
Portable Implementation of Continuation
Operators in Imperative Languages by

Exception Handling

Tatsurou Sekiguchi12, Takahiro Sakamoto1, and Akinori Yonezawa1

1 Department of Information Science, Faculty of Science, University of Tokyo
2 PRESTO, Japan Science and Technology Corporation

{cocoa, takas, yonezawa}@is.s.u-tokyo.ac.jp

Abstract. This paper describes a scheme of manipulating (partial) con-
tinuations in imperative languages such as Java and C++ in a portable
manner, where the portability means that this scheme does not depend
on structure of the native stack frame nor implementation of virtual ma-
chines and runtime systems. Exception handling plays a significant role
in this scheme to reduce overheads. The scheme is based on program
transformation, but in contrast to CPS transformation, our scheme pre-
serves the call graph of the original program. This scheme has two im-
portant applications: transparent migration in mobile computation and
checkpointing in a highly reliable system. The former technology enables
running computations to move to a remote computer, while the latter
one enables running computations to be saved into storages.

1 Introduction

A situation often occurs that execution states of a running program have to be
encoded into a data structure. Checkpointing [6] is a technique that improves
reliability of a system by saving execution states of a running program periodi-
cally. In the context of mobile computation [2], there is a form of computation
migration called transparent migration [13] or strong mobility [4], which means
that the entire execution state of a running program including the call stack
and (part of) the heap image are preserved on migration. During a transpar-
ent migration process, the execution states of a program are saved into a data
structure, the data structure is transmitted to a destination host over the net-
work, and finally execution states are reconstructed at that host from the data
structure.

It is not difficult to capture and recover the call stack when a program lan-
guage has call/cc (call with current continuation) primitive. Even in imperative
languages, the capability of storing execution states including the call stack has
often been implemented by compiler support and/or by runtime support. Emac-
sLisp, SmallTalk and some implementation of Standard ML (SML/NJ) have a
primitive that dumps the execution image into a local disk.

This paper reports a completely different approach based on program trans-
formation. This scheme is portable in the sense that it does not depend on

structure of native stack frames nor implementation of virtual machines and
runtime systems. An existing system therefore does not need to be extended to
capture and restore execution states. This scheme has been developed mainly
through the study on implementation of transparent migration on Java because
Java allows Java programs to manipulate stack frames only in a restricted form.
Exception handling plays a significant role in this scheme to reduce overheads.

The rest of this paper is organized as follows. Sect. 2 introduces operators
manipulating continuations to clarify what is implemented by the scheme de-
scribed in this paper. Sect. 3 describes how continuation operators are imple-
mented by using an exception handling mechanism. Sect. 4 shows several appli-
cations. Sect. 5 discusses difficulties and limitations in the technique. In Sect. 6,
we compare our technique with related work. Sect. 7 summarizes this work.

2 Partial Continuations

This section introduces a simple calculus of control [14] that was devised through
development of SML/NJ. This calculus provides two tagged operators for ma-
nipulating partial continuations, which are almost analogous to Danvy’s shift
and reset [5], and Felleisen’s F and prompt [9]. Our program transformation
scheme essentially implements those operators for partial continuations in im-
perative languages.

This calculus is an extension of a call-by-value lambda calculus, and its se-
mantics is defined in the style of structured operational semantics. A polymor-
phic type system is provided for the calculus. In this paper, however, we focus
only on its operators for partial continuations. The syntax of these operators are
defined as follows:

cupto p as x in e capturing the functional continuation
set p in e delimiting the effect of cupto

where p, e and x are metavariables that denote a prompt, an expression and a
variable, respectively. 1 A prompt is a special constant, which is actually a tag
that determines which set and cupto expressions are matched. The cupto op-
erator captures the functional continuation up to the innermost set expression
with the same prompt. The captured continuation is bound to variable x, and
expression e is evaluated with this extended environment. The set expression
delimits the effect of capturing a continuation. The outer context of the set op-
erator is thus not captured. In contrast, call/cc (call with current continuation)
operator in Scheme always captures the full continuation.

The evaluation rule is defined formally as follows:

set p in E[cupto p as x in e] −→ (λx.e)(λy.E[y])

where E is an evaluation context in which the hole is not in the scope of a set
expression with prompt p, and y is a fresh variable. An evaluation context [10] is
1 Strictly speaking, there is a slight difference from the original operators. The set of

valid expressions are restricted for our convenience.

an expression with a single special constant called hole. The position of the hole in
an evaluation context is syntactically defined so that it designates the expression
to be evaluated next, i.e. the redex of the evaluation context. We denote by E[e]
the result of replacing the hole in E with e, which implies that e is the redex of
expression E[e]. In this evaluation rule, E represents the continuation of cupto
expression up to the set expression. The continuation becomes λy.E[y] by the
eta conversion. In the righthand side, e will be evaluated with an environment
where the continuation is bound to x.

Various control operators can be implemented by composing these primitive
control operators. Ref. [14] provides examples of implementation of call/cc,
exception handling, and coroutines.

The notion of partial continuations was partly implemented in early pro-
gramming languages such as PL/I and Mesa [17], where execution can restart
at the instruction following the one that raised an exception when the exception
is captured by an exception handler. In addition, a model of exception han-
dling is proposed [8] in which resumption contexts are first class objects and are
modifiable. Our scheme can be used to implement such an exception handling
mechanism on imperative languages in a portable manner.

3 Emulating Continuations

This section describes how the control operators in Sect. 2 are implemented in
imperative languages such as C++ and Java. Our scheme of implementation
does not need to manipulate stack frames, but the overheads are quite low due
to exception handling mechanism. Our scheme is based on program transforma-
tion. In contrast to the CPS transformation, however, a code transformed by
our scheme preserves the original call graph (although additional method in-
vocations are inserted to maintain continuation operation). A CPS transformed
program easily overflows the call stack if the base language is a typical imperative
language. In this section, we suppose the target language to be Java bytecode
because it is suitable for explaining the idea of our program transformation. Java
virtual machine forbids a stack manipulation by Java bytecode itself because of
concern for security. A program in Java bytecode cannot inspect nor modify
stack frames. These facts obviously show that the scheme is portable and widely
applicable to various imperative languages.

The transformer takes a program in an imperative language with the contin-
uation operators as input, and produces an equivalent program in the base lan-
guage. Moreover, the transformation is on per-method basis, i.e. from a method
in the source program, a method and a class are created. This created class rep-
resents the execution states of the method. A program is transformed so that it
explicitly manages its execution states. A captured continuation is a standard
data structure in the base language, which implies that one can save and modify
it, moreover, it is transmittable to a remote host. Though the transformation
is implemented by using an exception handling mechanism, it does not prevent
use of exception handling in a source program.

The transformation consists of two different sub-transformations: one for
saving execution states and a resumption point, and one for restoring execution
states. The transformation for saving execution states is described in Sect. 3.3,
while the one for restoring is described in Sect. 3.4. Actually, the effects of two
transformations are mingled in a transformed code.

Since a program is transformed and additional fragments are inserted to the
original program, it incurs slowdown of ordinary execution (note that the part
not relating to continuation operation also slows down). In addition, our scheme
changes method signatures. An extra parameter is inserted to each method to
pass a state object (this will be explained in Sect. 3.4).

public class Fib {

public static void fib(int v1) {

if (v1 <= 1)

return 1;

else {

int v2 = fib (v1 - 2);

return v2 + fib (v1 - 1);

}

}

}

Fig. 1. A pseudo code of Fibonacci function.

We use Fibonacci function in Fig. 1 to illustrate the transformation through-
out this section. For readability, we use a Java-like pseudo code to denote a
program, but in reality it consists of Java bytecodes.

3.1 Bytecode Analysis

To transform a bytecode program, we need information on a set of all valid frame
variables (a kind of registers) and entries in the operand stack for each program
point. A variable or an entry is valid if a value on it is available for every possible
control flow. Types of frame variables and entries in the operand stack are also
necessary. In addition, a transformed code must pass a Java bytecode verifier if
the original code passes it. To obtain such necessary information on bytecode,
bytecode analysis must be performed before transformation.

Our bytecode transformer requires exactly the same information as that for
bytecode verification [15]. We had adopted type systems for Java bytecode veri-
fication to keep information on bytecode. Our transformer transforms bytecode
programs based on this information. We use the type system of Stata and Abadi
[22, 23], and that of Freund and Mitchell [11]. Stata’s type system provides infor-
mation on types of frame variables and the operand stack. In addition, bytecode
subroutines can be described. On the other hand, Freund’s type system focuses

on uninitialized values, that are fresh objects whose constructors are not invoked
yet. An uninitialized value exists only for a brief period in ordinary execution
since a constructor of an object is always invoked as soon as it is created, but it
can be a source of type system violation [11].

If a bytecode is well-typed in their type systems, it tells that the bytecode
program is verifiable. The type reconstruction problem is to find an appropri-
ate type judgment for a given program (method). It is actually a verification
algorithm itself. We have implemented a type reconstruction algorithm for the
type systems although we had to extend them to the full set of Java bytecode
except bytecode subroutine facility. As will be mentioned in Sect. 5, it is difficult
to transform a bytecode subroutine into an efficient code. Bytecode subroutines
are not supported in our current implementation.

public class ST_Fib_fib extends StateObject {

public int EntryPoint;

public int[] ArrayI;

public long[] ArrayL;

public float[] ArrayF;

public double[] ArrayD;

public Object[] ArrayA;

public void Resume() {

Fib.fib(this, 0);

}

}

Fig. 2. A state class.

3.2 State Class

Our transformation algorithm defines a state class for each method. An execution
state of a method is stored into an instance of the state class. Fig. 2 shows an
example of a state class, where EntryPoint designates a resumption point, and
variables of array types keep frame variable values and operand stack values.
In addition, special values that manage state capture and restoration are also
stored into those arrays. These special values include the state object for the
current method, the state object for the caller of the current method, and a
special exception that notifies migration. The size of each array is determined
statically when a method is analyzed. Every state class is a subclass of a common
super class (StateObject). Every state class has method Resume, which resumes
the execution stored in a state object. This will be explained in Sect. 3.4.

3.3 Capturing a Continuation

Capturing a continuation consists of the following operations:

1. Saving all frame variable values and operand stack values in a method,
2. Saving a resumption point information in a method, and
3. Repeating the above for each method.

These operations essentially yield a logical copy of the stack. In case of the
Java bytecode language, frame variables include all parameters of a method,
and a resumption point is actually a program counter. In case of C++ and Java
source-to-source transformation, operand stack values are not saved. Instead,
temporary variables are introduced. When we have to save an execution state
of a partially evaluated expression, that expression is split so that intermediate
values can be saved. Consider the following piece of code:

x = foo() + bar();

To save the result of foo, the above expression is split in advance as follows:

tmp = foo();

x = tmp + bar();

The transformation algorithm inserts the following code fragments to a method:

– An exception handler for each method invocation. An occurrence of state
capturing is notified by a special exception. The exception handler is re-
sponsible for saving an execution state. The program counter to be saved
is known since an exception handler is unique for each resumption point.
The set of valid frame variables and their types are found by the bytecode
analysis described in Sect. 3.1.

– Instructions for saving valid entries on the operand stack into frame variables.
Entries on the operand stack are defined to be discarded when an exception
is thrown, which means that their values cannot be fetched from an exception
handler. The basic idea for saving values on the operand stack is to make
their copies in frame variables before the contents of entries on the operand
stack are set. The valid entries on the operand stack are also found by the
bytecode analysis. This care is needed only in case of Java bytecode.

When a continuation is captured by invoking a cupto operator, a special
exception is thrown. If a method captures the exception, the method stores its
execution state in a newly created state object defined for each method, and
then it propagates the exception to the caller of the method. This process is
repeated until the exception reaches a set operator with the same prompt.

Fig. 3 shows a result of transforming the method in Fig. 1 for state capturing.
An exception handler that captures exception Notify is inserted for each method
invocation. In the exception handlers, a resumption point and local variables are
saved into a created state object. Since variable v2 is undefined at the first
recursive invocation of method fib, The value of v2 is not saved in the first
exception handler. The state object is stored in the exception object by e.append
(s). Finally, the exception is re-thrown.

public static void fib(int v1) throws Notify {

if (v1 <= 1)

return 1;

else {

int v2;

try {

v2 = fib (v1 - 2);

} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();

s.EntryPoint = 1;

s.v1 = v1;

e.append (s);

throw e;

}

try {

return v2 + fib (v1 - 1);

} catch (Notify e) {

ST_Fib_fib s = new ST_Fib_fib();

s.EntryPoint = 2;

s.v1 = v1;

s.v2 = v2;

e.append (s);

throw e;

}

}

}

Fig. 3. A pseudo code transformed for state capturing.

3.4 Invoking a Continuation

Invoking a continuation consists of the following operations:

1. Restoring all frame variable values and operand stack values in a method,
2. Transferring the control to the resumption point in a method,
3. Reconstructing dynamic extents of active exception handlers, and
4. Reconstructing the call stack.

The execution states of a method are reconstructed from a state object. The
call stack is reconstructed by calling the methods in the order in which they
were invoked. Each method is transformed in advance so that it can restore
its execution state from a state object. When a method is called with a state
object as an extra parameter, it restores all the values of frame variables and
the operand stack, and then it continues execution from the resumption point.
When the extra parameter for a method is null, it indicates ordinary execution.

The transformation algorithm inserts the following code fragments to a method:

– Instructions that put a state object as an extra parameter for a method
invocation instruction.

– Instructions, at the head of the method, that restore all valid frame variables
and all valid entries on the operand stack. When the execution state of
a method is restored, a state object is passed to the method as an extra
parameter. The inserted code restores all valid frame variables and all entries
on the operand stack at the resumption point. After restoring the frame
variables and entries on the operand stack, the control is transferred to the
resumption point.

Fig. 4 shows a result of transforming the method in Fig. 1 for state restora-
tion. A parameter is added to pass a state object. When the extra parameter is
null, the original body of the method is executed. Otherwise, the execution state
is reconstructed from the state object. Variable c holds the state object of this
method. It has a valid value only during state restoration. All the local variable
values are restored from the state object, and then the control is transferred
to the resumption point. Remember that this is actually a Java bytecode. We
can therefore use goto instructions. A transformer for C++ can also use goto
instructions. A source code transformer for Java uses another technique for con-
trol transfer [19]. Note that the scope of an exception handler is automatically
recovered because restoring the execution state of a callee method is done by
invoking the callee. This implies that the instruction that resumes the callee is
the same instruction that invokes the callee in ordinary execution, which takes
place in the scope of an exception handler.

Now we can see how Resume method in Fig. 2 resumes the execution. The first
parameter (this) is a state object itself, and the second parameter is dummy
since it is not used.

public static void fib(StateObject s, int v1) {

int v2;

ST_Fib_fib c = null;

if (s != null) {

c = (ST_Fib_fib)s.callee;

switch (s.EntryPoint) {

case 1: v1 = c.v1;

goto l1;

default: v1 = c.v1;

v2 = c.v2;

goto l2;

}

}

if (v1 <= 1)

return 1;

else {

l1:

v2 = fib(c, v1 - 2);

c = null;

l2:

return v2 + fib(c, v1 - 1);

}

}

Fig. 4. A pseudo code transformed for state restoration.

public interface Receiver {

public void Receive(StateObject s) throws Exception;

}

Fig. 5. An interface that receives a captured continuation.

3.5 The cupto and set Operators

Now we can explain how the operators manipulating partial continuations in
Sect. 2 are implemented by using the techniques just shown. As mentioned in
Sect. 3.3, we use a special exception (Notify) to notify the occurrence of state
capturing. We define a subclass of class Notify for each occurrence of a prompt
in the operators for continuations. A prompt corresponds to a subclass of class
Notify.

Since Java does not have a way to extend an environment, we modify the
semantics of the cupto operator so that it fits in Java. The abstract syntax of
the cupto operator is as follows:

cupto p as x in e

When the above expression is evaluated, the functional continuation up to the
innermost set expression with the same prompt is captured and bound to vari-
able x. Then expression e is evaluated in the extended environment. Instead, we
restrict the form of e to an object that implements interface Receiver in Fig. 5.
The interface has method Receive, which takes an instance of a state class.
When a continuation is captured, it is passed to e by invoking method Receive
with the continuation. Variable x is thus not used. In sum, the new operator
looks like:

cupto p in o

where o denotes an object that implements interface Receiver.
This operator is implemented just as follows:

throw new p(o);

where p is a class name that corresponds to prompt p, and o is a variable that
refers to object o. Object o is stored in the exception object in a constructor of
p. This statement initiates the state capture process by throwing exception p.

On the other hand, the set operator, set p in e, is translated as follows:
try {

e

} catch (p x) {

Receiver r = x.getReceiver();

StateObject s = x.getStateObject();

r.Receive (s);

}

The receiver object and all the state objects are stored in the exception
object. Method getStateObject returns the bottom of all state objects.

Finally, invoking a continuation is achieved by calling method Resume (shown
in Fig. 2) in a state object.

3.6 Experimental Results

This section reports performance results on our implementation of program
transformers. We measured execution efficiency, code size growth, and elapsed
time of program transformation.

elapsed time (ms)
with JIT without JIT

program original JavaGo JavaGoX original JavaGo JavaGoX

fib(30) 111 263 (+137%) 173 (+56%) 870 2553 (+193%) 1516 (+74%)
qsort(400000) 214 279 (+30%) 248 (+16%) 2072 2856 (+38%) 2597 (+25%)
nqueen(12) 1523 2348 (+54%) 1731 (+14%) 30473 36470 (+20%) 30843 (+1.2%)
201 compress 33685 61629 (+83%) 40610 (+21%) 365661 713936 (+95%) 433439 (+19%)

(JDK 1.2.2, Intel Celeron(TM) Processor 500MHz)

elapsed time (sec)
program original transformed

fib(40) 40.0 36.1 (−10%)
qsort(4000) 36.4 37.0 (+2%)
multimat 14.0 15.2 (+9%)
bintree 3.4 3.9 (+15%)

(egcs-2.91.66, UltraSPARC Processor 168MHz)

Table 1. Comparison in execution efficiency.

Execution Efficiency of Transformed Programs Three kinds of code are
evaluated: the original program, that transformed at source code level, and that
transformed at bytecode level. The elapsed times of transformed programs were
measured and compared. We use three transformers: JavaGo [19] as a Java source
code transformer, JavaGoX [18] as a Java bytecode transformer, and a source
code transformer for C++. The purpose of this experiment is to identify the
overheads induced by inserted code fragments to the original programs. Captured
continuations are thus not invoked during the execution of benchmark programs.
The results are shown in Table 1 where 201 compress is a benchmark program
included in SpecJVM98, multimat is an integer matrix multiply whose size is
200 × 200, and bintree is an application that inserts a random integer into a
binary tree 100000 times.

Most part of the overheads in Java applications is due to the code frag-
ments for saving the operand stack at resumption points. The overheads of the
Fibonacci method is rather high because the method does almost nothing but
invokes the method itself recursively. When the body of a method are so small,
the relative overheads of inserted code fragments tend to be high. In this ex-
periment, the overheads induced by our bytecode transformation are always less
than those induced by JavaGo. For quick sort and N-queen programs, the over-
heads were approximately 15% of the original programs when the applications
were executed with just-in-time compilation.

Our scheme works with C++ better than Java. The overheads due to source
code transformation are less than those of Java bytecode transformation.

bytecode size (in bytes)

program original JavaGo JavaGoX

fib 276 884 (3.2 times) 891 (3.2 times)
qsort 383 1177 (3.1 times) 1253 (3.3 times)
nqueen 393 1146 (2.9 times) 976 (2.5 times)
201 compress 13895 22029 (1.6 times) 18171 (1.3 times)

Table 2. Comparison in bytecode size.

Growth in Bytecode Size of Transformed Programs The growth in byte-
code size due to program transformations is shown in Table 2. The growth rates
for these programs are approximately three times. We think that these results
would be the worst case because the relative overheads of inserted code frag-
ments tend to be high when an original method is small. Actually, growth rate
falls down in a large application (201 compress).

The size of bytecode produced by the bytecode transformer is very simi-
lar to the size of bytecode produced in the source code transformation. But
their characteristics are quite different each other. In case of JavaGo, the size of
transformed bytecode is proportional to square of the deepest depth of loops. In
contrast, the size of bytecode transformed at bytecode level is proportional to
the number of resumption points and valid values.

elapsed time per method (ms)

program analysis transformation

fib 235 79
qsort 285 81
nqueen 267 80
201 compress 150 59

Table 3. Elapsed time for analysis and transformation.

Elapsed Time of Program Transformation The elapsed time for analysis
and transformation of the bytecode transformer is shown in Table 3. In every
case, analysis takes more time than transformation. However, the total elapsed
time is short. We believe that these figures show our bytecode transformer is
practical enough. The elapsed time for 201 compress is obviously shorter than
those of the other applications. The reason is that 201 compress has many
methods. The other applications are quite small one. They have only one or a
few methods. In case of 201 compress, the memory cache can work effectively.

4 Application

We point out that our scheme for continuation manipulation based on program
transformation finds at least two applications.

4.1 Mobile Computation

Mobile computation is a promising programming paradigm for network-oriented
applications where running computations roam over the network. Various kinds
of applications are proposed such as electric commerce, auction, automatic in-
formation retrieval, workflow management and automatic installation.

To move a program execution to a remote host, the execution states of a
thread must be saved and be restored. It is, however, difficult for a Java program
to manipulate the stack because the Java security policy forbids it. Two different
approaches have been proposed for realizing transparent thread migration in
Java: virtual machine extension [21] and program transformation schemes [1,
12, 18, 19, 26]. Migration is called transparent [13] or strong [4] if a program
execution is resumed at a destination site with exactly the same execution state
as that of the migration time. The relationship between partial continuation
and transparent thread migration was first pointed out by Watanabe [28]. In the
program transformation schemes, a thread migration is accomplished by three
steps:

– The execution states of a target thread are saved into a machine-independent
data structure at the departure site. The thread terminates itself when the
migration succeeds.

– The data structure representing the execution states of a target thread is
transmitted through the network to the destination site.

– A new thread is created at the destination. Equivalent execution states of
the target thread are reconstructed for the new thread.

The above entire process can be implemented by using only standard mechanisms
of Java.

4.2 Checkpointing

Checkpointing [6] is a technique that makes a system more reliable by saving
its execution states into a local disk periodically. When a system fails for some
reason, the system states can be recovered from the last saved system image.
A source code transformer for portable checkpointing is developed [24, 25]. The
idea is analogous to the case of mobile computation. Instead of sending encoded
execution states to a remote computer, they are saved into a local disk.

5 Limitations

This section discusses the limitations of our scheme due to program transforma-
tion and Java proper problems.

5.1 Limitations due to Program Transformation

To save a continuation, all methods associated to the continuation must be
transformed in advance. This implies that if the call stack includes stack frames
of non-transformed methods, that part of the execution states cannot be saved.
This situation often occurs in a program using graphical user interface since
it often needs callback methods. Callback methods are invoked by a runtime
system.

In our program transformation scheme, a continuation can be captured by
the thread that will execute the continuation. A thread cannot make another
thread capture a continuation in an efficient manner. This strongly restricts a
way programs migrate in mobile computation. When a program execution that
involves multiple threads is migrated to a remote host, we want a thread to
move the other threads. But an efficient way of moving a set of threads by a
particular thread has not been clear. In other words, subjective move [3] can be
implemented in the way described in this paper, but objective move cannot be.

When a continuation is invoked, stack frames are reconstructed from state
objects. This implies that values on the stack can be on different addresses from
the original addresses when they were captured. When an object is allocated
on the stack in C++, special care must be taken. For instance, the programmer
should not derefer the address of that object since it changes when a continuation
is invoked. Ramkumar gives a partial solution for this problem [25].

5.2 Java Proper Problems

It is difficult to save the state of bytecode subroutines in an efficient way since
a return address of a bytecode subroutine cannot be saved into an object under
the restriction of a Java bytecode verifier.

It is difficult to save the execution states in a class initializer because the
programmer cannot call a class initializer. It is invoked by a runtime system
when a class is loaded.

Locking is lost when a continuation is captured though locking is correctly
recovered after state restoration. When a lock is acquired by a synchronized
statement or a synchronized method, it will be released by an exception notifying
state capturing.

6 Related Work

Implementation technique of partial continuations based on program transfor-
mation was studied to implement a Prolog system on the C language [16]. The
notion of partial continuations is useful to implement the cut and delay primi-
tives in Prolog: the former causes backtracking and the latter freezes computation
of the proof of a goal until a particular variable is instantiated. Recently, the im-
plementation technique has received much attention again and been developed
through the study on implementation of transparent migration on Java. Java

allows Java programs to manipulate stack frames only in a restricted form. Pro-
gram transformation is known as the only way by which transparent migration is
accomplished without extending virtual machines. The relationship between par-
tial continuation and transparent thread migration was pointed out by Watanabe
[28] and Sekiguchi [20]. Fünfrocken [12] pointed out that an exception handling
mechanism could be used for notifying occurrence of state capturing with low
costs. He developed a scheme of transparent migration for standard Java, but
his scheme had difficulties in resumption of control in a compound statement.
These difficulties were eliminated based on the idea of unfolding [1, 19]. All these
schemes were based on source code level transformation. Then a scheme based
on bytecode transformation was devised [18, 27].

The technique has been also developed for C and C++. Arachne threads
system [7] is a distributed system in which a thread can be migrated to a remote
host. It is also based on source-to-source transformation, but the overheads on
normal execution in the system are more than 100% since every access to a local
variable always incurs memory access. Porch [24] is a source code transformer for
checkpointing. It shares a large part of our scheme, but it does not use exception
handling to roll back the call stack since it is for the C language. Taga [26]
developed a thread migration scheme based on source code transformation. It
also exploits the exception handling mechanism to roll back the call stack.

The overheads due to the program transformation described in this paper
can be reduced by the technique by Abe [1] and Taga [26]. The code fragments
inserted for state restoration are needed only when execution states are recon-
structed. When a method is transformed, their scheme generates two versions:
one is fully transformed and the other is transformed only for state capturing.
In ordinary execution, only the latter methods are used.

7 Summary

We have shown a scheme by which operators for partial continuations can be
implemented on imperative languages such as C++ and Java. It implies that
continuation operators such as call/cc can be implemented on C++ and Java.
This scheme is so portable that it does not need the knowledge of native stack
frames nor runtime systems. It is based on program transformation, yet over-
heads on execution performance are quite low due to an exception handling
mechanism. We have actually implemented transformers for Java [18, 19] and
C++ [26], and several benchmark measurements are reported in Sect. 3.6.

The study on this technique is not completed yet as we show several limita-
tions in Sect. 5. Further work is needed to eliminate those limitations.

References

1. Hirotake Abe, Yuuji Ichisugi, and Kazuhiko Kato. An Implementation Scheme of
Mobile Threads with a Source Code Translation Technique in Java. In Proceedings
of Summer United Workshops on Parallel, Distributed and Cooperative Processing,
July 1999. (in Japanese).

2. Luca Cardelli. Mobile Computation. In Mobile Object System: Towards the Pro-
grammable Internet, volume 1222 of Lecture Notes in Computer Science, pages 3–6.
Springer-Verlag, April 1997.

3. Luca Cardelli and Andrew D. Gordon. Mobile Ambients. In Maurice Nivat, edi-
tor, First International Conference on Foundations of Software Science and Com-
putational Structures, volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer-Verlag, 1998.

4. Gianpaolo Cugola, Carlo Ghezzi, Gian Pietro Picco, and Giovanni Vigna. Analyz-
ing Mobile Code Languages. In Mobile Object System: Towards the Programmable
Internet, volume 1222 of Lecture Notes in Computer Science, pages 93–109, April
1996.

5. Olivier Danvy and Andrzej Filinski. Abstracting Control. In Proceedings of the
1990 ACM Conference on Lisp and Functional Programming, pages 151–160, 1990.

6. Geert Deconinck, Johan Vounckx, Rudi Cuyvers, and Rudy Lauwereins. Survey of
Checkpointing and Rollback Techniques. Technical report, ESAT-ACCA Labora-
tory, Katholieke Universiteit Leuven, Belgium, June 1993. O3.1.8 and O3.1.12.

7. Bozhidar Dimitrov and Vernon Rego. Arachne: A Portable Threads System Sup-
porting Migrant Threads on Heterogeneous Network Farms. In Proceedings of
IEEE Parallel and Distributed Systems, volume 9(5), pages 459–469, 1998.

8. Christophe Dony. Improving Exception Handling with Object-Oriented Program-
ming. In Proceedings of the 14th IEEE computer software and application confer-
ence COMPSAC’90, pages 36–42, November 1990.

9. Matthias Felleisen. The Theory and Practice of First-Class Prompts. In Conference
Record of the Fifteenth Annual ACM Symposium on Principles of Programming
Languages, pages 180–190, 1988.

10. Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker, and Bruce Duba. A
Syntactic Theory of Sequential Control. In Theoretical Computer Science, vol-
ume 52, pages 205–237, 1987.

11. S.N. Freund and J.C. Mitchell. A Type System for Object Initialization in the Java
Bytecode Language. ACM Transaction on Programming Languages and Systems,
21(6):1196–1250, November 1999.

12. Stefan Fünfrocken. Transparent Migration of Java-Based Mobile Agents. In MA’98
Mobile Agents, volume 1477 of Lecture Notes in Computer Science, pages 26–37.
Springer-Verlag, 1998.

13. Robert S. Gray. Agent Tcl: A Transportable Agent System. In Proceedings of the
CIKM Workshop on Intelligent Information Agents, Fourth International Confer-
ence on Information and Knowledge Management, 1995.

14. Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A Generalization of Exceptions
and Control in ML-like Languages. In Conference Record of FPCA’95 SIGPLAN-
SIGARCH-WG2.8 Conference on Functional Programming Languages and Com-
puter Architecture, pages 12–23, June 1995.

15. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification Second
Edition. Addison-Wesley, 1999.

16. Vincenzo Loia and Michel Quaggetto. High-level Management of Computation
History for the Design and Implementation of a Prolog System. Software – Practice
and Experience, 23(2):119–150, February 1993.

17. J. G. Mitchell and W. Maybury. Mesa language manual. Xerox PARC, April 1979.
CSL-79-3.

18. Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode Trans-
formation for Portable Thread Migration in Java. In Proceedings of the Joint Sym-

posium on Agent Systems and Applications / Mobile Agents (ASA/MA), pages
16–28, September 2000.

19. Tatsurou Sekiguchi, Hidehiko Masuhara, and Akinori Yonezawa. A Simple Ex-
tension of Java Language for Controllable Transparent Migration and its Portable
Implementation. In Coordination Languages and Models, volume 1594 of Lecture
Notes in Computer Science, pages 211–226. Springer-Verlag, April 1999.

20. Tatsurou Sekiguchi and Akinori Yonezawa. A Calculus with Code Mobility. In
H. Bowman and J. Derrick, editors, Proceedings of Second IFIP International
Conference on Formal Methods for Open Object-based Distributed Systems, pages
21–36. Chapman & Hall, 1997.

21. Kazuyuki Shudo. Thread Migration on Java Environment. Master’s thesis, Uni-
versity of Waseda, 1997.

22. Raymie Stata and Mart́ın Abadi. A Type System for Java Bytecode Subroutines.
SRC Research Report 158, Digital Systems Research Center, June 1998.

23. Raymie Stata and Mart́ın Abadi. A Type System for Java Bytecode Subroutines.
In Conference Record of POPL’98: 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 149–160, 1998.

24. Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing and Recov-
ery in Heterogeneous Environments. Technical report, University of Iowa, 1996.
TR-96.6.1.

25. Volker Strumpen and Balkrishna Ramkumar. Portable Checkpointing for Hetero-
geneous Architectures. In Fault-Tolerant Parallel and Distributed Systems, chap-
ter 4, pages 73–92. Kluwer Academic Press, 1998.

26. Nayuta Taga, Tatsurou Sekiguchi, and Akinori Yonezawa. An Extension of C++
that Supports Thread Migration with Little Loss of Normal Execution Efficiency.
In Proceedings of Summer United Workshops on Parallel, Distributed and Cooper-
ative Processing, July 1999. (in Japanese).

27. Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and
Pieere Verbaeten. Portable Support for Transparent Thread Migration in Java. In
Proceedings of the Joint Symposium on Agent Systems and Applications / Mobile
Agents (ASA/MA), pages 29–43, September 2000.

28. Takuo Watanabe. Mobile Code Description using Partial Continuations: Definition
and Operational Semantics. In Proceedings of WOOC’97, 1997.

