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ABSTRACT

The interpretation of the intensity and polarization of the spectral line radiation produced in the atmosphere of the Sun and of other
stars requires solving a radiative transfer problem that can be very complex, especially when the main interest lies in modeling the
spectral line polarization produced by scattering processes and the Hanle and Zeeman effects. One of the difficulties is that the plasma
of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem
of the generation and transfer of polarized radiation in realistic three-dimensional (3D) stellar atmospheric models. Here we present
PORTA, an efficient multilevel radiative transfer code we have developed for the simulation of the spectral line polarization caused
by scattering processes and the Hanle and Zeeman effects in 3D models of stellar atmospheres. The numerical method of solution
is based on the non-linear multigrid iterative method and on a novel short-characteristics formal solver of the Stokes-vector transfer
equation which uses monotonic Bézier interpolation. Therefore, with PORTA the computing time needed to obtain at each spatial
grid point the self-consistent values of the atomic density matrix (which quantifies the excitation state of the atomic system) scales
linearly with the total number of grid points. Another crucial feature of PORTA is its parallelization strategy, which allows us to speed
up the numerical solution of complicated 3D problems by several orders of magnitude with respect to sequential radiative transfer
approaches, given its excellent linear scaling with the number of available processors. The PORTA code can also be conveniently
applied to solve the simpler 3D radiative transfer problem of unpolarized radiation in multilevel systems.
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1. Introduction

This paper describes a computer program we have developed
for solving, in three-dimensional (3D) models of stellar atmo-
spheres, the problem of the generation and transfer of spectral
line polarization taking into account anisotropic radiation pump-
ing and the Hanle and Zeeman effects in multilevel systems.
The numerical method of solution is based on a highly con-
vergent iterative method, whose convergence rate is insensitive
to the grid size, and on an accurate short-characteristics formal
solver of the Stokes-vector transfer equation that uses mono-
tonic Bézier interpolation. A key feature of our multilevel code
called PORTA (POlarized Radiative TrAnsfer) is its paralleliza-
tion strategy, which allows us to speed up the numerical solution
of complicated 3D problems by several orders of magnitude with
respect to sequential radiative transfer approaches.

The multilevel radiative transfer problem currently solved
by PORTA is the so-called non-local thermodynamic equili-
brum (LTE) problem of the 2nd kind (Landi Degl’Innocenti &
Landolfi 2004, hereafter LL04; see also Trujillo Bueno 2009),
where the phenomenon of scattering in a spectral line is de-
scribed as the temporal succession of statistically-independent
events of absorption and re-emission (complete frequency re-
distribution, or CRD). This is a formidable numerical problem

that implies calculating, at each spatial grid point of the (gen-
erally magnetized) 3D stellar atmosphere model under consid-
eration, the values of the multipolar components of the atomic
density matrix corresponding to each atomic level of total angu-
lar momentum J. These ρK

Q(J) elements, with K = 0, . . . , 2J
and Q = −K, . . . ,K, quantify the overall population of each
level J (ρ0

0(J)), the population imbalances between its magnetic
sublevels (ρK

0 (J), with K > 0), and the quantum coherence be-
tween each pair of them (ρK

Q(J), with K > 0 and Q , 0). The
values of these density-matrix elements have to be consistent
with the intensity, polarization, and symmetry properties of the
incident radiation field generated within the medium. Finding
these density-matrix values requires solving jointly the radia-
tive transfer (RT) equations for the Stokes parameters (I(ν,Ω) =
(I,Q,U,V)T, with ν andΩ the frequency and direction of propa-
gation of the radiation beam under consideration) and the sta-
tistical equilibrium equations (SEE) for the ρK

Q(J) elements.
These ρK

Q(J) elements, at each spatial grid point of the 3D at-
mospheric model and for each level J of the considered atomic
model, provide a complete description of the excitation of each
level J. As a result, the radiative transfer coefficients (i.e., the
emission vector and the propagation matrix of the Stokes-vector
transfer equation) corresponding to each line transition depend
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on the ρK
Q(J) values of the upper (J = Ju) and lower (J = Jl) line

levels. Once the self-consistent ρK
Q(J) values are obtained at each

point within the medium, PORTA solves the Stokes-vector trans-
fer equation to obtain the emergent Stokes profiles for any de-
sired line transition and line of sight. Obviously, this last step is
computationally cheap compared with the time needed to obtain
the self-consistent solution for the ρK

Q(J) elements.

When polarization phenomena are neglected the only non-
zero density-matrix element is ρ0

0(J) (proportional to the overall
population of each J level) and the only non-zero Stokes pa-
rameter is the specific intensity I(ν,Ω) for each of the radiative
transitions in the model atom under consideration. This non-LTE
problem of the 1st kind (e.g., Mihalas 1978) is a particular case
of the above-mentioned non-LTE problem of the 2nd kind. In
other words, the 3D multilevel radiative transfer code described
here can also be applied to solve the standard non-LTE multi-
level problem on which much of today’s quantitative stellar spec-
troscopy is based. For this reason, PORTA provides options for
spectropolarimetry and for spectroscopy (see Appendix B).

An overview on 3D radiative transfer codes for unpolar-
ized radiation can be found in Carlsson (2008). Information
on numerical methods for the transfer of spectral line polariza-
tion can be found in some reviews (e.g., Trujillo Bueno 2003;
Nagendra & Sampoorna 2009) and research papers (e.g., Rees
et al. 1989; Paletou & Faurobert-Scholl 1998; Manso Sainz &
Trujillo Bueno 1999, 2003, 2011; Sampoorna & Trujillo Bueno
2010; Anusha et al 2011). To the best of our knowledge this is the
first time that a computer program suitable for massively parallel
computers has been developed to solve the multilevel problem of
the generation and transfer of spectral line polarization resulting
from scattering processes and the Hanle and Zeeman effects in
3D stellar atmosphere models. The problem of the generation
and transfer of spectral line polarization with partial frequency
redistribution (PRD) is being increasingly considered in the lit-
erature (e.g., Sampoorna et al. 2010; Belluzzi et al. 2012), but
assuming relatively simple model atoms suitable only for some
resonance lines.

After presenting in Sect. 2 the formulation of the RT prob-
lem, in Sect. 3 we explain our formal solver of the
3D Stokes-vector transfer equation, which is based on Auer’s
(2003) suggestion of monotonic Bézier interpolation within the
framework of the short-characteristics approach. An additional
important point is the parallelization strategy we have developed
for taking advantage of massively parallel computers, which we
detail in Sect. 4 following our explanation of the formal solver.
The iterative method we have implemented, explained in Sect. 5,
is based on the non-linear multigrid method for radiative trans-
fer applications proposed by Fabiani Bendicho et al. (1997). We
present useful benchmarks and comparisons of the multigrid
iterative option of our code with another option based on the
Jacobian iterative method on which one-dimensional (1D) mul-
tilevel codes for solving the non-LTE problem of the 2nd kind
are based (e.g., Manso Sainz & Trujillo Bueno 2003; Štěpán
& Trujillo Bueno 2011). Finally, in Sect. 6 we present our
conclusions with a view to future research.

We have already applied PORTA to investigate the intensity
and linear polarization of some strong chromospheric lines in
a model of the extended solar atmosphere resulting from state-
of-the-art 3D magneto-hydrodynamic (MHD) simulations (e.g.,
Štěpán et al. 2012). However, for the benchmarks presented in
this paper, whose aim is a detailed description of PORTA, we
have found it more suitable to choose the 3D model atmosphere

and the five-level atomic model detailed in Appendix A. The
software and hardware tools are summarized in Appendix B.

2. The radiative transfer problem

The multilevel non-LTE problem considered here for the gener-
ation and transfer of spectral line polarization is that outlined in
Sect. 3 of Štěpán & Trujillo Bueno (2011), where we assumed
one-dimensional (1D), plane-parallel atmospheric models (see
also Manso Sainz & Trujillo Bueno 2003), while the aim here is
to describe the computer program we have developed for solv-
ing in Cartesian coordinates the same multilevel radiative trans-
fer problem but in three-dimensional (3D) stellar atmospheric
models. As shown below, the development of a robust multi-
level 3D code is not simply an incremental step with respect to
the 1D case, given the need to develop and implement an ac-
curate 3D formal solver, a highly convergent iterative scheme
based on multiple grids, and a suitable parallelization strategy to
take advantage of today’s massively parallel computers.

A detailed presentation of all the physics and relevant equa-
tions necessary to understand the radiation transfer problem
solved in this paper can be found in Chap. 7 of LL04. Our aim
here is to solve jointly the Stokes-vector transfer equation (cor-
responding to each radiative transition in the model atom under
consideration) and the statistical equilibrium and conservation
equations for the multipolar components of the atomic density
matrix (corresponding to each level J). We take into account the
possibility of quantum coherence (or interference) between pairs
of magnetic sublevels pertaining to any given J level, but ne-
glect quantum interference between sublevels pertaining to dif-
ferent J levels. Neglecting J-state interference is a very suitable
approximation for modeling the line-core polarization, which is
where the Hanle effect in most solar spectral lines operates (see
Belluzzi & Trujillo Bueno 2011). In the absence of J-state inter-
ference, the general number of ρK

Q(J) unknowns for each level J
is (2J + 1)2, at each spatial grid point. We note that in the unpo-
larized case there is only one unknown associated to each J level
(i.e., ρ0

0(J)).
In this paper we focus on the multilevel model atom (see

Sects. 7.3 and 7.13c of LL04), in which quantum interference
between sublevels pertaining to different J levels are neglected.
However, it is important to note that the same iterative method,
formal solver, and the overall logical structure of our code
PORTA are very suitable for solving the same type of problem
but considering other model atoms and/or magnetic field regimes
(see Chap. 7 of LL04).

The emission vector and the propagation matrix of the
Stokes-vector transfer equation depend on the local values of
the ρK

Q elements (with K = 0, . . . , 2J and Q = −K, . . . ,K) of
the upper (i) and lower ( j) line levels (see Sect. 7.2.b in LL04).
Given an estimation of these ρK

Q(J) elements for each J level at
all spatial grid points, the formal solution of the Stokes-vector
transfer equation for each radiative transition allows us to obtain
the ensuing Stokes parameters at each spatial point within the
medium, for each discretized frequency and ray direction. After
angle and frequency integration one can obtain the radiation field
tensors

JK
Q(i j) =

3∑
p=0

∮
dΩ
4π
T K

Q (p,Ω)
∫

dν Ip(ν,Ω)φi j(ν − νi j), (1)

where φi j is the line absorption profile and T K
Q (p,Ω) the

spherical irreducible tensors given in Table 5.6 of LL04,
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and (I0, I1, I2, I3)T ≡ (I,Q,U,V)T is the so-called Stokes vec-
tor. These radiation field tensors, defined for K = 0, 1, 2 and Q =
−K, . . . ,K, specify the symmetry properties of the radiation field
that illuminates each point within the medium. These quanti-
ties are of fundamental importance because they determine the
radiative rates that enter the statistical equilibrium equations
(see Sect. 7.2.a in LL04). After the discretization of the spatial
dependence these equations can be expressed as

Ll ρl = f l, (2)

where Ll is a block-diagonal matrix formed by Nl submatri-
ces, Nl being the number of points of the spatial grid of resolu-
tion level l (the larger the positive integer number l the finer the
grid). NL × NL is the size of each submatrix, NL being the total
number of ρK

Q unknowns at each spatial grid point. The length
of the vector ρl of ρK

Q unknowns and of the known vector f l
is NL×Nl. The coefficients of the block-diagonal matrix Ll de-
pend on the collisional rates, which depend on the local val-
ues of the thermodynamical variables, and on the radiative rates,
which depend on the radiation field tensors JK

Q(i j), whose com-
putation requires solving the Stokes-vector transfer equation for
each radiative transition i→ j. Since the radiative transfer coeffi-
cients depend on the ρK

Q unknowns the problem is non-linear, in
addition to non-local.

To solve this type of problem we need a fast and accurate
formal solver of the Stokes-vector transfer equation and a suit-
able iterative method capable of finding rapidly the density ma-
trix elements ρl these that Eq. (2) is satisfied when the radiation
field tensors, which appear in the block-diagonal matrix Ll, are
calculated from such ρl elements via the solution of the Stokes-
vector transfer equation. The 1D multilevel code described in
Appendix A of Štěpán & Trujillo Bueno (2011) is based on the
DELOPAR formal solver proposed by Trujillo Bueno (2003)
and on a Jacobian iterative scheme, similar to that applied by
Manso Sainz & Trujillo Bueno (2003), but generalized to the
case of overlapping transitions.

We turn now to explain the new formal solver we have devel-
oped for 3D Cartesian grids that is based on monotonic Bézier
interpolation.

3. BESSER: Monotonic Bézier formal solver
of the Stokes-vector transfer equation

The transfer equation for the Stokes vector I = (I,Q,U,V)T can
be written (e.g., Rees et al. 1989; Trujillo Bueno 2003)

d
dτ

I = I − Seff , (3)

where τ is the optical distance along the ray under considera-
tion (dτ = −ηI ds, with s the geometrical distance along the
ray and ηI the diagonal element of the 4 × 4 propagation ma-
trix K), Seff = S − K′I being K′ = K/ηI − 1 (where 1 is the
unit matrix and S = ε/ηI , with ε = (εI , εQ, εU , εV )T the emission
vector resulting from spontaneous emission events). The formal
solution of this equation is

IO = IMe−τMO +

∫ τMO

0
dt

[
S(t) − K′(t)I(t)

]
e−t, (4)

where the ray or pencil of radiation of frequency ν propagates
along the direction Ω, from the upwind point M (where the
Stokes vector IM is assumed to be known) towards the spatial
point O of interest (where the Stokes vector IO is sought), and t

Fig. 1. Short-characteristics in a three-dimensional Cartesian rectilinear
grid.

is the optical path along the ray (measured from O to M; see
Fig. 1).

The numerical solution of Eq. (4) allows us to obtain, from
the current estimates of the emission vector ε and propagation
matrix K, the Stokes parameters at each spatial grid point O
within the 3D medium, for all discretized radiation frequencies
and directions. We note that the unpolarized version of Eq. (4)
can be easily obtained by taking IO→IO, IM→IM, S(t)→S (t),
and K′(t)→0.

3.1. The short characteristics method

The short-characteristics (SC) method was proposed by Kunasz
& Auer (1988) to solve the unpolarized version of Eq. (4) for
the specific intensity (see also Auer & Paletou 1994; Auer et al.
1994; Fabiani Bendicho & Trujillo Bueno 1999). Consider three
consecutive spatial points M, O, and P along the ray under con-
sideration, with M the upwind point, P the downwind point,
and O the point where the Stokes I parameter is being sought,
for the given frequency and ray direction (see Fig. 1). The aim
of the original SC method is to solve the unpolarized version of
Eq. (4) along the MO segment in order to compute the specific
intensity I(ν,Ω). The original SC method is based on the approx-
imation of parabolic interpolation of the source function S (t)
between the upwind point M of the short characteristics, the
grid point O, and the downwind point P (see Fig. 1). In 2D and
3D grids, the upwind and downwind points of the SC do not gen-
erally coincide with any spatial grid node and the radiation trans-
fer quantities (i.e., the emission and absorption coefficients) have
to be interpolated from the nearby 9-point (biquadratic case)
or 4-point (bilinear case) stencils of the discrete grid points.
In the unpolarized and polarized options of PORTA both bi-
quadratic and bilinear interpolation are implemented. Bilinear
interpolation is sufficient in the fine grids of today’s MHD mod-
els. The upwind specific intensity or the Stokes vector IM need
to be interpolated from the same grid nodes. Proper topological
ordering of the grid points is therefore necessary for every di-
rection of the short characteristics. We note that the intersection
points M and P may be located on a vertical plane of the grid
instead of a horizontal one.

The DELO method proposed by Rees et al. (1989) can be
considered a possible generalization of the scalar SC method to
the radiative transfer problem of polarized radiation. That for-
mal solver of the Stokes-vector transfer equation is, however,
based on linear interpolation of the source function Seff between
points M and O. Trujillo Bueno (2003) demonstrated that signif-
icantly more accurate solutions can be obtained by using instead
a formal solver he calls DELOPAR, which is based on the choice
in Eq. (4) of parabolic interpolation for S (between points M,
O, and P) and linear interpolation for K′I (between points M
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Fig. 2. Parabolic and BESSER interpolation using the three successive
points M, O, and P. Dotted line: parabolic interpolation may create
a spurious extremum between points M and O. Solid line: interpola-
tion using our BESSER method with continuous derivative at point O.
The control points of the intervals, whose y-coordinates are denoted
by cM and cP, define tangents to the Bézier splines in their endpoints.
The x-coordinates of the control points are located at the center of the
corresponding intervals.

and O). He showed that with DELOPAR the accuracy of the
self-consistent solution rapidly improves as the spatial resolu-
tion level l of the spatial grid is increased. The first version of
the computer program NICOLE of Socas Navarro et al. (2000),
for the synthesis and inversion of Stokes profiles induced by the
Zeeman effect, used DELOPAR as the formal solver.

In smooth and/or suitably discretized model atmospheres,
the DELOPAR method provides accurate results. However, in
the presence of abrupt changes in the physical properties of
the atmospheric model, the parabolic interpolation suffers from
non-monotonic interpolation between otherwise monotonic se-
quences of discrete points. Such spurious extrema of the inter-
polant decrease the accuracy of the solution and can also lead
to unrealistic or even unphysical Stokes parameters at the grid
point O under consideration (see the dotted line in Fig. 2). In ad-
dition, the parabolic interpolation may occasionally lead to the
divergence of the whole numerical solution.

To overcome these difficulties, Auer (2003) suggested an in-
terpolation based on the use of monotonic Bézier splines. Some
formal solvers based on this idea have already been implemented
(Koesterke et al. 2008; Hayek 2008; Štěpán & Trujillo Bueno
2012; Holzreuter & Solanki 2012; de la Cruz Rodríguez &
Piskunov 2013). In this section, we describe in detail the accu-
rate formal solver we have developed, pointing out a significant
difference with the original proposal of Auer (2003). We call it
BESSER (BEzier Spline SolvER).

3.2. Monotonic spline interpolation with continuous first
derivative

Following Auer (2003), our BESSER algorithm is based on the
use of piecewise monotonic quadratic Bézier splines. The con-
trol points of the splines can be used to preserve monotonicity
of the interpolant, because the interpolant is contained in an en-
velope defined by the tangents of the spline in its endpoints and
of the control point which is located in the intersection of these
tangents (see Fig. 2). As shown below, we achieve a smooth con-
nection of the Bézier splines in the central point O by imposing a
continuous first derivative of the interpolant. This improvement
over the original treatment of Auer (2003) leads to a symmetri-
cal interpolation independently of the choice of the interpolation

Fig. 3. Treatment of an overshoot in the downwind interval OP by three
different methods. Black solid line: BESSER implementation with con-
tinuous derivative at point O and the cP overshoot correction of the
control point. Crosses: piecewise monotonic quadratic Bézier spline
interpolation. Solid gray line: parabolic interpolation. We note that
the piecewise monotonic quadratic Bézier interpolation coincides with
the parabolic interpolation in the MO segment because the overshoot
in the OP interval does not affect the upwind interpolation between M
and O.

direction (MOP for one direction of the ray propagation or POM
for the opposite direction of the ray). An additional attractive
feature is that our BESSER method always provides reliable val-
ues for the diagonal of the Λ-operator, i.e., in the interval [0, 1),
used in methods based on the Jacobi iteration.

Given a quantity y (e.g., the source function) defined at three
successive points xM, xO, and xP, we use two quadratic Bézier
splines to interpolate y between points M and O and between
points O and P (see Fig. 2). First, we look for an optimal in-
terpolation in the interval MO. For the sake of simplicity, we
parametrize the x-coordinate in this interval by a dimensionless
parameter u = (x − xM)/hM, where hM = xO − xM. The Bézier
spline in the interval MO is a parabola passing through points M
and O. The derivatives at such points are defined by the position
of the control point whose y-coordinate is cM (see Fig. 2). The
equation for such a spline reads (Auer 2003)

y(u) = (1 − u)2yM + 2u(1 − u)cM + u2yO, u ∈ [0, 1]. (5)

Similarly, one can define a Bézier spline between points O and P
by doing the formal changes yM → yO, yO → yP, and u = (x −
xO)/hP, where hP = xP − xO; the y-coordinate of the ensuing
control point is denoted by cP (see Fig. 2).

We look for the values of cM and cP that satisfy the following
conditions: (1) if the sequence yM, yO, yP is monotonic, then the
interpolation is monotonic in the whole interval [xM, xP]; (2) if
the sequence of yi values is not monotonic, then the interpolant
has the only local extremum at O; and (3) the first derivative
of the interpolant at point O should be continuous. The ensuing
algorithm proceeds as follows:

1. Calculate the quantities dM = (yO − yM)/hM, dP = (yP −

yO)/hP.
2. If the sequence yM, yO, yP is not monotonic (i.e., if dMdP ≤

0), then set cM = cP = yO and exit the algorithm. The deriva-
tive of the splines at point O is equal to zero, leading to a
local extremum at the central point.

3. Estimate the derivative at point O,

y′O =
hMdP + hPdM

hM + hP
(6)
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(see Eq. (7) of Auer 2003, and references therein). This
derivative is equal to that provided at the same point by
parabolic interpolation among points M, O, and P. Moreover,
in contrast with Eq. (12) of Auer (2003), it is an expression
that relates y′ (e.g., the source function derivative) linearly
with the y-values (e.g., with the source function values).

4. Calculate the initial positions of the control points, cM = yO−
hM
2 y
′
O, and cP = yO + hP

2 y
′
O

1.
5. Check that min(yM, yO) ≤ cM ≤ max(yM, yO). If the condi-

tion is satisfied, then go to step 7, otherwise continue with
step 6.

6. If the condition in step 5 is not satisfied, then there is an
overshoot of the interpolant in the interval MO. Set cM =
yM, so that the first derivative at M is equal to zero and the
overshoot is corrected. Since the value of cP is not of interest
for the formal solution between M and O, exit the algorithm.

7. Check if min(yO, yP) ≤ cP ≤ max(yO, yP). If this condition
is not satisfied, then set cP = yP so that the overshoot in the
interval OP is corrected.

8. Calculate the new derivative at O, y′O = (cP − yO)/(hP/2),
using the corrected value of cP calculated in step 7.

9. Calculate a new cM value to keep the derivative at O smooth.
It is easy to realize that this change cannot produce an
overshoot in the MO interval, hence the solution remains
monotonic with a continuous derivative.

Steps 8 and 9 of the above-mentioned algorithm, dealing with
correction of the overshoots in the downwind interval followed
by modification of the cM upwind control point value, are not
part of the original algorithm of Auer (2003) in which the deriva-
tive at point O can be discontinuous. We have found that it
is suitable to guarantee the smoothness of the derivative, and
this can be done with only a small increase in the computing
time with respect to the DELOPAR method. Our BESSER in-
terpolation is stable; that is, the interpolant varies smoothly with
smooth changes of the M, O, and P points. No abrupt changes of
the splines occur that could negatively affect the stability of the
iterative method.

In contrast to some other formal solvers based on the idea
of quadratic Bézier splines (e.g., one of the two Bezier meth-
ods discussed by de la Cruz Rodríguez & Piskunov 2013), our
BESSER algorithm guarantees that a monotonic sequence of
the MOP points leads to a monotonic interpolant in all situa-
tions. This fact is of critical importance in 2D and 3D grids in
which τMO and τOP may differ significantly because of unpre-
dictable intersections of the grid planes, especially if periodic
boundary conditions are considered. Such large differences of-
ten lead to overshoots, unless treated by BESSER or a similarly
suitable strategy. Formal solvers based on cubic Bezier splines
(e.g., de la Cruz Rodríguez & Piskunov 2013) could be devel-
oped to preserve the continuity of y′O, but they may fail to ac-
curately interpolate quadratic functions even in fine grids when
using Auer’s (2003) Eq. (12) for y′O (see Sect. 3.4).

An alternative formal solver, which uses cubic Hermite
splines, has been presented by Ibgui et al. (2013). However, the
way of fixing the derivatives at the end points M and P of the SC
to the values corresponding to the linear interpolation case may
cause loss of accuracy of the formal solver.

1 The control points calculated this way lead to a unique parabolic
interpolation among points MOP. If the algorithm is stopped here, the
resulting formal solver would be equivalent to the standard parabolic
interpolation.

3.3. Formal solution of the vectorial radiative transfer
equation with BESSER

The application of the Bézier interpolation for calculating the
formal solution of Eq. (4) proceeds as follows. We assume that
the Stokes components of the vectorial source function S(t) vary,
between points M and O, according to Eq. (5) with the control
points calculated using the BESSER algorithm described in the
previous section. The term K′(t)I(t) is assumed to change lin-
early in the same interval, as in the DELOPAR method. The
integral in Eq. (4) can then be evaluated analytically and the
Stokes parameters at point O can be expressed in the form (see
Trujillo Bueno 2003, for details of an analogous derivation using
parabolic interpolation of S)

κ−1IO =
[
e−τMO − ψ′MK′M

]
IM + ωMSM + ωOSO + ωCcM, (7)

where

κ−1 = 1 + ψ′OK′O (8)

is a 4 × 4 matrix and 1 is the unit matrix. Multiplying Eq. (7)
by κ gives the desired vector of Stokes parameters IO at point O.
The coefficients ψ′M and ψ′O are the usual coefficients resulting
from linear interpolation,

ψ′M =
1 − e−τMO (1 + τMO)

τMO
, (9)

ψ′O =
e−τMO + τMO − 1

τMO
· (10)

Using the substitutions hM = τMO and u = 1 − t/τMO in Eq. (5),
one obtains for the ωi coefficients the expressions

ωM =
2 − e−τMO (τ2

MO + 2τMO + 2)

τ2
MO

, (11)

ωO = 1 − 2
e−τMO + τMO − 1

τ2
MO

, (12)

ωC = 2
τMO − 2 + e−τMO (τMO + 2)

τ2
MO

· (13)

It is important to note that the accuracy of these expressions de-
creases as τMO � 1, due to the limited precision of the floating
point computer arithmetics. Therefore, for small upwind optical
paths we use instead the Taylor expansion of such expressions
calculated at τMO = 0 (see Table 1).

An important quantity used in Jacobi-based iterative meth-
ods for the solution of non-LTE problems is the diagonal of
the monochromatic Λ operator at the point O under consider-
ation, Λ∗

Ων. It can be easily calculated from Eq. (7) for IO, by
setting IM = SM = SP = (0, 0, 0, 0)T and SO = (1, 0, 0, 0)T. It fol-
lows that Λ∗

Ων = ωO + ωCcM. Given that in this case the source
function has a local maximum at point O, we have cM = 1, and
we finally arrive at

Λ∗Ων = ωO + ωC = 1 + 2
e−τMO (1 + τMO) − 1

τ2
MO

· (14)

In contrast to the familiar parabolic solvers, no information
about the interpolation coefficients in the preceding point is
needed to determine the diagonal of the Λ operator at the point O
under consideration. It is easy to show that Λ∗

Ων ∈ [0, 1), which
is an important condition for the stability of the iterative method
used to solve any non-LTE problem. This is particularly impor-
tant for solving three-dimensional problems in which the upwind
point M does not generally coincide with any grid node.
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Table 1. Taylor expansion of the ωM,O,P coefficients for small optical path intervals.

Coefficient Max t Expansion
ωM 0.14 (t(t(t(t(t(t((140 − 18t)t − 945) + 5400) − 25 200) + 90 720) − 226 800) + 302 400))/907 200
ωO 0.18 (t(t(t(t(t(t((10 − t)t − 90) + 720) − 5040) + 30 240) − 151 200) + 604 800))/1 814 400
ωP 0.18 (t(t(t(t(t(t((35 − 4t)t − 270) + 1800) − 10 080) + 45 360) − 151 200) + 302 400))/907 200

Notes. Taylor expansion of the interpolation coefficients of the BESSER method for small τMO values (for the sake of notational simplicity we
use t ≡ τMO). Column 2 of the table indicates the approximate maximum value of τMO for which this expansion is more accurate, using double
precision arithmetics, than the expressions given by Eqs. (11)–(13). We use the Horner rule in Col. 3, which provides a better numerical accuracy
and also reduces the number of multiplications in comparison to the explicit expansion of the Taylor power series.

Fig. 4. Each pair of curves shows, for a spatial grid of given resolu-
tion, the maximum relative change versus the iteration number using
the Jacobi method with DELOPAR (dotted lines) and with BESSER
(solid lines). We note that the finer the grid the slower the convergence
rate, but that for any given spatial resolution both formal solvers give
the same convergence rate.

We have found by numerical experimentation that the time
needed to perform one Jacobi iteration using our BESSER
formal solver is only .1% slower than when using instead
DELOPAR, because of the need to determine the cM and cP val-
ues of the control points following the algorithm described in
Sect. 3.2. The computation of κ and κ−1 (see Eq. (8)), the calcu-
lation of the transfer coefficients, and their interpolation in the
upwind and downwind points takes most of the computing time
per iterative step.

It is also important to note that the convergence rate of multi-
level iterative methods using BESSER as formal solver is virtu-
ally identical to that achieved using DELOPAR (see an example
of the Jacobi method in Fig. 4).

If the atmospheric model used is sufficiently smooth and no
abrupt changes of the source function are present, the accuracy
of BESSER and DELOPAR are virtually identical. This is not
surprising because both formal solvers produce identical results
in the absence of overshoots.

3.4. Accuracy of the BESSER formal solver

To demonstrate the accuracy of our BESSER formal solver we
consider the RT problem of an arbitrary ray propagating in an
infinite medium having constant opacity and a source function
variation along the ray direction given by the expression (for the
sake of simplicity we consider the unpolarized case)

S (z) = σ(2,−5, z)σ(−2, 5, z), (15)

where the sigmoid function σ reads

σ(a, d, z) =
1

1 + e−a(z−d) (16)

Fig. 5. Variation along the ray direction of the source function
(Eq. (15)) and of the corresponding specific intensity (Eq. (17))
calculated analytically.

and z is the geometrical distance along the ray, measured in units
of the length scale for which ∆z = ∆τ, with ∆z the grid spacing
and ∆τ the ensuing optical distance. As shown by the solid line
in Fig. 5, which corresponds to d = 5 in Eq. (16), the source
function exponentially rises around z = −d, reaches its max-
imum value around z = 0, and then exponentially decreases
around z = d. Assuming Ia(−∞) = 0, the analytical solution
of the radiative transfer equation for the specific intensity prop-
agating towards positive z values is (see the dotted line in Fig. 5)

Ia(z) =
e15−z

e20 − 1

(
e10 arctan ez−5 − arctan ez+5

)
· (17)

We have calculated numerically the specific intensity for the
above-mentioned one-ray problem by solving the radiative trans-
fer equation in several spatial grids of increasing resolution and
using various formal solvers. Our aim is to compare the accuracy
of our BESSER formal solver with other short-characteristics
methods. To this end, we use the analytical solution given by
Eq. (17) to compute the maximum true error

E(∆τ) = Max
∣∣∣∣ I(z) − Ia(z)

Ia(z)

∣∣∣∣, (18)

among all the spatial points along the ray for which the solution
has been obtained (i.e., −12≤ z≤ 12)2.

The formal solvers we have applied are listed in the caption
of Fig. 6, which gives E(∆τ) as a function of the ∆τ of the grid
spacing. Surprisingly, the worst performance is that correspond-
ing to the Bézier formal solver based on the central-point deriva-
tive y′O, calculated using the weighted harmonic mean deriva-
tives of Fritsch & Butland (1984) and ignoring the overshoot test

2 In the numerical calculation, we use the boundary intensity I(−12) =
Ia(−12) ≈ 2.77176 × 10−7.
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Fig. 6. Maximum relative true error E(∆τ) calculated as a function of
the uniform grid spacing ∆τ, using different formal solvers. Solid line:
our BESSER method. Dotted line: quadratic Bézier with the derivative
at point O calculated using the expression given by Fritsch & Butland
(1984) (see also Eq. (12) of Auer 2003). Dashed line: as in the previ-
ous method, but applying the cM overshoot correction (see Eq. (11) of
Auer 2003). Dashed-dotted line: standard SC method with linear inter-
polation. Three-dotted-dashed line: standard SC method with parabolic
interpolation.

in the upwind interval (Bezier, dotted line). If the correction to
the upwind overshoot is applied, the method performs much bet-
ter, at least in the coarsest grids in Fig. 6 (CBezier, dashed line).
In finer grids, however, the accuracy is still lower than that of
BESSER and even than that provided by the standard SC method
with parabolic interpolation (dashed-three-dotted line). The rea-
son is that the estimation of the central-point derivative y′O pro-
vided by Fritsch & Butland (1984) (see also Eq. (12) of Auer
2003) generally does not allow the second-order polynomials to
be interpolated exactly3.

In the coarsest grids in Fig. 6, the maximum true error de-
pends not only on the grid spacing but also on the particular po-
sition of the grid points with respect to the z = 0 position of the
source function maximum. Consequently, in the region in Fig. 6
corresponding to the coarsest grids we observed an oscillatory
behavior of the maximum true error. However, the overall vari-
ation of the error with ∆τ remains the same independent of the
particular location of the grid nodes.

4. Parallelization using the Snake Algorithm

The slowest part in the numerical computations needed for solv-
ing a non-LTE radiative transfer problem is the formal solution
of the radiative transfer equation because the number of float-
ing point operations needed to compute the radiation field at
all the spatial grid points far exceeds the number of operations
needed to solve the SEEs. In particular, an accurate modeling of
the spectral line polarization produced by anisotropic radiation
pumping (scattering line polarization) and its modification by the
Hanle effect requires the use of very fine frequency and direc-
tion quadratures that increase the computing time of the formal
solution.

The formal solution for computing a single Stokes parame-
ter at any given grid point for any given frequency and ray di-
rection typically takes about 1 µs on today’s workstations. It is

3 We point out, however, that the quadratic Bezier method seems to
provide reliable results in some cases of practical interest (de la Cruz
Rodríguez & Piskunov 2013).

easy to estimate that one formal solution for computing the four
Stokes parameters in a 3D grid with 5003 points, 100 radiation
frequencies, and 160 discrete directions will take about 90 days
on the same computer. The full non-LTE solution requiring one
hundred Jacobi iterations would take 25 years.

The use of powerful methods for multilevel radiative trans-
fer applications, such as the non-linear multigrid method pro-
posed by Fabiani Bendicho et al. (1997), is necessary but not
sufficient for doing multilevel radiative transfer calculations in
realistic 3D atmospheric models resulting from state-of-the-art
MHD simulations. To this end, we need to use massively paral-
lel computers, which requires a suitable parallelization of the RT
code. In this section, we describe a novel algorithm for perform-
ing the numerical formal solution using multiple CPU cores. As
shown below, simultaneous parallelization via domain decom-
position and parallelization in the frequency domain results in
a very efficient radiative transfer code that shows an optimal
scaling with the number of CPU cores.

4.1. Domain decomposition

The computer memory needed tp store large model grids exceeds
the capacity of the computing nodes of today’s supercomputers
by at least one order of magnitude. The capacity of computers
will continue to increase in the future, but the same will happen
with the scale and resolution of the MHD models. It is there-
fore necessary to reduce the memory demands per CPU core.
This can be achieved through the technique of domain decom-
position, by means of which different parts of the model grid are
treated simultaneously (in parallel), each running on a different
CPU core. This task is non-trivial in radiative transfer because
of the need to use a well-defined sequence of grid points. This
complicates the treatment of radiative transfer in generally de-
composed grids where different parts are to be solved simulta-
neously. A possible solution to this problem comes from the fact
that the non-LTE problem needs to be solved by iteration and
the radiation field at the domain boundaries can be fixed in ev-
ery iteration using the radiation field calculated in the previous
iteration. After a sufficient number of iterations, a self-consistent
solution to the problem is eventually found. The disadvantage of
this approach is that fixing the boundary radiation field of the do-
mains reduces the information flow between the domains, which
leads to a scaling of the algorithm proportional to P2/3, with P
the number of CPU cores (Hayek 2008). In Sect. 4.4 we discuss
the advantages and disadvantages of our approach.

Given a Cartesian grid with NxNyNz discrete points, we only
divide it along the z-axis into a consecutive sequence of L do-
mains D`, ` = 1, . . . , L (see Fig. 7, which shows a 2D instead
of a 3D grid, for simplicity). The horizontal extension of each
domainD` is always the same, and identical to that correspond-
ing to a serial solution of the same non-LTE problem. Each of
these domains is treated by one or more CPU cores in parallel
with others according to the algorithm described in the follow-
ing section. The boundary layer z`N`

= z`+1
1 of the successive

domains D` and D`+1 has to be taken into account in each of
the domains. Ghost layers have to be included in both domains
if the formal solver of the transfer equation is of parabolic ac-
curacy and/or the multigrid method is used. This ghost layer
is needed to calculate the radiation transfer coefficients at the
downwind point P (see Fig. 1) when point O is in the boundary
layer z`N`

= z`+1
1 . We note that if the interpolation of the upwind

and downwind radiation transfer coefficients is bilinear instead
of biquadratic, only one ghost layer is needed for each of these
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Fig. 7. Domain decomposition in the z-axis, with N` denoting the num-
ber of discrete heights within domain D`. The solid line z`N` = z`+1

1
indicates the boundary layer of the domains D` and D`+1, while the
dashed lines indicate the ghost layers z`N`−1 and z`+1

2 .

domains. This is usually a good approximation given the spatial
fineness of today’s MHD models. Given that the boundary layer
that is common to each pair of domains has to be treated twice,
the number N` of z-points per domain is equal to (Nz − 1)/L + 1
(assuming that L is such that (Nz − 1)/L is an integer).

As shown below, it is possible to divide the z-axis into a large
number of intervals without any serious effect on the efficiency.
In the numerical experiments discussed below, we have used val-
ues as small as (Nz − 1)/L + 1 = 6. For a sufficient number of
computing nodes, it follows that the memory requirements per
domain scales as O(NxNy). Given the large spatial extension of
the 3D stellar atmospheric models that result from today’s MHD
simulations (e.g., Leenaarts et al. 2012), the domain decompo-
sition strategy described above is very suitable for reducing to
reasonable values the memory requirements per computing core.

4.2. 3D formal solution in the domain-decomposed models:
the Snake Algorithm

In contrast to the usual 3D domain decomposition technique, it
is possible to fulfill the requirement of a topologically sorted
grid without the need to iterate the boundary conditions. For
reasons that will become obvious below, we call it the Snake
Algorithm (SA). It proceeds as follows.

The formal solution of the RT equation allows us to obtain,
at each spatial grid point (ix, iy, iz) of domain D`, the Stokes pa-
rameters for all the discretized directions and radiation frequen-
cies (Ωi, ν j). The total number of these points is NΩNν, where NΩ

denotes the number of ray directions and Nν the number of ra-
diation frequencies. Without loss of generality, let us consider
the formal solution of the RT equation in domain D` for the
directions Ωi having Ωz > 0 (i.e., for rays propagating along di-
rections of increasing z, from the lower boundary of D1 to the
upper boundary ofDL).

For (Ω1, ν1), we solve the RT equation starting at the lower
boundary z1

1 and proceeding upwards to the domain boundary
layer z1

N1
(see Fig. 7). If the atmospheric model assumes periodic

boundary conditions in the horizontal (x, y) directions, we take
them into account following the strategy of Auer et al. (1994).
Since the domain is not decomposed in the horizontal directions,
in each of the domains our algorithm works exactly as it does in
the serial solution.

Once the radiation field for (Ω1, ν1) is known at the last
plane z1

N1
of the domain, we start the process responsible for

doing the formal solution in the next domain D2. In addition
to the Stokes parameters, the Λ∗

Ω1ν1
value has to be provided

to the next domain. At this point, the process D1 starts solv-
ing the radiative transfer equation for (Ω1, ν2), beginning again
at the lower boundary. After reaching the z1

N1
plane, the radia-

tive data are provided to the D2 domain and the solution con-
tinues with (Ω1, ν3). These steps are repeated until the radiation
transfer equation is solved for all the discrete frequencies. Then,
it continues in an analogous way with (Ω2, ν1) and for all the
directions with Ωz > 0.

The solution in domainD2 proceeds in an exactly analogous
way. After receiving the radiation data (Ω1, ν1) from domainD1,
the RT equation is solved in planes z2

2, z2
3, etc., up to the layer z2

N2
,

from which the resulting radiation field and Λ∗
Ω1ν1

(x, y, z2
N2

) are
propagated to the grid points (x, y, z3

1) of domain D3. At a given
time, each domain solves the RT equation for different (Ωi, ν j),
such that the difference between two successive processes (do-
mains) is just one step in the discrete space of directions and
frequencies. The outgoing radiation from one domain becomes
the incoming radiation for the following domain. The resulting
snake of length L clambers half of the parameter space of di-
rections Ωz > 0 and, after this is finished, it proceeds back in
an analogous way by solving the radiative transfer problem for
all Ωz < 0 directions.

Figure 8 visualizes the whole process using as an example
a formal solution with five radiation frequencies ν j=1,...,5 and six
directions Ωi=1,...,6, running in a domain-decomposed grid with
six domains, each of which is indicated by a numbered rect-
angle. Each step of the solution in every domain corresponds
to a formal solution of the RT equation for one direction and
one frequency. In the next step, the snake of processes moves
by one (Ωi, ν j) point and the radiation field data are passed be-
tween the successive domains. In this example, every single pro-
cess solves the RT problem in the dedicated domain which con-
tains N/6 grid nodes. These processes parse the discrete space
of directions and frequencies in the well-defined order indicated
in the figure, until the whole direction-frequency space is passed
through by all the processes. At the beginning and at the end of
the formal solution, some of the processes are inactive, waiting
for other processes to finish their work. The total number of time
steps of the formal solution is 35 for the 30 direction-frequency
points, which implies a speedup factor 30 × 6/35 ≈ 5.1 with re-
spect to the serial solution. This can be easily verified by using
Eq. (24) with NΩ = 12 (see below).

If the domains have the same or similar N` values (which
is easy to achieve in practice), each process (i.e., each domain)
solves only the fraction 1/L of the whole radiation transfer prob-
lem. This leads, in principle, to an almost linear scaling with the
number of spatial domains.

For practical reasons (i.e., optimization in the treatment
of line absorption profiles, because it is not practical to store
them for every grid point and ray direction), the line absorp-
tion profiles are obtained by interpolation, using a pre-calculated
database created at the beginning of the non-LTE solution. This
implies some significant reduction of memory and computing
time. After calculating a line profile from the database (where
the profiles are normalized to unit area), one may need to
renormalize it using the chosen frequency quadrature (e.g., in
the presence of Doppler shift gradients caused by macroscopic
plasma motions). This only needs to be done once per direc-
tion if the loop over frequencies is the inner loop because the
normalization factor only depends on direction. In summary, it
is more convenient if the directions are in the outer loop and
the frequencies in the inner loop of the algorithm, so that our
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Fig. 8. Clarification of the Snake Algorithm (SA) using an example of a formal solution with five radiation frequencies ν j = 1,...,5 and six direc-
tions Ωi = 1,...,6, running in a domain-decomposed grid with six domains. We note that only the solution for rays Ωz > 0 is shown in this figure. See
the main text for details.

snake parallelization strategy proceeds row by row as indicated
in Fig. 8, instead of column by column.

Concerning the implementation of the algorithm, it is im-
portant to note that it is crucial to use non-blocking routines to
propagate the radiation data between the successive domains. In
other words, the RT calculation in domainD` proceeds by solv-
ing the next (Ωi, ν j) point immediately after the lower-boundary
radiation data from domainD`−1 arrives. It does not have to wait
for D`+1 to retrieve the (Ωi, ν j−1) data. Consequently, the snake
in Fig. 8 can temporarily become split, with two successive pro-
cesses ` and ` + 1 processing non-subsequent points in the dis-
crete Ω × ν space (see Fig. 8). If this does not happen, the com-
puting performance can decrease significantly because a signif-
icant amount of time is spent waiting for the synchronization of
the whole grid.

4.2.1. Scaling of the algorithm

In the serial solution, the computing time needed for the formal
solution of the RT equation is proportional to the total number
of spatial grid pointsN = NxNyNz, the number of directions NΩ,
and the number of radiation frequencies Nν. We shall denote this
computing time by

T1 = αNNΩNν, (19)

with α a constant of proportionality. In the domain-decomposed
parallel solution (still assuming that the first half of the integra-
tions is performed along the directions having Ωz > 0), the du-
ration of the full formal solution in the whole grid is equal to the
time interval between the first (Ω1, ν1) and the last (ΩNΩ

, νNν
) ray

integrations in the domainD1.
Given that the number of grid nodes in domain D1 is equal

to N/L, the time spent solving the first half of the rays in
domainD1 is

ta = α
N

L
NΩ

2
Nν· (20)

The process responsible for domain D1 is waiting for the last
upward ray (ΩNΩ/2, νNν

) to propagate through L − 1 domains to
the upper grid boundary zNz . Its duration equals

tb = α(L − 1)
N

L
· (21)

The same time tb it taken by the first downward ray (ΩNΩ/2+1, ν1)
to propagate from DL to the upper boundary of D1. The

Fig. 9. Speedup S (L) of the solution of the RT equation due to domain
decomposition with the Snake Algorithm. The number of CPU cores
on the horizontal axis is equal to the number L of spatial domains. The
diagonal dotted line indicates the theoretical curve of linear scaling.
The scaling of the algorithm is almost a linear function of the number
of domains. The small departure from linearity is mainly due to the cost
of the inter-process communication.

computing time needed for the solution of the NΩ/2 downward
rays in theD1 domain is, again, equal to ta.

The duration of the full formal solution in the L-decomposed
grid is, therefore, equal to TL = 2(ta + tb). It follows from the
equations above that

TL = α
N

L
[NΩNν + 2(L − 1)] · (22)

We define the speedup of the parallel solution with respect to the
serial solution as

S (L) =
T1

TL
, (23)

which, using Eqs. (19) and (22), is equal to

S (L) = L
1

1 + λ
, (24)

where

λ =
2(L − 1)

NΩNν
· (25)

A143, page 9 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321742&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321742&pdf_id=9


A&A 557, A143 (2013)

Fig. 10. Snake Algorithm applied to the problem in Fig. 8 with L = 3
and M = 5. Here, every process has a single dedicated radiation
frequency, i.e., Nm = 1. Given the small number of directions and
frequencies in this illustrative example, we have λ = 2/3 and the
speedup S (LM) = 9. See the text for details.

If λ � 1, then the speedup in the formal solution is practi-
cally linear with the number of domains L. This is equivalent
to saying that NΩNν � L, i.e., to a situation in which the num-
ber of direction-frequency points is much larger than the num-
ber of domains. Given that in the transfer of polarized radia-
tion the typical orders of magnitude of the relevant quantities
are NΩ ∼ 102, Nν ∼ 103, and L ∼ 102, we obtain λ ∼ 10−3. It is
easy to see from Eq. (24) that SA always accelerates the solution
if NΩ > 2 and L > 1.

4.3. Parallelization in the radiation frequencies

The radiation frequencies νi=1,...,Nν
can be grouped into M in-

tervals, each containing the Nm = Nν/M discrete frequencies4.
The Snake Algorithm can be applied in parallel to each of these
frequency blocks. The only difference with respect to the al-
gorithm described in Sect. 4.2 is that the solution in the spa-
tial domains D` is only performed in a sub-space of (Ωi, ν j) in
which j = jm1 , . . . , jmNm

. Since this can be done in parallel for all
the M blocks, a significant reduction of the solution time can be
achieved (see Fig. 10).

The domain and frequency decomposition parallelization
strategies described above are performed independently of each
other, in the sense that there is no need of communication
between the processes treating different frequency intervals m
during the formal solution. The radiation field tensors JK

Q and
the Λ∗

Ων operator needed for the solution of the statistical equi-
librium equations are only partially integrated over the line ab-
sorption profiles during the formal solution and, at the end of the
whole formal solution process, are summed over the frequency
intervals and synchronized among them. The time cost of this
operation is negligible with respect to the time demands of the

4 At least in the favorable situation in which Nm is an integer number.
In general, it is convenient that the individual frequency intervals have
similar lengths.

formal solution. Thanks to this orthogonality of the two inde-
pendent parallelizations, it is possible to achieve a multiplicative
effect of both speedup factors.

4.3.1. Scaling of the algorithm

A reduction in the number of frequencies in every domain by a
factor of 1/M gives a new solution time TML which is obtained
after the replacement Nν → Nν/M in Eq. (22). The speedup then
follows as

S (ML) = ML
1

1 + λ
, (26)

where we now have

λ =
2M(L − 1)

NΩNν
· (27)

When λ � 1 the scaling of the algorithm is virtually linear
with the total number of CPU cores, P = ML. As an example,
we assume a large 3D model atmosphere and a supercomputer
with 104 CPUs which allows for parallelization with L = 100
and M = 100. Assuming NΩ = 200 and Nν = 1000, we
have λ ≈ 0.1 and a speedup S (ML) ≈ 0.9 × 104.

If ML � 1, then Eq. (26) can be approximated by the
expression

S (ML) ≈
[

1
ML

+
2

NΩNν

]−1

, (28)

which immediately shows how the speedup factor depends on
both the fineness of the quadratures and the number of avail-
able CPU cores. It follows that it is only possible to decrease the
computing time by an additional factor of 1/2 when using more
cores than

(ML)optimal =
NΩNν

2
· (29)

Given that typically NΩNν ∼ 105, the power of today’s super-
computing facilities can be effectively exploited. Not surpris-
ingly, (ML)optimal corresponds to a situation in which each fre-
quency is treated by a unique frequency band and the number of
spatial domains is equal to one half of the number of rays (see
Eq. (25) for Nν = 1).

4.4. Advantages and disadvantages of the Snake Algorithm

The advantages and disadvantages of SA can be summarized as
follows.

Disadvantages:

1. It is only possible to decompose the grid so that L < Nz.
2. If NxNy becomes too large, the memory requirements can be

difficult to fulfill in very large atmospheric models. In the
particular case of the five-level Ca  model atom considered
in this paper, a conservative memory limit of 2 GB per core
would be reached for models with NxNy ≈ 15002.

3. If the number of ray directions and frequencies is low,
i.e., λ & 1 in Eq. (27), the scaling properties of SA are
sub-optimal. However, this situation is unlikely in realistic
models.

4. It is not trivial to implement the Gauss-Seidel iterative
method of Trujillo Bueno & Fabiani Bendicho (1995) for
the smoothing part of the non-linear multigrid iteration (see
Sect. 5).
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Fig. 11. Speedup S (M) of the formal solution of the RT equation
due to parallelization in radiation frequencies in a single spatial do-
main (L = 1).

5. There is always an overhead of communication and synchro-
nization between the domains. This overhead can become as
large as 20 % of the whole formal solution computing time
for cases with Nz/L approaching unity, but the overhead is
usually about 10 % with the hardware we have been using
(see Appendix B). The relative importance of the cost of the
inter-process communication increases with the number of
domains, leading to a minor departure from linear scaling in
the parallel solution.

Advantages:

1. The accuracy of the solution is identical to the serial solution.
The following two points follow directly from this fact.

2. The total number of iterations needed to solve the non-LTE
problem is equal to the serial solution and the convergence
rate is not deteriorated as in domain-decomposition methods
with iterative boundary conditions.

3. There are no discontinuities of the errors at the boundaries
of domains due to iterative boundary conditions. The error
remains smooth and the application of the non-linear multi-
grid method is not affected by the presence of such numerical
problems.

4. It is easy to use a partially or fully converged solution (stored
in a disk file) as an initialization of a different non-LTE com-
putation without having to worry about the radiation field
at the domain boundaries5. For instance, this is useful for
obtaining the solution in a given 3D thermal model, but for
different magnetic field choices.

5. The scaling properties of the algorithm are almost linear with
the number of CPU cores P, until P becomes comparable
to NΩNν, i.e., for all cases of practical interest.

6. Thanks to the multiplicative effect of the two independent
parallelization strategies (i.e., domain decomposition and
parallelization in radiation frequencies), large-scale super-
computing facilities can be used with a significant improve-
ment in the solution time.

7. The algorithm is relatively easy to implement in practice.
Existing serial RT codes can be generalized using the SA
without a very serious programming effort.

5 We note that to store the full radiation field would be practically im-
possible given the number of radiation field quantities in polarization
transfer problems.

Fig. 12. Speedup S (LM) of the formal solution of the RT equation
due to simultaneous parallelization in radiation frequencies and domain
decomposition. Filled circles: data calculated for various values of L
and M using the OCAS cluster. Diamonds: data calculated using the
LaPalma supercomputer. We note that because of non-optimal spatial
and frequency decompositions (i.e., not all the CPU cores treat exactly
the same number of grid points and/or frequencies), small oscillations
around the nearly linear trend appear. The speedup in both data sets
is normalized to the serial time T1 corresponding to each of the used
computers.

5. The non-linear multigrid method

As mentioned in Sect. 2 we need a fast iterative method capable
of finding rapidly the density matrix elements ρl such that Eq. (2)
is satisfied when the radiative rates, which appear in the block-
diagonal matrix Ll of Eq. (2), are calculated through the solu-
tion of the Stokes-vector transfer equation when using at each
spatial point the emission vector and the propagation matrix cor-
responding to these ρl values. A suitable method is the Jacobian
iterative scheme described in Manso Sainz & Trujillo Bueno
(2003) and in Appendix A of Štěpán & Trujillo Bueno (2011).
As with other operator splitting methods, with this Jacobi-based
iterative method the convergence rate is the slower the finer the
spatial grid, so that the computing time needed to obtain the
self-consistent solution scales in general as Nl

2 (where Nl is
the total number of spatial grid points). In order to solve com-
plicated 3D problems in very fine grids it is convenient to ap-
ply an iterative method whose convergence rate is insensitive to
the grid size, so that the computing time needed to obtain the
self-consistent solution scales as Nl. This method is called the
non-linear multigrid method (e.g., Hackbush 1985) whose ap-
plication to multilevel radiative transfer without polarization has
been described in great detail by Fabiani Bendicho et al. (1997)6.
Here we provide only a brief overview of the non-linear multi-
grid (MG) method with emphasis on the details related to our
generalization to the polarized case and the parallelization strat-
egy via domain decomposition.

5.1. Brief overview of the non-linear MG method

As mentioned above, the aim is to find the ρl vector of den-
sity matrix values, defined in the desired fine grid of resolution
level l, such that Eq. (2) is satisfied as explained above. We as-
sume that we have a fine grid estimate ρold

l such that the residual

rl = f l −L
old
l ρ

old
l , (30)

6 For the linear multigrid method, valid only for the two-level atom
case, see Steiner (1991).
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is smooth7. We would like to obtain a fine-grid correction ∆ρl
such that the new estimate ρnew

l = ρold
l + ∆ρl satisfies Eq. (2):

Ll ρ
new
l = f l. (31)

Given that the problem is non-linear (i.e., the operator Ll de-
pends on ρnew

l ) we need to make an approximation toLl in order
to obtain a better estimate ρnew

l .
With the Jacobian method we simplify the operatorLl in the

same grid of resolution level l; we do this by choosing the di-
agonal of the Λ operator. With the non-linear MG method we
approximate the operator Ll by forming a suitable approxima-
tion in a coarser grid of level l − 1; that is, we coarsify rather
than simplify. In order to understand how we coarsify we note
first that Eqs. (30) and (31) imply that

Llρ
new
l − L

old
l ρ

old
l = rl. (32)

The residual rl was assumed to be smooth, so we can map the
left-hand side of Eq. (32) to a coarser grid of level l− 1 to obtain
the coarse-grid equation (cf. Fabiani Bendicho et al. 1997):

Ll−1ρl−1 = Lold
l−1R

(
ρold

l

)
+R(rl), (33)

where the linear operatorR is a fine-to-coarse or restriction oper-
ator whose application to ρold

l and to rl allow us to obtain directly
the rhs terms. Therefore, the system of Eq. (33) is formally iden-
tical to the original system of Eq. (2), but formulated in a grid of
level l − 1. After solving it with the Jacobian method explained
in Appendix A of Štěpán & Trujillo Bueno (2011) we obtain the
coarse-grid correction (CGC)

ρnew
l = ρold

l + P
[
ρl−1 − R

(
ρold

l

)]
, (34)

where P is a coarse-to-fine or prolongation operator. As shown
in Sect. 2.3 of Fabiani Bendicho et al. (1997) the CGC is very
efficient in reducing the amplitude of the low-frequency compo-
nents of the error, but not the high-frequency components with
wavelengths smaller than or similar to twice the distance be-
tween the coarse grid points. To achieve a convergent two-grid
iterative scheme it is crucial to apply a number of iterations in
the fine grid capable of removing the high frequency compo-
nents of the error (smoothing iterations). Fabiani Bendicho et al.
(1997) showed that their Multilevel Gauss-Seidel (MUGA) iter-
ative method (see also Trujillo Bueno & Fabiani Bendicho 1995)
has excellent smoothing capabilities in a wide range of spatial
grids, but they also showed that a multilevel iterative scheme
based on the Jacobi method has similar smoothing capabilities
in fine grids (e.g., with grid spacings smaller than about 50 km in
the case of the solar Ca  problem outlined in Appendix A). For
this reason, but mainly because the implementation of a Jacobian
method for massively parallel computing is relatively straight-
forward, the smoothing iterations in our 3D code PORTA are
done applying the Jacobian method explained in Appendix A of
Štěpán & Trujillo Bueno (2011).

The previous steps correspond to a two-grid iteration:
smoothing in the desired fine grid, restriction to the selected
coarse grid, coarse-grid correction, prolongation to the fine
grid, and smoothing in the fine grid. Three-grid and other
multigrid methods can be obtained as a direct generaliza-
tion of the two-grid method. The most sophisticated multigrid
method is the nested multigrid method explained in Sect. 5 of

7 We note that by writing Lold
l we want to point out that the radiative

rates that appear in the block-diagonal matrix Ll of Eq. (2) are calcu-
lated using the current estimate ρold

l .

Fig. 13. Restriction of fine-grid points (see the bottom plane) to
coarse-grid ones (see the top plane). Restriction to the coarse-grid
node (i, j) is performed using the data of nine fine-grid nodes making
up a 3 × 3 stencil, indicated by the brighter area of the bottom plane,
with the central (2i, 2 j) grid node. See the text for details.

Fabiani Bendicho et al. (1997). All these options are available
in our PORTA code, where the grid of resolution level l − 1
is derived from the grid of resolution level l by removing
half of the grid points corresponding to each axis, so that ev-
ery coarse-grid node (ix, iy, iz)l−1 coincides with some fine-grid
node (2ix, 2iy, 2iz)l (see Fig. 13).

5.2. Prolongation and restriction

In PORTA, two different prolongation operators are currently
implemented: tri-linear and tri-cubic-centered interpolation.

The tri-linear interpolation uses the information from eight
coarse-grid nodes surrounding the fine-grid node. If the fine-grid
node is located in a plane or on a grid line formed by coarse-
grid nodes, bilinear or linear interpolation is used, respectively.
Finally, if the fine-grid node coincides with a coarse-grid node,
direct injection of the correction is applied.

Similarly, in the cubic-centered interpolation, fine-grid node
information is obtained by interpolation of data from 43 nearby
coarse-grid nodes. Bicubic or cubic interpolations, respectively,
are used for fine-grid nodes located at the plane or at a line con-
necting coarse-grid nodes. For tri-cubic interpolation near the
boundary separating two domains of the domain-decomposed
grid, data from ghost layers have to be used (see Fig. 14).
According to the rules described above, interpolation of the fine-
grid data at the very boundary layer does not require any data
from the ghost nodes.

Near the grid boundaries, that is, near the real boundary of
the model where sufficient data are missing because of non-
existent outer grid nodes, we use the data from the inner grid
nodes to perform the cubic interpolation (i.e., the point of in-
terpolation is located in one of the boundary intervals of the
four-point interpolant). For this reason, the minimum number of
coarse-grid nodes per axis in a domain is limited to four if the
MG method with cubic interpolation is used.

The MG method with a cubic prolongation operator gen-
erally performed better in our convergence tests. On the other
hand, it is less numerically stable because it may produce un-
physical extrema of the density matrix components in the fine
grid. This can happen in models containing abrupt changes of
the physical quantities, such as in atmospheric models resulting
from today’s MHD simulations. If such a situation is encoun-
tered, it is safer to use a prolongation operator with linear accu-
racy or to implement a monotonity-preserving Bézier interpola-
tion (however, we have found the liner interpolation only slightly
worse than the cubic one, and so this effort does not seem to be
justified).

A143, page 12 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201321742&pdf_id=13
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Fig. 14. Illustration of the prolongation of the coarse-grid correction to
the fine grid using data from the ghost layer. Solid black line: the bound-
ary layer between the domains D` and D`+1. Dashed line: the ghost
layer of the domain D`. Dotted line and the empty circle: the fine-grid
layer near to the domain boundary and a fine-grid node. Gray lines: lines
of the coarse grid. The arrows show how the data are interpolated to the
fine-grid node using the cubic-centered interpolation of the coarse-grid
nodes data.

For the restriction operator, we use the adjoint of the tri-
linear prolongation operator (Press et al. 2007) using the infor-
mation from 33 fine-grid nodes surrounding the coarse-grid node
(see an analogous 2D example in Fig. 13). These fine-grid nodes
are always available even in the domain-decomposed grids be-
cause of the presence of ghost layers. In the case of a coarse-grid
node located at a non-periodic boundary of the grid, the restric-
tion only takes into account 2 × 32 or 23 nearby fine-grid nodes
depending on the particular grid topology.

We note that the ghost layer is the nearest layer to the do-
main boundary in any particular grid Gl of resolution level l.
Therefore, the ghost layers in the grids Gl and Gl−1 correspond
to layers having different coordinates z. On the other hand, the
boundary layers between two successive domains D` and D`+1
must always coincide in both discretizations Gl and Gl−1.

Given that the formal solution of the RT equation and the so-
lution of the statistical equilibrium equations in every domainD`

is only performed in the real internal grid nodes, the data in
the ghost layers need to be synchronized with the neighboring
domains after every solution of such equations, calculation of
the residuum (see Eq. (10) of Fabiani Bendicho et al. 1997), or
restriction or prolongation operation.

As in the case of iterations based on the Jacobi method,
the multigrid solution obtained with our parallelization strategy
has exactly the same accuracy as the corresponding serial solu-
tion. The existence of domain boundaries does not destroy the
high-frequency smoothing that is so crucial for the convergence
of the multigrid iteration.

5.3. Convergence of the multigrid method

Since the smoothing capabilities of the Jacobi iteration are in-
ferior to the Gauss-Seidel iteration, one usually needs to apply
more Jacobi smoothing sweeps in order to reduce the high-
frequency components of the error. We have found by nu-
merical experimentation that two pre-smoothing and four post-
smoothing iterations in the V-cycle MG method lead to optimal
convergence in our atomic and atmospheric models. Given that

Fig. 15. Comparison of Jacobian and MG convergence quantified by
the maximum relative change of populations between iterations Rc.
Solid line: Jacobi iteration. Crosses: standard multigrid method with the
V-cycles with two pre-smoothing and four post-smoothing iterations.
The computational time on the horizontal axis is measured in units of
one Jacobi iteration in the finest grid.

with the MG method the convergence error Ce is lower than
the maximum relative change (see Eq. (19) of Fabiani Bendicho
et al. 1997), it is usually sufficient to apply only two or three
V-cycles to reach the convergence.

We have applied the multigrid algorithm to the five-level
Ca  problem described in Appendix A using a sequence of
three grids: the finest grid G3 with 100 × 100 × 121 points, G2
with 50 × 50 × 61 points, and the coarsest grid G1
with 25 × 25 × 31 points using our domain decomposition
(L = 5) and our frequency parallelization (M = 9).

In Fig. 15, we show a comparison of the convergence prop-
erties of the Jacobi and standard multigrid iteration. In compar-
ison with the multigrid method based on Gauss-Seidel smooth-
ing iterations, our multigrid method based on Jacobi smooth-
ing iterations is slower by about a factor of three (cf. Fig. 15
of Fabiani Bendicho et al. 1997). Asymptotically, both methods
are proportional to each other and the deficiency of the Jacobi
smoothing sweeps can be compensated for by increasing the
number of computing nodes.

Finally, we want to remark that the multigrid method is a
highly convergent iterative scheme, especially suitable for ob-
taining the self-consistent solution in very fine grids. However,
care must be taken if the coarse grids used become too coarse
to represent properly the physical reality of the transfer problem
under consideration (i.e., if the number of grid points per decade
of the optical depth becomes close to or smaller than unity). In
this case the multigrid method may fail to converge.

6. Concluding comments

The computer program we have described in this paper, PORTA,
is a powerful multilevel radiative transfer code for the simulation
of the intensity and polarization of the spectral line radiation pro-
duced by scattering processes and the Hanle and Zeeman effects
in 3D models of stellar atmospheres. It is based on the non-linear
multigrid method proposed by Fabiani Bendicho et al. (1997)
and on a new 3D formal solver of the Stokes-vector transfer
equation which uses Bézier monotonic interpolation along short-
characteristics in each radiation beam. The PORTA program can
easily do Jacobi iterations in the desired spatial grid, instead of
solving the non-LTE problem under consideration through the
non-linear multigrid method and has two general options: one
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for spectroscopy (for those interested only in the familiar inten-
sity spectrum) and another one for spectropolarimetry (for those
interested in the full diagnostic content of the spectral line radi-
ation). The benchmarks we have carried out up to now and the
first applications to spatially complex models of the extended so-
lar atmosphere (Štěpán et al. 2012) indicate that PORTA is ready
for a variety of interesting applications in solar and stellar spec-
troscopy and spectropolarimetry. We plan to make it available
to the astrophysical community in the near future with the hope
that it will facilitate new advances in solar and stellar physics.
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Appendix A: Atomic and atmospheric models

The numerical benchmarks shown in this paper result from mul-
tilevel radiative transfer computations in a 3D model of the so-
lar atmosphere. The model atmosphere was obtained by impos-
ing horizontal sinusoidal fluctuations of the kinetic temperature
at each height in model C of Fontenla et al. (1993), hereafter
FAL-C model,

T (x, y, z) = TFAL−C(z) + ∆T sin
2πx
Lx

sin
2πy
Ly

, (A.1)

where Lx = Ly = 2000 km are the horizontal dimensions of
the domain and ∆T = 500 K is the amplitude of temperature
perturbation; TFAL−C(z) corresponds to the temperature at each
height z in the FAL-C model. The vertical extent of the model is
from zmin = −100 km to zmax = 2100 km.

The discretization of the spatial grid we used is Nx×Ny×Nz =
100 × 100 × 121 grid points, with periodic boundary conditions
along the x- and y-axis. In order make the model more numeri-
cally demanding, we interpolated the physical quantities of the
original grid of the FAL-C model onto a finer grid in the z di-
rection using an equidistant spacing of approximately 18 km. A
uniform grid spacing of 20 km has been used for the x and y di-
rections. We point out that uniform spacing is not necessary for
reaching convergence with PORTA.

The atomic model is the same five-level Ca  model de-
scribed in Manso Sainz & Trujillo Bueno (2010), with the fol-
lowing spectral lines: the H (3969 Å) and K (3934 Å) UV lines
and the infrared triplet (8498, 8542, and 8662 Å). The atomic
level polarization created by anisotropic radiation pumping is
fully taken into account, including the effects of dichroism (se-
lective absorption of polarization components) due to the atomic
polarization of the lower (metastable) levels of the infrared
triplet.

The total number of discrete radiation frequencies is 505
(101 per spectral line). The angular quadrature consists of five
inclination angles per octant (using Gaussian quadrature) and
four azimuthal angles per octant (using the trapezoidal rule),
which implies 160 ray directions.

In this paper, we illustrate the performance of PORTA
through multilevel radiative transfer calculations in the

3D model of the solar atmosphere described above. We point
out, however, that we have also successfully performed full mul-
tilevel computations in more complicated 3D models of the ex-
tended solar atmosphere resulting from state of the art radia-
tion magneto-hydrodynamic simulations (e.g., see Štěpán et al.
2012).

Appendix B: The software and hardware used
for benchmarking

The PORTA software was written in the C programming lan-
guage with parallelization treated within the Message Passing
Interface (MPI) standard8. The core of PORTA consists of a
shared library called PORTAL, providing the radiative transfer
functionality, management of the grids, and the treatment of par-
allelization. The second part of PORTA is a wrapper processing,
in a command-line manner, with the user inputs and outputs.

The flexibility of PORTA results from the use of addi-
tional libraries (modules) making it a very flexible code suitable
for possible generalizations and/or particularizations. Different
atomic models and options for applications in spectroscopy
and/or spectropolarimetry can be chosen using these modules.
It is also possible to choose particular or limiting cases, such
as the regime of scattering polarization and the Hanle effect, or
the Zeeman effect regime with or without atomic level polar-
ization, or simply to consider the case of the non-LTE problem
of the 1st kind (Mihalas 1978). Moreover, the logical structure
of PORTA is very suitable for future generalizations aimed at
solving 3D problems with partial frequency redistribution. The
software modules of PORTA are loaded on demand and provide
a scalable functionality for further development of the code. We
note that these modules can be written in various programming
languages.

The numerical tests of PORTA presented in this paper were
carried out in the following computer clusters:

1. The Ondřejov Cluster for Astrophysical Simulations (OCAS)
operated by the Astronomical Institute of the Academy of
Sciences of the Czech Republic. The cluster consists of
16 double-core, 4 quad-core and 4 oct-core nodes (i.e.,
80 CPU cores in total) with 64bit AMD Opteron CPUs
@2.6 GHz interconnected via the 4X InfiniBand network
with a bandwidth of 800 MBytes/s and a latency of 5 µs.
PORTA was compiled from the source code using the
PathScaleTM compiler and the parallel functionality was
provided by the OpenMPI9 library.

2. Additional testing of the code using a larger number of CPUs
was performed at the LaPalma supercomputer operated by
the Instituto de Astrofísica de Canarias. The cluster consists
of 1024 cores of 64bit IBM PowerPC 970 processors and
uses a high bandwidth Myrinet network for efficient inter-
process communication. We used the GNU C compiler.

We have also used the MareNostrum III supercomputer of
the Barcelona Supercomputing Center (BSC), which with its
48 896 Intel Sandy Bridge processors in 3056 nodes is at
present the most powerful supercomputer in Spain and holds the
29th position in the TOP500 list of fastest supercomputers in
the world. In this supercomputer we had 2048 CPU cores at our
disposal and using 800, 1200, and 2000 CPU cores we tested
the scalability of our formal solver of the Stokes-vector transfer

8 http://www.mcs.anl.gov/research/projects/mpi/
9 http://www.open-mpi.org
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equation for the resonance polarization problem of the hydro-
gen Ly-α line in a 3D model atmosphere with Nx × Ny × Nz =
504 × 504 × 321 grid points. Using the Intel C/C++ 13.0 com-
piler, we found that PORTA scales almost linearly up to at least
this number of CPU cores.
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