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Abstract: Silicone rubber insulators (SRIs) are widely used in high-voltage power grids. Due to
high-voltage fields and harsh environmental conditions, SRIs eventually deteriorate with use in
the power grid, decreasing their insulating performance and operational life and contributing to
transmission line failures. Therefore, quantitatively assessing the aging status of SRIs is crucial. In
this study, we evaluated the viability of the magnetic resonance method for assessing the age of
SRIs at the level of chemical structure; we built and made a portable magnetic resonance sensor, and
evaluated the sensor’s functionality. By measuring the SRI sheds at various service times, it was
discovered that the equivalent transverse relaxation time, T2eff , can describe the degree of aging of
the SRIs. The results of the magnetic resonance measurements were also compared with those of
the static contact angle method, and the two measurement methods yielded the same conclusions.
However, the magnetic resonance method was more sensitive than the one using the static contact
angle method.

Keywords: silicone rubber insulators (SRIs); nuclear magnetic resonance (NMR); aging detection;
portable sensor; non-destructive detection

1. Introduction

Insulators play an important role in the electrical insulation and mechanical stress
of high-voltage power transmission lines. The insulator is composed of three parts: the
shed, the core rod, and the metal fittings. The shed is often made of silicone rubber,
glass, or ceramic. Due to their superior electrical and mechanical qualities, as well as
resistance to fouling, SRI materials have largely replaced other insulation materials in
power grids [1–3]. SRI materials in long-term outdoor operations are subject to strong
ultraviolet light, strong electric fields, fouling, and other factors, which will inevitably lead
to serious aging phenomena such as chalking, hardening, hydrophobic deterioration, and
other aging phenomena. These aging phenomena lead to transmission line failures, and
threaten the safety of power systems [4–7]. Therefore, a quantitative analysis of the aging
status and aging rule of SRI materials is extremely important.

At present, the detection methods for the aging of the SRI shed at home and abroad
mainly include the direct observation method, the HC (hydrophobicity class) classification
method [8–12], the contact angle method [11,13], the leakage current method [14], the
thermally stimulated current method [13,15,16], Fourier transform infrared spectrome-
try [17,18], and so on. The direct observation method and the HC classification method
are directly observed with the naked eye, but their accuracy is poor and they are subject
to several inaccuracies, due to the O&M staff’s subjective judgments. The leakage current
method estimates the operating condition of SRIs by measuring the leakage current. The
measurement of leakage current may show in real time how several dynamic factors, such
as voltage, temperature, and fouling, affect the operating conditions of SRIs [14,19], but
this method is limited by the randomness of the measurement and the uncertainty of the
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measuring standard. The contact angle method, the thermally stimulated current method
and Fourier transform infrared spectrometry could be interfered with by environmental
elements, when measuring. Generally, these measurements can only be carried out under
laboratory conditions. In addition, these are destructive testing methods for the SRI sheds
that need to be cut.

The power engineers’ ideal method for determining the SRIs’ aging condition should
be quick, easy, and inexpensive to implement. It should also be able to assess the silicone
rubber’s aging status at the microscopic level and be widely applicable as an engineering
measurement method. Due to its quick, practical, and quantitative nondestructive mea-
surements, magnetic resonance technology has been used in materials science to measure
the crosslink density of polymeric materials, regulate the quality of rubber production
processes, and detect the aging of rubber and polymer materials [20,21]. Commercial MR
equipment, however, is expensive, cumbersome, and unable to carry out non-destructive
on-site measurements. In recent years, unilateral magnetic resonance (UMR) has gained
popularity, due to its portability, affordability, and capacity to take non-destructive mea-
surements [22].

This study describes the design, fabrication, and performance testing of a portable
unilateral magnetic resonance sensor employing the unilateral magnetic resonance tech-
nique. With the help of this sensor, the effective transverse relaxation times (T2eff ) of new,
2-year-old, and 5-year-old composite insulators were measured at various depths, and on
the upper and lower surfaces of the shed, respectively (Figure 1). These measurements
can accurately reflect the degree of aging of SRIs. The results of the magnetic resonance
measurements were also compared with those of the static contact angle method; both
methods produced the same conclusions, and the magnetic resonance method was more
effective at detecting alterations in distinctive parameters brought on by age.
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Figure 1. Silicone rubber insulator.

2. Materials and Methods
2.1. Mechanism of Aging Reaction of SRI Materials

The main constituent material of SRIs is polydimethylsiloxane (PDMS), and its molec-
ular formula is shown in Figure 2. Repeated Si-O bonds constitute the main chain of the
molecule, and Si atoms are directly linked to polymers such as -CH3, -CH1, and -CH2.
The vulcanization process strengthens the cross-linking between the major chains to cre-
ate a flexible and durable polymer The strong polar effect of the Si-O bond is protected
by the close arrangement of non-polar methyl groups around the Si-O backbone, which
causes the silicone rubber surface to exhibit excellent hydrophobicity, and perform well as
insulation [23].

According to research, when long-term severe natural circumstances such as ozone,
strong UV light, and corona are combined, the Si-O link in the molecule will weaken or
even break, causing the material to age irreversibly. The main chain of PDMS break, to form
broken chains containing O, Si, CH3, and other free radicals, and cross-linking reactions



Nanomaterials 2022, 12, 3847 3 of 13

between the broken chains increase the cross-link densities of SRIs [24,25]. Meanwhile, the
oxidation reaction of the CH3 group in PDMS in the air further increases the cross-link
density of the insulator surface material, which is the main reason for the embrittlement of
the composite insulator surface. The cross-link density of rubber insulation has a direct
correlation with transverse relaxation time. The cross-link density of the aging insulator
increases, thus making its transverse relaxation time shorter. The aging status can be
reflected by measuring the transverse relaxation time of composite insulator shed mate-
rial [1,23,26–28]. The permanent magnet structure of the sensor utilized in this experiment
has a far lower level of magnetic field homogeneity than a superconducting magnet. The
transverse relaxation time of the sample measured under this magnetic field uniformity is
habitually called the equivalent transverse relaxation time, T2eff .
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2.2. Portable NMR Sensor

In this study, according to the characteristics of the composite insulator shed, a portable
NMR sensor as shown in Figure 3, was designed. The sensor consists of a main magnet,
RF coil, and matching and tuning circuits (Figure 3). The main magnet is used to generate
the static magnetic field, B0, the RF coil is used to transmit the excitation signal along with
the magnetic resonance signal from the sample that was received, and the matching and
tuning circuit is used to achieve the impedance matching to adjust the resonant frequency
to the Larmor frequency of the H atom.
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The main magnet structure and coil structure are the essential design considerations
for portable magnetic resonance sensors. Based on previous research work [29], this paper
optimizes the Halbach [30] structure, and designed a semi-elliptical magnet structure with
magnetic rods, as shown in Figure 4. The magnet establishes a static gradient magnetic
field area of 10 mm × 10 mm × 4 mm above its structural surface, which is the ROI in
Figure 4. The reason for establishing the static gradient magnetic field is to realize the
layered depth measurement of the shed. When the sensor is attached to the surface of
the shed, the material of the shed corresponds to different static-magnetic-field values in
depth from the outside to the inside. According to the Larmor relationship (ω0 = γB0,
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where ω0 is Larmor precession angular frequency, γ is the gyromagnetic ratio, and B0 is the
amplitude of the static main magnetic field). By adjusting the excitation frequency of the RF
coil, the material at different depths on the surface and inside of the shed can be measured.
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Figure 4. The schedule of the magnet.

The arrows in Figure 4 indicate the magnetization direction of each magnetic rod. The
magnetic field distribution in the optimized ROI is shown in Figure 5. In the direction
perpendicular to the magnet surface, the static magnetic field decays from 96 mT on
the coil surface to 80.4 mT at z = 4 mm, and the magnetic field has a flatter gradient
characteristic along the z-axis, with an approximate gradient of 3.9 T/m, corresponding to
an RF frequency variation of 166 kHz/mm.

Nanomaterials 2022, 12, 3847 4 of 14 
 

 

field area of 10mm × 10mm × 4mm above its structural surface, which is the ROI in Figure 

4. The reason for establishing the static gradient magnetic field is to realize the layered 

depth measurement of the shed. When the sensor is attached to the surface of the shed, 

the material of the shed corresponds to different static-magnetic-field values in depth 

from the outside to the inside. According to the Larmor relationship (𝜔0 = 𝛾𝐵0, where 

𝜔0 is Larmor precession angular frequency, 𝛾 is the gyromagnetic ratio, and 𝐵0 is the 

amplitude of the static main magnetic field). By adjusting the excitation frequency of the 

RF coil, the material at different depths on the surface and inside of the shed can be 

measured. 

     

3mm

ROI
Magnetic blocks

Aluminum 

shell

 

Figure 4. The schedule of the magnet. 

The arrows in Figure 4 indicate the magnetization direction of each magnetic rod. 

The magnetic field distribution in the optimized ROI is shown in Figure 5. In the direction 

perpendicular to the magnet surface, the static magnetic field decays from 96 mT on the 

coil surface to 80.4 mT at z = 4 mm, and the magnetic field has a flatter gradient 

characteristic along the z-axis, with an approximate gradient of 3.9 T/m, corresponding to 

an RF frequency variation of 166 kHz/mm. 

  
(a) (b) 

Figure 5. (a) Measured value magnetic field distribution in the area of 10 mm × 10 mm on XOZ 

plane y = 0 mm of ROI. (b) Measured value magnetic field distribution in the area of 10 mm × 10 

mm on XOY plane z = 0 mm of ROI.  

The main magnetic field 𝐵0 in this study is perpendicular to the magnet structure, 

since the condition of magnetic resonance is that it be orthogonal to the RF magnetic field. 

The 8-shaped coil in Figure 6 that can produce a horizontal field is chosen to make the 

magnetic field 𝐵1 produced by the RF coil, perpendicular to the main magnetic field 𝐵0. 
Additionally, the coil is formed of a double-layer PCB to increase the strength and 

uniformity of the RF magnetic field (the strength distribution of the RF magnetic field is 

shown in Figure 7), and the coil is made of a double-layer PCB. The coil is 22 mm long 

and 16mm wide, with a total of 4.5 turns. The wire diameter is 0.5 mm, the wire spacing 

is 0.5 mm, the resistance is 916.5 mΩ, and the inductance is 1.15 mH. 

X(mm)

Z
(m

m
)

Bz(T)

 

 

-5 0 5
0

1

2

3

4

5

6

7

8

9

10

0.055

0.06

0.065

0.07

0.075

0.08

0.085

X(mm)

Y
(m

m
)

Bz(T)

 

 

-5 0 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0.0908

0.091

0.0912

0.0914

0.0916

0.0918

Figure 5. (a) Measured value magnetic field distribution in the area of 10 mm × 10 mm on XOZ plane
y = 0 mm of ROI. (b) Measured value magnetic field distribution in the area of 10 mm × 10 mm on
XOY plane z = 0 mm of ROI.

The main magnetic field B0 in this study is perpendicular to the magnet structure, since
the condition of magnetic resonance is that it be orthogonal to the RF magnetic field. The
8-shaped coil in Figure 6 that can produce a horizontal field is chosen to make the magnetic
field B1 produced by the RF coil, perpendicular to the main magnetic field B0. Additionally,
the coil is formed of a double-layer PCB to increase the strength and uniformity of the RF
magnetic field (the strength distribution of the RF magnetic field is shown in Figure 7), and
the coil is made of a double-layer PCB. The coil is 22 mm long and 16 mm wide, with a
total of 4.5 turns. The wire diameter is 0.5 mm, the wire spacing is 0.5 mm, the resistance is
916.5 mΩ, and the inductance is 1.15 mH.

The overall sensor size is 4.5 cm × 10.5 cm × 10.5 cm; it weighs 1.5 kg, has low
production cost, and is easy to carry.

2.3. Experimental Method

In this paper, the Carr–Purcell–Meiboom–Gill (CPMG) (Figure 8) RF pulse sequence [31]
is used to measure the T2eff value, and the parameters of the CPMG sequence are set as shown
in Table 1. In Figure 8, the peak point of the spin-echo signal between two 180◦ RF pulses is
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connected to obtain the peak envelope line of the spin-echo signal, and the T2eff value can be
obtained by Laplace inversion of this line.
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Table 1. Parameters of CPMG sequence.

PW TE ATT of 90◦ NES TR NS

4 µs 140 µs −18 dB 1000 400 ms 128

In [1,27,32], it has been verified that solids and liquids have different transverse
relaxation times. In this study, the sensor was used to test two different types of samples
in the liquid–solid state and delamination model, respectively, to confirm the sensor’s
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accuracy in measuring the equivalent transverse relaxation time and its capacity to perform
delamination measurements.

The two samples in the liquid–solid state were water and rubber, and the CPMG echo
envelope obtained from the water sample test is shown in Figure 9. The T2eff value of pure
water was 131.4 ms after fitting the curve to a single exponential. Under the same test con-
ditions, the T2eff value of rubber was 12.1 ms. The results of the experiments demonstrate
that the corresponding transverse relaxation time decays for liquids significantly more
slowly than for solids, which initially validates the reliability of the sensor for measuring
the T2eff value of the sample.
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Figure 9. CPMG echoes the envelope curve of pure water.

The main magnet of this sensor has a constant gradient of 3.9 T/m in the vertical
direction, and its corresponding frequency variation is 166 kHz/mm. The one-dimensional
layered-model identification experiment uses three layers of samples (separated from each
other by a glass sheet) that are put onto the surface of the RF coil and excited with CPMG
pulses. The position of the measured sample is reflected by the measured wave-peak
position. Three pieces of rubber of 10 mm × 10 mm × 0.2 mm and several pieces of glass of
140 µm were used as the samples for this experiment, and the layering schematic is shown
in Figure 10. The excitation frequency is the frequency of the main magnet magnetic field
corresponding to the middle position of the total sample, which is 3.98 MHz, the pulse
width is 2 µs, the TE is 210 µs, and the sampling point is 64. Since the intensity of the echo
signal received in the experiment varies with time, the signal can be transformed from the
time domain to the frequency domain by the Fourier transform, to obtain the frequency
range of the signal.
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Figure 10. Illustration of layered samples.

Figure 11 shows the frequency distribution of the measured sample. The frequency
difference between the two adjacent peaks is 54.875 kHz and 57.0781 kHz, corresponding
to a thickness of 331 µm and 344 µm, respectively, with a maximum deviation of 2.6% from
the true value of 340 µm. The experiment proves that the sensor can distinguish the sample
distribution more accurately in the height direction. In conclusion, the magnetic resonance
sensor can precisely determine the sample distribution in the height direction, and quantify
the effective transverse relaxation time of solids and liquids.
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Figure 11. The result of identifying layered samples by the FFT method.

In this paper, three types of insulators are tested and studied. One brand-new compos-
ite insulator (sample A), and the other two have been used in the field for nearly 2 years
(sample B) and 5 years (sample C). Since the research in this paper is a non-destructive
testing method, there is no need to destroy the insulator shed, and the shed to be tested
only needs to be cleaned with water and dried naturally during pretreatment. The way
of hanging the insulator may cause different aging and damage conditions on the upper
and lower surfaces of the same shed. To detect this change, the upper and lower surfaces
of the same shed are regarded as different samples. The number of each sample is shown
in Table 2.

Table 2. Sample number of all sheds.

Sample Upper Surface Lower Surface

Sample A A1 A2
Sample B B1 B2
Sample C C1 C2

The overall measurement system structure is shown in Figure 12a, and the field
measurement is shown in Figure 12b. The magnetic resonance sensor is attached to the
surface of the insulator sheds for measurement.
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Figure 12. (a) Diagram of the sensor measurement principle; (b) diagram of the sensor
measurement method.

It can be seen from the molecular formula of the SRIs that the H atom is present in
more than one group in its molecular formula, so its transverse relaxation time is not single.
After the CPMG echo envelope of the sample is measured, the distribution of its transverse
relaxation time is found not by single exponential fitting but by inverse Laplace transform
inversion (shown in Figure 13). Finally, the equivalent transverse relaxation time, T2eff of
the sample can be extracted by Equation (1).

T2e f f =
∫ T2−max

T2−min

f (T2)T2dT2/
∫ T2−max

T2−min

f (T2)dT2 (1)
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In Equation (1), T2min and T2max represent the start time and end time of each wave of
the curve shown in Figure 13, and f (T2) is the T2 distribution curve function.

3. Experiments and Results
3.1. T2eff Measurement of Insulators with Different Operating Times

Firstly, the samples were observed visually. The surface of the new insulator A
sample was bright red, sample B with 2 years of online operation was dark red, and the
surface of sample C with 5 years of online operation had a certain degree of hardening
and chalking, and the color was basically light red. To ensure the comparability of the
experimental data, all experiments were repeated three times, and T2eff was the average
of the three measurements of the sample, with the same experimental parameters and the
same treatment methods in the same group. In this experiment, the same measurement
depth (1.4 mm from the upper surface) was maintained, and the T2eff values of samples
with different operation times were measured, with an excitation frequency of 3.86 MHz.

Figure 14 shows the distribution of transverse-relaxation-time spectra on the upper
surface of the three insulators. The dotted (C1) and solid (B1) lines gradually shift to the
left, compared with the dashed (A1) lines, marking the fact that the T2eff of the insulators
gradually decreases as their service life increases. The T2eff of the three insulators are shown
in Table 3, and the comparison reveals that the T2eff values of the new insulators are 4.47%
higher than those of the insulators with 2 years of operation, and approximately 19.31%
higher than those of the insulators with 5 years of operation.
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Table 3. T2eff of the samples.

Sample T2eff (ms) Standard Deviation

A1 141.3 0.6
B1 135.0 0.9
C1 114.0 2.4

3.2. Measurement of Difference between Upper and Lower Surfaces of the Same Shed

The shape and usage of composite insulators determine that the aging of the same
shed’s upper and lower surfaces may differ. In this experiment, the T2eff values of the upper
and lower surfaces of three insulator samples with different running times are measured.
The excitation frequency is 4.08 MHz. The T2 spectrum distribution of each sample is
shown in Figure 15.
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As seen in Figure 15, the solid line (upper surface) shifts to the left, compared with
the dotted line (lower surface), and the trend of the left-shift is gradually clear from
Figure 15a–c. It indicates that the upper and lower surfaces of the insulators age differently,
and that this difference becomes gradually more obvious as service time increases. The T2eff
of the upper and lower surfaces of different samples are shown in Table 4. After comparison,
the T2eff value of the lower surface of the new insulator changes by approximately 0.93%
compared with the upper surface, which is within the measurement error of the sensor,
and it is difficult to distinguish the upper and lower surfaces of the insulator by data
comparison. The T2eff values of the lower surface of insulators that have been in operation
for 2 and 5 years are approximately 3% and 5.08% higher than those of the upper surface,
respectively, and it is basically possible to distinguish the upper and lower surfaces from the
numerical values. Therefore, the mobile MRI measurement results can reflect the difference
in the aging degree between the upper and lower surfaces of the composite insulator shed;
the T2eff values on the upper surface of the aging insulator are smaller than those on the
lower surface, and the larger the difference between the T2eff values on the upper and lower
surfaces, the more serious the aging.

Table 4. Values of T2eff of the samples on the upper and lower surfaces.

Sample T2eff (ms) Standard Deviation

A1 130.3 1.4
A2 131.5 0.6
B1 126.6 1.5
B2 130.5 1.2
C1 107.8 0.2
C2 113.5 0.5
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3.3. Insulator Delamination Measurement

The surface material of the shed is inevitably more severely aged than its internal
material. To distinguish this phenomenon of layered aging, the equivalent transverse
relaxation time at different depths was measured on the upper surface of the insulator with
5 years of service, in this round of experiments. The measurement frequencies were set
to 4.08 MHz, 3.97 MHz, and 3.86 MHz, and the corresponding measurement depths were
0 mm, 0.7 mm, and 1.4 mm, respectively. Figure 16 shows the distribution spectrum of
transverse relaxation times measured at different depths of the samples.
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Figure 16. The T2 distribution of C1 at different depths.

The T2 spectrum distribution curves of C1 samples were gradually shifted to the
right from the depth of 0 mm through 0.7 mm to 1.4 mm, and the T2eff at different depths
are shown in Table 5. Comparing their T2eff values, it is found that the T2eff value at
1.4 mm is the largest, which is 3.51% higher than that at 0.7 mm and 9.46% higher than
that at 0 mm. It can be seen from the changing trend that the aging of the shed material
gradually slows down, and the T2eff value gradually increases with the increment of the
measurement depth.

Table 5. Values of T2eff in the aging test at different depths.

Measurement Depth (mm) T2eff (ms) Standard Deviation

0 107.8 0.2
0.7 114.9 0.4
1.4 119.0 2.1

3.4. Comparison with Static Contact Angle Method Test Results

To verify the measurement results of the above magnetic resonance method, the same
samples were also measured using the static contact angle method with a THETA series
contact angle measuring instrument from Attension, Sweden. The instrument automatically
measured static contact angles at room temperature with a volume of 3.5 µL of water drops
on the sample surface for 10 min. The instrument measured the left and right static contact
angles automatically, and the static contact angle results at the 10th min are shown in
Figure 17. The average of the two values at each time point was taken as the static contact
angle value at that time, and the results of the static contact angle of the three samples with
time are shown in Figure 18.

From the measurement results in Figure 18, with the extension of the measurement
time, the water droplets on the solid surface evaporate continuously, and the droplet
volume shrinkage becomes smaller; at the same time, due to the difference in the surface
energy of the sample to be measured, the droplet spreads to different degrees, which
means the contact angle tends to decrease. To reduce the influence of water evaporation,
the average value of the three-time points of 9.5 min, 10 min, and 10.5 min (as shown in
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Figure 17, each time point measured the left and right two static-contact-angle values) was
selected as the static-contact-angle value of the insulator sample, and the test results are
shown in Table 6.
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Figure 18. Static contact angle with a testing time of the samples. 
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the average value of the three-time points of 9.5 min, 10 min, and 10.5 min (as shown in 

Figure 17, each time point measured the left and right two static-contact-angle values) was 

selected as the static-contact-angle value of the insulator sample, and the test results are 

shown in Table 6. 
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Table 6. Values of static contact angle of different silicone rubber insulators.

Sample Static Contact Angle (Degree) Standard Deviation

A1 115.27 0.67
B1 112.94 0.66
C1 109.76 0.93

Figure 19 shows the normalized trends of T2eff and static-contact-angle-values on the
upper surface of the three insulators, relative to the new insulator data. It can be seen
that the trends of the data measured by the static contact angle method and the magnetic
resonance method are the same. With the increase of the aging degree, both the static
contact angle and T2eff show a decreasing trend, and the change of T2eff is more obvious,
which makes it easier to distinguish the aging status of different insulators.
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4. Conclusions

In this paper, a portable magnetic resonance non-destructive testing method is pro-
posed for the aging of SRI materials. The method is not only able to measure the aging of
the surface of SRI materials, but also to detect the aging of their internal conditions. From
the experimental results, it can be concluded that: (1) the longer the composite insulator
is in service, the more severe the aging, and that its corresponding T2eff decreases; (2) the
insulator sheds from the surface to the inside, T2eff gradually increases, and the aging state
phenomenon gradually is reduced; (3) compared with the static contact angle method,
the characteristic parameters of the magnetic resonance measurement method change
more obviously with the aging of the material. This study is of significance for a better
understanding of the aging law of SRIs in the longitudinal direction, a scientific assessment
of their service life, and a reasonable evaluation of their quality.

Although this study initially demonstrated the feasibility of this new method, it is
limited by the number of samples that can be tested. More samples need to be selected
and more data need to be collected, to derive a rule for assessing the aging status of
composite insulators.
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