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This mini-review covers the newly developed biosensoristic and chemosensoristic 
devices described in recent literature for detection of contaminants in both environmental 
and food real matrices. Current needs in environmental and food surveillance of contam-
inants require new simplified, sensitive systems, which are portable and allow for rapid 
and on-site monitoring and diagnostics. Here, we focus on optical and electrochemical 
bio/chemosensoristic devices as promising tools with interesting analytical features that 
can be potentially exploited for innovative on-site and real-time applications for diagnos-
tics and monitoring of environmental and food matrices (e.g., agricultural waters and 
milk). In near future, suitably developed and implemented bio/chemosensoristic devices 
will be a new and modern technological solution for the identification of new quality 
and safety marker indexes as well as for a more proper and complete characterization 
of abovementioned environmental and food matrices. Integrated bio/chemosensoristic 
devices can also allow an “holistic approach” that may prove to be more suitable for 
diagnostics of environmental and food real matrices, where the copresence of more 
bioactive substances is frequent. Therefore, this approach can be focused on the deter-
mination of net effect (mixture effect) of bioactive substances present in real matrices.

Keywords: agro-food supply chain, milk, on-site diagnostics, electroanalytical methods, biosensoristic devices, 
surface plasmon resonance, lab-on-a-chip

enviROnMenTAL HeALTH AnD FOOD SAFeTY: SCenARiO AnD 
neeDS

Over the last few years, the abiotic contaminants levels in the environmental compartments and 
food increased to the point where they can cause potential human health effects due to exposure 
to chemical toxic substances. In particular, the interactions between environment and food supply 
chain that mainly occur at primary production level (including harvesting, milking and farmed 
animal production prior to slaughter, hunting and fishing, and harvesting of wild products) can 
cause serious both short- and long-term detrimental effects on human health.

Environmental and food safety remains a major global challenge, in particular in developing 
countries, where socioeconomic status predisposes a large share of the population to a direct 
environmental-origin contamination and/or consumption of contaminated food products.
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To minimize the negative and dramatic impacts (especially in 
developing countries) of chemical toxic substances of anthropic 
origin on environmental and human health, several focused 
actions are needed. For instance, promoting a sustainable use of 
chemicals and agrochemicals (e.g., pesticides, veterinary anti-
biotics, and food additives); the development of toxicovigilance 
practices and systems (1) and more effective primary prevention 
strategies (raising users’ awareness and promoting the use of good 
practice codes); moreover, implementation of legislative regula-
tions; and the development of proper infrastructures and effective 
protocols for safely recycle and dispose of hazardous wastes are 
necessary.

Against this background, such critical issues have produced 
a great demand for simplified, sensitive, and rapid screening 
methods (2, 3), without (or with reduced) sample pretreatments, 
suitable for environmental monitoring and surveillance at criti-
cal control points throughout the entire agro-food supply chain. 
In fact, recent progress and challenges in the field of analytical 
chemistry are focused on improving analytical methods with 
reduced environmental impact and developing new analytical 
sensoristic devices for continuous monitoring and diagnostics 
oriented toward environmental health and food safety.

On-site, cost-effective sensoristic devices capable of rou-
tine, sensitive, and selective detection of a range of targeted 
contaminants present in the environment and foods can be 
employed, for instance, to overcome time limitations and to 
reduce costs of sample collection and transport to laboratories, 
thus providing benefits for a rapid diagnostics and early cor-
rective actions.

eMeRGinG ROLe OF PORTABLe BiO/
CHeMOSenSORiSTiC DeviCeS in 
enviROnMenT AnD AGRO-FOOD 
SUPPLY CHAin MOniTORinG

For on-site diagnostics and environmental/food monitoring 
purposes, the application of standard and traditional analytical 
techniques (very sensitive and selective techniques, but costly, 
time consuming and requiring trained personnel with technical 
skills to perform the analysis) is in contrast with the current need 
of rapid, cheap, easy-to-use, and portable devices (4).

For these purposes, chemosensoristic and biosensoristic 
devices (herein collectively referred to as bio/chemosensoristic 
devices) are promising tools with interesting analytical features, 
which can be potentially exploited for on-site real-time applica-
tions, diagnostics, and screening for both environmental and food 
matrices. Such devices could be employed, e.g., to overcome exist-
ing limitations in measurements currently used in environmental 
and agro-food fields. While those measurements are mainly 
focused on the independent analyses of various parameters and 
analytes, complexity of environmental and food matrices requires 
a new holistic-like approach (4).

For instance, regarding nutritional and toxicology characteri-
zation of foods, a broader modern vision based on the concept 
of “whole food” is taking off (4, 5). Environmental and food 
matrices are complex mixtures of bioactive molecules, whose 

complex interactions between individual components could 
eventually produce different and hardly theoretically predictable 
“net effects.” “Net effect” is necessarily different from single effects 
of each individual substance, and it could be additive (when it 
is equal to the sum of contributions of individual substances), 
synergistic (when it is greater than the sum of contributions of 
the individual substances), and antagonistic (when it is less than 
the sum of contributions of individual substances).

For a more proper and complete characterization of food 
matrices (and environmental ones) “as a whole,” integrated 
analyses of physical, chemical, and biological parameters through 
sensoristic devices could be more suitable. The multichannel plat-
form BEST (6) is a HACCP-like monitoring system that follows 
this approach for the generation of integrated analytical informa-
tion. More specifically, BEST focuses on identification, control, 
simultaneous, and non-stop monitoring of anomalous variations 
throughout agro-zootechnical productions, developed to allow 
simultaneous collection and analysis of multiple signals. Such 
signals are produced from a battery of selected analogical and/or 
digital bio/chemosensoristic devices (or probes), integrated with 
each other and functioning simultaneously. The simultaneous 
acquisition of multiparameters and integrated information can 
be useful in determining correlations and relationships among 
different data (through multivariate data analysis), and it can 
constitute a flexible grid of indexes and multiple markers in 
series. Such integrated analytical approach helps to define a “fin-
gerprint” and to identify new marker indexes of food matrices. 
A field validation of BEST prototype is taking place in a farm in 
the Lazio region (Italy) within project ALERT (7). This project, 
funded by the Italian Ministry of Economic Development under 
the Call Industria 2015 New technologies for Made in Italy 
(www.alert2015.it), aims at developing the BEST prototype for 
industrial-scale production. Another new interesting approach 
for innovative monitoring and diagnostics of the environment 
and the agro-food supply chain is provided by a recent patented 
physicochemical sensing device called SNOOP (8). SNOOP is 
a multiparameter and multisignal sensoristic device that uses 
advanced and appropriately designed sensitive materials. Such 
sensitive materials can be both biological materials (e.g., whole 
cells, enzymes, and aptamers) and chemical materials (newly 
synthesized and/or functionalized inorganic and organic materi-
als), whose one of the main features is the specific interaction with 
the target analyte(s) present in real and complex matrices. Such 
interactions can produce specific or aspecific physicochemical 
(electric or optic) responses, and the simultaneous use of different 
sensitive materials and the combination/integration of outgoing 
signals can significantly increase the screening ability of SNOOP.

electrochemical Bio/Chemosensoristic 
Devices
The field of electrochemical and optical bio/chemosensoristic 
devices has grown rapidly in the past few years. Thanks to 
advantages provided by intrinsic analytical features and the 
development of new advanced sensitive materials, the employ-
ment of these devices has proved to be very useful for chemical 
contaminants detection in environmental and food matrices 
(Tables S1 and S2 in Supplementary Material). In particular, 
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biosensors or biosensoristic devices (an integrated recep-
tor–transducer device, which is capable of providing selective 
quantitative or semiquantitative analytical information using a 
biological recognition element) (9) hold promise to be relatively 
cheap and portable devices for in situ detection of environmen-
tal and food contaminants (10, 11).

A recent review on key research interests in the development 
of biosensors in South Africa has highlight a particular interest 
on the development of electrochemical (amperometric, impedi-
metric, potentiometric, and voltammetric) biosensor due to low 
fabrication and analytical equipment costs, in particular, for pes-
ticides and heavy metals detection. Other research areas include 
nanotechnology, identification and validation of biomarkers, and 
development of biorecognition agents (antibodies and aptamers) 
and new biosensor design approaches (e.g., development of new 
materials) (12).

In recent literature, enzymes (13–15) and whole cells (16) 
seem to have been replaced with antibodies (17–23) and aptamers 
(24–29) as recognition elements in electrochemical and optical 
biosensoristic devices.

Regarding electrochemical devices, they possess unique 
features to address the challenges of field and on-site analytical 
chemistry: possibility of miniaturization and portability, sensitiv-
ity, selectivity, a wide linear range of detection, minimal power 
requirement, and cost-effective instrumentation. Voltammetry 
is one of the most widely used electroanalytical techniques 
for electrochemical detection in bio/chemosensoric devices 
(see  Tables  S1 and S2 in Supplementary Material). In fact, 
various voltammetric techniques possess intrinsic analytical 
advantages and features and included excellent sensitivity, rapid 
analysis times, and possibility of simultaneous determination of 
different analytes. In voltammetric pulse techniques, through 
different modulation of the applied potential, a higher speed of 
measurement and sensitivity (useful for determination of species 
at trace levels) can be achieved. In particular, differential pulse 
voltammetry and square-wave voltammetry have been exten-
sively described in the recent literature for detection of various 
chemical contaminants in environmental samples (24, 25, 30–35). 
Other widely used electrochemical techniques includes cyclic 
voltammetry (for studies on redox behavior of analytes) (31, 36, 
37) and stripping techniques (characterized by preconcentration 
step of the analyte onto or into the working electrode to achieve a 
greater sensitivity) (38–42). In addition, the latter are commonly 
applied for determination of metal speciation (chemical form 
can influence bioavailability of metals) useful for environmental 
risk assessment of metal pollution (43). Amperometry is another 
widely used electrochemical technique in bio/chemosensoris-
tics (13–17, 44–51). Together with voltammetric techniques, 
electrochemical impedance spectroscopy is an extremely useful 
technique for a broad range of applications, including characteri-
zation of materials and detecting interaction between recognition 
elements (e.g., antibodies and aptamers) of sensoristic devices 
and analyte, through measures of changes in electrical surface 
properties of electrodes (26, 28). To improve analytical features 
and performances of electrochemical techniques, the last decades 
have witnessed a tremendous development of innovative sensi-
tive materials for surface functionalization of electrodes. Several 

advances in the development of bio/chemosensors (in particular 
for electrochemical devices) have been achieved through the 
employment of (modified) electrodes (Tables S1 and S2 in 
Supplementary Material). Traditional mercury-based electrodes 
(39, 41) have gradually been replaced (because of low mechanical 
stability and toxicity of mercury) by other electrodes made of 
better suitable materials. As replacement of mercury, alternative 
materials (with similar or better analytical features) have been 
employed and/or developed: bismuth (a non-toxic element with 
high hydrogen overpotential and good mechanical stability) (52), 
boron-doped diamond (with a wider electrochemical potential 
window and reduced fouling compared to traditional materials) 
(34), nitrogen-doped graphene (doping converts an excellent 
conductor as graphene into a p- or n-type semiconductor) (49), 
and single and multiwalled carbon nanotubes and nanoparticles. 
Looking at recent literature, a considerable attention has been 
paid to the development and exploitation of nanostructured 
materials (nanoparticles, nanowires, or nanotubes) for sensoris-
tic purposes: carbon-based (e.g., single-walled and multiwalled 
carbon nanotubes) (17, 31, 35, 42, 45, 50) and nanoparticles with 
different chemical composition (13, 24, 26–30, 32, 40, 50, 51). 
These nanomaterials (also functionalized) can modify surface 
architectures and functions of electrodes by, for instance, (i) 
enlarging active surface (e.g., increasing of docking sites for 
biological recognition elements) and (ii) enhancing electron 
transfer or electrical properties and amplify signals in general. 
Another interesting supramolecular-based approach to develop 
innovative materials for electrode modification is the synthesis 
of molecular and ion imprinted polymers. These are synthetic 
polymers able to mimicking biological recognition elements, like 
antibodies and aptamers, useful for the design of high-specificity 
sensoristic devices (30, 35, 38, 50, 53). Basically, these poly-
mers are obtained from a copolymerization process of suitable 
monomers in the presence of a molecular or ionic template (the 
target analyte); the successive removal of the template leaves in 
the polymer structure binding sites that can re-host the analyte. 
Although they bring several advantages in terms of durability 
and cost-effective production (compared to aptamers and 
antibodies), it is still necessary to solve some problems related 
to heterogeneity of binding sites that can bring to non-specific  
bindings.

Optical Biosensoristic Devices and Lab-
on-a-Chip (LOC)
The recent interest in optical biosensoristic devices for food 
analysis, with fluorescent, bioluminescent or chemiluminescent 
labels for detection, as well as the direct (label-free) detection 
(i.e., no reporter elements to generate a signal are needed) (54, 
55), is increasing. The development of label-free technologies 
and in particular label-free surface plasmon resonance (SPR) has 
become the greatest example of employment of the technology as 
a routine analytical method in such fields (56).

Actually, biosensoristic devices based on SPR are ideal plat-
forms for the label-free detection of molecular monolayers as they 
allow for qualitative and quantitative multiplexing measurements 
of biomolecular interactions in real-time without requiring a 
labeling procedure in the framework of food safety (57, 58).
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Indeed, by using SPR-based immunosensors, one can obtain 
robust and quantitative results with narrow- or broad-spectrum 
specificity in relatively short time. In the case of milk, SPR cir-
cumvents the issues related to turbidity and protein fouling (both 
are generally limiting factors for optical-based biosensoristic 
devices application for milk testing) by measuring the refractive 
index modulation on the reverse side of the metal film where the 
biological selective element is immobilized (18, 59).

Since late 90s, SPR biosensoristic devices have become the 
main tool for the study of biomolecular interactions in life sci-
ence, with successful applications in the field of food safety (58).

Although there are great advantages of the SPR technology, 
some disadvantages are evident: high cost of the readout instru-
mentation and a still high cost of the consumables (sensing chip 
and reagents) and large instrumentation footprint.

In recent years, nanoplasmonics (e.g., noble metal nano-
particles, nanometallic gratings, or a combination of metallic 
nanocavities organized in nanogratings) has shown a great 
potential in overcoming the technological/commercial limits of 
SPR (60) and for developing nanoplasmonic detection platforms. 
Even though important technological effort is still to be done to 
be competitive with point-of-care screening technologies, the 
integration on the same disposable and miniaturized platform 
of low-cost photonics devices with multiplexing nanoplasmonic 
and advanced microfluidics system can be considered as new and 
non-disruptive technology able to ensure competitiveness from 
both the economic and the detection point of views.

The development of advanced photonic biosensoristic devices 
has to be brought beyond the state of the art of the point-of-care-
diagnostic systems by the synergetic integration of the different 
technological building blocks with consequent improvement 
of the single-component outputs. Moreover, the introduction 
of outperforming light-excitation/detection scheme allows for 
unraveling the potentiality of the sensor in terms for disposability, 
reliability, miniaturization, and multiplexing while providing 
laboratory quality analysis (61).

Within the current point-of-care diagnostic market, there is a 
limited number of systems that operate without the requirement 
for a dedicated desktop reader, and there are no quantitative, 
portable diagnostic platforms with multiple detection methods. 
The components from existing laboratory equipment are too 
bulky, fragile, and expensive and require too much mechanical 
integration to be consolidated into a point-of-care device (55).

Miniaturization (from microelectrodes/nanosensors to 
microfluidic platforms) is an increasing trend as a response 
to these needs to develop new miniature and portable ana-
lytical devices for environmental and food monitoring and 
diagnostics.

In this scenario, LOC devices have shown themselves to 
be highly effective for laboratory-based research, where their 

superior analytical performance has established them as efficient 
tools for complex tasks and a promising tools for a number of 
environmental monitoring applications, i.e., continuous surveil-
lance of selected parameters and contaminant concentrations 
(62) and for agricultural and food safety (63). Referring to the 
state of the art in the recently developed LOC methods (64), it 
can be observed that they are based on nucleic acid amplification, 
biosensoristic devices, flow cytometry, spectrometry techniques, 
and multisensors systems.

However, to date, they have not been well suited to point-of-
care or in-the-field applications: although the chips themselves 
are cheap and small, they must generally be used in conjunction 
with bulky optical detectors, which are needed to identify or 
quantify the analytes or reagents present. Furthermore, most 
existing detectors are limited to analysis of a single analyte at a 
predetermined location on the chip. The lack of an integrated, 
multiplexing, and fast detection scheme (one which is miniatur-
ized, integrated, and able to monitor multiple locations on the 
chip) is a major obstacle to the deployment of diagnostic devices 
in the field. This issue has prevented the development of more 
complex tests where rapid, kinetic, or multipoint analysis is 
required.

COnCLUSiOn

Development of improved electrochemical and optical bio/
chemosensoristic devices represents a technological challenge 
to broaden boundaries of field diagnostics and monitoring 
environmental and food samples. In particular, specific improved 
features of integration, portability (e.g., sensors equipped with 
built-in reading systems), cheapness, simplification of experi-
mental protocols (less time- and labor-demanding protocols), 
and development of efficient high-throughput approaches are 
required. Concerning LOC devices, fast detection scheme and 
the ability to monitor at multiple locations on the chip could 
ensure a high selectivity and sensitivity for the analyte of interest. 
All these devices could be employed for the identification of new 
quality and safety marker indexes in real matrices as well as for 
the determination of mixture effects of bioactive substances.
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