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Efficient load balancing is essential for parallel distributed

computing. Many parallel computing environments use TCP

or UDP through the socket interface as a communication

mechanism. This paper presents the design and development

of a prototype implementation of a network interface that can

preserve communication between processes during process

migration. This new communication library is a substitution

for the well-known socket interface. It is implemented in

user – space; it is portable, and no modifications of user appli-

cations are required. TCP/IP is applied for internal commu-

nication, which guarantees relatively high performance and

portability.
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1. Introduction

In order to efficiently use distributed computing

power it is essential to enable process migration from

one host to another. In this way, load can be moved

from a heavily loaded node to another, less loaded one.

It is also desirable to do this in a way that allows the

original host to be serviced (i.e. rebooted) without a

need to break computations. As a rule, any parallel

computation requires some communication and syn-

chronization, so advanced distributed computing envi-

ronments should handle the communication between
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processes in spite of the migration. The most popular

environments like PVM and MPI do not offer this kind

of functionality. These communication libraries have

to be rewritten to support task migration.

One of the systems developed to support dynamic

load balancing is Dynamite [6,9], which attempts

to maintain an optimal task mapping in a dynami-

cally changing environment. Dynamite balances the

load within the system by migrating individual tasks.

Dynamite comprises monitoring,scheduling, and mi-

gration subsystems [9]. The problem is that migrat-

ing processes can not use pipes, shared memory, kernel

supported threads, and sockets. Support for open files

is limited to files that are available through the same

pathname before and after the migration [6].

Many parallel computing environments use TCP or

UDP through the socket interface as a communication

mechanism. This paper presents the concept and first

implementation of a library that, besides offering the

same functionality as the system socket library for the

TCP/IP protocol family, allows migration of the pro-

cess without interrupting communication with other

processes. The new library, called msocket, can be a

substitution for the standard socket library so that no

changes in the application program will be required.

All necessary modifications are handled at the library

level so that no changes in the kernel are needed, either.

The msocket library handles bothTCP andUDP sock-

ets. Finding a solution for the stream oriented TCP

sockets is much more complicated and that is why this

paper focuses mainly on TCP.

The msocket library was developed as an extension

to the Dynamite.

2. Environments enabling open socket migration

One of the environments for migrating processes

is Hijacking [10]. This system does not require any

changes in the process code; changes are done dy-

namically after a process starts. The Hijacking system

uses DynInst [3], an architecture independent API for

modifying the running program. The mutator process

attaches to the process (application) that is to be mi-
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grated. The process is stopped, and then a child pro-

cess, named shadow, is created. The shadow inherits

all resources used by the parent. After the migration,

processes use resources through the shadow. This so-

lution is transparent but rather expensive because of

the additional communication delays incurred for all

system calls routed through the shadow. The princi-

pal disadvantage of the shadow is that it uses the host

where the process was initiated.

Mosix [1] is software to support cluster computing

and it is implemented on the operating system level.

Each Unix version requires a different implementation

of Mosix, and recently the seventh implementation of

Mosix was developed for Linux using the x86 based

processors. The Mosix migration mechanism is called

Preemptive Process Migration. Almost any process

may be migrated at any time to any available host. Each

running process has a Unique Home-Node (UHN),

which is the node where the process was created. After

migration the process uses resources of the new host if

possible but interaction with the environment requires

communication with the UHN. Many system calls re-

quire data exchange between the user space and the

kernel. For each remote call it is required to copy data

between the migrated process and its part left on the

UHN; thecopy to user() andcopy from user()

kernel primitives transfer data through the network, and

this operation is time consuming.

3. Requirements for socket migration

An essential requirement for the socket migration is

that all modifications of communication libraries have

to be transparent for the TCP and UDP protocols. To

easily migrate a process with the socket interface in

use, modifications to the communication library have

to ensure the following:

1. establishing new connections must be allowed

regardless of the number of process migrations;

communication is possible between two pro-

cesses with modified communication library

2. all connections that had been established before

the migration took place have to be kept, and data

must not be lost.

Another important requirement is that the program-

mer should not need to know in advance that a partic-

ular application will migrate at runtime. All modifica-

tions should be done in the user-space, and no changes

are allowed to the kernel source code, nor are addi-

tional kernel modules. The new library should work

with both UDP and TCP protocols.
The requirement not to change the Unix kernel forces

us to modify the system calls and library calls. In the
user code, communication through the TCP and UDP

protocols uses sockets that are treated by the process as
file descriptors. For this reason wrappers are used for
each call that has file descriptors as arguments. In some
cases this is a simple change that only translates the file

descriptor number. The ability to create a wrapper to a
function and a system call is a feature of theDynamite
dynamic loader [6]. Dynamite also takes care of

process checkpointing and restoring.

4. Idea of migratable sockets

To allow uninterrupted redirection of packets or

stream flow to a migrating process, it is possible to use
one of the following approaches:

– all communication between processes goes through
a daemon which forwards packets to the current
process location (like DPVM when using indirect
routing mode [5,7]),

– after migration, the process leaves a piece of code
on the old machine and this code takes care of
forwarding data to the new process location. In
this paper, the term mirror is used for a process

that redirects network packets. This concept was
proposed in [1,10].

– the migrating process flushes all connections
with other processes before migration and re-

establishes them afterwards. This requires the
immediate cooperation of all other processes in-
volved. This solution is used in Hector [8] and for
direct connections in Dynamite. It involves the

use of special signal handlers and of daemons for
signalling.

None of the solutions is perfect. The global (central-
ized) data distribution is not fault tolerant and could be
too slow. In the second case, after process migration the
machine is still in use, but in a different way. It means

that the machine must not go down. This solution is not
fault tolerant, either. The third solution requires special
signal handling routines in all participating processes
to ensure a timely response.

The msocket library makes use of all three concepts
in a way which eliminates drawbacks. Our solution
forwards some data but only after the migration. The
msocket also uses the mirror but the life-time of the

mirror is limited.
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Fig. 1. Layers of the library.

After process migration, all connections have to be
redirected to the new process location. The migrat-
ing process has to leave a mirror because some data
could be on-the-fly (inside network stack buffers or in-
side active network equipment like a router or switch).
The mirror should be removed as soon as possible. In
this case, the mirror captures and redirects the packets
which were on-the-fly during the process migration.

During normal work, processes use direct connec-
tions. The daemons are not used for passing user data
between hosts. Daemons should exist on all machines,
and their role is limited to redirecting connections only.
When a process migrates, it has to inform peers about
its new location. While restoring the process, daemons
on all hosts which were involved in communication
with the migrating process should be informed about
its new location. Subsequently, the daemons force peer
processes to redirect connections.

In the approach discussed in this paper, the data sent
between processes always goes through an additional
layer built of wrappers of the system calls. Inside the
wrappers, some control information is changed but the
communication is performed by the original TCP/IP
stack (see Fig. 1).

This solution necessitates the use of address servers
that allow to find the location of a socket. The commu-
nication with address servers is required only while es-
tablishing the connection; once the connection has been
established, all data goes directly between processes.
Our concept requires the use of daemons which just
help to redirect the connection. As the TCP protocol is
reliable, it should deliver all data to the process with-
out losing or changing a single byte. To maintain the
connection while the process is migrating, a mirror is
kept; it receives data from peer processes and redirects
it to the new process location.

5. Architecture of the msocket system

5.1. Mirror

The main aim of the mirror is to capture and redirect
packets which were on-the-fly during the process mi-

gration. A mirror is started when the checkpointing of
the process takes place. The mirror is a child of the pro-
cess, so it inherits all sockets used by the process prior
to migration. While the process is migrating msocket

takes control – it happens after having accepted the
checkpoint signal and before the checkpoint is saved.
At that time msocket calls fork() and starts mirror as
a procedure for child process (we don’t use exec()
because it is an unnecessary complication). The mir-
ror works in a loop, it reads all data from the inherited
sockets and sends these data to the new process loca-
tion. After the migration, the process connects to the
mirror and informs all the connection peers about its
new location.

5.2. Virtual address

In the standardIP addressing scheme, the address of
a socket is associated with the machine where the pro-
cess (the owner of the socket) is running. The msocket

library cannot work in this way because the real address
of the host changes with each migration. To become
independent of the changes of real addresses, virtual
addresses are used. The form of these addresses is the
same as that of the addresses used for the TCP and UDP
communication, and these addresses may migrate with
a process. In the msocket library, the address server
(msmaster) is a centralized part of the system. This
server takes care of address translation and guarantees
address uniqueness.

Each centralized part of the system can potentially
cause the performance problem. It is possible to start
a few address servers each of them for different part of
network (domain), it speeds up address resolving and
reduces the performance problem. While processes can
communicate and migrate across this domains, com-
munication within the same domain is more effective.

5.3. Daemon

The daemon participates in the redirection of con-
nections. After migration, while restoring, a process
has to inform its peers about its new location. The mi-
grated process communicates with the daemon on its
new host, which takes care of propagating this infor-
mation.

The process after migration can not directly com-
municate with the peer process because it requires to
break the remote process computation. It is possible to
break computation by the signal handler which is sent
by the daemon. Theoretically the migrated process can
connect to the remote daemon without help of the local
daemon but it is unclear and requires to integrate the
communication protocol into the process.
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Fig. 2. Connections between address servers, daemons, processes and mirror.

5.4. System overview

In Fig. 2 a connection scheme between three pro-

cesses and a mirror is presented. There are two ad-

dress servers. One of them is responsible for the vir-

tual network 192.168.5.0/24, the other one for the net-

work 192.168.1.0/24. There are daemons running on

nodes (except for Node 3). Process C is connected

with A and B, and just migrates from the Node 3 to

the Node 4.

The realIP adresses of the hosts are written in square

brackets. Daemons are running on the nodes 1, 2 and

4. On Node 3 there is only the mirror of a process,

the daemon is not necessary now, and may be assumed

to have been terminated as the first step in bringing

Node 3 down. The daemon working on Node 1 is

connected only to one master address server, the one

responsible for the 192.168.5.0 network. It is enough

as the process A running on this node uses a socket

with the virtual IP address 192.168.5.1 and this socket

is connected with the process C and the mirror of the

process C. In both cases the virtual address 192.168.5.2

with port number 2000 is used. The process A does not

need information about sockets from the 192.168.1.0

network. The daemon onNode 2 is connected to both

servers because the process B uses the address from the

network 192.168.1.0 and its socket is connected to the

address 192.168.5.2.

The process C has been moved from Node 3 to

Node 4, and now the process C is connected to the

mirror. The processC also asks the daemon onNode 4

to redirect connections. This request is propagated
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to all the daemons on the peer nodes, in that case to

the daemons on Node 1 and Node 2 (dashed lines

in Fig. 2). The processes A and B establish new real

connections to the process C while the old connections

still exist.

The process A has one virtual socket with the lo-

cal address 192.168.5.1 port 1500. This socket is con-

nected to the virtual socket of the process C with the

address 192.168.5.2 port 2000. Before the migration

of process C, there was only a connection between

Node 3 and Node 1 while after the migration one

virtual socket (a socket from the user code point of

view) has two sockets in the real communication sys-

tem. The socket of the process A is connected with the

mirror and with the new process C.

5.5. Redirecting TCP connections in ESTABLISHED

State

For the TCP/IP sockets, there is no synchronization

between read and write requests on both sides of the

connection. After migration the msocket library creates

a new socket (while restoring), registers it and asks the

mirror to unregister the old one. Then the system call

listen() is invoked on the new socket. Next, the

migrated process sends the redirect request to the local

daemon. This request contains the virtual address of

the socket and the peer, real address of the peer and the

new real address of the socket.

The daemon on the node where the process migrated

to receives this request and contacts the daemon at

the connection peer host and sends the redirect request

there. At the beginning the remote daemon opens a

connection to the new process (the new real address

is a part of the redirection request). Then the daemon

tries to find the connection in its database. This entry

is associated with the pid number of the local process

or processes which is/are the owner(s) of the socket.

The remote daemon sends the request to all of those

processes and then passes the open file (new socket) to

them. In this way, all peer processes share again the

same socket. To force the processes to read the request

and receive the file descriptor the remote daemon sends

a signal to them (using kill()). As a result, the pro-

cesses enter the signal handler which is responsible for

reading the request and modifying the internal library

state. As soon as the new socket is opened by the re-

mote daemon, it is passed to all peer processes which

have the connection with the migrating process, and the

remote daemon sends a response to the daemon which

is running on the same host as the process after the

migration. From this moment on, the new connection

is established, while the connection through the mirror

is still present.

At the peer (A) of the migrated process (see Fig. 2)

one virtual file descriptor vfd, which is used by the

process code as a socket, is associated with two real

sockets, fd and newfd. The former of these sockets

was created before the process migration (fd), while

the later (newfd) was created during the redirection.

On the migrated process side only one real socket is

used, plus the socket connected to the mirror, but the

mirror connection is shared by all sockets.

When the migration is taking place, the peer process

(A) could be inside the read() system call and could

be still waiting for the data from the original fd which

after the migration is connected to the mirror. This

system call should be interrupted after the migration.

This is why the migrated process sends a control request

to the mirror. After having received this request, the

mirror is to close half of the connection (one direction)

between the mirror and the peer process. The mirror

calls shutdown() on the old sock file descriptor.

The peer process is an active part during the redi-

rection. Each time the msocket library takes control1 it

checks if the connection is flushed. When the connec-

tion between fd and old sock is flushed, the peer

process closes the connection. Then fd can be set to

the value of newfd. If the mirror detects the closing

of the old sock it sends a control message to the new

process (C). The new process knows that this connec-

tion is completely redirected and all read and write re-

quests will be done through the new socket (without

the use of the mirror).

The processAmay write more data than the processC

can consume. The data coming from the mirror should

be kept in a buffer. The process C stores the data inside

the buffer associated with the appropriate socket.

5.6. Architecture for UDP sockets

Our library also uses virtual addresss for the UDP

sockets. Address servers and daemons handle two sep-

arate address spaces, one for the TCP and the second

for the UDP.

UDP is a connectionless protocol and each write re-

quest can use different destination address. This means

that each write request requires address translation. On

the other hand UDP is an unreliable protocol, so it is

1During all library calls and the signal handler.
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Fig. 3. The msmaster.

possible to create a cache for UDP addresses. An in-

coherent entry in the cache can cause packet loses, but

this is not a problem because the application has to take

care of retransmission of the lost packets anyway.

6. Implementation

This section provides some implementation details

of the parts of the system responsible for address trans-

lation for both TCP and UDP protocols.

6.1. Architecture of msmaster

The main function of the address server (msmaster)

is to keep information about the sockets in use (the pairs

of IP and port numbers) and about their states. Inter-

nally, the msmaster keeps two tables. One of them

contains the virtual address and the time stamp of the

last verification. This table is used when an application

attempts to use a new address. The second table of

msmaster keeps the pairs of addresses: the virtual

address and the real address. This table contains only

addresses needed when an application is attempting to

establish the communication with this address.

The address server is decomposed into threads to

simplify its structure (see Fig. 3). At the beginning two

threads are started. One of them (cleaner) periodically

checks the database contents and removes old entries.

The second one (tcp listner) takes care of communica-

tion, waiting for incoming connections from the dae-

mons; a new thread (tcp thread) is created for each
incoming connection. Each tcp thread serves a single

peer (an msdaemon).

6.2. Architecture of msdaemon

To simplify and speed up the communication of

an application process with address servers, the

msdaemon is used on each node. On startup, this

daemon reads the configuration file, which contains the
addresses of the subnets with the address of the mas-

ter server for each subnet. This structure simplifies

the communication because it is centralized inside the
daemon, and the msocket stubs do not need to parse

the configuration file. The msdaemon has a cache for

UDP addresses to speed up the communication. The
msdaemon also takes part in the redirection of connec-

tions. Themsdaemon has the multiple thread structure

(Fig. 4).

6.3. Communication with an application process

The daemon uses message queues to communicate

with processes running on the same node (Fig. 4). Each

message has the field mtype2 which is used as an
address. The daemon reads all messages with mtype

equal to 1. The processes read messages with mtype

equal to their process id.

2mtype is a field of structure msgbuf defined in file <sys/

msg.h>.
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The msocket daemon uses two separate message

queues. One of them is used by an application process

to ask the daemon to perform some operations (i.e. the

address queries) while the second one is used by the

daemon to force the process to e.g. redirect sockets,

check if the process exists and so on.

7. Limitations

Generally, it is impossible to build a completely

transparent wrapper of the socket library. The msocket

library does not support nonblocking I/O operations.

This kind of access to the socket is very often connected

with the user defined signal handler, and to support this

access, it is required to create a wrapper for the user sig-

nal handler. Urgent data is also unsupported; this fea-

ture of the socket stream also requires dealing with the

signal handlers. Applications cannot use the socket op-

tions calls like setsockopt(), ioctl(), fcntl().

In the future, this limitation may be partially removed.

To do this, it is necessary to retain more information

about the socket state and restore it after the migration.

Unfortunately, some instances of these system calls are

system dependent.

The socket and file descriptors are equivalent in the

Unix systems, therefore sockets can be shared between

parent and child(ren) in the same way as files. This

situation is dangerous for the msocket library because

it is impossible to migrate a process which shares a

socket with another process.

8. Tests of functionality and overhead

In order to verify the system, three groups of tests

have been developed. The first group is designed to

check if the planned functionality of the msocket is re-

alized, whereas the second group focuses on measuring

the level of overhead induced by the msocket. Finaly,

the last group is developed to test the stability of the

socket connections during the migration.

To verify the functionality, the following tests have

been performed: creation of the virtual socket, estab-

lishing connection before the migration, establishing

connection after migration(s), establishing connection

during migration, migration with connection in use.
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The overhead tests measure the time spent on executing

the code of this library. The generic applications used

in tests are typical producer – consumer and ping-pong

programs.

8.1. Establishing a connection through the mirror

Two differentTCP consumers were developed. Both

of them require the port number to bind to as an ar-

gument. Both TCP consumers read all incoming data

with the read() system call and write output data to

the standard output. The first one, a single process

(ms tcpcons) accepts only one incoming connection

and then closes the socket in the LISTEN state and

starts reading.

The second one (ms tcpconsfork) forks af-

ter having accepted a new incoming connection.

The child process uses the new connection (in the

ESTABLISHED state), while the parent tries to accept

the next connection. The parent process closes the new

socket after the fork whereas the child closes the socket

in the LISTEN state.

When the process is checkpointed, the mirror takes

care of incoming connections by accepting them.

Socket states are restored by the process which starts

working on a new node. The created socket is regis-

tered and then the process asks the mirror to redirect

to the new location the connections accepted during

migration time.

To test this functionality of the mirror, a test was

proposed in which the process (consumer) is started

and checkpointed, then the producer(s) is/are started.

The consumer process is restored from the checkpoint

file after the producer has been started.

After having restored the consumer process from

the file all connections are redirected by the mirror to

the new process location. All producers establish new

connections with the new process (see Fig. 5).

8.2. Load swap

The producer – consumer application sends one mes-

sage per second, which is enough to test the creation

and the migration of the virtual sockets. It can also

demonstrate that the mirror exits after the process mi-

gration. The previous tests are not suitable to show

what happens with the data in the buffers and the data

on-the-fly, so a test which sends as much data as possi-

ble needed to be created.

The producer sends data all the time and it is possible

to adjust the size of the buffer and the number of buffers

to send (number of iterations). To check the contents

of the buffer at the consumer side, each buffer is filled

in with a random pattern.

It is possible to set the seed for the random gener-

ator used by both the producer and the consumer. If

the random generator is initialized with the same seed

value it produces the same values at the producer and

consumer sides, so it allows to check the contents of

the data incoming from the network at the client side.

The use of the values generated by the random() li-

brary call allows to check all bytes in the stream. If one

of the bytes differs from the original one it is detected

immediately by the consumer. If the library loses one

or more bytes, all data would be corrupted, and the

random generators would become unsynchronized.

The consumer (ms rndcons) requires three argu-

ments: the port number to bind, the size of the buffer to

check (each buffer is checked separately) and the seed

for the random generator. The result of each buffer

checking is printed to the standard output by the con-

sumer. Next, the index of the first different byte in

the buffer is printed. At the end, the consumer prints

information about the bytes read.

The producer (ms rndprod) requires five argu-

ments: the IP and port numbers of the consumer (or

pipe, see Section 8.3), the size of the buffer, the number

of iterations and the random seed. Information about

each sent block of data is written to the standard output

by the producer. At the end of its work, it prints how

many bytes were written.

It is not necessary to use the same size of the buffer in

the consumer and the producer. All data is treated as a

single stream and it has no influence on errors detected

at the end of the stream; the consumer checks only the

fully filled buffers.

The consumer (in this case this is ms rndcons)

and the producer (ms rndprod) are started on two

different nodes A and B (see Fig. 6). Then, the process

from the node A (the consumer) is migrated to the

node B. Then two processes work on the same node,

and at this time they are connected through a loop-back

interface. Once all data buffered in the connection is

flushed, the producer is migrated from the node B to

the node A.

This test shows that it is possible to migrate the con-

sumer as well as the producer. During this test a lot

of data was sent (about 50 MB during each test). It

has been checked that all data arrive at the consumer

and not one byte is changed. The delay in data transfer

resulting from the migration is about 20–30 seconds.



M. Bubak et al. / Portable library of migratable sockets 219

host c1

mirror of consumer

host c2

restored consumer

image of
consumer

CLOSE_LISTEN

host p1

producer 1

host p2

producer 2

host p3

producer 3

REDIRECT

Fig. 5. Establishing a connection through the mirror.
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Fig. 6. The load swap test.

8.3. Communication through a walking pipe

For this test, the producer and the consumer are

the same as in the test described in Section 8.2 above

(ms rndprod andms rndcons). To extend the sim-

ple producer – consumer example, the ms rndpipe

program was developed. It reads the data from one

socket and sends it to the second one, without changing

the stream of data.

The ms rndpipe program expects four arguments:

the IP and port numbers to connect to, the port number

to bind to, and the size of the buffer. It informs about

each block of data read and written, and at the end

displays the numbers of read and written bytes.

The purpose of this test is to show that it is also pos-
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Fig. 7. The walking pipe test.

sible to migrate a process which reads and writes data.

The producer and the consumer used in the previous

test are applied. The only difference is that the pro-

ducer and the consumer are connected through other

processes (ms rndpipe). During the test, one of the

pipe processes is migrated from the nodeh2 to the node

h3 and so on (see Fig. 7).

8.4. Performance tests

The performance tests consisted of checking the in-

fluence of the msocket library on the transfer speed and

the delay caused by the data transfer.

8.4.1. Throughput test

As the first test the producer – consumer example

was applied. There are two programs, both of them are

compiled with and without the msocket library. These

tests use the TCP protocol.

Both programs measure: wall clock time, user time

and system time. The wall clock time is used to cal-

culate the transfer speed, while the CPU times (user

and system) are used to calculate the transfer cost per

1 MB.

We have measured the transfer speed for different

buffer sizes varying between 1 byte to 8 K bytes at the

producer side. The consumer buffer was always the

same – 10 K bytes. The result concerning the producer

was taken, so it is the test of writing through msocket

link.

The first test takes place between two hosts con-

nected by the 10 Mbps Ethernet. For each test point

(buffer size) the difference between the msocket library

and the standard TCP/IP was calculated. Next we
calculate the weighted average. The weight of each
point is equal to the distance between the given and the

previous point.
The difference in the speed of the program with and

without the msocket library is only 0.33 % for the whole
range of used buffer sizes. For small buffers (between
32 to 1024 bytes) this difference is greater and is equal
to 1.10 %.

The tests were also run on the DAS [4] distributed su-
percomputer built out of four connected clusters. Clus-
ters use Myrinet and FastEthernet as local networks.
Our tests use the FastEthernet.

The speed difference at the DAS cluster is 2.18% for

the whole range of used buffer sizes and 16.15% for
small buffers.

8.4.2. Delay Test – “ping-pong”

As the next performance test, the test measuring the
delay of the data transfer was performed. There are two
connected processes: the first one sends a message to

the second one, which receives it and replies as soon as
possible with a message of the same size. To increase
the accuracy of the measurement, the time needed for
multiple (10 000 or 1 000 000) send-receive actions
was taken (see Figs 8 and 9).

While performing this test it was very important to
set the TCP NO DELAY option on the socket. This
option is supported by the msocket library.

The presented figures show the response time versus
the size of message. The time is measured in ms and in-

dicates the time of message transfer in both directions.
The results obtained for the program compiled with

and without the msocket library proves that during nor-
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Fig. 9. Ping-pong tests, 1 000 000 messages.

mal work (without migration) the cost of using the li-

brary is insignificant.

8.5. Stability of the migration

Tests consisting of multiple migrations of processes

were performed. The idea of this type of tests was that

each process of producer-consumer was migrated fifty

times. Then, the similar test was made for the ping-

pong program. In this case only “pong” process could

be migrated, and the migration took place 400 times.

In both cases, the programs finished without a failure.

8.6. Tests for the UDP protocol

For the UDP protocol we performed only functional-

ity tests. We tested sending packets during the process

migration. We did not measure the overhead because

UDP based communication is used relatively rarely.

9. Concluding remarks and future work

The msocket library is written in C and was tested
on Linux systems. It is possible to port this environ-
ment to other system platforms, the number of system
dependent parts is limited.

The current implementation of the msmaster and
msdaemon can only use the TCP protocol to commu-
nicate among themselves. During the design of the
msocket system the possibility to use UDP was consid-

ered but it was not implemented. At this time only the
parsers for configuration files accept the udp flag as
the specification of communication mechanism.

We are working on a prototype implementation of
MPI (mpich) on top of the msocket library. This re-

search is meant as the final test that the design presented
here has a broader application area. A possible success
will show under which conditions this is feasible. Our
migrating socket library is low-level, being usable for

any parallel and distributed application where commu-
nication is realized through sockets, so it may also be
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useful for load balancing in metacomputing environ-

ments [2].
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