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Portable Detection of Apnea and Hypopnea Events

using Bio-Impedance of the Chest and Deep

Learning

Tom Van Steenkiste1, Willemijn Groenendaal2, Pauline Dreesen3, Seulki Lee2, Susie Klerkx4,

Ruben de Francisco5, Dirk Deschrijver1, and Tom Dhaene1

Abstract—Sleep apnea is one of the most common sleep-related
breathing disorders. It is diagnosed through an overnight sleep
study in a specialized sleep clinic. This setup is expensive and
the number of beds and staff are limited, leading to a long
waiting time. To enable more patients to be tested, and repeated
monitoring for diagnosed patients, portable sleep monitoring
devices are being developed. These devices automatically detect
sleep apnea events in one or more respiration-related signals.
There are multiple methods to measure respiration, with varying
levels of signal quality and comfort for the patient. In this
study, the potential of using the bio-impedance (bioZ) of the
chest as a respiratory surrogate is analyzed. A novel portable
device is presented, combined with a two-phase Long Short-
Term Memory (LSTM) deep learning algorithm for automated
event detection. The setup is benchmarked using simultaneous
recordings of the device and the traditional polysomnography
in 25 patients. The results demonstrate that using only the
bioZ, an area under the precision-recall curve of 46.9% can
be achieved, which is on par with automatic scoring using a
polysomnography respiration channel. The sensitivity, specificity
and accuracy are 58.4%, 76.2% and 72.8% respectively. This
confirms the potential of using the bioZ device and deep learning
algorithm for automatically detecting sleep respiration events
during the night, in a portable and comfortable setup.

Index Terms—sleep apnea, HSAT, bio-impedance, deep-
learning

I. INTRODUCTION

S
LEEP APNEA is one of the most common sleep-related

breathing disorders and consists of breathing pauses or

shallow breathing during the night, known as apneic events [1].

These events can be categorized as either obstructive sleep

apnea (OSA) when the airway is blocked by the throat muscles

or central sleep apnea (CSA) when the signals to control

the breathing are disturbed. When the breathing has become

shallow but is not yet fully disturbed, it is classified as obstruc-

tive or central hypopnea. The consequences of undiagnosed

sleep apnea can be severe, including hypertension, cardiac

arrhythmia, heart attacks and strokes [2], [3], [4]. It has also
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been shown that sleep apnea patients have an increased chance

of being involved in motor vehicle collisions [5].

Studies report that in some countries, over 50% of adults

suffer from sleep-disordered breathing [6]. Yet, many cases

remain undiagnosed as people are often unaware of their

condition. For diagnosis, patients are admitted in a dedicated

sleep clinic where they are monitored overnight using a

polysomnograph (PSG) which measures a variety of signals

pertaining to respiration, brain activity, sleep stages, heart rate,

oxygen saturation and others. Afterwards, the recordings are

analyzed by trained sleep technicians and annotated using

a reference manual such as the American Association of

Sleep Medicine (AASM) guidelines [7]. The condition of the

patient is summarized into an apnea-hypopnea-index (AHI)

representing the number of events per hour of sleep.

The complex PSG setup, and the limited number of beds

and staff in sleep clinics are leading to large costs [8] and a

long waiting time [9]. In addition, the PSG setup requires

many sensors attached to the patient and a night of sleep

in an unfamiliar hospital bed. This leads to an uncomfort-

able analysis and an inaccurate representation of an actual

night of sleep in the patients home [10], [11]. To allow

a more comfortable and representative analysis, while also

enabling more patients to be tested and diagnosed patients to

be continuously monitored, home sleep apnea tests (HSAT)

are being developed. This is the result of recent hardware

and algorithmic innovations leading to wearable devices for

automated precision monitoring [12] and for continuous and

longitudinal health monitoring [13].

As recommended by the AASM guidelines for portable

devices [14], these HSAT typically include a respiration mea-

surement. This can be based on typical PSG sensors such as

resistive bands around the chest or abdomen [15], and nasal

or oral airflow [16], [17], [15]. However, many other types of

sensor have been developed such as nearable sensors, which

require proximity but do not require patient contact. Examples

include load cells under the bed [18], film based sensors [19]

or mobility monitors [20]. Respiration can also be measured

directly through microelectronic systems (MEMS) [21] or

wearable piezo-electric bands [22]. In addition, respiration can

be extracted from other physiological measurements such as

ECG [23], [24] but this approach is susceptible to noise [25].

Other popular HSAT methods include the use of pulse oxime-

try [26], [27], [28], [29] or sound [30], [31], [32]. Lastly, there

are several devices that combine multiple signals [15], [33],
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[34]. These devices can by categorized using the SCOPER

system [35].

The recorded data from these HSAT is processed through

automated methods ranging from threshold algorithms [36]

and rule-based algorithms [16] to support vector machines [37]

and artificial neural networks [38]. Recently, deep learning

algorithms have also been proposed and have demonstrated

good performance [39]. Commercial software for automated

processing of respiratory signals can also be used [40].

In various medical domains, bioZ measurements have al-

ready been suggested for measuring, among others, respiration

of the patient [41], [42]. However, the use of bioZ for sleep

apnea detection has not yet been thoroughly analyzed or

described. The key objective of this study is to analyze and

discuss the potential of using a bioZ measurement of the chest

as a respiratory surrogate for detecting sleep apnea events. A

novel portable device is presented with a combined two-phase

deep learning algorithm, and the performance is benchmarked

on a clinically gathered dataset.

The outline of this paper is as follows. In Section II, a device

is presented to directly measure the bioZ of the chest along

with ECG and acceleration of the patient. The deep learning

algorithm is presented in Section III. The experimental setup to

analyze this approach is presented in Section IV. In Section V,

the results are presented and in Section VI these results are

discussed. Finally, conclusions are made and future work is

considered in Section VII.

II. WEARABLE BIO-IMPEDANCE DEVICE

To analyze the possibility of using the bioZ to detect sleep

apnea events, a novel device, denoted as ROBIN, is proposed

which measures and records the bioZ of the chest, in addition

to ECG and acceleration. First, the hardware is discussed.

Then, an algorithm is presented for aligning the recordings of

the ROBIN with the PSG data to enable a comparison study.

A. ROBIN Device

The ROBIN was developed by imec (imec The Netherlands,

Eindhoven). A detailed schematic of the hardware setup is

shown in Fig. 1. The device itself is demonstrated in Fig. 2.

The device is able to measure and record several bio-

signals. In this study, the signals of interest are the ECG, bioZ

and motion of the patient. The ECG and bioZ are measured

directly by MUSEIC, a system on a chip (SoC) designed by

imec (imec The Netherlands, Eindhoven) [43]. Motion of the

patient is measured via a separate accelerometer IC and data

is transferred to MUSEIC for synchronization.

In order to measure bioZ, the tissue of the patient is

stimulated with an AC current from the current generator

of MUSEIC. The captured signal is demodulated to the

baseband and amplified with the instrumentation amplifier

(IA) and programmable gain amplifier (PGA) in the front-end

readout circuits of MUSEIC. The frequency and amplitude

of the current generator, and the gain of the amplifiers are

configurable for the target application. Afterwards, the signal is

digitized by an ADC, packetized in MUSEIC, and transmitted

to the external microcontroller. This microcontroller, an ARM
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Fig. 1: Detailed hardware schematic of the ROBIN device used

in this study.
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Fig. 2: ROBIN device used in this study. It is a compact

wearable with minimal discomfort for the patient. The device

is worn around the neck and is attached to the chest via

adhesive stickers.

Cortex M4F, is responsible for processing the data. Once the

microcontroller receives the data from the sensors, it stores

the data into the on-board memory to enable offline retrieval

for further processing and analysis.

In this study, the bioZ is measured at the chest to provide

a measurement of respiration. An in-depth discussion on bioZ

is provided in [41]. Details on the performance of the bioZ

measurement chip used in this work are provided in [43].

Skin surface electrodes provide the current stimulation and

voltage measurement. A tetrapolar electrode configuration is

used to avoid the effect of electrode-tissue impedance. Two

electrodes are dedicated to current stimulation, and the other

two electrodes are adopted for the voltage measurement. An

additional electrode is used to connect the patient to a fixed

DC voltage (0.6V) in order to keep the input bioZ signals

within the dynamic range of the amplifiers.

The stimulation frequency of the ROBIN can be configured

between 8kHz and 160kHz. For the sleep apnea study, the

stimulating alternating current in the form of a pseudo sine

wave is set to 160kHz as this enables good sensitivity and

linearity against impedance changes. The current amplitude

can be configured at four different values (25, 50, 75, and

100uApp, corresponding to 8.8, 17.7, 26.5, and 35.4uArms).

The international safety standard of medical electrical equip-

ment (IEC 60601-1) states a maximum current of 50uArms
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at 160kHz for stimulating tissues. In this study, 100uApp

(35.4uArms) is used to maximize the signal-to-noise ratio.

The stimulating current will generate a voltage potential in

the region of interest, proportional to the impedance of the

tissue. This induced voltage is captured by the amplifiers and

demodulated to the baseband. In this way, only impedance

changes without any stimulation current components remain

in the final bioZ data.

With these configuration settings, the bioZ sensor of the

ROBIN can detect impedance changes as small as 0.1Ω. The

measurable impedance range is from -150Ω to 120Ω, where a

negative sign of the impedance indicates the opposite polarity

of stimulation current and measured voltage. Depending on the

measurement subject, impedance changes due to respiration

are 1-2Ω, meaning that the bioZ sensor of the ROBIN device

can measure the respiration effectively.

The bioZ measurements are recorded at 1024Hz as

complex-valued time-series data. For further analysis as a

respiration surrogate, the magnitude is computed and the data

is downsampled to 125Hz for storage on the offline processing

server of the study.

Two electrodes are used to collect single lead ECG data

from the measurement subject with a sampling frequency of

512Hz. Although limited respiration information can also be

extracted from ECG data, the focus of this study is on the

direct and full respiratory measurement using the bioZ sensor.

The ECG data is used for data alignment. The ROBIN device

also includes an accelerometer sensor which is used to measure

dynamic movement of the patient to enable visual inspection

of the data for verification of the recording.

B. PSG Alignment of ROBIN data

To enable a comparison of the ROBIN data with the gold

standard PSG data and the PSG annotations of the trained

sleep technicians, the recordings of the ROBIN and PSG need

to be synchronized. As there can be an offset on the starting

time of the recording, an initial delay needs to be estimated. In

addition, due to small differences in actual sampling frequency,

the recordings of both devices can start drifting apart. Even a

minimal difference in sampling frequency can lead to a large

drift after a couple of hours of recording. For example, a

difference of 0.1Hz in a sampling frequency of 50Hz can lead

to a drift of 57.6 seconds after an eight hour recording.

The ECG of the patient is recorded by both devices. As QRS

complexes in simultaneously recorded ECG measurements

should occur in a synchronized way, the ECG signals provide

a straightforward base to align the recordings. A possible

approach for alignment is by consecutively resampling the

signals and estimating the delay. In a first step, both ECG

recordings are resampled to 50Hz based on their listed sam-

pling frequency. Then, an iterative process starts in which the

starting delay and sampling frequency drift are computed and

evaluated based on the cross-correlation between the two ECG

signals. This process is repeated until convergence, which

typically occurs after two iterations.

The alignment is only required for the analysis of the

hardware and algorithms in this study. In practical settings,

when the device is deployed, the PSG data is no longer

recorded and hence, no alignment is needed.

III. AUTOMATED SLEEP APNEA DETECTION ALGORITHM

In this section, an algorithm is presented to automatically

detect sleep apnea events in respiratory data based on long

short-term memory (LSTM) neural networks [44] which are

trained in two separate phases: training phase 1 and training

phase 2. First, the extraction and preprocessing of epochs of

respiratory data is discussed. Next, the deep learning model is

presented.

A. Epoch Creation

To filter noise and extract respiratory information, the

recorded signal, either from the PSG or the ROBIN, is passed

through a fourth order zero-phase-shift Butterworth low-pass

filter with a cutoff frequency of 0.7Hz. The resulting signal

is filtered with a moving average filter of four seconds to

reduce motion artifacts and to limit baseline wander. Finally,

the signal is downsampled to 5Hz for further processing. This

final downsampling is done in two stages, each followed by an

eight order Chebyshev type I zero-phase-shift filter to reduce

resampling artifacts.

The filtered signal is split into epochs of 30 seconds each,

with a stride of 1 second between consecutive epochs. The

binary ground truth labels are provided by the annotations in

the PSG data. If at the end of the epoch an apnea event was

annotated, the entire epoch is labeled as positive.

The data of each epoch is scaled to the interval [−1, 1]
to increase the learning capacity of the LSTM nodes of the

network. Instead of computing the normalization factors based

on the minimum and maximum value of each epoch as in [39],

the normalization factors are computed over the duration of

the last M epochs, including the current epoch. This enables

the inclusion of long-term contextual information into a single

epoch. The full process is demonstrated in Fig. 3.

PSG Annotation
BioZ Respiration

30 epochs
for phase 2

of model
training

epoch Xi of 30 seconds

M epochs for adaptive normalization

...

Fig. 3: Creating epochs from the recorded sleep apnea data.

Labels are determined based on the annotation at the end of

the epoch. The adaptive normalization procedure uses the last

M epochs for computation of the scaling factors. In training

phase 2 of the deep learning model, 30 epochs are used for

the event detection in epoch Xi.
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B. Deep Learning Model

The two-phase deep learning model is based on LSTM

neural networks which are a type of recurrent neural network.

Such models have been successfully applied across several

medical domains, including sleep apnea [45], [46], [47], [48].

A theoretical discussion on LSTM neural networks can be

found in [44].

In recent work [39], balanced bootstrapping [49] was pro-

posed as a method to include all samples of an imbalanced

dataset in a final model by training multiple models on the

generated subdatasets. Each subset is used to train a separate

LSTM model. During the prediction step, each separate model

generates a prediction which is then combined through an

aggregation metric such as averaging. In this work, this is

denoted as training phase 1 and instead of averaging over

the multiple predictions, they are used as inputs for training

phase 2 LSTM models. This second training phase effectively

replaces the initial averaging as aggregation method. By taking

into account the variations in predictions across the different

training phase 1 LSTM networks, and across time within

a single epoch, more contextual information can be used

in the final prediction. The complete two-phase approach is

demonstrated in Fig. 4.

During training phase 1, N LSTM models are constructed

using the N balanced bootstrap datasets (BB1 - BBN ) as

discussed in [39]. Each of the N models computes a series of

outputs ki−29 up to ki for epoch i. This results in N times 30
estimates, containing the prediction of each balanced bootstrap

model at each point during the epoch, providing additional

context over only a single epoch. This method uses data from

the current epoch and the previous 29 overlapping epochs,

leading to 59 seconds of data being used. The 30 estimations

of the N balanced bootstrapped networks are combined into

a single time-varying N × 30 matrix which is used by the

training phase 2 network.

All LSTM networks in the model follow a similar architec-

ture as introduced in [39]. The LSTM layers are succeeded by

a dropout layer to reduce overfitting and encourage generaliza-

tion. The resulting network has several hyperparameters that

need to be tuned. For this, Bayesian Optimization (BO) is used,

which is a powerful method for tuning the hyperparameters

of machine learning models [50], [51]. Each phase of the

model has a separate set of parameters and the range of these

hyperparameters is shown in Table I.

TABLE I: Boundaries of the hyperparameters for the entire

model, used during the Bayesian optimization procedure.

parameter meaning min max

n1 & n2 number of LSTM nodes 10 200
p1 & p2 dropout probability 0.1 0.5
M normalization range [seconds] 1 300

IV. EXPERIMENTAL SETUP

A. Data Acquisition

Data was gathered in a clinical setting from patients enrolled

for an overnight PSG analysis at Ziekenhuis Oost-Limburg, a

hospital in Belgium. The study was conducted in accordance

with the Declaration of Helsinki and was approved by the

Ethical Committee before study onset (CME ZOL, reference:

16/042U). All participants provided written informed consent

before inclusion.

The PSG and ROBIN recorded data simultaneously. After-

wards, the PSG data was annotated by trained sleep technicians

using AASM guidelines [7].

This study included all patients which had a successful ECG

recording in both devices, as required for the alignment algo-

rithm, and for which there was a successful bioZ recording,

i.e. there was no saturation in the bioZ signal. A saturation

in the bioZ signal occurs when the device is not properly

tuned to a specific patient’s characteristics. This can easily be

circumvented in a following recording by changing the ROBIN

settings.

In total, 25 patients were used in this study. Table II shows

the patient characteristics. The patient was allowed to sleep

in a hospital bed as desired and was able to change position

during the night.

TABLE II: Overview of patient characteristics.

male female

number 22 3

numbernormal 7 1

numbermild 15 2

AHI 7.5± 3.3 5.4± 1.9

age 57.9± 12.7 56.7± 2.9

BMI 30.2± 3.7 28.1± 3.4

The PSG device recorded the typical signals used for a full

sleep study in a sleep clinic. The recorded PSG respiration

measurements included in this study are:

• PSGabd. belt: Abdominal respiratory belt below the lower

edge of the left ribcage.

• PSGthor. belt: Thoracic respiratory belt below left armpit.

The ROBIN recorded chest bioZ, ECG and acceleration

as discussed in Section II-A. The bioZ respiration signal is

denoted as ROBINbioZ

B. Device and Model Performance Evaluation

All recorded data was visually inspected in multiple stages.

First, the PSG data was analyzed by the trained staff to provide

annotations. Then, ROBIN recordings were analyzed to check

recording success. Finally, the quality of the ECG recording

of both devices was inspected for subsequent alignment.

The PSG data with annotations from trained staff and the

ROBIN data were aligned as discussed in Section II and

preprocessed as discussed in Section III. In total, there were

4647 OSA epochs, 2851 CSA epochs, 19469 hypopnea epochs

and 92096 epochs without sleep apnea.

The gold-standard PSG respiratory recordings were used to

construct two models: PSGabd. belt and PSGthor. belt. The bioZ

data from the ROBIN was used to construct ROBINbioZ. This

enables a comparison of the automated detection algorithm

versus the annotations of trained staff as well as a comparison

of the bioZ measurement versus PSG recordings.

For each model, the data was split across a five-fold

per-patient cross-validation setup. Within each iteration, 15

patients were used for training the two-phase deep learning
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Fig. 4: Two-phase deep learning model for automated detection of sleep apnea events. The input X is passed through each of

the N balanced bootstrapped networks of training phase 1, resulting in an intermediate result k. These results are then used

in the training phase 2 model to refine and enhance the prediction performance.

model, five patients were used for validation of the model

and five patients were used as a separate test set for final

performance evaluation. This was repeated for each fold,

which enables a statistical analysis of the results. Patients were

randomized but the order is static across the three models to

ensure a fair comparison.

Analysis of sleep apnea algorithms is done using several

metrics for binary classification problems. The performance is

analyzed using the sensitivity, specificity and accuracy metrics

which are based on the number of True Positives (TP), False

Positives (FP), True Negatives (TN) and False Negatives (FN).

sensitivity = TP/(TP + FN)

specificity = TN/(TN + FP)

accuracy = (TP + TN)/(FP + TN + TP + FN)

The goal of the algorithm is to achieve a high score across

all these metrics. However, the binary classifier outputs a

probability of an event occurring, and as such, the final values

of these metrics can easily be influenced by changing a

decision threshold 0 ≤ τ ≤ 1. To analyze the performance

of the model across all possible thresholds, the Receiver Op-

erator Characteristic (ROC) curve, demonstrating the balance

between sensitivity and specificity, and the associated area

under it (AUROC) are computed.

Another factor influencing the analysis of the model is the

imbalance in the dataset. When working with highly imbal-

anced datasets, sensitivity and specificity scores can provide

misleading insights [52]. As the number of apnea epochs in

the data is much less than the number of non-apnea epochs,

this imbalance has to be taken into account. For this, the

precision, also known as the positive-predictive-value (PPV)

and the negative-predictive-value (NPV) metrics are used.

precision = TP/(TP + FP)

NPV = TN/(TN + FN)

To analyze the performance of the imbalanced dataset across

a range of decision thresholds, the precision-recall (PR) curve

and associated area under the curve (AUPRC) are computed.

This AUPRC metric is the main analysis point of this study,

and is used as a driving metric for the BO of the model

hyperparameters.

Statistical analysis for comparing the ROBINbioZ against the

baseline PSGabd. belt and PSGthor. belt is done using a paired

two-tailed T-test across the different fold results with target

significance level of p < 0.05. In addition, the statitical

significance of any improvement due to the second phase

model is also analyzed using a paired two-tailed T-test with

target significance level of p < 0.05. All tests are based on

the AUPRC metric.

Unless otherwise mentioned, all metrics are computed using

the predictions of the L2 models and binary classification

metrics are reported at the decision threshold pevent > 0.5
which was learned during training.

V. RESULTS

Fig. 5 presents a snapshot comparison between the different

PSG respiratory signals (PSGabd. belt and PSGthor. belt) and the

ROBIN bioZ signal (ROBINbioZ.). There is a clear visual

similarity between the three different signals. Note that in
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Fig. 5d, there is no sleep apnea event even though there is

a disturbance or change in respiration across the three signals

at the 40 second mark.

The main analysis point of this study is the PR curve,

which is shown in Fig. 6 in addition to the ROC curve for the

three different models. There is a similarity across all models.

The PSGabd. belt leads to the largest area under the curve.

This summary of the PR curve is also visualized in Fig. 7

and Fig. 8 where the AUPRC metric is shown for the train,

validation and test dataset of the first and second training phase

which resulted in L1 models and L2 models respectively. The

analysis across the different datasets demonstrates the stability

and generalizability of the results. After the second training

phase, the ROBINbioZ achieves similar performance as the

PSGthor. belt model. The relative improvement due to the second

training phase is shown in Fig. 9. The ROBINbioZ model

benefits the most from this addition. The improvement is

not substantial for the PSGabd. belt and the PSGthor. belt models.

The performance on the training dataset increases but the

performance of the test dataset remains the same, indicating

that the models struggle to generalize the additional knowledge

in the models. However, the ROBINbioZ model is able to

effectively generalize to new patients, as reflected by the large

improvement on the test dataset.

In addition to the AUPRC, other typical metrics were

computed. A full overview of all recorded metrics, evaluated

on the test set as per-epoch classification performance, is

provided in Table III. All metrics are reported at the decision

point (pevent > 0.5) learned during training of the model. The

statistical significance of these results is analyzed based on the

AUPRC as described in Section IV. Comparing ROBINbioZ

versus PSGabd. belt and ROBINbioZ versus PSGthor. belt results in

p-values of 0.03 and 0.71 respectively. These results show

that there is a statistically significant difference between

ROBINbioZ and PSGabd. belt but that no statistically significant

difference between ROBINbioZ and PSGthor. belt can be proven.

Statistical significance of using the two-phased approach is

analyzed by comparing the L1 and L2 models for ROBINbioZ

which results in a p-value of 0.03, demonstrating a statistically

significant improvement in performance.

To accurately interpret these results, a detailed analysis of

the model errors is required. The various types of model error

are shown in Fig. 10. When the respiratory disturbance of the

apnea event is of short duration (type A error), the model will

return a false positive result as only apnea events longer than

10 seconds are scored in polysomnography annotations [53].

In practical settings, type A errors can be reduced by only

taking into account model activations that are longer than

10 seconds. Sometimes, the model output does not activate

sufficiently (type B error). This happens when the event

is not clear in the respiratory data, for example when the

breathing has been shallow for a longer period than the model

window. The annotations in the polysomnography data can

not be interpreted as an exact boundary. However, the analysis

metrics require an exact event cut-off time. This leads to false

positive errors due to early detection (type C error) or due

to the model overshooting the annotation boundary (type D

error). Although type C and type D errors negatively impact

the model scores, they are not relevant in practical settings as

the sleep apnea event was correctly detected and hence such

errors do not influence the diagnostic AHI score.

Finally, the performance of the models across the different

types of apnea is analyzed by computing the accuracy of the

models for each type separately. These results are shown in

Table IV. For all models, OSA classification has the best

performance.

VI. DISCUSSION

The aim of this study was to thoroughly analyze and

investigate the use of bioZ as a respiratory surrogate for the

automated detection of sleep apnea events. The results show

that this approach can reach a similar performance as an

automated model based on respiratory data from the PSG. In

addition, the model performance is stable across the various

folds of the dataset, demonstrating generalizability. The main

advantage of the bioZ compared to the conventional PSG

methods is the smaller form factor and increase in patient

comfort. In addition, the use of the bioZ does not require

a respiration derivation algorithm as is necessary for ECG

derived respiration. These derivation algorithms struggle when

patients suffer additional conditions such as arrhythmia. The

main disadvantage of the bioZ is the reduced accuracy for the

detection of CSA events as shown in Table IV.

Other methods for HSAT respiration measurements have

also been proposed. Table V provides an overview of the

recorded metrics for some reference works. None of these

studies reports the AUPRC metric. The results of these devices

and algorithms need to be carefully interpreted. In some cases,

the presented metrics are based on a per-patient classification

whereas in others these are presented as per-epoch scores.

In addition, the studies are performed with different patients,

different setups and different scoring and analysis criteria.

There are several works in which these devices and algorithms

are compared with each other and analyzed [54], [55], [56],

[57], [58], [59]. To fully compare the bioZ approach with these

devices, a large further clinical study is required.

There are several limitations to this study which warrant

careful interpretation of the results. First, the patients that were

included in the study had, in general, low AHI scores. A more

relevant set of patients would include several high AHI scores.

However, as this study includes patients that come to the

sleep clinic for testing, the AHI of the patients to be included

cannot be determined upfront. The low AHI represents a

challenge for the algorithms as the data imbalance is further

enlarged, impacting the metrics. Second, the presented device

is not compatible with AASM guidelines as several other

physiological signals need to be measured as well. Oxygen

desaturations and arousals linked to apnea events are important

for relevant insights. In this initial study, the aim was to

analyze and discuss the use of bioZ as a respiratory surrogate.

Further research should focus on combining this bioZ signal

with the other required signals. The next generation of the

ROBIN device will be equipped with PPG functionality. As

significant oxygen desaturation mostly occurs in long (≥ 10

seconds) apnea events, the amount of type A errors would
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(a) Obstructive apnea event.
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(b) Central apnea event.
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(c) Hypopnea event.
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(d) No apnea event.

Fig. 5: Example of respiration traces recorded with PSGabd. belt, PSGthor. belt and ROBINbioZ sensors for the different event

types. Each event occurs at the 30 seconds mark. Note that in Fig. 5d, there is no sleep apnea event even though there is a

visual disturbance in the respiration. All three signals capture the respiration pattern of the patient and there is an observable

similarity between the different signals.

(a) PR PSGabd. belt. (b) PR PSGthor. belt. (c) PR ROBINbioZ.

(d) ROC PSGabd. belt. (e) ROC PSGthor. belt. (f) ROC ROBINbioZ.

Fig. 6: ROC and PR curves for the three different models. The dashed line indicates the performance of a model with random

predictions based on the imbalance in the training data.
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TABLE III: Overview of all recorded measures, expressed as percentages, for all three signals, evaluated on the separate test

dataset. The PSGabd. belt measured using the gold standard PSG device results in the best overall performance. The compact

wearable ROBINbioZ. is also able to accurately detect sleep apnea events in respiratory data and has a performance comparable

to PSGthor. belt. The binary classification metrics are reported at the decision threshold pevent > 0.5 which was learned during

training

PSGabd. belt PSGthor. belt ROBINbioZ.

L1 L2 L1 L2 L1 L2

AUPRC 53.7± 7.8 56.7± 7.4 45.8± 8.3 47.8± 9.2 41.6± 11.2 46.9± 8.5

AUROC 80.3± 2.9 80.1± 2.2 74.1± 4.3 74.0± 4.7 72.5± 7.5 73.6± 3.7

sensitivity 71.5± 7.9 66.5± 8.6 64.5± 8.2 56.4± 8.6 67.5± 8.9 58.4± 12.7

specificity 74.5± 4.4 79.0± 6.7 70.0± 5.1 77.5± 5.0 66.2± 11.4 76.2± 8.7

precision 45.1± 6.3 48.6± 4.1 38.7± 8.7 42.5± 9.7 38.1± 8.9 42.2± 6.6

accuracy 74.1± 2.4 76.6± 3.8 68.5± 3.4 72.3± 3.3 66.8± 7.8 72.8± 4.4

NPV 90.1± 3.2 89.3± 1.8 87.1± 3.9 85.7± 4.6 87.9± 2.4 86.7± 2.2
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Fig. 7: AUPRC scores for the three different sensors, evaluated

at the first layer (L1) of the model. All three models are

capable of automatically detecting sleep apnea events.
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Fig. 8: AUPRC scores for the three different sensors, evaluated

at the second layer (L2) of the model. With the addition of

the second training phase, the ROBINbioZ model performance

is comparable to that of the PSGthor. belt model.

reduce. Third, there are other possible respiratory disturbances,

such as movements or coughs, which are not necessarily sleep

apnea and which can impact the results. However, the model

is trained to detect sleep apnea patterns in the respiration by

using the clinical annotations provided by the nurse. As the

analysis is also based on these annotations, the performance

for detecting such sleep apnea events is measured.
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Fig. 9: Relative improvement of AUPRC score through the

introduction of the second training phase. The ROBINbioZ

scores demonstrate a significant improvement through the

introduction of the second model layer.

TABLE IV: Overview of classification accuracy for the differ-

ent sleep apnea types and different tested models.

PSGabd. belt PSGthor. belt ROBINbioZ.

obstructive 80.7± 3.4 72.5± 4.7 74.8± 1.8

central 94.2± 1.2 88.5± 2.4 64.6± 8.7

hypopnea 59.2± 2.3 51.6± 2.9 56.3± 2.1

non-event 80.8± 2.1 76.8± 1.7 77.5± 1.5

This study confirms that the use of bioZ is a promising

option for automated sleep apnea detection using a comfort-

able wearable and that it could potentially serve as a basis for

future home monitoring devices.

TABLE V: Comparison of metrics for different HSAT devices

reported in literature. None of the studies report the AUPRC

metric.

Study sensitivity specificity accuracy AUROC

[18] 77 94 / /
[19] 72.9 90.6 85.5 /
[20] / / 72.1 /
[38] 100 85.9 / /
[22] / / 81.8 /
[36] 92.4 88.3 / /
[60] 90 96 / /
[16] 80 54.5 / /
[17] / / / 71
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Fig. 10: Example of the model prediction output for a given respiration sequence. The input signal is the ROBINbioZ. The

red dotted line indicates the decision boundary on which the model was trained (pevent > 0.5). The model output mimics the

annotations of the trained sleep technicians which are based on the full PSG. However, there are some erroneous outputs as

indicated by A, B, C and D. A: false-positive event due to short-term respiratory disturbance, B: false negative event due to

insufficient activation of model output, C: false positive event due to early detection, D: false positive event due to overshoot.

VII. CONCLUSION AND FUTURE WORK

In this work, the use of bioZ as a respiratory surrogate for

detecting sleep apnea was analysed and discussed. A novel

method was proposed consisting of a wearable device, com-

bined with a deep learning algorithm. The compact wearable

is capable of capturing a respiration surrogate by use of a

direct bio impedance measurement of the chest. The recorded

data is then processed by an extended two-phase deep learning

algorithm to automatically detect the sleep apnea events.

The results demonstrate that the performance of the setup is

comparable to automated detection using gold-standard PSG

respiration data. This setup offers a powerful basis for the

future development of portable home sleep apnea monitors. In

future work, this approach should be extended with additional

signals such as oxygen saturation to improve the robustness

of the detection.
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disordered breathing and limb movement using in-bed force sensors,”
IEEE journal of biomedical and health informatics, vol. 21, no. 4, pp.
930–938, 2017.

[21] J. Jin and E. Sánchez-Sinencio, “A home sleep apnea screening device
with time-domain signal processing and autonomous scoring capability,”
IEEE transactions on biomedical circuits and systems, vol. 9, no. 1, pp.
96–104, 2015.

[22] Y.-Y. Lin, H.-T. Wu, C.-A. Hsu, P.-C. Huang, Y.-H. Huang, and Y.-L.
Lo, “Sleep apnea detection based on thoracic and abdominal movement
signals of wearable piezoelectric bands,” IEEE journal of biomedical

and health informatics, vol. 21, no. 6, pp. 1533–1545, 2017.

[23] T. Penzel, J. McNames, P. De Chazal, B. Raymond, A. Murray, and
G. Moody, “Systematic comparison of different algorithms for apnoea
detection based on electrocardiogram recordings,” Medical and Biolog-

ical Engineering and Computing, vol. 40, no. 4, pp. 402–407, 2002.

[24] G. B. Moody, R. G. Mark, M. A. Bump, J. S. Weinstein, A. D. Berman,
J. E. Mietus, and A. L. Goldberger, “Clinical validation of the ecg-
derived respiration (edr) technique,” Group, vol. 1, no. 3, 1986.

[25] T. Van Steenkiste, W. Groenendaal, J. Ruyssinck, P. Dreesen, S. Klerkx,
C. Smeets, R. de Francisco, D. Deschrijver, and T. Dhaene, “Systematic
comparison of respiratory signals for the automated detection of sleep
apnea,” in Engineering in Medicine and Biology Society, 2018. EMBS

2018. 40th Annual International Conference of the IEEE, 2018, pp. 449–
452.

[26] J.-C. Vázquez, W. H. Tsai, W. W. Flemons, A. Masuda, R. Brant,
E. Hajduk, W. A. Whitelaw, and J. E. Remmers, “Automated analysis of
digital oximetry in the diagnosis of obstructive sleep apnoea,” Thorax,
vol. 55, no. 4, pp. 302–307, 2000.

[27] N. Netzer, A. H. Eliasson, C. Netzer, and D. A. Kristo, “Overnight pulse
oximetry for sleep-disordered breathing in adults: a review,” Chest, vol.
120, no. 2, pp. 625–633, 2001.

[28] T. Gumb, A. Twumasi, S. Alimokhtari, A. Perez, K. Black, D. M.
Rapoport, J. Sunderram, and I. Ayappa, “Comparison of two home sleep
testing devices with different strategies for diagnosis of osa,” Sleep and

Breathing, vol. 22, no. 1, pp. 139–147, 2018.
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