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Abstract—Fluid antenna system promises to obtain enormous
diversity in the small space of a mobile device by switching the
position of the radiating element to the most desirable position
from a large number of prescribed locations of the given space.
Previous researches have revealed the promising performance of
fluid antenna systems if the position with the maximum received
signal-to-noise ratio (SNR) is chosen. However, selecting the best
position, referred to as port selection, requires a huge number of
SNR observations from the ports and may prove to be infeasible.
This letter tackles this problem by devising a number of fast port
selection algorithms utilizing a combination of machine learning
methods and analytical approximation when the system observes
only a few ports. Simulation results illustrate that with only 10%
of the ports observed, more than an order of magnitude reduction
in the outage probability can be achieved. Even in the extreme
cases where only one port is observed, considerable performance
improvements are possible using the proposed algorithms.

Index Terms—Antenna position selection, Fluid antennas, Ma-
chine learning, Port selection, Selection combining, Outage.

I. INTRODUCTION

D IVERSITY and multiplexing gain are interconvertible by
advanced coding and signal processing schemes [1]. This

has provided the foundation for multiple-input multiple-output
(MIMO) to flourish in recent-generations mobile communica-
tions. The introduction of massive MIMO means that in 5G,
there are 64 antennas at a base station (BS) [2], [3]. However,
the same rise in the number of antennas at a user equipment
(UE) is not foreseen for the reason that the space of the UE is
limited even though the antenna size is getting smaller when
moving up the frequency bands. Furthermore, the challenge of
incorporating multiple antennas is that the common practice
is to ensure antenna spacing of at least half a wavelength for
sufficient diversity and minimal mutual coupling.

Recently, it has emerged that space diversity can be obtained
by a very flexible, fluidic conductive antenna structure which is
referred to as fluid antenna [4]. Such flexible antennas should
not come as a surprise following the successes by Mitsubishi
Electric showing a radiation efficiency of 70% using seawater
for antennas [5] and the work by Xing et al. achieving 360-
degree beam-steering using a saltwater-based antenna [6]. In
addition, reconfigurable fluid antennas have been designed,
resulting in a wide range of functionalities, e.g., [7]–[11]. A
contemporary survey on this topic can be found in [12].

So, what does it mean to have fluid antenna at a UE?
One outcome is that we can now have a position-switchable

antenna which can maximize its received signal-to-noise ratio
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(SNR) by choosing the best position (i.e., port selection) in a
given space. The beauty is that diversity comes essentially by
a single antenna in the manner of selection combining without
the concern of mutual coupling. In [13], such position-tuneable
fluid antenna system was analyzed and it was revealed that a
fluid antenna system could match the outage performance of a
maximal-ratio combining (MRC) receiver with many spatially
uncorrelated antennas if the number of switchable positions,
referred to as ‘ports’, was sufficiently large even if the space
is small at the UE. The capacity gain using fluid antenna for
a point-to-point system was also recently analyzed in [14].

The working principle of fluid antenna is simple. It skims
through a large collection of fading envelopes from the ports
and switches the radiating element to the one with the highest
peak for the maximum SNR. To have a large gain, the number
of ports, N , should be large, which can be practically realized
using the surface-wave based architecture in [11]. Estimating
the SNRs for the very large number of ports, unfortunately, is
infeasible, if not impossible, as it incurs delay in switching to
each port for SNR observation.1 This motivates our work to
tackle the port selection problem in which only a very small
number of ports of the fluid antenna are observed.

In particular, the aim of this letter is to develop port selection
algorithms that can approach the performance of optimal port
selection when only the SNRs of a few ports are observed. This
is considered possible because of the strong spatial correlation
among the ports in a tight space. We will present a number of
machine learning based algorithms for port selection of fluid
antenna systems. The results are indispensable in realizing the
benefits of fluid antenna in practice. Machine learning methods
have recently been applied in antenna selection problems [16],
[17] but our problem has two unique features, namely (1) an
extremely large number of ports for selection based on limited
observations, and (2) strong channel correlation due to high
density of the ports, which have not been considered before.2

Our contributions can be summarized as follows:

• Using a mixture of machine learning methods including
the new framework, Smart, ‘Predict and Optimize’ (SPO)
[18], we devise algorithms that infer the best port based
on only a few port observations. Results demonstrate that
great reduction in outage probability can be obtained even
with only one port observation using the methods.

1Switching materials from one place to another causes delay. With the use
of nano-pumps and higher frequency bands, the diameter of the micro-fluidic
system for the fluid antenna would be less than 1mm, and the response time
would be in the sub-millisecond range [15] and such delay can be negligible.
However, port switching many times would cause unbearable delays.

2The features suggest that the channel envelope follow certain patterns as
a result of the correlation. Machine learning, being a well-known tool to find
subtle patterns, becomes a natural choice to our problem.

ar
X

iv
:2

20
1.

05
70

2v
1 

 [
m

at
h.

O
C

] 
 1

4 
Ja

n 
20

22



SUBMITTED TO IEEE COMMUNICATIONS LETTERS, 2022 2

• Additionally, fluid antenna with learning based port selec-
tion outperforms considerably multiple antenna systems
with best antenna selection occupying the same space.
This provides a strong justification to the practicality of
fluid antenna systems as a new means for spatial diversity,
contrasting to systems with multiple fixed antennas.

II. FLUID ANTENNA SYSTEM

A. System Model

We consider a point-to-point system in which a transmitter
using a standard antenna is sending information to a mobile
receiver equipped with a fluid antenna. The fluid antenna can
switch the location of its radiating element to one of the N
preset locations (or ports) evenly distributed along a linear
space of length, Wλ in which λ is the wavelength. The delay
for port switching is ignored. Under flat fading, the received
signal at the k-th port (time index omitted) is given by

zk = gks+ ηk, (1)

where gk denotes the complex channel at the k-th port, which
is complex Gaussian distributed with zero mean and variance
of σ2, ηk is the zero-mean complex Gaussian noise at the k-
th port with variance of σ2

η , and s represents the information
symbol. The received average SNR at each port is found as

Γ = σ2 E[|s|2]

σ2
η

≡ σ2Θ, where Θ ,
E[|s|2]

σ2
η

. (2)

The channels {gk}∀k are considered to be spatially corre-
lated because they can be arbitrarily close to each other. For
small W , it is expected that {gk}∀k are highly correlated. To
characterize the correlation, we measure the displacement of
the k-th port from the first port as

dk =

(
k − 1

N − 1

)
Wλ, for k = 1, 2, . . . , N. (3)

In this letter, the amplitude of the channel at each port, |gk|, is
Rayleigh distributed, with E[|gk|2] = σ2. With 2-D isotropic
scattering and assuming isotropic ports, the cross-correlation
function of the channel ports satisfies [19]

φgkg`(dk − d`) =
σ2

2
J0

(
2π(k − `)
N − 1

W

)
, (4)

where J0(·) is the zero-order Bessel function of the first kind.

B. Port Selection

To optimize the system performance, the aim is to switch the
radiating element to the best port for the maximum received
SNR. Mathematically, this is expressed as

kopt = argk max {|g1|, |g2|, . . . , |gN |} , (5)

where kopt gives the index of the optimal port. The search is
straightforward if the receiver knows all {|gk|}. Nevertheless,
in practice, the number of ports, N , for a fluid antenna can be
very large3 and estimating |gk| for all the ports is infeasible.

3Note that if the surface-wave based architecture in [11] is used, the number
of ports for the fluid antenna will only be limited by the resolution of the
digital control of the pump. Hence, N can be extremely large.

Fig. 1. Port selection of a fluid antenna knowing only a subset of ports.

Therefore, in this letter, we consider a more practical scenario
where only a small subset of the ports are observed. As such,
the problem (5) becomes (see Fig. 1)

k∗ = argk max {{|gk|}k∈K, {|g̃k|}k∈U} , (6)

where K denotes the set of the indices of known channel gains
by direct observation, U is the set of the indices of estimated
channel gains by other means, and g̃k represents an estimated
channel at the k-th port if it has been estimated.

The problem (6) suggests that the unobserved ports should
be estimated somehow so that port selection can be conducted.
In the sequel, we develop algorithms for estimating the best
port directly or the unobserved ports for port selection.

III. PROPOSED ALGORITHMS

In this section, we present several algorithms that solve (6)
suboptimally. All of them exploit the spatial correlation over
the ports of the fluid antenna, assuming a linear structure.

A. Analytical Approximation (AA)

Given the correlation structure (4), it makes sense to model
the channels at the N antenna ports by

g1 = σx0 + jσy0

gk = σ

(√
1− µ2

kxk + µNx0

)
+ jσ

(√
1− µ2

kyk + µky0

)
, k = 2, . . . , N,

(7)
in which x0, . . . , xN , y0, . . . , yN are all independent Gaussian
random variables with zero mean and variance of 1/2, and
{µk} are the cross-correlation parameters given by [19]

µk = J0

(
2π(k − 1)

N − 1
W

)
, for k = 2, . . . , N. (8)
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The objective here is to construct an estimate of |g`| for all
` ∈ U given the known (or observed) channels {|gk|}k∈K. We
understand that the probability density function (pdf) of |g`|
for ` ∈ U\{1} conditioned on the known channels is

p|g`|(r|{|gk|}k∈K)

(a)
= p|g`|(r|x0, y0)

(b)
=

2r2

σ2(1− µ2
`)
e
− r

2+σ2µ2` (x
2
0+y20)

σ2(1−µ2
`
) I0

(
2µ`r

√
x20 + y20

σ(1− µ2
`)

)
,

(9)

where (a) uses the fact that the correlation between the ports
is connected only by the random variables, x0 and y0 and the
respective cross-correlation parameter, (b) comes from the fact
that the conditional pdf is Rician distribution with the mean
determined by x0 and y0, and I0(·) is the zero-order modified
Bessel function of the first kind. As a result, it is possible to
provide an estimate for |g`| by generating a random sample
based on the conditional pdf in (9). Using this technique, the
AA method can estimate all the unobserved ports easily.

B. Long Short-Term Memory (LSTM)

In order to learn the correlation structure between the ports
and exploit it for the estimation of {|g`|}`∈U , machine learning
techniques are useful and in particular, LSTM is a special type
of recurrent neural network that memorizes information in a
time-series manner. LSTM has been proved to be effective in
many communications systems such as wireless caching [20].
Here, we apply LSTM to treat the channel gains over the ports
in space as a time series (a space series to be precise in our
case). In this way, the forecasting capability of LSTM can be
used to estimate the unobserved ports. Supervised learning is
adopted to train the LSTM model with the mean-square-error
(MSE) as the training stage loss function, i.e.,

Lmse = E

[
1

|U|
∑
`∈U

(|g`| − |g̃`|)2
]
, (10)

where g̃` is the estimate as the output of the LSTM model, g`
is the true channel gain known in the dataset for training, and
the expectation is taken over all the examples in the dataset.
The detailed parameters of the LSTM model will be provided
in Section IV when simulation results are discussed.

C. SPO

While estimating the unobserved ports before port selection
is a logical thing to do, this does not always return the best
estimate of the best port. A better way is to base the estimation
on the decision one wants to make. This was tackled in [18]
where the SPO framework which measured the decision error
induced by a prediction was proposed. In a nutshell, SPO is
designed to perform estimation (or prediction) with emphasis
on the outcome of the final optimization. Specifically, for our
port selection problem, this leads to the loss function

Lspo(g̃, g) = gTω∗(g̃)− z∗(g), (11)

where g , [|g1| · · · |gN |]T , g̃ , [|g̃1| · · · |g̃N |]T , the super-
script T denotes the transpose of a vector,

ω∗(g) = arg max
x∈X

gTx, (12)

where X is the set of all possible N -dimensional vectors that
have zeros in all dimensions except one being unity, and

z∗(g) = max
x∈X

gTx. (13)

The second term of (11) gives the channel gain of the best port
while the first term finds the channel gain of the estimated port.
Intriguingly, in (11), there is no restriction on the accuracy of
the estimated unobserved ports. In other words, as long as
ω∗(g̃) outputs the correct port, it is as good as perfect even if
some estimates deviate greatly from the true values.

The minimization (11) is however NP-hard and the follow-
ing approximation of Lspo(g̃, g) has been proposed [18]:

Lspo+(g̃, g) = (gT − 2g̃T )ω∗(gT − 2g̃T )

+ 2g̃Tω∗(g)− gTω∗(g), (14)

in which g̃ = f(a) is obtained by some mapping function f
over the feature vector a which basically contains the channel
gains of all the observed ports. In this letter, we adopt a linear
mapping so that g̃ = Ba where B is an N ×|K| matrix. Note
that in so doing, (14) combines the process of estimation and
optimization together. Despite this, the minimization of (14) is
still not solvable because ω∗(·) involves maximization over a
discrete set. Fortunately, according to [21], we can replace the
feasible set X by its convex hull without changing the optimal
value of (12). Hence, we can write

ω∗(g) = arg max
x∈conv(X )

gTx. (15)

With (15), (14) can be minimized using a subgradient method,
with the subgradient of (14) derived as

s(g̃, g) = 2 [ω∗(g)− ω∗(2g̃ − g)] . (16)

Overall, what we need to obtain is the mapping B, which
eventually gives out the port selection solution ω∗(Ba). This
can be done by solving

min
B∈RN×|K|

Q∑
i=1

Lspo+(Ba(i), g(i)), (17)

where Q is the batch size or the number of training examples in
the dataset, a(i) denotes the feature vector of the i-th sample,
and g(i) is i-th labelled sample. A stochastic gradient descent
algorithm is proposed for updating B (see Algorithm 1).

D. Other Variants

It is possible to mix the above approaches to perform better.
Given a dataset of Q labelled examples, we can split it into
two datasets, half for training and another half for testing SPO.
The output for testing of SPO produces a feature set that can
be used to train and test LSTM if SPO and LSTM work in a
concatenated manner. Two-third of the feature set can be used
to train LSTM while the rest is used to test it. Another option
is to use AA to preprocess the labelled dataset before it can
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Algorithm 1: Stochastic Gradient Descent (SGD)

1: Initialize B1 ∈ RN×|K| randomly
2: Set i = t = 1
3: Repeat
4: While i ≤ Q compute

ω̃
(i)
t = ω∗(2Bta

(i) − g(i))

G̃
(i)
t = (ω∗(g(i))− ω̃(i)

t )(a(i))T

i = i+ 1

5: end While

Gt =
1

Q

Q∑
i=1

G̃
(i)
t

Bt+1 = Bt − αGt, for some α > 0

t = t+ 1

6: Until convergence

be used for SPO. We refer to these approaches as SPO+LSTM
and AA+SPO+LSTM, respectively. Table I provides the com-
putational complexity of the different schemes using the big-O
notations, where we focus on how the complexity scales with
the parameters of the fluid antenna, |K| and |U|.

TABLE I
ONLINE COMPUTATIONAL COMPLEXITY FOR THE SCHEMES

Method Details
SPO O(mn)

LSTM O(n)
AA O(n)

SPO+LSTM O(mn+ n)
AA+SPO+LSTM O(mn+ n)

O(·) denotes the big-O notation.
m = |U| represents the number of unobserved ports.
n = |K| represents the number of observed ports.

IV. SIMULATION RESULTS

In this section, we provide simulation results to assess the
proposed algorithms. Rayleigh fading was assumed in all the
simulations of the channel envelopes and a linear structure of
the fluid antenna was considered. Also, the observed ports in K
were chosen so that they spread evenly over the space of Wλ,
as this was the most effective way to exploit the correlation.
For example, if |K| = 1, then the 25th port will be chosen as
the observed one. If |K| = 5, then the 1st, 12th, 25th, 38th and
50th ports will be the observed ones, and so on.4 With a given
number of observed ports, we use ‘Reference’ to represent the
system choosing the best port out from the observed ports.5

Another benchmark is the best antenna selection system with

4We assume that the ports are numbered from 1 to N from one end of the
fluid antenna to another end.

5Notice that ‘Reference’ is not the same as the system selecting the best
antenna with the number of fixed uncorrelated antennas equalling the number
of observed ports. The reason is that for ‘Reference’, the observed ports are
usually correlated. Hence, its performance is expected to be inferior to the
best antenna selection system with uncorrelated antennas.

TABLE II
PARAMETERS FOR LSTM

Layer Details & Values

Layer 1 (input) 10 LSTM cells; input dimension (n, 1);
linear activation

Layer 2 (hidden) Dense: 200 neurons; linear activation
Layer 3 (hidden) Dropout with probability of 0.2
Layer 4 (hidden) Dense: 200 neurons; linear activation
Layer 5 (hidden) Dropout with probability of 0.5
Layer 6 (hidden) Dense: 200 neurons; linear activation
Layer 7 (hidden) Dropout with probability of 0.2
Layer 8 (hidden) Dense: 200 neurons; linear activation
Layer 9 (hidden) Dropout with probability of 0.5
Layer 10 (output) N neurons; linear activation

Batch size 10
Number of epochs 50

Optimizer SGD with MSE as loss function

the maximum number of uncorrelated antennas allowed in the
given space. If W = 0.5, then there can be two fixed antennas
with λ

2 apart, while for W = 2, 5 antennas can be fitted with λ
2

spacing between any two adjacent antennas. In the case with
W = 5, the benchmark becomes the best antenna selection
system with 11 uncorrelated antennas. In the simulations, our
aim is to study how the algorithms perform when the number
of observed ports, i.e., |K|, changes. The parameters used for
the LSTM neural network model are listed in TABLE II.

Fig. 2. Outage probability results when W = 0.5, N = 50 and γ = 10dB.

In Figs. 2–4, results are provided for outage probability with
a target SNR of 10dB for different values of W . The results
illustrate that AA+SPO+LSTM performs the best almost in all
cases. For W = 2, if |K| gets larger, SPO+LSTM becomes the
best but the performance difference from other methods is less
apparent. In fact, if |K| is large, the performance difference
between the methods tends to be smaller. Now, if we compare
the results in Figs. 3 and 4, it can be observed that the results
for W = 5 are slightly inferior than that for W = 2. This is
because with a larger space, the observed ports will be farther
apart, making the methods more difficult to infer the best
port. Additionally, the results show that fluid antenna system
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Fig. 3. Outage probability results when W = 2, N = 50 and γ = 10dB.

Fig. 4. Outage probability results when W = 5, N = 50 and γ = 10dB.

with learning-based port selection can outperform significantly
the best antenna selection system, with W = 0.5 indicating
the most dramatic gain. This suggests that fluid antenna with
practical port selection be a more effective solution to exploit
spatial diversity, especially when the size W is small. Finally,
the results show that even with only one port observation, the
fluid antenna system using AA+SPO+LSTM is able to bring
down the outage probability from 0.5 to close to 0.1 and if
|K| = 5 (i.e., 10% ports observed), more than two orders of
magnitude reduction in the outage probability are achieved.

V. CONCLUSION

This letter investigated the port selection problem for fluid
antenna systems in which only a subset of ports are observed.
The problem is crucial to make fluid antenna systems viable.
A number of schemes were proposed and our results showed

that significant improvement in outage probability is possible
even if very few ports of the fluid antenna system are observed
and AA+SPO+LSTM is particularly effective. Our results also
indicated that fluid antenna with the proposed port selection
algorithms outperform considerably the best antenna selection
system with many uncorrelated antennas, which suggests that
fluid antenna is able to utilize the space more effectively.
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