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Quantum computers have the potential to solve some di	cult mathematical problems e	ciently and thus will inevitably exert a
more signi
cant impact on the traditional asymmetric cryptography. �e National Institute of Standards and Technology (NIST)
has opened a formal call for the submission of proposals of quantum-resistant public-key cryptographic algorithms to set the
next-generation cryptography standards. Compared to powerful machines with ample amount of hardware resources such as racks
of servers and IoT devices, including the massive number of microcontrollers, smart terminals, and sensor nodes with limited
computing capacity, should also have some postquantum cryptography features for security and privacy. To ensure the correct
execution of encryption algorithms on any platforms, the portability of implementation becomesmore important. As distinguished
fromC/C++, JavaScript is a popular cross-platform language that can be used for theweb applications and some hardware platforms
directly, and it could be one of the solutions of portability. �erefore, we investigate and implement several recent lattice-based
encryption schemes and public-key exchange protocols including Lizard, ring-Lizard, Kyber, Frodo, and NewHope in JavaScript,
which are the active candidates of postquantum cryptography due to their applicabilities and e	ciencies.We show and compare the
performance of our JavaScript implementation on web browsers, embedded device Tessel2, Android phone, and several JavaScript-
enabled platforms on PC andMac. Our work shows that implementing lattice-based cryptography on JavaScript-enabled platforms
is achievable and results in desirable portability.

1. Introduction

�e rapid development of quantum computing coupled with
Shor’s algorithm [1] brings a signi
cant threat to widely used
RSA and elliptic curve cryptography (ECC) based on the
integer factorization and the discrete logarithm problems.
Hence, postquantum cryptography (PQC) has generated a
lot of attention among researchers. In the IoT era, tons of
things or devices will get connected to the Internet, and they
require e	cient quantum-resistant approaches to protect the
security and privacy. IoT so�ware should work correctly
on any architecture; therefore, the portability of so�ware
becomes more important. Besides, web browsers serve as
an essential platform for web applications and should also

have postquantumcryptographic features. As a favorite cross-
platform/browser language, JavaScript is one of the solutions
of the portability because its performance has improved
considerably over the past few years.

Lattice-based cryptography, which is thought to be secure
against attacks by quantum computers [2], has gained wide
attention and deep researches from academia to industry due
to its e	ciency and applicability. In recent years, some deriva-
tives of encryption schemes and key exchange protocols of
lattice-based cryptography were presented, such as [3–7].
Implementations of those cryptosystems have been reported
in some literature [8–12]. However, as of now, there is very
little research on lattice-based cryptography in JavaScript [13,
14]. �erefore, we would like to investigate the performance
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Table 1: Summary of the selected parameters that provide about 128-bit security.

Lizard
� � � = � � � �−1
960 608 256 1024 2 182

Ring-Lizard
� = � � �−1 – – – – – –

1024 256 154 – – – – – –

Kyber
	 � � 
 �� = ��1 ��2
3 256 7681 4 11 3

Frodo
� � � � � 

4 8 8 752 32768 1.3229

NewHope
	 � � – – – – – –

16 1024 12289 – – – – – –

of several recent lattice-based cryptosystems on modern
computing platforms with JavaScript implementation. We
hope to contribute to the practical implementation of PQC.

We implemented and tested 
ve recent lattice-based
encryption schemes and public-key exchange protocols on
four web browsers, a microcontroller Tessel2, an Android
phone Xperia XZ, and other JavaScript-enabled platforms
on PC and Mac. We chose an encryption scheme “Lizard”
which is based on the learning with errors (LWE) and the
learning with rounding (LWR) problems and its ring variant
“ring-Lizard” [15], a modulo-LWE based encryption scheme
“Kyber” [16], and two quantum secure key exchange proto-
cols “Frodo” [17] and “NewHope” [18], which are based on
the LWE problem and the ring-LWE problem, respectively.
All the cryptosystems above were implemented in JavaScript.
�e source code of our implementationcan be found at
https://github.com/FuKyuToTo/lattice-based-cryptography.

To provide a fair comparison, we selected the param-
eters which have 128 bits of postquantum security from
the estimation of Jung Hee Cheon et al. [15], Joppe Bos
et al. [16, 17], and Erdem Alkim et al. [18], summarized
in Table 1. However, there are many di�erent models to
estimate the secure parameters of lattice-based cryptography
[19]. �e analysis of the concrete quantum security levels of
those parameters is beyond the scope of this paper, more
detailed security estimation algorithms can be found in [20–
22]. Our parameters should be rescaled a�er 
nalizing the
secure parameters in NIST PQC standardization project
(NIST Postquantum Cryptography Standardization. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography).

�e primary reason we chose those 
ve cryptosystems
is that they cover a majority of the variants of the LWE-
based cryptography, which we will introduce in Section 2. In
addition, the parameters and key sizes of those cryptosystems
above are not too large and suitable for implementing on web
browsers and small devices using JavaScript.

Contributions of this paper can be summarized as fol-
lows:

(i) We 
rst implement the 
ve lattice-based encryp-
tion schemes and key exchange protocols mentioned
above using JavaScript. We observe running time of
our implementation and 
nd that the performance
of the ring-LWE based cryptosystems is much higher
than that of others. For example, on the web browsers,

the entire calculation process of Kyber and NewHope
can be accomplished within milliseconds; even the
IoT device Tessel2 is fast enough to perform all of
those operations in merely two seconds. Our imple-
mentationwill be improved further for theNISTPQC
standardization project in a future work.

(ii) We refactor our implementation to accelerate poly-
nomial operations for ring-LWE based cryptographic
algorithms. By implementing the improved number-
theoretic transform (NTT) and inverse NTT (see
[23, 24]) and reducing the memory overhead of
creating temporary instances, we vastly improve the
e	ciency of polynomial operations compared with
our previous work (see [13]).

(iii) Our implementation has good portability and scala-
bility. Our JavaScript code can be directly executed
on any JavaScript runtime environmentwithoutmod-
i
cation. More importantly, by comparing and ana-
lyzing these performance di�erence, we can further
improve our implementation for particular platforms.

�e rest of this paper is organized as follows. We will
explain the notation, give a brief introduction of the math-
ematical background, and introduce the implemented cryp-
tosystems in Section 2. We will introduce our experimental
platforms in Section 3 and describe our implementation tech-
niques in Section 4. We will then present the performance
reports on web browsers in Section 5 and on IoT device
Tessel2, Android phone, and other platforms in Section 6.
Finally, we conclude this paper in Section 7. �e appendix
section contains an example of the usage of our source code.

2. Lattice-Based Cryptography

In this section, we introduce the relevant mathematical
background for the LWE, ring-LWE, and LWR problems and
summarize the postquantum cryptographic schemes based
on those problems.

2.1. Notation. Let �, � be positive integers; we denote Z� as
the set of integers {0, 1, . . . , � − 1} and � = Z[�]/(�� + 1),�� = Z�[�]/(�� + 1) as the polynomial rings. Polynomials
are denoted by bold italic letters such as �, while vectors are
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denoted by bold small letters such as k and matrices and bold
large letters such as A. For an integer � ∈ N, we de
ne the
modulo operation � ≡ 
mod� in the range [0,�) ∩ Z.

2.2. LWE, Ring-LWE, and LWR Problems. Regev proposed
the original LWE problem [3] using integer matrix in 2005.
Let �, �, � be positive integers; the search LWE problem is
required to 
nd a secret vector s ∈ Z

�
� by inputting a pair of

matrices (A, b = As + e) ∈ Z
�×�
� × Z

�
� . �e decision LWE

problem is to distinguish � between a uniformly distributed
random vector fromZ

�
� and a noisy inner product b = As+e.

Usually, the elements of A are randomly selected from Z�,
and the so-called error vector e ∈ Z

� is sampled from a
target probability distribution �. �e cryptography based on
the LWE problem uses an unusual structure lattice which is
called �-ary lattice:


⊥� (A) = {k ∈ Z
� | Ak ≡ 0 mod �} ;


� (A) = {k ∈ Z
�, s ∈ Z

� | k ≡ A
�
s mod �} ; (1)

all the elements of the �-ary lattice are obtained using an
integer modulo of �.

�e ring-LWE problem (see [5]) is a variant of Regev’s
original LWE problem. �� is an ideal lattice if each polyno-

mial over �� has a bijective mapping to an ideal Z�� . Given
polynomials �, � ∈ ��, the search version of the ring-LWE
problem is to recover the secret � ∈ ��, where � is chosen
uniformly and � = � ⋅ � + � with an “error” � ∈ � sampled
from a target probability distribution �. �e decision ring-
LWE problem is similar to the decision LWE problem: given
�, � ∈ ��, we distinguish whether � is also chosen uniformly,
or there exists a polynomial � ∈ �� such that � = � ⋅ � + �.
If there were not any error adding, the LWE and ring-LWE
problemswould be the simple linear algebra computation and
easy to solve. In the worst-case, such LWE and ring-LWE
problems can be reduced to the approximate versions of NP-
hard shortest vector problem (�-SVP) on ideal lattices.

Given a matrix A = {a1, . . . , a�} ∈ Z
�×�
� and an inner

product with rounding b = ⌊As⌋	 ∈ Z
�
	 , the LWR problem

(see [25]) is to 
nd the vector s ∈ Z
�
�, where � ≪ �. �e

information hiding technique or so-called derandomization
technique of LWR is di�erent from LWE: each value of the
inner product b times a rounded value ⌊�/�⌋ overZ	, instead
of adding a random error value; therefore, the error in LWR
is deterministic.

2.3. Discrete Gaussian Sampling. For a real � > 0, the
Gaussian distribution evaluated at � ∈ R is de
ned by �
 =
exp(−�‖x‖/�2), where the Gaussian parameter � = �√2�. A
discrete version of Gaussian distribution overZ is de
ned by�
(�) = �
(�)/�
(Z). In order to 
nd out where to drop the
negligible probability of far samples, a tail-cut factor � > 0
is set to determine the range of sampled values. Choosing
a suitable length of the tail-cut factor for a target discrete
Gaussian distribution is necessary; otherwise, no sampling
algorithm could cover it. �e tail-bound is closely related

to the maximum statistical distance allowed by the security
discrete Gaussian parameters [26, 27]. Note that sampling
values from the discrete Gaussian distribution are di�erent
to sampling from a normal distribution [28]. We implement
modi
edKnuth-Yao algorithm [27, 29] andmodi
ed discrete
Ziggurat algorithm [30] to perform such a sampling. �e
sampling methods will be discussed in Section 4.1.

2.4. Binomial Distribution. �e binomial distribution is a
discrete probability distribution of the successful number in� Bernoulli trials. In this paper, we follow the de
nition in
[16, 18] and denote  � as the centered binomial distribution
for a positive integer !:

Input: a binary string (
0, 
1, . . . , 
�−1, �0, �1, . . . ,��−1) ←# {0, 1}2�
Output: an integer ∑�−1�=0 (
� − ��)

For the convenience of calculations, we only sample and
compute integers over Z�.

2.5. Lizard and Ring-Lizard. Lizard encryption scheme [15] is
parameterized by positive integers ℎ, �, �, &, �, �, � ∈ Z and an
error rate � ∈ R, where the moduli �, �, � satisfy � | � | �. For
a real number 0 < � < 1, we sample values (V1, V2, . . . , V�) ←#{−1, 0, 1}� from the distributionZ'�(�) such that each value
V� (* = 1, 2, . . . , �) is chosen satisfying Pr[V� = 0] = 1 − � and
Pr[V� = 1] = Pr[V� = −1] = �/2. For an integer 0 ≤ ℎ ≤�, we sample the values (V1, V2, . . . , V�) ←# {−1, 0, 1}� from
the distributionH34�(ℎ) such that it has exactly ℎ nonzero
entries in those values.

In key generation, we choose a matrix S = {s1, . . . , s
} ∈
Z
�×

� by sampling column vectors s� ∈ Z

�
� (* = 1, 2, . . . , &)

independently from the distribution Z'�(1/2). Input a
matrix A ∈ Z

�×�
� whose elements are chosen uniformly from

Z�; then we can compute the matrix B = AS + E ∈ Z
�×

� ,

where the errormatrixE ∈ Z
�×

� is chosen according to�Z,�� .

�e secret key is S and the public key is the pair (A,B) ∈
Z
�×�
� × ∈ Z

�×

� . In encryption, by choosing a random vector

r ∈ Z
� from the distribution H34�(128), we compute a

pair (c1, c2) = (A�r,B�r) ∈ Z
�
�×Z
�. Given amessagem ∈ Z



�,

the cipher text is the pair (c�1, c�2)where c�1 = ⌊(�/�)∗c1⌉ ∈ Z
�
	

and c�2 = ⌊(�/�) ∗m + (�/�) ∗ c2⌉ ∈ Z


	. Lastly, we output the

vectorm� = ⌊(�/�) ∗ (c�2 − S�c�1)⌉ ∈ Z


� in decryption.

Ring-Lizard encryption scheme [15] is a variant of Lizard
and based on the hardness of the ring-LWE and the ring-
LWR problems. It exploits better key sizes and delivers faster
speed of encryption and decryption compared with Lizard.
�e following procedures de
ne the ring-lizard scheme.

Key Generation. Sample � ←# �
Z,��; choose a “small”

random polynomial � from H34�(128) and a uniformly
random polynomial � ∈ ��; then output the public key(�, � = � ⋅ � + �) ∈ �� × �� and the secret key � ∈ �.
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Encryption. Choose a random polynomial � from
H34�(128); given a plaintext � ∈ {0, 1}�, then compute
�1 = ⌊(�/�)∗(�⋅�)⌉ ∈ �	 and �2 = ⌊(�/2)∗�+(�/�)∗(�⋅�)⌉ ∈�	. �e ciphertext is the pair (�1, �2).
Decryption. Output ⌊(2/�) ∗ (�2 − �1 ⋅ �)⌉ ∈ {0, 1}�.
2.6. Kyber. Kyber [16] is a recent module-LWE [31, 32] based
CPA- (Chosen Plaintext Attack-) secure encryption scheme
and can be applied to buildCCA- (ChosenCiphertextAttack-
) secure key encapsulation mechanism (KEM). In this paper,
we focus on the former, implementing the Kyber’s public-key
encryption scheme. For positive integers 7�, 7�1 , 7�2 , !, �, 9
and modulus � ∈ Z, Kyber needs to generate matrices with
small dimension, and each matrix contains several polyno-
mials with coe	cients in �� as its elements. �e compression
and decompression functions of Kyber are de
ned as follows:

:?��@A��� (�, 7) = ⌊(2�� ) ∗ �⌉ mod 2�;
�AF?��@A��� (�, 7) = ⌊( �

2�) ∗ �⌉ .
(2)

In key generation, a binary string � is chosen uniformly

at random from {0, 1}�. �e matrix A ∈ (��)�×� can be
pregenerated by method SHAKE-128(�), and two vectors s, e
are sampled from ( �)�. We compute = :?��@A���(As +
e, 7�). �e secret key is s and the public key is the pair(A,b). In encryption, we generate vectors r, e1 ←# ( �)�
and e2 ←#  �. �en we obtain the vector b1 from b by

method �AF?��@A���(b, 7�). Given a message m ∈ Z
�
2 , the

cipher text is the pair (c1, c2), where c1 = :?��@A���(A�r +
e1, 7�1) and c2 = :?��@A���(b�1 r + e2 + ⌊�/2⌉ ∗ m, 7�2).
In decryption, we compute u = �AF?��@A���(c1, 7�1)
and k = �AF?��@A���(c2, 7�2) and then output the result

:?��@A���(k − s�u, 1).
2.7. Frodo. Frodo [17], the key-exchange protocol based on
the LWE problem, has parameters �, 7, &, �, �, � ∈ Z and a
real number � > 0. �e matrix A ∈ Z

�×�
� is generated from

seedA via a pseudorandom generating function KA�().
In this paper, we focus on the main computation process

in Figure 1: we skip the generating function KA�() and
precompute the matrix A. Let �� = (log2�) − �, for a matrix
M ∈ Z

�×�
� , the @?L�7*�M function ⌊M⌉2� and the F@?�� −@?L�7*�M function ⟨M⟩2� are de
ned as follows, respectively:

@?L�7*�M : ⌊M⌉ 2� = ⌊2−�� ∗M⌉ mod 2�;
F@?�� − @?L�7*�M : ⟨M⟩2� = ⌊21−�� ∗M⌋mod 2. (3)

�e reconciliation function @AF2�() is de
ned in [33]. �e
output V is the closest element to T ∈ Z� such that ⟨V⟩2� = 0
or 1. Alice and Bob can obtain the same shared keyK via this
reconciliation mechanism.

Figure 1: Quantum-secure key exchange protocol Frodo.

Figure 2: Ring-LWE based public-key exchange protocol
NewHope.

2.8. NewHope. Compared with another ring-LWE based
key exchange protocol BCNS [7], NewHope [18] achieves
some improvement in the parameters selecting, errors sam-
pling, and reconciliation mechanism. NewHope is a famous
ring-LWE based key exchange protocol due to its exper-
iment which is taking place in Google Canary channel;
the result shows that NewHope operates well for Google’s
postquantum TLS experiment while still being computation-
ally inexpensive (https://security.googleblog.com/2016/07/
experimenting-with-post-quantum.html). We would like to
know its performance on web browsers or other IoT devices
in JavaScript.

Let !, �, and the modular � be positive integers; as with
the de
nition of polynomial ring inKyber, the keys and errors
are all over ��. A seedA is a component of the exchange and
generated from a binary string. It is designed to output a
polynomial a ∈ �� by SHAKE-128 method. NewHope also
needs to sample random values from a binomial distribution �. For reconciliation mechanism, we follow the method
in [18] and may use non-�oating-point arithmetic [34] in
our future work. �e overview of NewHope is described in
Figure 2.

3. Experimental Runtime Environments

3.1. Web Browsers. Implementing postquantum crypto-
graphic primitives on web browsers is necessary and urgent

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


Security and Communication Networks 5

because web browsers are one of the essential platforms for
NIST PQC standardization project. In this paper, we choose
Mozilla Firefox 57.0.2 as our benchmark platform and pro-
pose an open-source project Alea (available URL: https://git-
hub.com/nquinlan/better-random-numbers-for-javascript-
mirror) to be our secure pseudorandom number generator
(PRNG). For comparison, we execute same programs on
Google Chrome 63.0.3239.108, Opera 53.0.2907.68, and
Microso� Edge 42.17134.1.0. What we want to see is the
performance di�erence between those web browsers. We will
show the running time of several lattice-based cryptosystems
on web browsers in Section 5.

3.2. Tessel2. Similar to its old model, Tessel2 is a JavaScript-
enabled embedded system with on-board WiFi capabili-
ties designed for IoT developers. Tessel2 features a 580
MHz Mediatek MT7620n router-on-a-chip + 48MHz Atmel
SAMD21 coprocessor, running Linux built on OpenWRT
with 64MB of DDR2 RAM, and 32MB of Flash memory.
Tessel2 is compatible with Node.js and runs JavaScript pro-
grams directly for controlling a wide variety IoT modules;
it allows developers to easily control modules via a pair of
multipurpose ports. Tessel2 is also programmable in other
programming languages; however, a part of browser-side
JavaScript libraries or objects is not supported.

3.3. Android WebView, PC, and Mac. Android has a built-
in browser-like activity which is called WebView. It can be
used to display web pages or HTML 
les as a part of UI.
Developers can build a WebView activity to show online
content or user data within applications. Android 4.4 has
replaced the rendering engine of WebView with Chromium’s
V8 engine to deliver improved JavaScript performance. We
chose WebView in Android 4.4 (KitKat) to benchmark our
JavaScript implementation and ran our implementation on
an Android phone Xperia XZ SOV34 (Android version 8.0.0
(Oreo)).

Some operating systems also provide tools to execute
plain text 
les within a shell/script. �e Microso� Windows
Script Host (WSH) is described as an administration tool
to provide a scripting environment for batch 
les. �e
Active Scripting language engines of WSH can interpret and
run script 
les such as JScript or VBScript. Similarly, Mac
users can run JavaScript 
les by using osascript command,
which works with AppleScripts or other Open Scripting
Architecture (OSA) language scripts on macOS.

In addition, some nonbrowser so�ware such as Node.js
or Paci
sta also provide JavaScript runtime environment.
Like Google Chrome and Android WebView, Node.js is
also built on the Google V8 JavaScript engine and o�ers
a rich variety of JavaScript modules which will be of ben-
e
t to development. Paci
sta is a simple Java-based open-
source project that builds a Linux environment and can
upgrade OpenSSL using JavaScript; it can be downloaded at
https://github.com/ukiuni/paci
sta.

Our implementation is measured on a test PC and a
MacBook Pro. �e test PC has the following speci
cation:
CPU: Intel(R) Core(TM) i5-8250U @1.6GHz; 8GB DDR3

RAM; 256GB SSD; Windows 10 build 17134 Home x64.
�e MacBook Pro (15-inch, 2017 model) features quad-core
Intel(R) Core(TM) i7 @2.8GHz, 16GB 2133MHz LPDDR3
memory, and 512GB SSD with macOS High Sierra 10.13.5.
Node.js 8.11.2 and Paci
sta 0.0.30 are installed on the test PC
and MacBook Pro, respectively. We tested our implementa-
tion on the four JavaScript run-time environments above. We
ran the code onWSH andNode.js for PC and ran on osascript
and Paci
sta for Mac (see Appendix for the commands).

4. Efficient Algorithms for
JavaScript Implementation

4.1. Discrete Gaussian Sampling. Let & ∈ Z be the precision
of binary expansion of the probabilities and � ∈ Z; there

are � binary probabilities p0, p1, . . . , p�−1 ∈ Z


2. A probability

matrix P��� = [p0, p1, . . . , p�−1] ∈ Z

×�
2 is composed of

all the computed probabilities, and each column stores one
probability. Let k0, k1, . . . , k
−1 ∈ Z

�
2 be all the rows of P���;

hence, P��� can be stored as a one-dimensional array k = (k0,
k1, . . . , k
−1) ∈ Z


�
2 for Algorithm 1.

With limited computing capacity, the computation of
probabilities would become a time-consuming operation for
some programming languages or platforms. In general, dis-
crete Gaussian sampling requires a high-precision �oating-
point operation or large storage requirement [35] to ensure
the security level. Inspired by the idea of implementing
Knuth-Yao algorithm in FPGAs [27], we modify and imple-
ment the algorithm in JavaScript. Moreover, discrete Ziggurat
algorithm [30] which allows for a time-memory trade-o� has
been changed to be portable in chosen platforms. In this
case, Knuth-Yao algorithm shows better performance than
modi
ed discrete Ziggurat algorithm. In fact, with di�erent
features, the performance of those two sampling algorithms
varies on di�erent platforms. �erefore, we choose Knuth-
Yao algorithm to speed up discrete Gaussian sampling.

4.2. Number �eoretic Transform. NTT is an e	cient
approach of generalization of fast Fourier transforms (FFT)
doing a transform over the 
nite 
eld Z� (� > 0) instead of
the complex number 
eld C. It has lower asymptotic com-
plexity '(� log �) for multiplying polynomials with higher
degrees.

For � being a power of 2 and � a prime number with� ≡ 1 mod 2�, U44 accepts a polynomial � ∈ ��, whose
coe	cients are in the standard order as input, and outputs
another polynomial �� = U44(�). �� can be de
ned as
�� = ∑�−1�=0 
�V�� mod � (* = 0, 1, . . . , � − 1), where V is a�-th primitive root of unity in Z�. Similarly, we denote the

inverse NTT as U44−1 that � = U44−1(��), where 
� =�−1∑�−1�=0 
��V−�� mod � (* = 0, 1, . . . , � − 1), such that the

output ofU44−1 satis
es U44−1(U44(�)) = �.
We have implemented iterative forward NTT [11, 36]

algorithm in our previous works [12, 13]. Both Kyber and
NewHope are required to perform polynomial multiplica-
tion, and some literature such as [23, 24] provided e	cient
polynomial multiplication methods to combine bit reversal

https://github.com/nquinlan/better-random-numbers-for-javascript-mirror
https://github.com/nquinlan/better-random-numbers-for-javascript-mirror
https://github.com/nquinlan/better-random-numbers-for-javascript-mirror
https://github.com/ukiuni/pacifista
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Input: &, � ∈ Z, a probability array

k = (k0, k1, . . . , k
−1) ∈ Z

�
2

Output: Sample value � ∈ Z ∩ [−��, ��]
1 Let 7 = 0, � = 0, �*M� = 0;
2 while true do
3 @ ←# {0, 1} uniformly at random;
4 7 = 27 + @;
5 for * = � down to 0 by 1 do
6 7 = 7 − k�;
7 if 7 = −1 then
8 if * = 0 then �*M� ←# {0, 1} uniformly at random;
9 else
10 �*M� ←# {−1, 1} uniformly at random;
11 return � = �*M� ∗ @?T;
12 endif
13 if �*M� = 1 then return � = *;
14 else
15 7 = 0;
16 @ ←# {0, 1} uniformly at random;
17 7 = 27 + @;
18 � = 0;
19 continue
20 endif
21 endif
22 endfor

23 �+ = 1;
24 endwhile

Algorithm 1: Knuth-Yao algorithm.

Input: Polynomial � ∈ �� = Z�[�]/(�� + 1), and a LUT Ψ��V ∈ Z
�
� in bit-reversed order

Output: Polynomial �� = U44(�) ∈ ��
1 � = �;
2 for � = 1 to � − 1 by� = 2� do
3 � = �/2;
4 for * = 0 to � − 1 do
5 X1 = 2 ∗ * ∗ �;
6 X2 = X1 + � − 1;
7 Y = Ψ��V[� + *];
8 for X = X1 to X2 do
9 Z = 
�;
10 \ = 
�+� ∗ Y;
11 
� = Z + \ mod �;
12 
�+� = Z − \ mod �;
13 endfor
14 endfor
15 endfor
16 return �.

Algorithm 2: Cooley-Tukey(CT) forward number theoretic transform (U44).

with U44 computation; hence, in this paper, we follow the
state-of-the-art and implement optimized U44/U44−1 as
shown in Algorithms 2 and 3.

Let ^ ∈ Z� be a primitive 2�-th root of unity such thatV = ^2. We write two polynomials � = (_0, _1, . . . , _�−1)
and � = (_0, _̂1, . . . , ^�−1_�−1) ∈ ��. To compute the

polynomial multiplication � = � ⋅ � ∈ ��, 
rst we

precompute all 2� powers of ^ and ^−1 and then store �
powers of^ and^−1 with bit-reversed order in look-up tablesΨ��V, Ψ−1��V ∈ Z

�
�, respectively. So the bit-reverse operation

for input polynomial can be merged into precomputation.
�en we obtain the negative wrapped convolution � =
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Input: Polynomial �� ∈ �� = Z�[�]/(�� + 1), and a LUT Ψ−1��V ∈ Z
�
� in bit-reversed order

Output: Polynomial � = U44−1(��) ∈ ��
1 � = 1;
2 for � = � to 2 by� = �/2do
3 ℎ = �/2, X1 = 0;
4 for * = 0 to ℎ − 1 do
5 X2 = X1 + � − 1;
6 Y = Ψ−1��V[ℎ + *];
7 for X = X1 to X2 do
8 Z = 
�;
9 \ = 
�+�;
10 
� = Z + \mod �;
11 
�+� = (Z − \) ∗ Ymod �;
12 endfor

13 X1 = X1 + 2�;
14 endfor
15 � = 2�;
16 endfor
17 for * = 0 to � − 1 do

18 
� = 
� ∗ �−1 mod �;
19 endfor
20 return �.

Algorithm 3: Gentleman-Sande (GS) inverse number theoretic transform (U44−1).
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Figure 3: Running time (ms) of lattice-based cryptosystems Lizard, ring-Lizard, Kyber, Frodo, and NewHope on Firefox.

(1, ^−1, . . . , ^−(�−1)) ∘ U44−1(U44(�) ∘ U44(�)), where ∘
denotes the point-wise multiplication.

5. Performance on Web Browsers

We implemented three encryption schemes: Lizard, ring-
Lizard [15], Kyber [16], and two key exchange protocols:
Frodo [17] and NewHope [18] in JavaScript. Again, it should
be noted that we mainly focus on the computation process
and discrete Gaussian sampling in this paper. Hence, we
omitted some steps about the generation, encoding/decoding
functions for uniformly chosen public key component or
binary seeds. We will go into detail of our implementation
performance in this section. �e simple usage of our imple-
mentation is described in the Appendix.

For comparison, we implemented those 
ve lattice-based
cryptosystems corresponding to about 128-bit postquantum
security level (see Table 1). Figure 3 shows the perfor-
mance results of our implementation executed on the Firefox
browser. As we expected, the ring-LWE based cryptosystems
including Kyber and NewHope are apparently very e	cient.
�e key size of Kyber is smaller than that of Lizard, although
Kyber has large moduli. Key generation of Kyber runs
over 400 times faster than that of Lizard, but decryption
of Lizard is the fastest. Key generation and encryption of
ring-Lizard are over 60 and 4 times faster than that of
Lizard; however, Kyber is still much more e	cient than
ring-Lizard. Compared with Frodo, both Alice’s and Bob’s
sides of NewHope run over 8 times and 13 times faster,
respectively.
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Figure 4: Decomposition of computation time (ms) of Lizard, ring-Lizard, Kyber, Frodo, and NewHope on Firefox.

For Lizard, we stored the matrices in two-dimensional
arrays, to reduce the running time of matrix multiplication
due to the row-major order matrix convention in JavaScript.
Speci
cally, we computed the product of a vector with a
matrix transpose instead of calculating the matrix-vector
product. In addition, the elements of s in key generation and
r in encryption only contain the values from the set {0, ±1};
hence, we could replace integer multiplication with addition
and subtraction if multiplicand equals ±1. For ring-Lizard,
we computed polynomial multiplication by using Karatsuba
algorithm because the moduli of ring-Lizard are powers of
2.

For Kyber, we skipped the generation of binary seeds and
polynomials. In key generation and encryption, we precom-
puted A andU44(⌊�/2⌉ ∗m) and sampled the error vectors
from a binomial distribution  4. Each element of matrices
and vectors in Kyber is a polynomial over �� with degree
equal to � − 1 (� ≡ 1 mod 2�); hence, NTT can be applied
to Kyber to e�ectively compute polynomial multiplication.
Let *, X, ! be positive integers; we assume a matrix A =(a��) ∈ (��)�×� is in NTT domain, and the coe	cients of each
element a�� are in bit-reversed order. In key generation, we
performedU44 on error vectors such that the component of
public key b = U44−1(AU44(s) + U44(e)), only 6 calls of
NTT and 3 calls of U44−1 are necessary if ! = 3. Similarly,

we computed U44−1(U44(A�)U44(r) + U44(e1)) andU44−1(U44(b�)U44(r) +U44(e2) +U44(⌊�/2⌉ ∗m)) by
invokingU44 10 times andU44−1 4 times in encryption and

outputtedU44−1(U44(s)�u) by invoking U44 4 times andU44−1 1 time in decryption.

For Frodo, we skipped the generation of the seedA from a
binary string and precomputed the matrix A on both Alice’s

and Bob’s sides. �ere is no problem to perform �oating-
point arithmetic on the JavaScript-enabled platforms, but we
replace �oating point arithmetic to integer arithmetic in the
rounding/cross-rounding and reconciliation functions consid-
ering our follow-up development on memory-constrained
devices. To sample the error matrices, we performed our
modi
ed Knuth-Yao algorithm as shown in Algorithm 1.

For NewHope, we also performedU44/U44−1 to speed
up the polynomial multiplication which is a bottleneck for
ring-LWE based cryptography in JavaScript (e.g., see [13,
14]). In this case, we implemented NewHope following [18]
(Section 7.1, Protocol 3) but skipped SHAKE-128 method,
hash function SHA3-256, and key encoding/decoding func-
tions. We precomputed the polynomial � on both Alice’s and
Bob’s sides and sent polynomials �,�, � directly. Comparing
our implementation with the approach in [24], we only

computed U44−1(� ∘ U44(�1)) + �2 on Bob’s side so that
the computation ofU44(�2) has been omitted.

Figure 4 shows the decomposition of computation time
of our implementation. Although each implementation tech-
nique and performance is di�erent, polynomial and matrix
multiplication are still the most time-consuming computa-
tion. In Lizard and Frodo, matrix multiplication accounts
for at least 70%. In Kyber and NewHope, more than 50%

of the running time is spent in U44/U44−1. Except for
ring-Lizard, the error elements generation including discrete
Gaussian sampling and binomial sampling costs little run-
ning time in the calculations, accounting about 20% for Frodo
and about 10% in Lizard, Kyber, and NewHope; discrete
Gaussian sampling accounts for about 50% in key-generation
of ring-Lizard.

We executed the same JavaScript programs on other
desktop PC browsers including Google Chrome, Opera, and
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Edge. Taking Kyber and NewHope as examples, Figure 5
shows the running time on those web browsers. It appears
that the performance of our implementation executed on
both Chrome and Opera is quite similar, and Firefox delivers
the better performance than Edge.

6. Performance on Other
JavaScript-Enabled Platforms

In this section, we present the implementation performance
comparison on IoTdeviceTessel2, Android phone,Windows,
and macOS. Our implementation is designed to be portable
and can be executed on those experimental platforms directly
without modi
cation. In this case, we precomputed random
values generation and discrete Gaussian sampling because of
the di	culty of implementing cryptographic secure PRNG in
JavaScript on microcontrollers such as Tessel2 (see [13]).

6.1. Tessel2. Figure 6 shows the performance of our imple-
mentation executed on Tessel2 (for Lizard, the sizes of keys
are too large to be generated on Tessel2). Note that the

running time is measured in �AF?�7�. We have implemented
the ring-LWE based encryption scheme [5] on the old
model of Tessel (see [13]). As in our previous work, the
performance results achieved on Tessel2 are several orders
of magnitude slower than that on web browsers. However,
Tessel2 has upgraded hardware speci
cation with better
computing capacity. For example, encryption and decryption
of Kyber are over 1000 times slower than that of running
on Firefox. But the performance of Kyber and NewHope
is still unexpectedly high, and the calculation process can
be completed within 1 or 2 seconds. Even though the com-
putation of Kyber/NewHope is more complicated than [5],
noticeable e�ects can be achieved in hardware performance
and memory costs with our improved implementation.

6.2. Android Phone. WebView is an extension of Android’s
View class to display web pages and applications. It provides
di�erent performance from other web browsers on Android
framework. We ran our implementation on Android phone
Xperia XZ au SOV34, which is equipped with Qualcomm
Snapdragon 820 MSM8996/2.2GHz DualCore + 1.6GHz
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Table 2: Performance results on Android phone.

Average running time (ms)

Key Generation Encryption Decryption

Lizard 1575.91 38.62 9.63

Ring-Lizard 13.24 15.05 5.61

Kyber 3.57 5.78 2.14

Average running time (ms)

Alice0 Bob Alice1

Frodo 38.10 88.03 0.79

NewHope 5.14 10.08 2.68

Table 3: Performance results on WSH.

Average running time (ms)

Key Generation Encryption Decryption

Lizard 27021.1 372.2 72.3

Ring-Lizard 145.44 283.19 140.37

Kyber 9.89 15.76 6.15

Average running time (ms)

Alice0 Bob Alice1

Frodo 827.03 1102.92 12.70

NewHope 8.85 17.51 6.67

Table 4: Performance results on Node.js.

Average running time (ms)

Key Generation Encryption Decryption

Lizard 271.08 6.54 1.47

Ring-Lizard 1.86 2.48 1.22

Kyber 0.44 0.67 0.27

Average running time (ms)

Alice0 Bob Alice1

Frodo 7.04 14.73 0.13

NewHope 0.20 0.64 0.19

DualCore and 3GB RAM. We created an HTML 
le that
includes our JavaScript code and loaded it as a local 
le into
WebView.

Table 2 shows the running time of our implementation
on Android phone. From the performance results, it is clear
that the performance of ring-LWE based cryptosystems is
also acceptable. For encryption schemes, Kyber runs about
3 times faster than ring-Lizard, as well as over 4 times faster
than Lizard. For key-exchange protocols, Frodo runs about 10
times slower than NewHope; matrix multiplication accounts
for about 80% in Alice’s side and 90% in Bod’s side; the ratio
is higher than that of on Firefox. Overall, the running speed
achieved on Xperia XZ au SOV34 is at least 5 times slower
than that on Firefox.

6.3. Other JavaScript Run-Time Environments on Windows
and macOS. For comparison, we investigated the perfor-
mance of our JavaScript implementation on PC and Mac.
It is not di	cult to execute our code on other JavaScript
run-time environments directly since our implementation
has excellent portability. �ose environments rely on speci
c

platforms or OS for scripting. For example, JavaScript 
les (.js
type) can be run in GUI mode via WScript.exe andWindows
Command Prompt by calling CScript.exe; running Paci
sta
requires the installation of Java Runtime Environment (JRE).
As of now, the performance of postquantum cryptography
in JavaScript on those platforms has rarely been studied. To
the best of our knowledge, this work is the 
rst. In this case,
we used WSH and Node.js on Windows 10 Home and used
osascript and Paci
sta on macOS High Sierra.

From Tables 3, 4, 5, and 6, we can see that there is a
huge performance gap in running the JavaScript code on
WSH with other platforms. �e running speed of WSH is
the slowest; e.g., key generation of Lizard on WSH is about
100 times slower than that on osascript, encryption is over
250 times slower, and decryption is over 150 times slower.
Running NewHope on WSH is about 15 times slower than
that on Firefox (without consideration of the cost of random
values generation).

Node.js delivers almost the best performance for ring-
LWE based cryptosystems. For example, Kyber runs about
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Table 5: Performance results on osascript.

Average running time (ms)

Key Generation Encryption Decryption

Lizard 209.99 1.43 0.41

Ring-Lizard 3.10 4.66 2.44

Kyber 0.80 1.20 0.49

Average running time (ms)

Alice0 Bob Alice1

Frodo 6.88 10.46 0.09

NewHope 0.75 1.32 0.43

Table 6: Performance results on Paci
sta.

Average running time (ms)

Key Generation Encryption Decryption

Lizard 1301.54 24.67 5.76

Ring-Lizard 43.77 34.24 17.97

Kyber 7.39 4.49 1.78

Average running time (ms)

Alice0 Bob Alice1

Frodo 35.80 43.96 0.75

NewHope 2.57 9.27 3.08

2 times faster than that on osascript, and ring-Lizard runs
over 10 times faster than that on Paci
sta. �e performance
of Node.js is almost the same as on Google Chrome, which
also uses Google’s V8 JavaScript engine.

Osascript is also an e�ective platform for macOS; e.g.,
running Frodo on osascript is slightly faster than that on
Firefox; encryption of ring-Lizard is about 3 times and 5000
times faster than that on Xperia XZ au SOV34 and Tessel2,
respectively.

�e running speed of Paci
sta is less than Node.js and
osascript, but still higher than WSH and can be comparable
to Android WebView; hence, its performance is acceptable
to the developers. �e exception for all three encryption
schemes is that the running time of key generation is longer
than that of encryption.

7. Conclusions

We 
rst implemented 
ve new lattice-based encryption
schemes (Lizard, ring-Lizard, Kyber) and key exchange
protocols (Frodo, NewHope) in JavaScript and tested their
performances on web browsers, Tessel2, Android phone,
and other platforms on PC and Mac. Our code can be
executed on any JavaScript-enabled platforms since it has
good portability. We used NTT to improve the speed of poly-
nomial multiplication andmodi
ed Knuth-Yao algorithm for
discrete Gaussian sampling. We reported the performance
results of our implementation onmultiple JavaScript-enabled
platforms; by contrast, the ring-LWE based cryptosystems
show better performance than others. Our proof-of-concept
implementation demonstrates that some of the lattice-based
cryptosystems can be implemented e	ciently in JavaScript.
Hence, our work could be a good reference for lattice-based

cryptography in the standardization process of NIST. In
our future work, we expect to improve the implementation
for particular platforms and investigate more lattice-based
public-key encryption schemes and KEM on more platforms
for the NIST PQC standardization project.

Appendix

Simple Usage of Our Implementation

We take Lizard as an example for explaining how to use our
source code.

Execution

Web Browsers. To run Lizard on web browsers, we create
an HTML 
le which containing necessary contents as in
Pseudocode 1.

prng.js is our main number generator which includes
a fast PRNG algorithm. If Lizard is executed on Opera,
we can also use the standard function of ECMAScript
Math.random()which is implemented securely (See https://
lists.w3.org/Archives/Public/public-webcrypto/2013Jan/0063
.html). lizard random values.js contains the pregener-
ated random numbers for testing. �e main function of
Lizard is testlizard() in lizard.js (see Pseudocode 2).

Android Phone. We create the Android application package
(APK) 
le using EclipseKepler ServiceRelease 2 andAndroid
Development Toolkit (ADT, Version: 23.0.7.2120684). We
copy the necessary code from those .js 
les and paste it
into an HTML 
le for use in our project. �is HTML 
le
is placed within the assets folder as a local 
le. �en we

https://lists.w3.org/Archives/Public/public-webcrypto/2013Jan/0063.html
https://lists.w3.org/Archives/Public/public-webcrypto/2013Jan/0063.html
https://lists.w3.org/Archives/Public/public-webcrypto/2013Jan/0063.html
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<!– – lizard.html – –><!DOCTYPE html><html><head><title>Lizard</title><meta charset="UTF-8"><script type="text/ javascript "

src ="../ Utils /prng.js"></script><script type="text/ javascript "

src ="lizard random values.js"></script><script type="text/ javascript "

src ="lizard.js"></script></head><body></body></html>
Pseudocode 1

// the parameters can be changed

var m = 960, n = 608, l = 256, t = 2, p = 256, q = 1024; // h,r,...

function testlizard() { //main function

//...

randomPlaintext();

keyGeneration(l,m,n,q);

encrypt(l,n,p,q);

decrypt(l,q,t);

//...}
testlizard(); // invoke the main function

Pseudocode 2

modify the onCreate() function in MainActivity.java
(see Pseudocode 3).
We can export the created .apk 
le from the bin folder and
install it on the Android phone.

Other Platforms. Wecopy the necessary code and paste it into
a .js 
le. �e program can be executed in a command shell;
for example, as follows.

Tessel2. It needs to import the interface to Tessel hardware at
the top of the .js 
le:

var tessel = require( ' tessel ' );

//functions

In the command line, enter

C:\tesel2-code>t2 run new lizard.js

to run Lizard in Tessel2’s RAM.

WSH

C:\new folder\Lizard>cscript new lizard.js

C:\new folder\Lizard>wscript new lizard.js

Node.js

C:\new folder\Lizard>node new lizard.js

osascript

$ osascript new lizard.js

Paci�sta

$ bin/pacifista scripts/new lizard.js

Display. To measure the running time, we can invoke
Date.now() function or new Date().getTime() func-
tion, but WSH only supports the latter.

console.log() writes a message to the console.
If the code is executed on WSH, we should invoke
WScript.Echo() to display the message:

function print(message) {
//WScript.Echo(message);

console.log(message);}
�e result will be outputted as follows (the binary plain-

text is generated randomly) (see Pseudocode 4).

Data Availability

�e relevant test data used to support the 
ndings of this
study are included in the article.
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//...

import android.app.Activity ;

import android.os.Bundle ;

import android.webkit.WebView ;

public class MainActivity extends Activity {
private WebView webview ;

@Override

protected void onCreat (Bundle savedInstanceState ) {
super.onCreate ( savedInstanceState );

webview = new WebView (this);

webview.getSettings ()

. setJavaScriptEnabled (true);

webview.loadUrl

("file:///android asset/lizard.html");

setContentView ( webview );}
//...}

Pseudocode 3

Test Lizard:

Input:

m = 960

n = 608

l = 256

t = 2

p = 256

q = 1024

//...

Output:

plaintext =

0,0,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1,1,1,//. . .
result =

0,0,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,1,1,1,1,//. . .
Success!

Pseudocode 4

Disclosure

A preliminary version of this paper was presented at the
2018 Symposium on Cryptography and Information Security
(SCIS2018) held in Niigata, Japan, on January 25, 2018 [14].

Conflicts of Interest

�e authors declare that they have no con�icts of interest.

References

[1] P.W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM Journal
on Computing, vol. 26, no. 5, pp. 1484–1509, 1997.

[2] J. Bernstein, J. Buchmann, and E. Dahmen, Post-Quantum
Cryptography, Springer, 2009.

[3] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” in Proceedings of the 37th Annual
ACM Symposium on �eory of Computing (STOC ’05), pp. 84–
93, ACM, Baltimore, Md, USA, May 2005.

[4] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework
for e	cient and composable oblivious transfer,” in Proceed-
ings of the 28th Annual International Cryptology Conference –
(CRYPTO ’08), vol. 5157 of Lecture Notes in Computer Science,
pp. 554–571, 2008.

[5] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lat-
tices and learning with errors over rings,” in Advances in
Cryptology—EUROCRYPT 2010: 29th Annual International
Conference on the �eory and Applications of Cryptographic
Techniques, French Riviera, May 30–June 3, 2010. Proceedings,
H. Gilbert, Ed., vol. 6110 of Lecture Notes in Computer Science,
pp. 1–23, Springer, Berlin, Germany, 2010.

[6] R. Lindner and C. Peikert, “Better key sizes (and attacks) for
LWE-based encryption,” in Topics in Cryptology—CT-RSA 2011,
vol. 6558 of Lecture Notes in Computer Science, pp. 319–339,
Springer, Heidelberg, Germany, 2011.

[7] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-
quantum key exchange for the TLS protocol from the ring
learning with errors problem,” in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 553–570, 2015.



14 Security and Communication Networks
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