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Abstract—Contactless or non-invasive technology for the
monitoring of anomalies in an inconspicuousand distantenvi-
ronment has immense significance in health-related applica-
tions, in particular COVID-19 symptoms detection, diagnosis,
and monitoring. Contactless methods are crucial specifi-
cally during the COVID-19 epidemic as they require the least
amount of involvement from infected individuals as well as
healthcare personnel. According to recent medical research
studies regarding coronavirus, individuals infected with novel
COVID-19-Delta variant undergo elevated respiratory rates
due to extensive infection in the lungs. This appalling sit-
uation demands constant real-time monitoring of respiratory patterns, which can help in avoiding any pernicious
circumstances. In this paper, an Ultra-Wideband RADAR sensor “XeThru X4M200” is exploited to capture vital respiratory
patterns. In the low and high frequency band, X4M200 operates within the 6.0-8.5 GHz and 7.25-10.20 GHz band, respec-
tively. The experimentation is conducted on six distinct individuals to replicate a realistic scenario of irregular respiratory
rates. The data is obtained in the form of spectrograms by carrying out normal (eupnea) and abnormal (tachypnea)
respiratory. The collected spectrogram data is trained, validated, and tested using a cutting-edge deep learning technique
called Residual Neural Network or ResNet. The trained ResNet model’s performance is assessed using the confusion
matrix, precision, recall, F1-score, and classification accuracy. The unordinary skip connection process of the deep
ResNet algorithm significantly reduces the underfitting and overfitting problem, resulting in a classification accuracy rate
of up to 90%.

Index Terms— COVID-19, UWB RADAR sensor, contactless healthcare, respiratory monitoring, deep learning, ResNet.

I. INTRODUCTION

C
ORONAVIRUS is a broad family of viruses that can

infect individuals and spread among humans in a variety
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of ways, including MERS-CoV, SARS-CoV, and the novel

SARS-CoV-2 (COVID-19) [1]. COVID-19 infections have an

extensive clinical spectrum, from asymptomatic contagion to

mild upper respiratory tract sickness to acute viral pneu-

monia with respiratory collapse and even mortality [2]–[4].

Pulmonary function testing is a means to quantify COVID-19

impacts such as respiratory rate. The association between the

respiratory pattern and COVID-19 symptoms is a known issue

right now. The rate of respiration is the number of breaths

per minute that a person takes while at rest [5]. Counting the

number of breaths for one minute depending on how many

times the chest rises is all that is required for respiratory

rate. Fever, asthma, and other medical conditions can also

cause respiratory rate to rise [6]. In COVID-19 instances,

the respiratory rate is critical for determining the patients’

pulmonary activity since aberrant values might suggest patient

worsening [7], [8].
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Measuring respiratory rate normally needs the assistance of

a health professional, hence it is normally done at a hospital.

The respiratory rate and pulmonary function study of the

identified patients, however, raises the danger of contagious-

ness due to the clinical urgency produced by COVID-19 [9].

Because the majority of patients do not show signs of pul-

monary distress at first, healthcare practitioners must make the

tough decision to send them home and hope that they will be

able to self-monitor. Some individuals with a moderate clinical

presentation may deteriorate in the second week of sickness,

according to the Centers for Disease Control and Prevention

(CDC) [10], [11]. Patients in self isolation whose pulmonary

functions and respiratory rate are unaffected and do not require

hospitalisation should be followed utilising telemedicine tech-

nology [12], [13]. The significant risk of diagnosed individuals

developing severe respiratory distress necessitates real-time

respiratory rate monitoring of these individuals [14]. The Food

and Drug Administration (FDA) has even approved the use

of gadgets that can remotely monitor a patient’s vital signs.

However, there are few instruments available for real-time

monitoring at home and the majority of them involve intrusive

technologies such as cameras or wearable devices, for instance,

watches, cuffs, belts, etc [15]–[17].

Certain smart contactless technologies have been proposed

in the past to eliminate the inconvenience caused by wearables

and other invasive gadgets to monitor crucial signs [18]–[20].

Continuous monitoring, even at night, is one of the benefits

of contactless sensing [21]–[24]. During sleep, when wear-

able gadgets might be a distraction for the patients, they

do not need to be aware of the contactless devices. Force

sensor [25], multi-channel infrared sensor arrays [26], load

cells [27], vibration sensor [28], pressure sensor [29], and

Radio-Frequency (RF) are the most common contactless mon-

itoring devices [30]. One of the most intriguing technologies

among all is RF, which takes use of the electromagnetic waves

that can be retrieved using RADAR technology. However, none

of the existing RADAR-based techniques for aberrant respira-

tory rate estimation contains a comprehensive framework for

analysing the patients in real-time and transferring the data to

a healthcare practitioner for rapid action.

In this paper, we look at the prospect of adopting contactless

(non-invasive/non-contact) technology to monitor real-time

respiratory in COVID-19 patients. We present a system for

monitoring COVID-19 patients that utilises off-the-shelf Ultra-

Wideband (UWB) RADAR sensor (XeThru X4M200 Respi-

ration Sensor) created by NOVELDA [31]. The details about

RADAR are provided in Section III and a complete framework

of the proposed scheme is presented in Figure 1. This type

of RADAR sensor is capable to monitor several diseases’

symptoms through recognition of abnormal respiratory rates

such as apnea, dyspnea, hyperpnea, tachypnea, hypopnea,

bradypnea, orthopnea, platypnea, biot, cheyne-stokes, and

kussmaul. However, we have focused primarily on tachypnea

in this study. The normal and abnormal types of respiratory

discussed in this paper are defined as follows:

1) Eupnea: Eupnea is the normal/regular respiratory pattern

caused by healthy living and nutritious diet. Eupnea includes

a respiratory rate of 12-20 breaths per minute in general.

Fig. 1. Framework of the proposed scheme.

The pattern, rhythm, and depth of eupnea is regular as the

wave form of this respiratory go up and down at normal rate.

2) Tachypnea: Tachypnea is an abnormal/irregular respi-

ratory pattern, which is usually greater than 20 breaths

per minute. In general, tachypnea is caused by pain, fever,

hypoxia, or central nervous system issue. However, recently

due to COVID-19-Delta variant, it has been noticed that

patients may highly suffer from tachypnea and eventually

lungs failure. Therefore, the timely monitoring and detection

of patients’ abnormal respiratory is of extreme significance,

especially in the time of COVID-19.

II. RELATED WORK

Acute Respiratory Distress Syndrome (ARDS) accounted

for 10-15 percent of ICU admissions and 5 percent of gen-

eral hospitalisations prior to the effects of the COVID-19

pandemic. ARDS is a kind of respiratory collapse due to

extensive infection in the lungs that develops quickly. Symp-

toms comprise bluish skin coloration (cyanosis), fast breathing
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(tachypnea), and shortness of breath (dyspnea). During the

early phases of the COVID-19 pandemic, data on the phys-

iopathology of the infections emerged from asymptomatic,

badly affected individuals, and even deceased persons. Accord-

ing to the available evidence, the lung damage is associated

with a distinctive pulmonary vascular dysfunction in the early

stages of infection [32], [33].

Further, this section provides information on cutting-

edge work in the area of human action recognition,

where RADAR-based sensing technologies were effectively

employed in combination with intelligent machine learning

and deep learning algorithms. In [34], to classify the data,

the researchers employed Support Vector Machine (SVM),

K-Nearest Neighbors (KNN), and Google-Net algorithm. The

accuracy provided by these algorithms was 78.25 percent for

SVM, 77.15 percent for KNN, and 74.70 percent for Google-

Net. Authors in [35] incorporated RADAR spectrograms of

actions including walking, sitting, falling, and leaning down.

For data preprocessing, spectrograms were employed clas-

sification task and images were transformed to greyscale.

On the preprocessed data, the SVM and Deep Neural Net-

work (DNN) algorithms were used. SVM attained an accu-

racy score of 78 percent, whereas DNN reported 87 percent

accuracy.

Spectrograms obtained through RADAR technology were

utilised in [36] for images classification and the SVM

technique was then used to classify. For feature selection,

the authors devised a sequential forward selection technique.

Depending on the number of instances employed, the classi-

fication results were accurate up to 95 percent. In [37], deep

learning techniques such as Recurrent Neural Network (RNN)

with Long Short-Term Memory (LSTM) and Convolutional

Neural Network (CNN) were used to identify six distinct

human activities using Doppler images acquired through a

RADAR. The activities include clapping, boxing, waving,

walking, piaffe, and running. As per the findings of this paper,

the RNN algorithm with LSTM obtained an accuracy rate of

up to 92 percent, while the CNN reached an accuracy rate of

up to 82 percent.

The authors of [38] integrated range maps and spectrograms

of distinct human actions for classification purposes. This

research article explored five different human actions: falling,

sitting, bending, walking, and kneeling. Using KNN and Prin-

cipal Component Analysis (PCA) algorithm, the simulations

yielded an accuracy rate of up to 82 percent. Using the

fusion technique, the authors in [39] were able to enhance

the accuracy from 82 to 91 percent for diverse human actions

using KNN and PCA. In [40], authors employed Impulse

Radio Ultra-Wideband (IRUWB) RADAR to record twelve

different types of human movements. The features in the

spectrograms were defined using KNN algorithm in the data

processing stage. The Doppler shifts and power spectrum were

then extracted and classified using a CNN. The detection of

human movements was obtained with up to 98 percent accu-

racy. The proposed scheme in [41] utilised IRUWB RADAR

with CNN to identify daily living activities and falling. This

research employed a binary classification technique to dis-

tinguish between the fall and any other form of activity in

Fig. 2. XeThru X4M200 UWB RADAR sensor.

residence. The CNN technique was able to achieve up to

96 percent accuracy rate.

In [42], the authors used UWB RADAR to construct a

dataset with ten participants ranging in age from 22-39 years,

undertaking 15 distinct activities. The data were gathered

while other people were still active inside the building. This

was done to mimic a real-life care home setting where

other residents live in nearby apartments. Using the random

forest approach, the experiment obtained an overall accuracy

of 80 percent. The authors in [43] employed a UWB RADAR

to observe 7 people performing 4 different activities: standing,

sitting, falling, and walking. With a result of 94 percent

accuracy, the obtained data were processed through 10-fold

cross-validation technique and it was discovered that KNN

performed better. In [44], authors acquired data for binary

classification of non-falling and falling incidents using UWB

RADAR. Ten volunteers were used to collect data in three

distinct areas within the proposed residence. To test their

findings, the authors intentionally left one subject out and

discovered that utilising a deep learning architecture CNN–

LSTM, the proposed scheme was able to reach an accuracy

rate of up to 90 percent.

III. PROPOSED SCHEME

A. UWB RADAR Sensor

In this study, UWB RADAR sensor (XeThru X4M200) is

employed in order to develop a system, which can efficiently

monitor irregular respiratory in COVID-19 patients or indi-

viduals suffering from ARDS. The UWB sensor is basically a

respiration sensor based on RADAR technology consisting of

built-in transmitter and receiver antennas. It is an industrialised

sensor that meets international norms and is ready to be inte-

grated into a product. The UWB sensor, which is in accordance

with Novelda’s proprietary X4 system-on-chip (SoC) with high

integration, delivers very precise measurements of individuals

respiratory rate as well as distance and movement details. This

type of sensor is capable to monitor respiratory rate up to
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Fig. 3. Block diagram of UWB X4M200 RADAR sensor.

Fig. 4. Signal processing flow of UWB X4M200 RADAR sensor for respiratory detection.

5 meters when individual is still. The UWB RADAR sensor

is revealed in Figure 2 and its complete block diagram is

exhibited in Figure 3 - https://novelda.com.

B. RADAR Signal Processing

The UWB X4M200 sensor runs all firmware algorithms

for motion detection and respiratory measures. The X4 UWB

RADAR SoC can output 17 baseband data frames per second,

as shown in the steps of Figure 4. A buffer is used to hold

the RADAR data frames. Simultaneously, two Range-Doppler

(RD) matrices are operating. Data from distinct times of

RADAR frames is used in the fast and slow RD matrices. The

lengths of the fast and slow phases vary by profile. Individual

noise maps are used in both RD matrices to detect if a reflec-

tion at a specific distance and frequency exceeds a threshold.

Enabling a noise map will provide multiple threshold values at

various frequencies and distances. The noise maps will adjust

to changes in the environment unless the noise map adaptation

setting is off. Noise map adaptation is a continuous process

that gradually eliminates the presence detection of reflectors

with little movement at a certain distance. The noise map

will not adjust, if a motionless individual is identified with

a respiratory frequency matching the specified RPM range.

When an individual approaches the detection region, the fast

RD matrix with its fast motion detector will identify the

presence rapidly. Motion or motionless are the two states of the

fast motion detector. These states are used by the fast M/N con-

nector to determine the Local-State-Fast. An M/N connector

decides for the output to change, M out of N detections must

have a specific value. All detection algorithms are executed

once every second, which means that all outputs such as RPM,

distance, state, and so on are updated once every second. When

the target individuals are motionless, the slow RD matrix’s

slow motion detector and respiratory detector will identify

their existence and estimate their respiratory rate and distance

to the breathing target. Motion, motionless, and respiration are

the three states of the respiratory detector and slow motion

detector. These states are used by the slow M/N connector
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Fig. 5. Respiratory data acquisition in a static environment through diverse individuals.

to calculate the Local-State-Slow. An M/N connector decides

for the output to change, M out of N detections must have a

certain value.

C. RADAR Micro-Doppler Signature

The periodic motion of any structural element of an entity

produces Micro-Doppler (MD) [45]. Micro-motion is created

by the periodic motion, which causes side-bands around a

bulk Doppler frequency. Consequently, the phase of such

an object’s RADAR return signal will change, for instance,

human walking, human standing, or human chest movement.

As a result, if the RADAR is coherent, variations in the phase

values of successive pulses in pulsed RADAR or successive

chirps in Frequency-Modulated Continuous-Wave (FMCW)

RADAR would immediately correlate to changes in Doppler.

To observe and evaluate the MD features, a velocity time

spectrogram or the RD intrigue could be generated based

on the data. The 2D Fast Fourier Transform (FFT) is used

based on the data in FMCW RADAR to get Doppler informa-

tion [46]. At first, every chirp is subjected to an FFT, which

yields the range profile. Then, a second FFT is conducted

on a certain number of successive chirps for a specific range

bin. In general, Short-Time Fourier Transform (STFT) is

employed to create these charts because, dissimilar to Fourier

Transform, it gives temporal as well as frequency details [47].

This is accomplished by segmentation of data and applying

the Fourier Transform of the segment in sequence. The tem-

poral and frequency resolution are simultaneously affected

by changing the window length, for instance, one increases

when the other decreases. In RADAR data, the amount of

Doppler detail is determined by the sampling capabilities of

the hardware. In FMCW RADAR, the highest unequivocal

Doppler frequency is fd,max = 1/2ts , where ts is the chirp

time.

In this work, we consider a human respiratory monitoring

scenario where a targeted point such as chest is located at a

distance D(t). The point of target movement in front of the

RADAR is determined as V (t), and the transmitted signal is

represented as S(t),

S(t) = A cos(2π f t) (1)

The received signal is provided by R(t),

R(t) = A0 cos

(

2π f

(

t − 2
D(t)

c

))

(2)

A0 is the reflection coefficient and c is the speed of light.

If the signal is reflected off a target point at an angle θ to

the direction of RADAR, then the reflected signal can be

expressed as,

R(t) = A0 cos

(

2π f

(

1 +
2V (t)

c

)

t −
4π D(θ)

c

)

(3)

The Doppler shift that corresponds to it can be written as,

fd = f
2V (t)

c
(4)

When dispersion of the entire human body is taken into

account, the signal return becomes a composite of various

moving parts such as hands, torso, arms, and head. Each

component has its own acceleration and velocity of motion.

Let j be the various moving components of the body, then

received signal can be written as

R(t) =

N
∑

j=0

A j cos

(

2π f

(

1 +
2V j (t)

c

)

t −
4π D j (0)

c

)

(5)

Consequently, the Doppler shift is the result of a com-

plicated interaction of several Doppler shifts caused by the

motion of distinct human body parts. Detection and diagnosis

of human respiratory in a reliable fashion clearly depends upon

the characteristics of the Doppler signatures.
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TABLE I

PARAMETERS USED TO TRAIN THE

DEEP RESNET ALGORITHM

D. Deep ResNet for Respiratory Classification

Machine learning-based approaches have previously proved

effective in a variety of applications [48]–[51]. In this article,

we utilised a deep learning-based method known as Residual

Neural Network or ResNet to classify normal and abnormal

human respiratory using the acquired spectrograms. The skip

connection technique is used to train such a network. The input

used to feed a layer is also used to feed the output of a layer

higher up the stack. The goal of training a ResNet is to get it

to model the target function f (x). If the network’s output and

input are linked, such as by establishing a skip connection,

the network is strained to model h(x) = f (x) − x rather than

f (x). This is stated as “Residual Learning” [52].

When a typical DNN is first initialised, the weights are

almost zero, thus the network only outputs values that are close

to zero. When a skip connection is introduced to the resultant

network, it outputs a duplicate of its input, or to put it another

way, it first models the identity function. If the objective

function is near to the identity function, as is often the case,

the training process can be greatly expedited. Furthermore,

even though many layers in the network have yet to learn,

the network can begin to improve by adding a high number

of skip connections. Due to the skip connection approach,

the signal can efficiently traverse the entire network. In other

words, the ResNet can be regarded as a stack of residual units,

all of which are a diminutive neural network with a procedure

of skip connections. In this study, the hyperparameters used

to train a ResNet algorithm in order to classify respiratory

spectrograms are provided in Table I.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data Acquisition

For this research study, the dataset was acquired using

off-the-shelf UWB RADAR sensor. The details about the

RADAR sensor are provided in Section III. To obtain distinct

respiratory information, six human subjects were asked to sit

on a chair in front of the UWB RADAR sensor at a distance of

approximately 1 meter, nevertheless XeThru X4M200 UWB

RADAR sensor has the ability to capture vital signs up to

5 meters. The UWB RADAR sensor was placed on top of

the laptop at a fixed position, as shown in Figure 5. The

experiments were conducted in a controlled environment.

Moreover, the details about the subjects who participated in

the experiment are given in Table II.

As shown in Figure 6, the subject was asked to perform each

respiratory pattern for 15 seconds, Doppler[Hz] on the y-axis

and Time[s] on the x-axis. In the case of normal respiratory,

the subject was asked to perform regular breathing pattern for

TABLE II

SUBJECTS DETAILS WHO PARTICIPATED

IN ACQUIRING RESPIRATORY DATA

Fig. 6. Obtained spectrograms sample (a) normal/eupnea respiratory
(b) abnormal/tachypnea respiratory.

straight 15 seconds. As can be seen in Figure 6(a), the normal

respiratory lies between 8 to -8 in terms of Doppler[Hz]. In the

case of abnormal respiratory, the subject was asked to perform

a regular or normal breathing pattern for first 5 seconds

(approximately) and an irregular or elevated breathing pattern

for the rest of the 10 seconds. This was done in order to

replicate a realistic scenario. The elevated (or rapid breathing)

was performed by inhaling and exhaling air through nose
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Fig. 7. The ResNet model (a) loss and (b) accuracy against distinct
number of epochs.

fastly. As can be seen in Figure 6(b), the elevated respiratory

has an immense impact on the acquired spectrograms as

Doppler[Hz] shifts between 10 to -10.

Every motion of the body generates a unique pattern on the

spectrogram that can be used to discriminate between different

types of human body motions. On the RADAR sensor, the RF

signal is transmitted and received within the range when

encountering any motion such as chest movement whilst

breathing. The received signal on UWB RADAR sensor can

be utilised to generate distinct spectrograms. In this work, each

respiratory pattern were repeated several times by the subjects

in order to record a dataset. A total of 230 spectrograms were

generated for normal and abnormal respiratory, out of which

120 were used for training, 20 for validation, while 90 for

testing purposes.

B. Results and Discussion

The ResNet approach used in this work to classify different

human respiratory was written in Python with the TensorFlow

and NumPy libraries. The confusion matrix, precision, recall,

F1-score, and classification accuracy metrics were used to

evaluate the performance of a trained model in this study (see

Equation 6, 7, 8, 9). The proportion of correctly recognised

Fig. 8. Confusion matrix of normal and abnormal respiratory class
through trained ResNet.

TABLE III

CLASSIFICATION REPORT OF RESNET

human respiratories to the total number of human respiratories

can be described as classification accuracy. Moreover, F1-score

or F-measure is the harmonic mean of recall and precision. F1-

score is an important metric since it gives a better measure of

the incorrectly classified data samples than the classification

accuracy metric.

Precision =
True Positives

Predicted Positives
(6)

Recall =
True Positives

Actual Positives
(7)

F1 − score = 2 ×

(

Recall × Precision

Recall + Precision

)

(8)

Accuracy =
Number of respiratories recognised

Total number of respiratories
(9)

The optimal parameters for training the ResNet model was

achieved using the grid search approach. Taking size of the

acquired dataset into consideration, the number of epochs were

set to 50 while training the model. Once trained, the model

performance was evaluated using distinct metrics. As revealed

in Figure 7, the ResNet classifier was able to exceed an

accuracy rate of 0.90 as the number of epochs increased, while

the model loss was recorded less than 0.4. Moreover, Figure 8

shows a confusion matrix of normal and abnormal human

respiratory classified by the trained deep ResNet algorithm.

As can be seen, only few percent of misclassifications occurred

between normal (eupnea) and abnormal (tachypnea) respira-

tory. Lastly, a complete classification report of the ResNet

model in terms of percentage is exhibited in Table III. As can

be noted, the normal respiratory class unveiled a precision

rate of 91%, recall 89%, and F1-score 90%. Whereas the

abnormal respiratory class attained a precision rate of 89%,

recall 91%, and F1-score 90%. The deep ResNet model for
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both normal and abnormal respiratory classes procured an

overall classification accuracy up to 90%.

V. CONCLUSION AND FUTURE WORK

A global epidemic COVID-19 is presently underway and

the latest technology’s role in aiding in this unwelcome

scenario is significant. Abnormal respiratory is one of the

most common symptoms of COVID-19 infection, especially

among elderly people at the latter stages, nevertheless with the

novel COVID-19-Delta variant, it is common to see more cases

with abnormal respiratory problems amongst young adults.

Therefore, a lightweight sophisticated system is required for

real-time monitoring of the human respiratory. In this paper,

a contactless or non-invasive approach is proposed based

on an off-the-shelf UWB RADAR sensor merged with an

intelligent deep neural network technique called ResNet. The

proposed scheme is intended to detect and monitor abnormal

respiratory patterns such as elevated breathing or tachypnea,

which is common amidst coronavirus infection. Using the

UWB RADAR sensor, the spectrograms of distinct human

respiratory patterns were acquired and then used as image

data to train, test, and validate the ResNet algorithm. Once

trained, the ResNet model was put to the test by identifying

between normal and abnormal human respiratory patterns. The

simulation outcome revealed that ResNet obtained an overall

accuracy of 90%.

Certain limitations are related to this research study that

we aspire to address in future research work. For instance,

in a static and controlled setting, the proposed scheme can be

employed for a specific subject at a time. Other than that,

the investigations were not carried out on actual COVID-

19 infected individuals due to several complications. Conse-

quently, future research work suggestions would be to include

multiple individuals’ respiratory patterns in a non-controlled

environment with different limb motions. In addition, employ-

ing self-learning advanced machine learning algorithms and

utilising the flexibility of the UWB RADAR-based platforms.

Apart from that, other respiratory patterns including biot,

bradypnea, sighing, and kussmaul will be investigated to

improve the reliability of the proposed scheme.
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