in a gingipains-dependent
manner [11, 12]. Notably, medium used for culturing P. gingivalis
WT, but not that used for a 1kgp 1rgpA 1rgpB mutant, also

degraded JAM1 and CXADR of IHGE cells, indicating that
gingipains function to degrade JAM1 and CXADR.

SPECIFIC DEGRADATION OF JAM1 AND
CXADR BY GINGIPAINS

JAM family proteins have an extracellular domain along with two
immunoglobulin-like domains, a single transmembrane domain,
and a short cytoplasmic tail with a PDZ-domain-binding motif
[18]. Hence, we constructed chimeric proteins of JAM1 and
CXADR expressed by IHGE cells, and infected cells with P.
gingivalis, after which the responsible residues of JAM1 K134
and R234, and CXADR R145 and K235 were examined for
determining gingipains degradation (Figure 1). JAM1 K134 and
CXADR R145 are located between the two immunoglobulin
domains, while JAM1 R234 and CXADR K235 are set at the N-
terminus of the transmembrane domain. A dimerization motif in
the N-terminal immunoglobulin domain is essential for JAM1-
or CXADR-homodimer formation, thus gingipains efficiently
dampen the functions of JAM1 and CXADR.

Fusobacterium nucleatum and Streptococcus gordonii
are human oral bacteria that can assemble mixed-species
communities [19]. Hence, IHGE cells were infected with F.
nucleatum or S. gordonii, and it was confirmed that the protein
levels of JAM1 and CXADR were not decreased, thus indicating
that F. nucleatum and S. gordonii do not degrade JAM1 and
CXADR [11, 12].

Next, 3D-tissue models of gingival epithelium were
constructed, and localization of JAM1 and CXADR was
confirmed and found to be comparable to that seen in human
gingiva. We also found that P. gingivalis WT decreased JAM1
and CXADR even in tissues 3–4 layers below the surface,
whereas the 1kgp 1rgpA 1rgpB mutant did not [11, 12]. These
results indicate that gingipains continuously degrade JAM1 and
CXADR, and deeply invade human gingival epithelial tissues.

P. GINGIVALIS INDUCES PENETRATION OF
LPS AND PGN THROUGH GINGIVAL
EPITHELIUM

LPS, a gram-negative bacteria endotoxin, and PGN, which exists
in a mesh-like pattern outside the plasma membrane of most
bacteria, are known as pathogen-associated molecular patterns
(PAMPs) that cause initiation of host immune response [20]. In
cases with leukocyte adhesion deficiency, one of the syndromes
associated with periodontitis [21], LPS in the subepithelial area
was reported to be detected in gingival tissues, but not in
those from healthy cases [22]. In addition, plasma LPS levels
were found to be correlated with multiple clinical parameters
of aggressive periodontitis [23] and decreased by periodontal
therapy [24]. Hence, we hypothesized that PAMPs from oral
bacteria penetrate gingival epithelial tissues.

To assess the contribution of JAM1 expression to the
permeability of gingival epithelial cells, 3D-tissue models of
gingival epithelium were generated, then permeability assays
were performed using fluorescent probe-tagged LPS or PGN
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FIGURE 1 | The residues involved in degradation of JAM1 and CXADR by P. gingivalis gingipains. Schematic view of the JAM1 and CXADR structure in gingival

epithelial cells. The K134 and R234 residues of JAM1, and the R145 and K235 residues of CXADR are involved in degradation by P. gingivalis gingipains in gingival

epithelial cells. IG-LIKE, immunoglobulin-like domain (blue); TM, transmembrane domain (green).

in combination with P. gingival infection. To confirm the
involvement of JAM1 or CXADR in P. gingivalis-affected
permeability, 3D tissues were infected with P. gingivalis using
IHGE cells overexpressing JAM1 or CXADR, which were then
treated with fluorescent tracers [11, 12]. Thirty minutes after
administration, the permeability to LPS or PGN was increased
by P. gingivalis infection, whereas that was decreased by JAM1
or CXADR overexpression in gingival epithelial tissues. These
results suggest that JAM1 and CXADR degradation by P.
gingivalis causes penetration of gingival epithelium by LPS and
PGN (Figure 2).

DISCUSSION

Difference Between Gene Expression and
Protein Localization
We confirmed that the immature forms of JAM1 and CXADR
possessed a signal peptide and were localized in the endoplasmic
reticulum [11, 12]. Generally, the levels of the immature forms of
JAM1 and CXADR are proportional to those of the messenger
RNA levels. In contrast, P. gingivalis degraded mature forms
of JAM1 and CXADR in the plasma membrane, but not the
immature forms in IHGE cells. These results suggest that surface
protein localization of JAM1 and CXADR is needed to be
confirmed in gingival epithelial cells to accurately evaluate the
effects of risk factors of periodontitis.

Protein Modification
It has been reported that JAM1 is phosphorylated at Y280
[25] and S284 [26], and glycosylated at N185 [27], while
CXADR is glycosylated at N106 and N201 [28]. In general,
protein phosphorylation modulates subcellular localization, and
N-linked protein glycosylation is involved in cell–cell and
cell–extracellular matrix attachment. Hence, elucidation of risk
factors of periodontitis that have effects on JAM1- or CXADR-
proteinmodification is considered to helpful to better understand
its etiology.

Intracellular Trafficking
The C-terminal cytosolic domain of JAM1 possesses a class II
PDZ domain binding motif (-SFLV-COOH) [29]. In cytosolic
space, JAM1 is known to associate with various partner proteins
via the PDZ domain [30]. We confirmed that the immature
forms of JAM1 and CXADR were localized in the endoplasmic
reticulum, in which these proteins were apparently digested as
a single peptide and N-glycosylated for maturation. To show
biological activity, JAM family proteins must be transferred from
the endoplasmic reticulum to plasma membrane, in which case
regulator proteins may also bind with JAM via the PDZ domain.
We recently observed that JAM1 localization in the plasma
membrane was not disturbed by actin polymerization inhibitors
(unpublished data). In contrast, actin depolymerization has been
shown to disturb plasma-membrane localization of claudin-1 and
occludin, tight junction proteins [31]. Thus, it is considered that
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FIGURE 2 | Proposed model of transfer of bacterial virulence factors by P. gingivalis gingipains through gingival epithelium. P. gingivalis gingipains degrade JAM1 and

CXADR, leading to increased permeability to gingipains, LPS, and PGN. Subsequently, gingipains become translocated to deeper epithelium for additional

degradation of JAM1 and CXADR, thus allowing LPS and PGN to penetrate the gingival epithelium and reach subepithelial tissues.

transport of JAM family proteins occurs in a manner different
from that of claudin and occludin.

Other Cell Types
JAM was initially identified as a platelet membrane protein
[32] and shown to play an important role in platelet assembly
[33]. Generally, when blood-vessel walls are damaged, platelets
aggregate in the wound and serve to stop bleeding. If the
function of platelets is abnormal, a bleeding tendency will
develop. To monitor the health or inflammation of gingival
tissues, the parameter of bleeding on probing (BOP) has been
well documented [34, 35]. Furthermore, a positive correlation
between number of periodontal pockets with BOP and serum
LPS concentration has been reported [36]. Thus, the molecular
mechanisms related to how P. gingivalis affects platelets in the
process of periodontal pathogenesis is quite interesting, though
difficult to fully understand. Platelets are torn from the cytoplasm
of polymorphonuclear giant cells in bone marrow and enter the
bloodstream, and lose their nuclei. There are technical limitations
when attempting to use human platelets for molecular biological
research, such as passage culturing, gene manipulation, bacterial
and viral contamination, and cross-contamination with the other
cells, as well as confounding factors. Technical developments,
including induction of differentiation to anuclear or short
lifespan cells, as well as re-construction of human gingival
epithelium, are needed in order to fully understand the etiology
of periodontitis.
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