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Abstract: In this paper we use the peaks over random threshold (PORT)-methodology, and

consider Hill and moment PORT-classes of extreme value index estimators. These classes of estimators

are invariant not only to changes in scale, like the classical Hill and moment estimators, but also to

changes in location. They are based on the sample of excesses over a random threshold, the order statistic

X[np]+1:n, 0 ≤ p < 1, being p a tuning parameter, which makes them highly flexible. Under convenient

restrictions on the underlying model, these classes of estimators are consistent and asymptotically

normal for adequate values of k, the number of top order statistics used in the semi-parametric

estimation of the extreme value index γ. In practice, there may however appear a stability around a

value distant from the target γ when the minimum is chosen for the random threshold, and attention

is drawn for the danger of transforming the original data through the subtraction of the minimum. A

new bias-corrected moment estimator is introduced. The exact performance of the new extreme value

index PORT-estimators is compared, through a large-scale Monte-Carlo simulation study, with the

original Hill and moment estimators, the bias-corrected moment estimator and one of the minimum-

variance reduced-bias (MVRB) extreme value index estimators recently introduced in the literature.

As an empirical example we estimate the tail index associated to a set of real data from the field of finance.

Keywords: Statistics of extremes; Monte Carlo simulation; semi-parametric estimation; extreme value

index; reduced-bias estimation; sample of excesses.
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1 Introduction

The extreme value index (or tail index) γ is the shape parameter in the extreme value (EV )

distribution function (d.f.), with the functional form

EVγ(x) =

{
exp

{
−
(
1 + γx

)−1/γ }
, 1 + γx > 0 if γ 6= 0

exp (−e−x) , x ∈ R if γ = 0.
(1.1)

This d.f. appears as the limiting d.f., as n → ∞, of the linearly normalised maximum Xn:n of

an independent, identically distributed (i.i.d.), or even weakly dependent stationary sample of

size n, (X1, · · · , Xn).

We shall work in a context of heavy-tailed models, i.e., we shall consider that γ > 0 in

(1.1). Let us denote F←(t) := inf{x : F (x) ≥ t}, the generalized inverse function of F , U(t) :=

F←(1− 1/t) and RVα the class of regularly functions at infinity with index of regular variation

α, i.e., positive measurable functions h such that lim
t→∞

h(tx)/h(t) = xα, for all x > 0. We shall

work here with models F that are in the domain of attraction for maxima of EVγ with γ > 0,

denoted DM(EVγ>0), i.e., with models F such that

1 − F ∈ RV−1/γ or equivalently U ∈ RVγ . (1.2)

For the estimation of the right tail we consider two classical estimators of the extreme value

index γ based on the k + 1 top order statistics (o.s.), denoted Xk :=
(
Xn:n ≥ · · · ≥ Xn−k:n

)
,

where Xn−k:n is an intermediate o.s., i.e., k is an intermediate sequence of integers in [1, n), i.e.,

a sequence of integers such that

k = kn → ∞ and kn/n → 0, as n → ∞. (1.3)

Those estimators are the Hill estimator (Hill, 1975), with the functional expression

γ̂H
n,k = γ̂H

n (Xk) :=
1

k

k∑

j=1

Vjk, Vjk := lnXn−j+1:n − lnXn−k:n, (1.4)

and the moment estimator (Dekkers, Einmhal and de Haan, 1989),

γ̂M
n,k = γ̂M

n (Xk) := M
(1)
n,k + 1 − 1

2

{
1 −

(
M

(1)
n,k

)2
/M

(2)
n,k

}−1
, (1.5)

with

M
(r)
n,k = M (r)

n (Xk) =
1

k

k∑

j=1

{Vjk}r , r = 1, 2. (1.6)
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It is a well-known result in the field of statistics of extremes that the estimator in (1.4) is valid

only for γ ≥ 0, whereas the estimator in (1.5) is valid for all γ ∈ R. They are both scale invariant,

but not location invariant. Indeed the associated estimates, particularly the Hill estimates, may

suffer drastic changes when we induce an arbitrary shift in the data.

Apart from the classical Hill and moment estimators, often simply denoted H and M , re-

spectively, we shall also consider one of the three classes of second-order reduced-bias extreme

value index estimators recently introduced in Gomes, de Haan and Henriques Rodrigues (2005),

Caeiro, Gomes and Pestana (2005) and Gomes, Martins and Neves (2007). These classes are

based on the adequate estimation of a “scale” and a “shape” second order parameters, β and ρ,

respectively, are valid for a large class of heavy-tailed models and are appealing in the sense that

we are able to reduce the asymptotic bias of the Hill estimator in (1.4) without increasing the

asymptotic variance, which is kept at the value γ2, the asymptotic variance of Hill’s estimator.

We shall call these estimators “minimum-variance reduced-bias” (MVRB) estimators. These

MVRB-estimators are also non-invariant for changes in location. However, they are much less

sensitive to changes in location than the classical Hill estimator in (1.4). The simplest one,

and the one used here, is the class provided in Caeiro et al. (2005), denoted H for the sake of

simplicity, with the functional form,

γ̂H
n,k,β̂,ρ̂

= γ̂H
n,k,β̂,ρ̂

(X) := γ̂H
n

(
1 − β̂

1 − ρ̂

(n

k

)ρ̂ )
, (1.7)

where β̂ and ρ̂ are adequate consistent estimators of the second order parameters β and ρ,

respectively, to be specified later on in sub-section 3.2. We shall also consider a bias-corrected

moment estimator, given by

γ̂M
n,k,β̂,ρ̂

= γ̂M
n,k,β̂,ρ̂

(X) := γ̂M
n

(
1 − β̂

1 − ρ̂

(n

k

)ρ̂ )
− β̂ ρ̂

(1 − ρ̂)2

(n

k

)ρ̂
. (1.8)

However, the main classes of estimators considered in this paper are, just as the quantile

estimators in Araújo Santos, Fraga Alves and Gomes (2006), functionals of a sample of excesses

over a random threshold X[np]+1:n, i.e., functionals of

X
(p)
k :=

(
Xn:n − X[np]+1:n, Xn−1:n − X[np]+1:n, · · · , Xn−k:n − X[np]+1:n

)
, (1.9)

with 1 ≤ k < n − [np] − 1, and where

• 0 < p < 1 , for any F ∈ DM(EVγ>0) (the random threshold is an empirical quantile);

• p = 0, for d.f.’s with finite left endpoint xF := inf {x : F (x) > 0} (the random threshold is

the minimum).
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These new classes of extreme value index estimators are the so-called PORT-Hill estimators, also

denoted H(p), and the PORT-moment estimators, also denoted M(p), theoretically studied, for

heavy tails, in Araújo Santos et al. (2006). They are denoted

γ̂
T (p)
n,k := γ̂T

n (X
(p)
k ) 0 ≤ p < 1, with T = H and M, (1.10)

where γ̂H
n,k, γ̂M

n,k and X
(p)
k are provided in (1.4), (1.5) and (1.9), respectively. The estimators in

(1.10) are now invariant for both changes of scale and location in the data, and depend on the

tuning parameter p, that provides a highly flexible class of extreme value index estimators, which

may even compare favorably with the MVRB extreme value index estimators, provided that we

adequately choose the tuning parameter p. The choice p = 0 is appealing in practice, but should

be used with care, as it can induce a problem of sub-estimation (see Figures 3.7–3.10).

In Section 2, and to motivate the need of new estimation procedures like the above

mentioned PORT methodology, we study the behavior of the classical tail index estimators

in the presence of shifts, for data generated from the Pareto Model. As expected, we easily

come to the Hill horror plots associated not only to slowly varying functions LU (t) = t−γU(t)

that go towards infinity or zero (Resnick, 1997), but also to shifts in the strict Pareto model.

In Section 3, we provide the asymptotic properties of the estimators under study and, through

simulation experiments, we compare the exact performance of the new estimators in (1.10)

with the classical Hill and moment estimators in (1.4) and (1.5), respectively, as well as with

the reduced-bias extreme value index estimators in (1.7) and in (1.8). Finally, in Section 4 we

provide an illustration of the behavior of the estimators for a set of real data in the field of finance.

2 A simple motivation for the PORT -methodology: shifts in the

Pareto model

It is worth looking at the special case of Pareto(γ, δ)≡ Pareto(γ, λ = 0, δ) random variables

(r.v.’s) X, with d.f.

FX(x; γ, δ) = 1 − (x/δ)−1/γ , x > δ, δ > 0. (2.1)

For this underlying d.f., the Hill estimator H|0 ≡ γ̂
H|0
n,k ≡ γ̂H

n,k|λ = 0 is unbiased for any sequence

of integers k = kn, 1 ≤ kn < n, and the quantile function is U(t) = δtγ , t ≥ 1. So, for this

special model, the Hill estimator in (1.4) performs very well. Indeed, for the model in (2.1), the

two errors due to the estimation of γ and to the approximation taken for U(t) do not intervene.

However, a small shift in the data may lead to disastrous results, even in this simple and specific

case, as we shall see in the following.

4
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For any r.v. X, with quantile function UX(t), the transformed r.v. Z = X + λ has an

associated quantile function given by UZ(t) = UX(t) + λ. This means that if X comes from the

d.f. FX(x; γ, δ) in (2.1), the r.v. Z = X + λ is a Pareto(γ, λ, δ), with d.f.

FZ(z; γ, λ, δ) = 1 −
(z − λ

δ

)−1/γ
, z > λ + δ, δ > 0. (2.2)

The quantile function of the r.v. Z is then

UZ(t) = δtγ + λ = δtγ(1 + λtρ/δ), ρ := −γ.

The extra term λtρ/δ, in the slowly varying function 1 + λtρ/δ, affects the first approximation

UZ(t) ∼ δtγ , with severe consequences in the two above mentioned errors, as illustrated in

the sequel by simulation. We have first generated a sample of size n = 1000 from an i.i.d.

Pareto(1, 0, 1) model. At a second stage, we introduce a positive shift, i.e., we consider a random

generation of Z = X + λ, from a Pareto(1, λ, 1) model, λ = 10, and a similar analysis has been

done.

On the left side of Figure 2.1, for the Pareto(1, 0, 1) parent, we compare the two classical

semi-parametric procedures for the estimation of γ = 1, providing sample paths of the

Hill estimator H ≡ H|0 in (1.4) and the moment estimator M ≡ M |0 in (1.5), together

with the PORT-Hill H(0) ≡ H(0)|0 and the PORT-moment M(0) ≡ M(0)|0 in (1.10),

associated thus to the sample Xi:n − X1:n (p = 0 in (1.9)), 2 ≤ i ≤ n. On the right side of

Figure 2.1 we picture equivalent results, but for a Pareto(1, λ, 1) underlying parent, with λ = 10.

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800

0.0

0.5

1.0

1.5

2.0

0 200 400 600 800

H(0) |10H(0) | 0

M(0) |10M(0) | 0

H |10

M |10

H | 0

M | 0

k k

Figure 2.1: Sample paths of γ̂H|λ, γ̂M|λ, γ̂H(0)|λ and γ̂M(0)|λ, for sample size n = 1000, from the Pareto model

in (2.2) with γ = 1, λ = 0, δ = 1 (left) and with γ = 1, λ = 10, δ = 1 (right).

Note first that with estimators like the ones in (1.10) we get always the same sample path for

any shift on the data. Next, it is evident from the left graphic of Figure 2.1 the unbiased property
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of the Hill estimator for the Pareto model in (2.1). On the other hand, the right graphic of this

figure also illustrates the disastrous results we may achieve with shifted data and the classical

estimates. In particular, we enhance the fact that “flat” stable zones of the graphs, based on

the shifted data, may lead us to dangerous misleading conclusions: wrong underestimated tail

index, for instance. Indeed, “stable zones” in the sample path of any estimator of a parameter of

extreme events, need to be carefully identified. The above mentioned results clearly indicate that

in practice we should take care with the Pareto approximation U(t) ∼ δtγ and that the estimators

under study in this paper, i.e., the estimators in (1.10), are of high practical importance.

3 Distributional behaviour of the estimators under comparison

3.1 A brief reference to their asymptotic behaviour

In order to obtain a non-degenerate behaviour for any extreme value index estimator, under a

semi-parametric framework, it is conveniente to assume a second order condition, measuring the

rate of convergence in the first order condition in (1.2). Such a condition involves a non-positive

parameter ρ, and can be given by

lim
t→∞

U(tx)/U(t) − xγ

A(t)
= xγ xρ − 1

ρ
, (3.1)

for all x > 0, where A(·) is a suitably chosen function of constant sign near infinity. Then,

|A| ∈ RVρ and ρ is a second order parameter (Geluk and de Haan, 1987). For the strict Pareto

model, with tail function F (x) := 1 − F (x) = (x/δ)−1/γ and quantile function U(t) = δtγ ,

U(tx)/U(t) − xγ ≡ 0. We may then say that (3.1) holds with A(t) ≡ 0.

Here, and mainly because of the reduced-bias estimators in (1.7) and (1.8), we shall more

restrictively assume that F belongs to the wide class of Hall (1982), that is, the associated

quantile function U satisfies

U(t) = δtγ(1 + γ βtρ/ρ + o(tρ)), ρ < 0, γ, δ > 0, β ∈ R, as t → ∞, (3.2)

or equivalently, (3.1) holds, with A(t) = γβtρ. The strict Pareto model appears when both β

and the remainder term o(tρ) are null. For the classical H and M estimators, generally denoted

T , we know that for any intermediate sequence k as in (1.3) and under the validity of the second

order condition in (3.1),

γ̂T
n,k

d
= γ +

σT P T
k√

k
+ cT A(n/k)

(
1 + op(1)

)
, (3.3)

where

σH = γ, cH =
1

1 − ρ
, σM =

√
γ2 + 1, cM =

γ(1 − ρ) + ρ

γ(1 − ρ)2
=

1

1 − ρ
+

ρ

γ(1 − ρ)2
, (3.4)

6
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being P T
k (T = H or M) asymptotically standard normal r.v.’s (de Haan and Peng, 1998).

We may now generalize Theorem 3.1 in Caeiro et al. (2005), where it is possible to find a

proof of the following theorem for the estimator γ̂H
n,k,β̂,ρ̂

in (1.7). Let T generically denote either

H or M .

Theorem 3.1. For any intermediate sequence k as in (1.3), for models in (3.2), for any (β̂, ρ̂),

consistent for the estimation of (β, ρ) and such that (ρ̂ − ρ) ln(n/k) = op(1), the asymptotic

distributional representation

γ̂T
n,k,β̂,ρ̂

d
= γ +

σT P T
k√

k
+ op(A(n/k))

holds both for γ̂H
n in (1.7) as well as for γ̂M

n in (1.8), where
(
P T

k , σT

)
with T = H and T = M

are given in (3.3) and (3.4).

Proof: If we estimate consistently β and ρ through the estimators β̂ and ρ̂ in the conditions of

the theorem, we may use Cramer’s delta-method, and write,

γ̂M
n,k,β̂,ρ̂

(k) = γ̂M
n,k(k) ×

(
1 − β

1 − ρ

(n

k

)ρ
−
(
β̂ − β

) 1

1 − ρ

(n

k

)ρ
(1 + op(1))

− β

1 − ρ
(ρ̂ − ρ)

(n

k

)ρ ( 1

1 − ρ
+ ln(n/k)

)
(1 + op(1))

)
− β ρ

(1 − ρ)2

(n

k

)ρ

−
{

(β̂ − β)
ρ

(1 − ρ)2

(n

k

)ρ
+

β(ρ̂ − ρ)

1 − ρ

(n

k

)ρ (ρ ln(n/k)

1 − ρ
+ 3 − ρ

)}
(1 + op(1))

d
= γ̂M

n,k,β,ρ(k) − A(n/k)

1 − ρ

(
γ̂M

n,k(k) − ρ

1 − ρ

)( β̂ − β

β
+ (ρ̂ − ρ) ln(n/k)

)
(1 + op(1)).

The reasoning is then quite similar to the one used in Caeiro et al. (2005) for the H-

estimator. Since β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and

(ρ̂− ρ) ln(n/k) = op(1), the last summand is op(A(n/k)), and the result in the theorem, related

to the M -estimator, follows immediately. ✷

Finally, for the PORT-Hill and PORT-moment estimators in (1.10):

Theorem 3.2 (Araújo Santos et al., 2006). For any intermediate sequence k as in (1.3), under

the validity of the second order condition in (3.1) and for any real p, 0 < p < 1 or p = 0 provided

that xF := F←(0) is finite, the asymptotic distributional representation

γ̂
T (p)
n,k

d
= γ +

σT P T
k√

k
+
(
cT A(n/k) + dT

χp

U(n/k)

)(
1 + op(1)

)
(3.5)
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holds, where
(
P T

k , σT , cT

)
with T = H and T = M are given in (3.3) and (3.4), being χp =

F←(p) = U(1/p) (χ0 = xF ). Moreover,

dH :=
γ

γ + 1
and dM :=

( γ

γ + 1

)2
. (3.6)

Corollary 3.1. For the strict Pareto model in (2.1), the distributional representations (3.5)

holds with A(t) replaced by 0.

Remark 3.1. Note that as both dH and dM in (3.6), as well as U(t), are positive, the dominant

component of the bias of γ̂
T (p)
n,k , given in (3.5), is increasing as a function of p.

Remark 3.2. Note also that if we induce a deterministic shift λ to data X, considering X +

λ, i.e., if instead of working with data from a model F =: F0, we work with the new model

Fλ(x) := F0(x − λ), the associated U -quantile function changes to Uλ(t) = λ+δU0(t) ≡ λ+U(t).

Then, if the second order condition (3.1) holds for F ≡ F0, with an auxiliary function A(t) ≡
A0(t), we straightforwardly get

Uλ(tx)

Uλ(t)
=

U(tx)

U(t)

{
1 − λγ

U(t)

(x−γ − 1

−γ

)
+ o
( 1

U(t)

)}
.

Consequently,

Uλ(tx)

Uλ(t)
− xγ = xγ

(
A(t)

(xρ − 1

ρ

)
− λγ

U(t)

(x−γ − 1

−γ

)
+ o(A(t)) + o(1/U(t))

)
,

and we get, for instance for the Hill estimator associated to this shift λ, denoted γ̂
H|λ
n,k or H|λ

for the sake of simplicity, the distributional representation

γ̂
H|λ
n,k

d
= γ +

σH√
k
PH

k +
(
cH A(n/k) − dH

λ

U(n/k)

)(
1 + op(1)

)
, (3.7)

i.e., as expected, (3.5) holds whenever we replace γ̂
H(p)
n by γ̂

H|λ
n , provided that we replace χp

by −λ. For details, see Gomes and Oliveira (2003), where the shift λ is regarded as a tuning

parameter of the statistical procedure that leads to the tail index estimates. On the basis of the

bias term associated with the Hill functional applied to shifted data, these authors have found

easily a justification for some kind of “magic numbers”, like λ = 0.5, appearing for a Fréchet

model, with tail function 1 − F (x) = 1 − exp
(
− x−1/γ

)
, x > 0, and λ = 1/γ, appearing for a

generalized Pareto (GP ) model, with tail function 1−F (x) = (1+γx)−1/γ, x > 0 (γ > 0). Indeed,

from a theoretical point of view, let us assume we are working in Hall’s class of distributions,

where

1 − F (x) = Cx−1/γ
(
1 + Dxρ/γ(1 + o(1))

)
, as x → ∞.
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Then, regular variation theory (Bingham, Goldie and Teugels, 1987) enables us to obtain the

asymptotic inverse of F ,

U(t) := F←(1 − 1/t) = (Ct)γ
(
1 + γD(Ct)ρ(1 + o(1))

)
, as t → ∞,

and we may choose any A function, such that A(t) ∼ γρD(Ct)ρ, as t → ∞.

Whenever ρ = −γ, we may thus choose A(t) such that

A(t)U(t) = −γ2D, i.e. 1/U(t) = −A(t)/(γ2D).

If we look at (3.7) we see that the dominant component of asymptotic bias is then given by

(A(n/k) − λγ/U(n/k))/(1 + γ) = A(n/k)(1 + λ/(γD))/(1 + γ). Such a component is thus null

whenever λ = −γD.

The Fréchet model belongs to Hall’s class, with C = 1, D = −1/2 and ρ = −1. Then, for

γ = 1, λ = 0.5 enables us to remove the main component of asymptotic bias. If we think on a

GP model, we are again in Hall’s class of models with C = γ−1/γ, D = −1/γ2 and ρ = −γ.

Then, for every γ if we induce in the data a shift λ = −γD = 1/γ = −1/ρ we are able to remove

the dominant component of asymptotic bias.

Remark 3.3. The comments in Remark 3.2 are also true for the classical moment estimator,

i.e., if we induce a shift λ to the data, (3.5) holds whenever we replace γ̂
M(p)
n by γ̂

M |λ
n , provided

that we replace χp by −λ. Moreover, also for the moment estimator the dominant component

of asymptotic bias is null whenever in Hall’s class of models, we have ρ = −γ and we induce a

shift λ = ρD = −γD.

We still add the following:

Remark 3.4. Let us now consider the general EVγ model in (1.1). Then, we may write

1 − F (x) = (γx)−1/γ






(
1 − 1

γ2x
+ o(x−1)

)
if 0 < γ < 1

(
1 − 3

2x + o(x−1)
)

if γ = 1
(
1 − (γx)−1/γ

2 + o(x−1/γ)
)

if γ > 1,

i.e.

C = γ−1/γ , ρ =

{
−γ if 0 < γ ≤ 1

−1 if γ > 1
, D =






−1/γ2 if 0 < γ < 1

−3/2 if γ = 1

−γ−1/γ/2 if γ > 1.

For the EVγ model, with γ ≤ 1, we may thus get a second-order reduced-bias extreme value

index estimator, on the basis of both the Hill and the moment functionals, in (1.4) and (1.5),

respectively, provided that we induce the deterministic shift

λ =

{
1/γ if 0 < γ < 1

3/2 if γ = 1.

9
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Note however that, with a deterministic shift, as suggested in Gomes and Oliveira (2003), the

estimators loose even the scale invariance property.

3.2 The estimation of second order parameters

For the estimation of the second order parameters, needed for the estimators in (1.7) and in

(1.8), we suggest here an algorithm similar to the ones in Gomes et al. (2005), Gomes, Henriques

Rodrigues, Vandewalle and Viseu (2006) and Gomes and Pestana (2007a, 2007b):

1. Given a sample (X1, X2, · · · , Xn), with the notation abτ = b ln a whenever τ = 0, and M
(r)
n,k

given in (1.6), plot, for τ = 0, 1, the estimates

ρ̂τ (k) := −

∣∣∣∣∣∣

3
(
T

(τ)
n,k − 1

)

(T
(τ)
n,k − 3)

∣∣∣∣∣∣
, with T

(τ)
n,k :=

(
M

(1)
n,k

)τ −
(
M

(2)
n,k/2

)τ/2

(
M

(2)
n,k/2

)τ/2 −
(
M

(3)
n,k/6

)τ/3
, (3.8)

2. Consider
{
ρ̂τ (k)

}
k∈K

, for integer values k ∈ K =
([

n0.995
]
,
[
n0.999

])
, and compute their

median, denoted χτ , τ = 0, 1. Choose

τ∗ :=

{
0 if

∑
k∈K

(
ρ̂0(k) − χ0

)2 ≤
∑

k∈K

(
ρ̂1(k) − χ1

)2

1 otherwise;

3. Compute, for k1 =
[
n0.995

]
, ρ̂∗ = ρ̂(k1; τ

∗) and β̂∗ := β̂(k1; ρ̂∗),

β̂(k; r) :=
(k

n

)r dk(−r) × Dk(0) − Dk(−r)

dk(r) × Dk(−r) − Dk(−2r)
, (3.9)

where for any α ≥ 0, and with Wi := i {lnXn−i+1,n − lnXn−i,n} , 1 ≤ i ≤ k,

Dk(α) :=
1

k

k∑

i=1

(i/k)α Wi, dk(α) :=
1

k

k∑

i=1

(i/k)α. (3.10)

Remark 3.5. The implementation of this algorithm in practice leads often to τ∗ = 0 whenever

|ρ| ≤ 1 and τ∗ = 1 whenever |ρ| > 1 (see Gomes and Pestana, 2007b). This is the reason why

we are going to use such a rule in the simulations. The choices of K in step 2. and k1 in step 3.

are not crucial, provided that we restrict ourselves to reasonably large values of k, the number

of o.s. used.

Regarding the reduced-bias extreme value index estimators in (1.7) and (1.8), the estimators

(β̂τ , ρ̂τ ) of (β, ρ), τ = 0, 1, have been used, leading to

Hτ ≡ Hτ (k) ≡ γ̂H
n,k,bβτ ,bρτ

, M τ ≡ M τ (k) ≡ γ̂M
n,k,bβτ ,bρτ

, τ = 0, 1.

10

Page 11 of 27

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



F
o
r P

eer R
eview

 O
n
ly

The simulations in Caeiro et al. (2005) and Gomes and Pestana (2007b) show that the tail index

estimators Hτ , with τ equal to either 0 or 1, according as |ρ| ≤ 1 or |ρ| > 1, work quite well.

The use of τ = 1 always enables us to achieve a better performance than the one we get with

the Hill estimator H. In a “blind” way, we might thus advise such a choice, and we shall do

it for the reduced-bias moment estimator M τ . But for Hτ , τ = 0 provides much better results

than τ = 1 whenever |ρ|, unknown, is smaller than or equal to 1.

3.3 Simulated behaviour of the tail index estimators

We have implemented multi-sample Monte Carlo simulation experiments of size 5000 × 10 for

the extreme value index estimators under study.

3.3.1 Mean values and mean squared error patterns of the tail index estimators

In Figure 3.1, for samples of size n = 1000 from a Fréchet(γ), with γ = 1, we show the simulated

patterns of the mean values, E [•], and mean squared errors, MSE [•], of the Hill estimator H

in (1.4) and its location invariant versions H(p), p = 0, 0.25 and 0.5, in (1.10), together with the

ones of the MVRB estimators H0 in (1.7). Figure 3.2 is similar to Figure 1, but for the moment

estimator M in (1.5), its location invariant versions M(p), p = 0, 0.25 and 0.5, in (1.10) and

the MRVB estimator M1 in (1.8). The mean values and mean squared errors of the estimators

are based on the first replicate, with a run of size 5000.

Figure 3.1: Simulated mean values (left) and mean squared errors (right) of the Hill estimator H in (1.4) and H(p) p =

0, 0.25 and 0.5 in (1.10), together with H0 in (1.7), for samples of size n = 1000 from a Fréchet parent with γ = 1 (ρ = −1).

Figures 3.3 and 3.4 are equivalent to Figures 3.1 and 3.2, respectively, but for the EVγ model

in (1.1), with γ = 0.25. Similar comment applies to Figures 3.5 and 3.6, where we consider the

underlying parent EVγ , with γ = 1.

Finally, the pairs of Figures 3.7, 3.8 and Figures 3.9, 3.10 are equivalent to the pair of Figures

3.1, 3.2, but for Student tν , with ν = 4 and ν = 2, respectively. The Student tν probability
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Figure 3.2: Simulated mean values (left) and mean squared errors (right) of M and M(p) p = 0, 0.25 and 0.5 in (1.10),

together with M1 in (1.8), for samples of size n = 1000 from a Fréchet parent with γ = 1 (ρ = −1).
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Figure 3.3: Simulated mean values (left) and mean squared errors (right) of H and H(p) p = 0, 0.25 and 0.5, together

with H0, for samples of size n = 1000 from a EVγ parent with γ = 0.25 (ρ = −0.25).
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Figure 3.4: Simulated mean values (left) and mean squared errors (right) of M and M(p) p = 0, 0.25 and 0.5, together

with M1, for samples of size n = 1000 from a EVγ parent with γ = 0.25 (ρ = −0.25).

density function (p.d.f.) is

fν(x) = Γ((ν + 1)/2)
[
1 + x2/(ν − 2)

]−(ν+1)/2
/
(√

π(ν − 2) Γ(ν/2)
)

, x ∈ R.

For the Student tν model, we get γ = 1/ν and ρ = −2/ν.
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Figure 3.5: Simulated mean values (left) and mean squared errors (right) of H and H(p) p = 0, 0.25 and 0.5, together

with H0, for samples of size n = 1000 from a EVγ parent with γ = 1 (ρ = −1).
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Figure 3.6: Simulated mean values (left) and mean squared errors (right) of M and M(p) p = 0, 0.25 and 0.5, together

with M1, for samples of size n = 1000 from a EVγ parent with γ = 1 (ρ = −1).
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Figure 3.7: Simulated mean values (left) and mean squared errors (right) of H and H(p) p = 0, 0.1, 0.25 and 0.5, together

with H0, for samples of size n = 1000 from a t4 parent with γ = 0.25 (ρ = −0.5).

We may draw the following specific comments:

• As expected, on the basis of Remark 3.1, H(p) and M(p) are increasing in p. However,
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Figure 3.8: Simulated mean values (left) and mean squared errors (right) of M and M(p) p = 0 and 0.5, together with

M1 and the r.v. Mβ,ρ, for samples of size n = 1000 from a t4 parent with γ = 0.25 (ρ = −0.5).
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Figure 3.9: Simulated mean values (left) and mean squared errors (right) of H and H(p) p = 0, 0.1, 0.25 and 0.5, together

with H0, for samples of size n = 1000 from a t2 parent with γ = 0.5 (ρ = −1).

and with T generally denoting either H or M , we expect to have T < T (0) if the left

endpoint xF of the underlying model F is zero, but things work the other way round, i.e.,

T (0) < T if xF 6= 0.

• For a Fréchet model, and perhaps as expected more generally, if we induce a shift (random

shift) through a central o.s. (or even the minimum, equal to 0), applying the Hill or the

moment functionals to Xi − X[np]+1:n, 1 ≤ i ≤ n, 0 ≤ p < 1, we get worse results than

when we work with either the Hill or the moment estimators, respectively. This result is

not astonishing in the sense that we are replacing estimators that are only scale invariant

by scale and location invariant estimators. Indeed, from the results in Gomes and Oliveira

(2003), we know that, concerning the Hill estimator, we should shift our data from X

towards X +0.5 in order to remove the dominant component of bias of the Hill estimator,

and −0.5 < xF = 0. But then, we are working with estimators that are neither invariant

for changes in scale nor location.
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Figure 3.10: Simulated mean values (left) and mean squared errors (right) of M and M(p) p = 0, 0.25 and 0.5, together

with M1 and the r.v. Mβ,ρ, for samples of size n = 1000 from a t2 parent with γ = 0.5(ρ = −1).

• As mentioned before, for the EVγ model, with 0 < γ < 1, we have ρ = −γ, and with a

shift λ = 1/γ = −1/ρ we would remove the dominant component of bias of Hill’s as well as

moment’s estimators. This means that we should apply the Hill or the moment functionals

to X − xF = X + 1/γ. Given that X1:n → xF = −1/γ, we expect to be reasonably close

to a reduced-bias extreme value index estimator whenever we apply Hill’s or moment’s

functionals to Xi − X1:n, 1 ≤ i ≤ n. If we look at Figures 3.3 and 3.4, we see that H(0)

and M(0) behave even better than the corresponding MVRB-estimators.

For the EV1 model, the shift that would reduce the dominant component of bias would be

induced by λ = 3/2. We should thus go below the minimum, given that xF = −1, and our

estimator would no longer be location invariant (nor scale invariant). The statistics H(0)

and M(0) are the best ones among the non reduced-bias estimators, but the corresponding

MVRB estimators behave better than either H(0) or M(0).

For the EVγ model with γ > 1, although we have ρ 6= −γ, the relative behaviour of

the PORT-estimators is quite similar to the one appearing when γ = 1. The location

invariant estimators H(p), p ≤ 0.25, behave better than the Hill, although not better than

the MVRB-estimator H0.

• We have decided to consider also Student tν parents with ν degrees of freedom. Then, we

have ρ 6= −γ. These parents have infinite left and right endpoints, and consequently, it

is no longer sensible to consider p = 0 in the PORT-estimators, because of the possible

non-consistency of the associated PORT-statistics. We did it merely to draw the attention

for the erroneous conclusions we may take from a quite common behaviour in data analysis

practice. Indeed, a usual solution to take care of the Pareto approximation U(t) ∼ δtγ is

to make statistical inference only after a suitable shift of the data. In the literature, it

has been sometimes suggested to subtract a random quantity, usually the minimum of the
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sample. This shifted data set has the advantage of working out with usually more non-

negative values, a desirable property for classical semi-parametric estimators of a positive

tail index. An extensive discussion about this type of shifted procedures can be found for

instance in Drees (2003). Therein, it is studied the effect of subtracting the minimum of the

sample, previously to the subsequent analysis of the Nasdaq Composite index log-returns

data set, in the context of VaR estimation. In fact, for that particular data, it is therein

observed that this procedure constitutes a considerable improvement, arising for the Hill

γ-estimates a larger flat zone in the associated sample path, after transforming the original

data through the subtraction of the smallest observation. However, if we look at Figures

3.7 and 3.9, we easily see that “flat” zones in the sample path of the shifted-Hill (by the

minimum) estimator can lead to serious underestimation of the extreme value index.

3.3.2 Mean values of the tail index estimators at optimal levels

Tables 1, 2 and 3 are related to underlying models with |ρ| < 1, ρ = −1 and |ρ| > 1, respectively.

We shall there present, for n = 200, 500, 1000, 2000 and 5000, the simulated mean values at

optimal levels (levels where mean squared errors are minima as functions of k) of the Hill

estimator H in (1.4), the moment estimator M in (1.5), the MV RB-estimators, H0, M1, in

(1.7) , (1.8), respectively, and the PORT-Hill and moment estimators in (1.10) associated with

p = 0, 0.1, 0.25 and 0.5. Information on 95% confidence intervals, computed on the basis of the

10 replicates with 5000 runs each, is also provided. Among the estimators considered, the one

providing the smallest squared bias is underlined and in bold.

3.3.3 Mean squared errors and relative efficiency indicators at optimal levels

We shall compute Hill’s estimator at the simulated value of kH
0 := arg mink MSE

[
γ̂H

n,k

]
, the

simulated optimal k in the sense of minimum mean squared error, not relevant in practice, but

providing an indication of the best possible performance of Hill’s estimator. Such an estimator

will be denoted H0.

Let us generically denoted T any of the extreme value index estimators under study. We

shall now compute T0, the estimator T computed at its simulated optimal level, again in the

sense of minimum mean squared error. The simulated indicators are

REFF
T |H

:=

√
MSE [H0]

MSE [T0]
. (3.11)

Remark 3.6. An indicator higher than one means a better performance than the Hill estimator.

Consequently, the higher these indicators are, the better the T0-estimators perform, comparatively

to H0.
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Table 1: Simulated mean values, at optimal levels, of H, H0, M1, H(p) and M(p), p = 0, 0.1, 0.25 and 0.5 for parents

with |ρ| < 1.

n 200 500 1000 2000 5000

Student t4 (γ = 0.25, ρ = −0.5)

H 0.3402 ± 0.0792 0.3409 ± 0.0636 0.3205 ± 0.0357 0.3062 ± 0.0486 0.2856 ± 0.0253

M 0.0845 ± 0.1027 0.1538 ± 0.0855 0.1630 ± 0.0495 0.1821 ± 0.0496 0.1916 ± 0.0301

H0 0.3231 ± 0.0521 0.3010 ± 0.0453 0.2876 ± 0.0276 0.2919 ± 0.0350 0.2862 ± 0.0205

M1 0.0799 ± 0.0722 0.1313 ± 0.0774 0.1595 ± 0.0592 0.1704 ± 0.0533 0.2019 ± 0.0223

H(0) 0.2735 ± 0.0504 0.1892 ± 0.0569 0.1889 ± 0.0298 0.1534 ± 0.0227 0.1040 ± 0.0145

H(0.1) 0.2639 ± 0.0216 0.2645 ± 0.0145 0.2561 ± 0.0136 0.2608 ± 0.0060 0.2576 ± 0.0070

H(0.25) 0.2937 ± 0.0328 0.2766 ± 0.0345 0.2645 ± 0.0195 0.2721 ± 0.0241 0.2633 ± 0.0146

H(0.5) 0.3450 ± 0.0814 0.3410 ± 0.0664 0.3186 ± 0.0370 0.3059 ± 0.0477 0.2853 ± 0.0253

M(0) 0.0389 ± 0.0899 0.0978 ± 0.0720 0.1154 ± 0.0558 0.1385 ± 0.0603 0.1643 ± 0.0315

M(.1) 0.0474 ± 0.0908 0.1208 ± 0.0714 0.1311 ± 0.0586 0.1589 ± 0.0606 0.1816 ± 0.0302

M(.25) 0.0635 ± 0.0949 0.1210 ± 0.0794 0.1497 ± 0.0652 0.1593 ± 0.0666 0.1943 ± 0.0249

M(.5) 0.0888 ± 0.1075 0.1549 ± 0.0872 0.1623 ± 0.0496 0.1816 ± 0.0498 0.1914 ± 0.0299

EVγ (γ = 0.25) (ρ = −0.25)

H 0.3754 ± 0.0806 0.3910 ± 0.0951 0.3370 ± 0.0585 0.3909 ± 0.0801 0.3237 ± 0.0333

M 0.3473 ± 0.0957 0.2489 ± 0.0956 0.2923 ± 0.0718 0.3077 ± 0.0499 0.2957 ± 0.0350

H0 0.4026 ± 0.0903 0.3396 ± 0.0522 0.3648 ± 0.05970. 0.3884 ± 0.0768 0.3230 ± 0.0394

M1 0.2449 ± 0.0722 0.2012 ± 0.0955 0.2618 ± 0.0411 0.2834 ± 0.0338 0.2617 ± 0.0182

H(0) 0.3710 ± 0.0692 0.3120 ± 0.0553 0.3242 ± 0.0479 0.3434 ± 0.0431 0.2990 ± 0.0290

H(0.1) 0.3808 ± 0.0750 0.3335 ± 0.0716 0.3606 ± 0.0576 0.3772 ± 0.0760 0.3218 ± 0.0326

H(0.25) 0.3842 ± 0.0806 0.3739 ± 0.0870 0.3562 ± 0.0617 0.3904 ± 0.0849 0.3206 ± 0.0337

H(0.5) 0.3847 ± 0.0765 0.4274 ± 0.1251 0.3722 ± 0.0745 0.3848 ± 0.0691 0.3255 ± 0.0496

M(0) 0.2088 ± 0.0581 0.2223 ± 0.0595 0.2471 ± 0.0423 0.2650 ± 0.0342 0.2514 ± 0.0107

M(.1) 0.2406 ± 0.0649 0.2700 ± 0.0628 0.2946 ± 0.0453 0.2875 ± 0.0429 0.2652 ± 0.0191

M(.25) 0.3136 ± 0.0742 0.2469 ± 0.1100 0.3042 ± 0.0633 0.3064 ± 0.0545 0.2732 ± 0.0273

M(.5) 0.3820 ± 0.0993 0.2822 ± 0.0750 0.3066 ± 0.0729 0.3226 ± 0.0597 0.3067 ± 0.0405

GPγ (γ = 0.5) (ρ = −0.5)

H 0.5938 ± 0.1056 0.6289 ± 0.0777 0.5993 ± 0.0553 0.5690 ± 0.0392 0.5366 ± 0.0463

M 0.5559 ± 0.1575 0.5814 ± 0.0916 0.5805 ± 0.0551 0.5693 ± 0.0371 0.5245 ± 0.0384

H0 0.5889 ± 0.0805 0.6004 ± 0.0648 0.5897 ± 0.0458 0.5864 ± 0.0227 0.5339 ± 0.0251

M1 0.5769 ± 0.1488 0.5908 ± 0.0877 0.5891 ± 0.0491 0.5794 ± 0.0319 0.5270 ± 0.0367

H(0) 0.5941 ± 0.1057 0.6290 ± 0.0777 0.5993 ± 0.0553 0.5690 ± 0.0391 0.5366 ± 0.0463

H(0.1) 0.5928 ± 0.1163 0.6344 ± 0.0846 0.5991 ± 0.0533 0.5745 ± 0.0421 0.5420 ± 0.0467

H(0.25) 0.6266 ± 0.1150 0.6270 ± 0.0919 0.6148 ± 0.0547 0.5643 ± 0.0329 0.5452 ± 0.0679

H(0.5) 0.6474 ± 0.1651 0.6280 ± 0.0854 0.6003 ± 0.0663 0.5910 ± 0.0529 0.5466 ± 0.0798

M(0) 0.5564 ± 0.1577 0.5814 ± 0.0916 0.5805 ± 0.0551 0.5681 ± 0.0381 0.5245 ± 0.0384

M(.1) 0.5518 ± 0.1502 0.5861 ± 0.0889 0.5836 ± 0.0552 0.5722 ± 0.0385 0.5220 ± 0.0409

M(.25) 0.5266 ± 0.1700 0.5924 ± 0.890 0.5828 ± 0.0593 0.5773 ± 0.0379 0.5213 ± 0.0466

M(.5) 0.5302 ± 0.1998 0.6043 ± 0.0946 0.5829 ± 0.0523 0.5803 ± 0.0502 0.5152 ± 0.0612

In Tables from 4 until 11, we present in the first row, the mean squared error of H0, so

that we can easily recover the mean squared errors of all other estimators T0. The following

rows provide the REFF indicators, REFF
T |H

in (3.11), for the different extreme value index

estimators under study. Again, the estimator providing the highest REFF indicator (minimum

mean squared error at optimal level) is underlined and in bold.

Some comments regarding the REFF indicators
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Table 2: Simulated mean values, at optimal levels, of H, H0, M1, H(p) and M(p), p = 0, 0.1, 0.25 and 0.5 for parents

with ρ = −1.

n 200 500 1000 2000 5000

Frechet(γ = 1) (ρ = −1)

H 1.0498 ± 0.1085 1.0750 ± 0.0624 1.0657 ± 0.0463 1.0775 ± 0.0487 1.0356 ± 0.0268

M 1.0612 ± 0.1197 1.0709 ± 0.0809 1.0656 ± 0.0489 1.0697 ± 0.0650 1.0385 ± 0.0257

H0 1.0296 ± 0.1034 1.0353 ± 0.0813 1.0226 ± 0.0398 1.0286 ± 0.0506 1.0033 ± 0.0209

M1 0.9607 ± 0.1274 1.0091 ± 0.0824 1.0136 ± 0.0447 1.0300 ± 0.0558 1.0099 ± 0.0211

H(0) 1.0540 ± 0.1302 1.1040 ± 0.0740 1.0626 ± 0.0486 1.0697 ± 0.0480 1.0373 ± 0.0282

H(0.1) 1.0714 ± 0.1430 1.0832 ± 0.0683 1.0743 ± 0.0499 1.0770 ± 0.0604 1.0504 ± 0.0155

H(0.25) 1.0471 ± 0.1752 1.0863 ± 0.0867 1.1003 ± 0.0662 1.0793 ± 0.0656 1.0495 ± 0.0234

H(0.5) 1.0763 ± 0.1877 1.1428 ± 0.1132 1.1070 ± 0.0824 1.0693 ± 0.0606 1.0445 ± 0.0302

M(0) 1.0719 ± 0.1262 1.0761 ± 0.0869 1.0687 ± 0.0530 1.0736 ± 0.0677 1.0414 ± 0.0275

M(.1) 1.0574 ± 0.1572 1.0836 ± 0.1007 1.0768 ± 0.0573 1.0845 ± 0.0747 1.0467 ± 0.0310

M(.25) 1.0811 ± 0.1663 1.0904 ± 0.1134 1.0847 ± 0.0637 1.0889 ± 0.0835 1.0497 ± 0.0335

M(.5) 1.1069 ± 0.1832 1.1002 ± 0.1386 1.0978 ± 0.0729 1.0976 ± 0.0957 1.0571 ± 0.0418

Student t2 (γ = 0.5, ρ = −1)

H 0.5599 ± 0.1079 0.6104 ± 0.0698 0.5548 ± 0.0325 0.5271 ± 0.0328 0.5246 ± 0.0270

M 0.4063 ± 0.1195 0.5123 ± 0.1031 0.4924 ± 0.0285 0.4754 ± 0.0472 0.4969 ± 0.0299

H0 0.4714 ± 0.0607 0.5233 ± 0.0454 0.5023 ± 0.0213 0.5019 ± 0.0215 0.4988 ± 0.0155

M1 0.3427 ± 0.0009 0.4655 ± 0.0005 0.4703 ± 0.0002 0.4483 ± 0.0001 0.4781 ± 0.0001

H(0) 0.1270 ± 0.0488 0.2613 ± 0.1874 0.2535 ± 0.1125 0.2457 ± 0.1554 0.1645 ± 0.0793

H(0.1) 0.4761 ± 0.0423 0.4849 ± 0.0349 0.4940 ± 0.0225 0.4941 ± 0.0137 0.4962 ± 0.0087

H(0.25) 0.5111 ± 0.0680 0.4891 ± 0.0224 0.5000 ± 0.0179 0.4968 ± 0.0150 0.4964 ± 0.0093

H(0.5) 0.5595 ± 0.1090 0.6074 ± 0.0675 0.5561 ± 0.0316 0.5241 ± 0.0326 0.5245 ± 0.0269

M(0) 0.2290 ± 0.0781 0.3323 ± 0.0780 0.3571 ± 0.0454 0.3436 ± 0.0459 0.3681 ± 0.0322

M(.1) 0.2979 ± 0.0950 0.4028 ± 0.0797 0.4248 ± 0.0371 0.4121 ± 0.0444 0.4360 ± 0.0388

M(.25) 0.3521 ± 0.1068 0.4406 ± 0.0768 0.4497 ± 0.0358 0.4285 ± 0.0394 0.4539 ± 0.0356

M(.5) 0.4153 ± 0.1188 0.5107 ± 0.1015 0.4990 ± 0.0315 0.4760 ± 0.0468 0.4950 ± 0.0289

EVγ (γ = 1) (ρ = −1)

H 1.0430 ± 0.1501 1.0668 ± 0.1310 1.1578 ± 0.0625 1.0805 ± 0.0600 1.0478 ± 0.0287

M 0.9902 ± 0.1870 1.0006 ± 0.1000 1.1287 ± 0.0812 1.0931 ± 0.0883 1.0527 ± 0.0373

H0 0.8708 ± 0.0823 0.9667 ± 0.0638 1.0495 ± 0.0579 1.0377 ± 0.0507 1.0146 ± 0.0214

M1 0.8123 ± 0.1108 0.9220 ± 0.0651 1.0759 ± 0.0703 1.0874 ± 0.0645 1.0518 ± 0.0315

H(0) 1.0918 ± 0.1355 1.0037 ± 0.0717 1.0909 ± 0.0765 1.0697 ± 0.0480 1.0373 ± 0.0282

H(0.1) 1.0938 ± 0.1606 1.0267 ± 0.0930 1.0973 ± 0.0646 1.0770 ± 0.0604 1.0504 ± 0.0155

H(0.25) 1.0911 ± 0.1505 1.0475 ± 0.1138 1.1369 ± 0.0740 1.0793 ± 0.0656 1.0495 ± 0.0234

H(0.5) 1.0854 ± 0.1723 1.0581 ± 0.1348 1.1379 ± 0.0838 1.0693 ± 0.0606 1.0445 ± 0.0302

M(0) 1.0082 ± 0.1261 0.9948 ± 0.0659 1.1000 ± 0.0684 1.0736 ± 0.0677 1.0414 ± 0.0275

M(.1) 1.0022 ± 0.1561 0.9904 ± 0.0806 1.1133 ± 0.0763 1.0845 ± 0.0747 1.0467 ± 0.0310

M(.25) 1.0162 ± 0.1653 0.9932 ± 0.0916 1.1224 ± 0.0803 1.0889 ± 0.0835 1.0497 ± 0.0335

M(.5) 0.9944 ± 0.1805 1.0133 ± 0.1102 1.1399 ± 0.0817 1.0976 ± 0.0957 1.0571 ± 0.0418

• For Fréchet parents and regarding REFF indicators, the reduced-bias estimator H0 is

the one exhibiting the better behaviour (higher REFF ). The moment estimator, at the

optimal level, slightly overpasses the Hill estimator, also at its optimal level, for all n.

Whenever we consider the PORT-estimators, the REFF indicators are always smaller

than 1, and they decrease as p increases. For the same p, M(p) and H(p) have REFF

indicators close together, with a slightly better performance of the M(p) estimator.
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Table 3: Simulated mean values, at optimal levels, of H, H0, M1, H(p) and M(p), p = 0, 0.1, 0.25 and 0.5 for parents

with |ρ| > 1.

n 200 500 1000 2000 5000

Student t1 (γ = 1, ρ = −2)

H 1.1198 ± 0.1513 1.1329 ± 0.0991 1.0744 ± 0.0868 1.0401 ± 0.0452 1.0258 ± 0.0490

M 1.0550 ± 0.1661 1.0937 ± 0.1257 1.0349 ± 0.0829 1.0392 ± 0.0509 1.0164 ± 0.0470

H1 1.0228 ± 0.1191 1.1255 ± 0.1113 1.0356 ± 0.0766 1.0344 ± 0.0267 1.0071 ± 0.0466

M1 1.0767 ± 0.1144 1.0719 ± 0.0661 1.0647 ± 0.0471 1.0739 ± 0.0451 1.0371 ± 0.0269

H(0) 0.3105 ± 0.1960 0.3997 ± 0.2939 0.2189 ± 0.1124 0.4788 ± 0.3238 0.4629 ± 0.2564

H(0.1) 0.7925 ± 0.1710 0.8584 ± 0.1290 0.8289 ± 0.1213 0.9069 ± 0.0813 0.9355 ± 0.0764

H(0.25) 1.0161 ± 0.0839 0.9735 ± 0.0395 1.0138 ± 0.0306 1.0167 ± 0.0133 1.0000 ± 0.0134

H(0.5) 1.1086 ± 0.1493 1.1348 ± 0.1006 1.0799 ± 0.0842 1.0367 ± 0.0473 1.0256 ± 0.0484

M(0) 0.4514 ± 0.0753 0.4716 ± 0.0317 0.4753 ± 0.0197 0.4948 ± 0.0097 0.4967 ± 0.0064

M(.1) 0.7012 ± 0.1303 0.8056 ± 0.1272 0.81389 ± 0.0903 0.9015 ± 0.0732 0.9004 ± 0.0702

M(.25) 0.8428 ± 0.1220 0.9015 ± 0.0979 0.8959 ± 0.0755 0.9343 ± 0.0545 0.9350 ± 0.0495

M(.5) 1.0523 ± 0.1721 1.0964 ± 0.1270 1.0391 ± 0.0818 1.0374 ± 0.0506 1.0165 ± 0.0463

GPγ (γ = 2) (ρ = −2)

H 2.1099 ± 0.1881 2.0214 ± 0.0990 2.0849 ± 0.0893 2.0389 ± 0.0551 2.0606 ± 0.0674

M 2.0832 ± 0.2040 1.9605 ± 0.0895 2.0861 ± 0.1023 2.0562 ± 0.0661 2.0444 ± 0.0558

H1 2.1310 ± 0.1325 2.0030 ± 0.0954 2.0574 ± 0.1051 2.0307 ± 0.0610 2.0464 ± 0.0540

M1 1.9728 ± 0.1796 1.9280 ± 0.0875 2.0259 ± 0.0916 2.0078 ± 0.0629 2.0042 ± 0.0473

H(0) 2.1092 ± 0.1876 2.0216 ± 0.0989 2.0850 ± 0.0893 2.0389 ± 0.0551 2.0606 ± 0.0674

H(0.1) 2.1367 ± 0.1969 2.0115 ± 0.1013 2.0861 ± 0.0953 2.0317 ± 0.0722 2.0503 ± 0.0641

H(0.25) 2.1531 ± 0.2338 2.0343 ± 0.1223 2.0844 ± 0.1148 2.0433 ± 0.0862 2.0383 ± 0.0594

H(0.5) 2.0667 ± 0.2715 2.0213 ± 0.0973 2.1414 ± 0.1075 2.0757 ± 0.0814 2.0623 ± 0.0662

M(0) 2.0828 ± 0.2022 1.9605 ± 0.0905 2.0863 ± 0.1023 2.0563 ± 0.0661 2.0444 ± 0.0559

M(.1) 2.0689 ± 0.2206 1.9666 ± 0.0975 2.0844 ± 0.1023 2.0537 ± 0.0661 2.0440 ± 0.0559

M(.25) 2.0524 ± 0.2302 1.9592 ± 0.1096 2.0949 ± 0.1027 2.0573 ± 0.0684 2.0453 ± 0.0646

M(.5) 2.0348 ± 0.2767 1.9249 ± 0.1253 2.1156 ± 0.1204 2.0813 ± 0.0794 2.0322 ± 0.0657

Table 4: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for Fréchet parents with γ = 1 (ρ = −1).

n 200 500 1000 2000 5000

Frechet(γ = 1) (ρ = −1)

MSEH 0.02590 ± 0.0004 0.0135 ± 0.0002 0.0083 ± 0.0001 0.0051 ± 0.0000 0.0027 ± 0.0000

REFFM|H 1.0229 ± 0.0036 1.0176 ± 0.0054 1.0131 ± 0.0028 1.0077 ± 0.0039 1.0080 ± 0.0052

REFF
H0|H

1.3290 ± 0.0096 1.3763 ± 0.0141 1.4731 ± 0.0071 1.5752 ± 0.0129 1.7902 ± 0.0196

REFF
M1|H

1.0447 ± 0.0068 1.1372 ± 0.0095 1.2383 ± 0.0088 1.3428 ± 0.0100 1.5352 ± 0.0154

REFFH(0)|H 0.9065 ± 0.0037 0.9172 ± 0.0022 0.9238 ± 0.0020 0.9279 ± 0.0023 0.9370 ± 0.0017

REFFH(.1)|H 0.8144 ± 0.0033 0.8131 ± 0.0037 0.8132 ± 0.0035 0.8101 ± 0.0048 0.8120 ± 0.0037

REFFH(.25)|H 0.7416 ± 0.0042 0.7421 ± 0.0042 0.7405 ± 0.0034 0.7382 ± 0.0044 0.7413 ± 0.0048

REFFH(.5)|H 0.6251 ± 0.0055 0.6284 ± 0.0046 0.6307 ± 0.0040 0.6295 ± 0.0043 0.6316 ± 0.0049

REFFM(0)|H 0.9345 ± 0.0033 0.9381 ± 0.0048 0.9395 ± 0.0027 0.9391 ± 0.0042 0.9449 ± 0.0049

REFFM(.1)|H 0.8413 ± 0.0038 0.8358 ± 0.0051 0.8302 ± 0.0027 0.8239 ± 0.0043 0.8229 ± 0.0044

REFFM(.25)|H 0.7658 ± 0.0045 0.7636 ± 0.0049 0.7588 ± 0.0026 0.7530 ± 0.0042 0.7526 ± 0.0042

REFFM(.5)|H 0.6416 ± 0.0048 0.6488 ± 0.0050 0.6467 ± 0.0029 0.6420 ± 0.0039 0.6433 ± 0.0039
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Table 5: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for EVγ parents with γ = 0.25.

n 200 500 1000 2000 5000

EVγ (γ = 0.25) (ρ = −0.25)

MSEH 0.0402 ± 0.0006 0.0246 ± 0.0004 0.0176 ± 0.0003 0.0127 ± 0.0002 0.0085 ± 0.0001

REFFM|H 1.0929 ± 0.0122 1.2719 ± 0.0109 1.3587 ± 0.0137 1.4152 ± 0.0071 1.5529 ± 0.0143

REFF
H0|H

1.2339 ± 0.0043 1.1713 ± 0.0066 1.1332 ± 0.0048 1.1023 ± 0.0029 1.0711 ± 0.0033

REFF
M1|H

1.4665 ± 0.0170 1.8416 ± 0.0172 2.1562 ± 0.0226 2.5308 ± 0.0232 3.1365 ± 0.0345

REFFH(0)|H 1.4959 ± 0.0068 1.5169 ± 0.0093 1.5336 ± 0.0095 1.5407 ± 0.0057 1.5597 ± 0.0134

REFFH(.1)|H 1.2293 ± 0.0057 1.2136 ± 0.0056 1.2072 ± 0.0041 1.1994 ± 0.0032 1.1902 ± 0.0047

REFFH(.25)|H 1.0880 ± 0.0026 1.0810 ± 0.0034 1.0779 ± 0.0023 1.0751 ± 0.0008 1.0721 ± 0.0021

REFFH(.5)|H 0.9095 ± 0.0037 0.9147 ± 0.0024 0.9183 ± 0.0025 0.9202 ± 0.0020 0.9256 ± 0.0017

REFFM(0)|H 1.5073 ± 0.0171 1.9175 ± 0.0227 2.3055 ± 0.0208 2.7677 ± 0.0130 3.5114 ± 0.0467

REFFM(.1)|H 1.3995 ± 0.0134 1.7507 ± 0.0143 2.0598 ± 0.0143 2.4442 ± 0.0126 3.1323 ± 0.0279

REFFM(.25)|H 1.2298 ± 0.0124 1.4341 ± 0.0119 1.5345 ± 0.0153 1.7109 ± 0.0125 2.1631 ± 0.0177

REFFM(.5)|H 0.9544 ± 0.0209 1.1164 ± 0.0087 1.1985 ± 0.0114 1.2547 ± 0.0058 1.3204 ± 0.0128

Table 6: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for EVγ parents with γ = 1.

n 200 500 1000 2000 5000

EVγ (γ = 1) (ρ = −1)

MSEH 0.0558 ± 0.0010 0.0286 ± 0.0003 0.0175 ±0.0002 0.0107 ± 0.0001 0.0057 ± 0.0001

REFFM|H 1.0262 ± 0.0052 1.0307 ± 0.0040 1.0242 ± 0.0045 1.0194 ± 0.0055 1.0165 ± 0.0026

REFF
H0|H

1.2253 ± 0.0286 1.4324 ± 0.0316 1.6822 ± 0.0327 1.9978 ± 0.0249 2.5151 ± 0.0221

REFF
M1|H

1.0830 ± 0.0222 1.2712 ± 0.0188 1.3845 ± 0.0107 1.3456 ± 0.0112 1.1382 ± 0.0052

REFFH(0)|H 1.3168 ± 0.0054 1.3331 ± 0.0072 1.3390 ± 0.0090 1.3476 ± 0.0096 1.3565 ± 0.0075

REFFH(.1)|H 1.1832 ± 0.0053 1.1813 ± 0.0081 1.1786 ± 0.0058 1.1764 ± 0.0077 1.1755 ± 0.0048

REFFH(.25)|H 1.0773 ± 0.0047 1.0781 ± 0.0032 1.0731 ± 0.0036 1.0719 ± 0.0045 1.0731 ± 0.0027

REFFH(.5)|H 0.9096 ± 0.0036 0.9131 ± 0.0033 0.9141 ± 0.0027 0.9141 ± 0.0040 0.9143 ± 0.0026

REFFM(0)|H 1.3544 ± 0.0090 1.3613 ± 0.0064 1.3604 ± 0.0076 1.3637 ± 0.0085 1.3678 ± 0.0054

REFFM(.1)|H 1.2187 ± 0.0076 1.2128 ± 0.0052 1.2021 ± 0.0059 1.1964 ± 0.0070 1.1913 ± 0.0039

REFFM(.25)|H 1.1100 ± 0.0065 1.1081 ± 0.0050 1.0988 ± 0.0050 1.0935 ± 0.0062 1.0895 ± 0.0031

REFFM(.5)|H 0.9320 ± 0.0052 0.9414 ± 0.0035 0.9364 ± 0.0037 0.9323 ± 0.0052 0.9312 ± 0.0025

• For the EVγ , γ = 0.25, and regarding REFF indicators, only H(0.5) exhibits a REFF

measure smaller than one for all n. The reduced-bias estimator H0 behaves better than

the Hill and quite close to H(0.25), but not so high as for Fréchet parents. Both for

H(p) and M(p) the REFF indicators increase as p decreases, with the moment estimator

behaving better than the Hill estimator, for the same p. The estimator with the highest

REFF -indicator, among the ones considered is M(0). However H(0) provides a REFF

indicator quite close to 1.5 for all n.

For the EVγ with γ = 1 the main difference lies in the fact that now the reduced-bias

indicator H0 provides the highest REFF indicators for all n ≥ 500. The relative behaviour
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Table 7: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for EVγ parents with γ = 2.

n 200 500 1000 2000 5000

EVγ (γ = 2) (ρ = −1)

MSEH 0.0129 ± 0.0029 0.0612 ± 0.0013 0.0372 ± 0.0003 0.0226 ± 0.0002 0.0118 ± 0.0002

REFFM|H 1.0637 ± 0.0050 1.0689 ± 0.0042 1.0576 ± 0.0039 1.0411 ± 0.0048 1.0344 ± 0.0028

REFF
H0|H

0.5819 ± 0.1552 0.9426 ± 0.0094 1.0074 ± 0.0059 1.1089± 0.0044 1.3571 ± 0.0028

REFF
M1|H

0.7405 ± 0.1205 1.0356 ± 0.0182 1.1190 ± 0.0060 1.1616 ± 0.0091 1.1334 ± 0.0051

REFFH(0)|H 1.0953 ± 0.0047 1.0722 ± 0.0023 1.0640 ± 0.0027 1.0561 ± 0.0030 1.0412 ± 0.0019

REFFH(.1)|H 1.0747 ± 0.0037 1.0566 ± 0.0017 1.0505 ± 0.0022 1.0451 ± 0.0026 1.0322 ± 0.0021

REFFH(.25)|H 1.0388 ± 0.0029 1.0302 ± 0.0014 1.0278 ± 0.0019 1.0252 ± 0.0016 1.0181 ± 0.0016

REFFH(.5)|H 0.9426 ± 0.0033 0.9509 ± 0.0034 0.9556 ± 0.0026 0.9588 ± 0.0025 0.9664 ± 0.0017

REFFM(0)|H 1.1839 ± 0.0096 1.1554 ± 0.0045 1.1328 ± 0.0040 1.1052 ± 0.0039 1.0836 ± 0.0044

REFFM(.1)|H 1.1563 ± 0.0082 1.1365 ± 0.0044 1.1162 ± 0.0039 1.0918 ± 0.0039 1.0733 ± 0.0044

REFFM(.25)|H 1.1131 ± 0.0060 1.1056 ± 0.0040 1.0896 ± 0.0038 1.0683 ± 0.0040 1.0561 ± 0.0036

REFFM(.5)|H 0.9958 ± 0.0040 1.0134 ± 0.0057 1.0060 ± 0.0036 0.9959 ± 0.0043 0.9947 ± 0.0030

Table 8: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for Student parents tν , with ν = 4 degrees of freedom.

n 200 500 1000 2000 5000

Student t4 (γ = 0.25, ρ = −0.5)

MSEH 0.0204 ± 0.0004 0.0112 ± 0.0002 0.0073 ± 0.0001 0.0048 ± 0.0001 0.0029 ± 0.0000

REFFM|H 0.5277 ± 0.0069 0.6198 ± 0.0068 0.6696 ± 0.0052 0.7078 ± 0.0040 0.7481 ± 0.0082

REFF
H0|H

1.3992 ± 0.0171 1.3600 ± 0.0097 1.3249 ± 0.0108 1.2811 ± 0.0105 1.2360 ± 0.0100

REFF
M1|H

0.5837 ± 0.0079 0.6227 ± 0.0066 0.6547 ± 0.0042 0.6855 ± 0.0053 0.7280 ± 0.0083

REFFH(0)|H 1.9181 ± 0.0233 1.2850 ± 0.0113 0.8359 ± 0.0047 0.5610 ± 0.0042 0.3620 ± 0.0022

REFFH(.1)|H 3.0107 ± 0.0310 3.4637 ± 0.0290 3.9376 ± 0.0358 4.4930 ± 0.0502 5.4485 ± 0.0625

REFFH(.25)|H 1.7002 ± 0.0156 1.7846 ± 0.0127 1.8815 ± 0.0126 1.9872 ± 0.0144 2.1792 ± 0.0143

REFFH(.5)|H 1.0035 ± 0.0011 1.0013 ± 0.0009 1.0007 ± 0.0004 1.0004 ± 0.0000 1.0001 ± 0.0004

REFFM(0)|H 0.5062 ± 0.0059 0.5192 ± 0.0052 0.5198 ± 0.0025 0.5135 ± 0.0040 0.5044 ± 0.0046

REFFM(.1)|H 0.5250 ± 0.0065 0.5603 ± 0.0058 0.5760 ± 0.0024 0.5844 ± 0.0046 0.5942 ± 0.0057

REFFM(.25)|H 0.5336 ± 0.0070 0.5841 ± 0.0062 0.6086 ± 0.0027 0.6252 ± 0.0046 0.6442 ± 0.0065

REFFM(.5)|H 0.5289 ± 0.0069 0.6197 ± 0.0067 0.6692 ± 0.0051 0.7075 ± 0.0040 0.7479 ± 0.0082

of the REFF indicators for H(p) and M(p) follows a pattern similar to the one associated

to a EV0.25, but both H(0.5) and M(0.5) have REFF indicators smaller than one for all

n.

• For all Student models, and as expected due to the symmetry of the model around 0,

H(0.5) is almost coincident with H, as well as M(0.5) almost equals M . For the Student

model with ν = 4 degrees of freedom, the reduced-bias estimator H0 behaves quite well,

even for small values of n, but H(0.25) overpasses it, being H(0.1) the best estimator

among the ones considered. All M(p) estimators behave worse than the Hill estimator

at optimal levels when ρ approaches 0, but for ν = 2 the moment estimator M behaves
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Table 9: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for Student parents tν , with ν = 2 degrees of freedom.

n 200 500 1000 2000 5000

Student t2 (γ = 0.5, ρ = −1)

MSEH 0.0230 ± 0.0004 0.0116 ± 0.0001 0.0070 ± 0.0001 0.0043 ± 0.0001 0.0022 ± 0.0000

REFFM|H 0.6813 ± 0.0041 0.8123 ± 0.0062 0.9086 ± 0.0048 1.0057 ± 0.0065 1.1488 ± 0.0112

REFF
H0|H

1.4179 ± 0.0195 1.6942 ± 0.0247 1.9507 ± 0.0214 2.2143 ± 0.0255 2.6311 ± 0.0317

REFF
M1|H

0.6258 ± 0.0058 0.7016 ± 0.0084 0.7619 ± 0.0066 0.8207 ± 0.0107 0.8988 ± 0.0076

REFFH(0)|H 0.4506 ± 0.0041 0.3190 ± 0.0022 0.2483 ± 0.0016 0.1947 ± 0.0017 0.1403 ± 0.0010

REFFH(.1)|H 2.3302 ± 0.0277 2.5868 ± 0.0176 2.8415 ± 0.0233 3.1373 ± 0.0223 3.5726 ± 0.0243

REFFH(.25)|H 1.9862 ± 0.0166 2.2168 ± 0.0163 2.4293 ± 0.0166 2.6650 ± 0.0189 3.0537 ± 0.0364

REFFH(.5)|H 1.0060 ± 0.0018 1.0017 ± 0.0008 1.0003 ± 0.0007 1.0000 ± 0.0004 0.9998 ± 0.0003

REFFM(0)|H 0.5173 ± 0.0047 0.4765 ± 0.0032 0.4345 ± 0.0033 0.3886 ± 0.0038 0.3243 ± 0.0025

REFFM(.1)|H 0.6043 ± 0.0053 0.6121 ± 0.0047 0.5993 ± 0.0048 0.5756 ± 0.0067 0.5294 ± 0.0049

REFFM(.25)|H 0.6572 ± 0.0056 0.7039 ± 0.0053 0.7161 ± 0.0055 0.7163 ± 0.0077 0.6898 ± 0.0055

REFFM(.5)|H 0.6830 ± 0.0047 0.8109 ± 0.0060 0.9059 ± 0.0045 1.0023 ± 0.0060 1.1458 ± 0.0114

Table 10: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for Student parents tν , with ν = 1 degrees of freedom.

n 200 500 1000 2000 5000

Student t1 (γ = 1, ρ = −2)

MSEH 0.0370 ± 0.0005 0.0166 ± 0.0003 0.0095 ± 0.0001 0.0053 ± 0.0001 0.0025 ± 0.0000

REFFM|H 0.8668 ± 0.0074 0.9151 ± 0.0068 0.9234 ± 0.0052 0.9232 ± 0.0044 0.9272 ± 0.0044

REFF
H1|H

0.7966 ± 0.1693 1.1591 ± 0.0109 1.1584 ± 0.0078 1.1610 ± 0.0075 1.1636 ± 0.0055

REFF
M1|H

0.5245 ± 0.0749 0.7026 ± 0.0120 0.7528 ± 0.0119 0.8086 ± 0.0127 0.8816 ± 0.0087

REFFH(0)|H 0.2529 ± 0.0023 0.1712 ± 0.0017 0.1303 ± 0.0011 0.0976 ± 0.0009 0.0671 ± 0.0007

REFFH(.1)|H 0.5569 ± 0.0061 0.4928 ± 0.0047 0.4602 ± 0.0048 0.4290 ± 0.0052 0.3909 ± 0.0044

REFFH(.25)|H 1.5400 ± 0.0146 1.6404 ± 0.0098 1.7504 ± 0.0151 1.8564 ± 0.0185 2.0077 ± 0.0242

REFFH(.5)|H 1.0060 ± 0.0023 1.0022 ± 0.0010 0.9998 ± 0.0017 0.9992 ± 0.0011 0.9988 ± 0.0008

REFFM(0)|H 0.3431 ± 0.0029 0.2423 ± 0.0021 0.1879 ± 0.0013 0.1435 ± 0.0012 0.1004 ± 0.0009

REFFM(.1)|H 0.5361 ± 0.0055 0.4734 ± 0.0047 0.4455 ± 0.0045 0.4177 ± 0.0051 0.3826 ± 0.0042

REFFM(.25)|H 0.7588 ± 0.0082 0.6971 ± 0.0074 0.6559 ± 0.0065 0.6139 ± 0.0064 0.5614 ± 0.0067

REFFM(.5)|H 0.8698 ± 0.0078 0.9179 ± 0.0069 0.9234 ± 0.0047 0.9225 ± 0.0050 0.9264 ± 0.0043

slightly better than the Hill for large n. As mentioned before, H(0), possibly not even

consistent for the estimation of γ, behaves really very badly, with sample paths quite

stable, but around a value a long way from the target.

4 An application to the Nasdaq Composite index

As an empirical example, we place ourselves in a context from finance, analyzing the risk for

investors holding short positions in the Nasdaq Composite index, i.e., for investors betting on a

fall in the index.
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Table 11: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for GP parents, with γ = 0.5.

n 200 500 1000 2000 5000

GPγ (γ = 0.5) (ρ = −0.5)

MSEH 0.0362 ± 0.0006 0.0208 ± 0.0003 0.0139 ± 0.0003 0.0094 ± 0.0001 0.0057 ± 0.0000

REFFM|H 1.0687 ± 0.0071 1.1037 ± 0.0063 1.1145 ± 0.0060 1.1192 ± 0.0041 1.1317 ± 0.0063

REFF
H0|H

1.3803 ± 0.0082 1.3390 ± 0.0069 1.3019 ± 0.0105 1.2648 ± 0.0063 1.2336 ± 0.0061

REFF
M1|H

1.1892 ± 0.0095 1.1682 ± 0.0059 1.1557 ± 0.0059 1.1486 ± 0.0046 1.1493 ± 0.0062

REFFH(0)|H 0.9984 ± 0.0000 0.9994 ± 0.0004 0.9997 ± 0.0003 0.9999 ± 0.0028 0.9999 ± 0.0004

REFFH(.1)|H 0.9667 ± 0.0013 0.9693 ± 0.0019 0.9703 ± 0.0009 0.9692 ± 0.0015 0.9711 ± 0.0014

REFFH(.25)|H 0.9119 ± 0.0031 0.9189 ± 0.0040 0.9206 ± 0.0022 0.9193 ± 0.0024 0.9242 ± 0.0020

REFFH(.5)|H 0.7982 ± 0.0048 0.8131 ± 0.0063 0.8168 ± 0.0045 0.8192 ± 0.0023 0.8270 ± 0.0018

REFFM(0)|H 1.0668 ± 0.0071 1.1029 ± 0.0063 1.1142 ± 0.0060 1.1190 ± 0.0041 1.1317 ± 0.0063

REFFM(.1)|H 1.0280 ± 0.0062 1.0664 ± 0.0061 1.0796 ± 0.0060 1.0849 ± 0.0038 1.0989 ± 0.0059

REFFM(.25)|H 0.9599 ± 0.0058 1.0070 ± 0.0053 1.0205 ± 0.0067 1.0290 ± 0.0036 1.0431 ± 0.0046

REFFM(.5)|H 0.8179 ± 0.0040 0.8790 ± 0.0036 0.8996 ± 0.0062 0.9130 ± 0.0029 0.9297 ± 0.0042

Table 12: Simulated mean squared errors of H (first row) and REFF -indicators of M , H0, M1, H(p) and M(p),

p = 0, 0.1, 0.25 and 0.5, for GP parents, with γ = 2.

n 200 500 1000 2000 5000

GPγ (γ = 2) (ρ = −2)

MSEH 0.0658 ± 0.0012 0.0309 ± 0.0006 0.0176 ± 0.0003 0.0100 ± 0.0001 0.0047 ± 0.0001

REFFM|H 1.0162 ± 0.0040 1.0075 ± 0.0034 1.0040 ± 0.0059 0.9998 ± 0.0043 0.9957 ± 0.0037

REFF
H1|H

1.1632 ± 0.0072 1.1542 ± 0.0062 1.1490 ± 0.0060 1.1431 ± 0.0044 1.1307 ± 0.0048

REFF
M1|H

1.1601 ± 0.0067 1.2215 ± 0.0086 1.2874 ± 0.0109 1.3343 ± 0.0067 1.4110 ± 0.0070

REFFH(0)|H 0.9979 ± 0.0000 0.9991 ± 0.0031 0.9996 ± 0.0043 0.9998 ± 0.0000 0.9999 ± 0.0003

REFFH(.1)|H 0.9563 ± 0.0014 0.9553 ± 0.0029 0.9563 ± 0.0027 0.9583 ± 0.0030 0.9579 ± 0.0028

REFFH(.25)|H 0.8860 ± 0.0035 0.88556 ± 000.39 0.8887 ± 0.0035 0.8900 ± 0.0043 0.8903 ± 0.0040

REFFH(.5)|H 0.7469 ± 0.0070 0.7472 ± 0.0029 0.7511 ± 0.0034 0.7533 ± 0.0055 0.7549 ± 0.0044

REFFM(0)|H 1.0142 ± 0.0039 1.0067 ± 0.0033 1.0036 ± 0.0059 0.9996 ± 0.0043 0.9957 ± 0.0037

REFFM(.1)|H 0.9730 ± 0.0031 0.9654 ± 0.0027 0.9614 ± 0.0054 0.9583 ± 0.0040 0.9543 ± 0.0014

REFFM(.25)|H 0.9033 ± 0.0040 0.8961 ± 0.0026 0.8931 ± 0.0056 0.8907 ± 0.0039 0.8873 ± 0.0039

REFFM(.5)|H 0.7599 ± 0.0062 0.7585 ± 0.0019 0.7572 ± 0.0067 0.7574 ± 0.0047 0.7537 ± 0.0042

Since we are interested in the analysis of the risk of holding short positions, we begin with

the positive log-returns, i.e., with Xi = ln (Si+1/Si) = −Li, 1 ≤ i ≤ n − 1, assumed to be

stationary and weakly dependent. With the purpose of comparison with a case study from

Drees (2003), we have used the daily log-returns from 1997 to 2000, which corresponds to a

sample size n = 1037. Although there is some increasing trend in the volatility, stationarity is

assumed, under the same considerations as in Drees (2003).

In Figure 4.1 we display the estimates for the tail index associated to γ̂H
n,k, γ̂M

n,k, γ̂
H(p)
n,k and

γ̂
M(p)
n,k for some values of p.

It is clear from the analysis of the γ-scatterplots that all estimates are positive for k from
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Figure 4.1: Tail index estimates based on γ̂H
n,k and γ̂

H(p)
n,k (left) and on γ̂M

n,k and γ̂
M(p)
n,k (right), for p =

0.05, 0.25, 0.5.

about 50 up to 450, i.e., there is a strong evidence for a heavy-tailed underlying distribution.

However, the patterns exhibited by the different estimators γ̂
H(p)
n,k are significantly different for

different values of the tuning parameter p. We have been, at a first sight, particularly puzzled

with the sample paths of γ̂
H(0)
n,k , and such sample paths immediately suggest a possible non-

consistency of γ̂
H(0)
n,k due to an infinite left endpoint of the underlying model. We have thus

decided to analyze more deeply both tails of the model underlying the sample Xi, 1 ≤ i ≤ 1036.

For that we have used not only the Hill estimator, but also the MVRB-estimator H0 in (1.7),

which is, for heavy tails, an alternative to the Hill estimator not only at the optimal levels or

for large k, as happens with the “classical” second order reduced bias tail index estimators, but

for all k. It was indeed this estimator that led us to the estimate γ̂ = 0.34 pictured in Figure

4.1 and consequently to the choice p = 0.25 for the class of estimators H(p) in (1.10).

Right tail analysis of Nasdaq data. In Figure 4.2, and working with the n0 = 570 positive

values of the log-returns Xi on NASDAQ data, we picture the sample paths of ρ̂0(k) and ρ̂1(k).

The algorithm in sub-section 3.2 leads us to choose, on the basis of any stability criterion for

large values of k, the estimate associated to τ = 0. We have considered ρ̂ = ρ̂0(k1), with

k1 = n0.995
0 . We have got ρ̂0 = ρ̂0(552) = −0.71. The use of the β-estimate suggested in the

above mentioned algorithm, led us to the estimate β̂0 = 1.04. For the estimation of γ through

the reduced bias tail index estimators, we have used the heuristic estimate of the level provided

in Gomes and Pestana (2007a), i.e., the value k01 ≡ k01(n;β, ρ) =
(
1.96(1 − ρ)n−ρ

0 /|β|
)2/(1−2ρ)

.

Levels of this type are still levels such that
√

k (n/k)ρ → λ, finite, and are not yet optimal

for the tail index estimation through second order reduced-bias tail index estimators. However,

do not forget that with a tail index estimator like H, in (1.7), we are always safe and able to
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provide a more reliable estimation than through the Hill estimates. We came to k̂01 = 109 and

to the estimate γ̂ = H0(109) = 0.34. Note that the estimation of the optimal threshold (Hall

and Welsh, 1985) for the estimation through the Hill estimator in (1.4), leads us to

k̂0 =

(
(1 − ρ̂) n−bρ

0

β̂
√

−2ρ̂

)2/(1−2bρ)

= 55 =⇒ γ̂H
n,k(k̂0) = 0.41.
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ˆ k 0 = 55

ˆ k 01 =109

Figure 4.2: Estimates of the second order parameters ρ, through bρ0(k) and bρ1(k) (left), and the tail index γ (right), for

the positive log-returns P , on NASDAQ data.

Left tail analysis of Nasdaq data. Figure 4.3 is related to a similar data analysis, carried

on the n0 = 466 positive values of Li. We have now obtained ρ̂ = −0.71, β̂ = 1.05, k̂0 = 48,

γ̂H
n,k(k̂0) = 0.35, k̂01 = 97 and γ̂ = H0(97) = 0.30.
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Figure 4.3: Estimates of the second order parameters ρ, through bρ0(k) and bρ1(k) (left), and the tail index γ (right), for

the negative log-returns L, on NASDAQ data.

This data analysis leads us to the conclusion that the underlying model detains a location

median not far from 0. Indeed, when we induce a shift associated to the tuning parameter
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p = 0.5, we get a sample path not a long way from that of the Hill estimator (see Figure 4.1,

left). Moreover, relying on the observed results for the γ estimates, it is not sensible to discard

the possibility that both tails are heavy (with the right tail underlying the Xi slightly heavier

than the left tail (γ̂ = 0.34 for the right tail versus γ̂ = 0.30 for the left tail). This obviously

implies an underlying model with support (−∞, +∞). It is then not at all sensible to induce

a shift X1:n, like it is suggested in Drees (2003). Such a shift is appealing, because it induces

for the Hill estimator an almost flat sample path (see again Figure 4.1, left), but as mentioned

before, the “flat zone” leads, in this case, to a severe underestimation of the tail index γ. To

support this statement, look again at Figures 3.7 and 3.8, with the pattern of mean values (E)

and mean squared errors (MSE) of the PORT-Hill and -moment estimators, respectively, for

models from a Student-tν parent with ν = 4 degrees of freedom (γ = 0.25).

Although a parametric data analysis of this data is outside the scope of the present paper,

the similarities between the behavior of the mean value patterns in Figures 3.7 and 3.8 and

the sample paths of the Hill and moment PORT-estimators in Figure 4.2, suggest that the d.f.

underlying these returns is not a long way from a Student-t d.f. or its skewed extensions, which

are very common models in the area of extremes and finance. For recent references see Jones

and Faddy (2003) and McNeil, Frey and Embrechts (2005).

In this application, and taking into account the previous analysis, it seems sensible to consider

as a compromise choice in the PORT-Hill estimator, the shift induced by the first empirical

quartile, i.e., to pick the value p = 0.25, as we have already seen in Figure 4.1, but the possibility

of working simultaneously with other estimators, like the MV RB estimator here considered,

should not at all be discarded, because this can help us to better estimate the extreme value

index, a parameter of primordial importance in all subsequent extreme value analysis needed.
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