
APPENDIX

1. The Fully-Liquid Case.
Setting the expressions for Pt in Equations (5) and (7) equal to each other, and similarly for the expressions
for Qt in Equations (6) and (8), implies the following pair of equations:

0 = Et

[∫ ∞

0

{
e−βs

(
Ct

Ct+s

)
− e−δs

(
Xt + Yt −Ct

Xt+s + Yt+s − Ct+s

)}
Xt+s ds

]
,(A1)

0 = Et

[∫ ∞

0

{
e−βs

(
Ct

Ct+s

)
− e−δs

(
Xt + Yt −Ct

Xt+s + Yt+s − Ct+s

)}
Yt+s ds

]
.(A2)

Both of the above expressions are satisfied by requiring that

(A3) e−βs

(
Ct

Ct+s

)
= e−δs

(
Xt + Yt −Ct

Xt+s + Yt+s − Ct+s

)
,

hold for all s, Xt+s, and Yt+s. Solving this expression for Ct+s implies

(A4) Ct+s =
e−βs Ct

e−βs Ct + e−δs (Xt + Yt −Ct)
(Xt+s + Yt+s).

Thus, Ct+s can be expressed in terms of Ct.
Similarly, satisfying the first-order conditions as of time zero requires that

Ct =
e−βt C

e−βt C + e−δt (X + Y − C)
(Xt + Yt),(A5)

Ct+s =
e−β(t+s) C

e−β(t+s) C + e−δ(t+s) (X + Y − C)
(Xt+s + Yt+s).(A6)

Substituting the expression for Ct in Equation (A5) into Equation (A4), however, reduces Equation (A4) to
Equation (A6). Thus, requiring that Equation (A5) hold for all t is sufficient for the first-order conditions
in Equations (5) through (8) to be satisfied for all t.

Dividing Ct by the expression for Ct+s in Equation (A4) and rearranging gives

(A7)
(

Ct

Ct+s

)
=
Ct + (Xt + Yt −Ct) e(β−δ)s

Xt+s + Yt+s
.

Substituting this into Equations (5) and (6) and rearranging yields

Pt = Ct Et

[∫ ∞

0

e−βs

(
Xt+s

Xt+s + Yt+s

)
ds

]

+ (Xt + Yt −Ct) Et

[∫ ∞

0

e−δs

(
Xt+s

Xt+s + Yt+s

)
ds

]
,(A8)

Qt = Ct E

[∫ ∞

0

e−βs

(
Yt+s

Xt+s + Yt+s

)
ds

]

+ (Xt + Yt −Ct) Et

[∫ ∞

0

e−δs

(
Yt+s

Xt+s + Yt+s

)
ds

]
.(A9)
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Section 3 of this Appendix shows that these equations can be reexpressed as

Pt = Ct A(β,Xt, Yt) + (Xt + Yt − Ct) A(δ, Xt, Yt),(A10)

Qt = Ct B(β,Xt, Yt) + (Xt + Yt −Ct) B(δ, Xt, Yt),(A11)

which are Equations (11) and (12).
To solve for C, note that after consuming at time zero, the first agent’s wealth equals w(P +X +Q+

Y ) − C, where the first term represents the value of the agent’s endowment (with dividends). Setting the
value of the agent’s wealth equal to the present value of his future consumption stream gives

w(P +X +Q + Y ) −C = E

[∫ ∞

0

e−βt

(
C

Ct

)
Ct dt

]
,(A12)

= C/β,(A13)

which implies

(A14) C =
w(P +X +Q+ Y )

1 + 1
β

.

Substituting in the expressions for P and Q from Equations (A8) and (A9), and solving for C gives

(A15) C =
w β (1 + δ)

δ (1 + β) +w(β − δ)
(X + Y ).

Substituting this expression into Equation (A5) gives Equation (9).
From Equation (9), optimal consumption is homogeneous of degree one in total dividends Xt + Yt.

Based on this, we conjecture (and later verify) that the dynamic portfolio strategy that generates Ct consists
of equal numbers of shares of the two assets, Nt = Mt, where Nt is a differentiable function of time. By
definition, consumption equals the sum of dividends received minus net purchases of assets. Thus,

(A16) Ct = Nt(Xt + Yt) − (Pt +Qt)N ′
t,

where N ′
t denotes a derivative. From Equations (A8) and (A9) it follows that

(A17) Pt +Qt =
Ct

β
+
Xt + Yt − Ct

δ
.

Substituting this and the expression for Ct in Equation (A5) into Equation (A16) gives the ordinary differ-
ential equation

(A18) N ′
t −

(
βδ(Ceδt + (X + Y −C)eβt)
Cδeδt + β(X + Y −C)eβt

)
Nt =

−Cβδeδt

Cδeδt + β(X + Y − C)eβt
.

This is a standard first-order linear differential equation which can be solved directly by an integration. The
initial value of N is determined by imposing the condition that N(P + Q) equals the first agent’s initial
wealth after time-zero consumption. From Spiegel (1967), the solution to this differential equation is the
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expression given in Equation (10). This verifies the conjecture and also establishes that the consumption
strategy identified in Equation (A5) is feasible.

In solving the illiquid-asset problem, it is also necessary to solve for CT when the first agent has w
shares of the first asset and v shares of the second asset at time T (instead of w shares of each). Since the
model reverts back to the fully-liquid case at time T (with the exception that there is no consumption gulp
at time T ), the expressions for PT and QT are as given from Equations (11) and (12). To solve for CT in
this more general case, we set the value of the first agent’s wealth at time T equal to the present value of
his remaining consumption stream

wPT + vQT = ET

[∫ ∞

0

e−βs

(
CT

CT+s

)
CT+s ds

]
,(A19)

= CT /β,(A20)

which implies

(A21) CT = β(wPT + vQT ).

Substituting in the expressions for PT and QT in Equations (A10) and (A11), and then solving for CT gives,

(A22) CT =
(wA(δ, XT , YT ) + vB(δ, XT , YT ))(XT + YT )

1
β + w(A(δ, XT , YT ) −A(β,XT , YT )) + v(B(δ, XT , YT ) − B(β,XT , YT ))

.

in this general case. In the illiquid-asset case, CT is given by substituting in w = NT and v = M into the
above equation. In the illiquid-market case, CT is given by substituting in w = N and v = M into the above
equation.
2. The Illiquid-Asset Case.
To solve the illiquid-asset case numerically, we first discretize the problem by approximating the dividend
dynamics using binomial processes. Let Δt denote the discretization step. Then,

Xt+Δt = Xt exp
(
(μX − σ2

X/2)Δt± σX

√
Δt
)
,(A23)

Yt+Δt = Yt exp
(
(μY − σ2

Y /2)Δt± σY

√
Δt
)
,(A24)

where the probability of both processes increasing or decreasing together is p/2, the probability of the first
process increasing and the second decreasing is (1− p)/2, the probability of the first process decreasing and
the second increasing is (1 − p)/2, and where p = (1 + ρ)/2. This assumption insures that the correlation
between the two processes is ρ. Note that we use this binomial process merely as an approximation to the
continuous-time process.

To simplify the exposition, we make the assumption that Δt = 1. The numerical procedure, however, is
applicable to any positive value of Δt. Note that at time t, where 0 < t < T , the first agent’ consumption is

(A25) Ct = Nt−1 Xt +M Yt − Pt(Nt −Nt−1).

The recursive approach begins by first solving the problem at time T − 1, conditional on knowing the
functional forms of PT and CT . Since the model reverts back to the fully-liquid model at time T , however,
these functional forms are those for the fully-liquid model. At time T − 1, the first-order conditions of
optimality for the two agents are
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PT−1

CT−1
= ET−1

[
e−β(XT + PT )

CT

]
,(A26)

PT−1

XT−1 + YT−1 − CT−1
= ET−1

[
e−δ(XT + PT )
XT + YT − CT

]
.(A27)

Substituting in the expression for CT−1 from Equation (A25) into Equations (A26) and (A27) and solving
for PT−1 gives the following pair of equations,

PT−1 =
(NT−2 XT−1 +M YT−1) ET−1

[
e−β(XT +PT )

CT

]
1 + (NT−1 −NT−2) ET−1

[
e−β(XT +PT )

CT

] ,(A28)

PT−1 =
((1 −NT−2) XT−1 + (1 −M) YT−1) ET−1

[
e−δ(XT +PT )
XT +YT −CT

]
1 − (NT−1 −NT−2) ET−1

[
e−δ(XT +PT )
XT +YT −CT

] .(A29)

For a given choice of M , and recognizing that both PT and CT can be expressed as explicit functions ofNT−1,
M , XT , and YT (using the generalized solution for consumption in the fully-liquid case given in Equation
(A22)), these two equations can be set equal to each other to provide a single equation in the unknown
NT−1. This single equation is easily solved numerically for NT−1, which, in turn, can be substituted back
into Equation (A28) or Equation (A29) to give PT−1.

To provide a full solution at time T − 1, we solve this problem repeated for every combination of XT−1

and YT−1 on the two-dimensional binomial tree and for every value of M and NT−2 ranging from zero to
one, (in steps of 0.001). Although computationally intensive, this procedure gives us a “lookup” table from
which we can interpolate the equilibrium values of NT−1 and PT−1 for any value of XT−1, YT−1, M and
NT−2.

The algorithm now rolls back to time T − 2. Exactly as before, the agents first-order conditions as of
time T − 2 can be rearranged to give the pair of equations,

PT−2 =
(NT−3 XT−2 +M YT−2) ET−2

[
e−β(XT−1+PT−1)

CT−1

]
1 + (NT−2 −NT−3) ET−2

[
e−β(XT−1+PT −1)

CT−1

] ,(A30)

PT−2 =
((1 −NT−3) XT−2 + (1 −M) YT−2) ET−2

[
e−δ(XT−1+PT−1)

XT−1+YT−1−CT−1

]
1 − (NT−2 −NT−3) ET−2

[
e−δ(XT−1+PT −1)

XT −1+YT−1−CT−1

] .(A31)

These can again be set equal and solved for NT−2 (and PT−2) for each set of values for XT−2, YT−2, M , and
NT−3, given the functional forms for PT−1 and CT−1. These functional forms, however, can be approximated
directly using the lookup table constructed in the previous step (the value of CT−1 follows from the value of
NT−1 because of Equation (A25)). Once again, we solve the problem at time T −2 repeatedly and construct
a new lookup table for NT−2 and PT−2. This process iterates back until we have constructed a lookup table
for time one.

At time zero, the first-order conditions for the agents are

P

C
= E

[
e−β(X1 + P1)

C1

]
,(A32)

P

X + Y −C
= E

[
e−δ(X1 + P1)
X1 + Y1 −C1

]
,(A33)
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Q

C
= E

[
T∑

i=1

e−βi Yi

Ci
+ e−βT QT

CT

]
,(A34)

Q

X + Y −C
= E

[
T∑

i=1

e−δi Yi

Xi + Yi −Ci
+ e−δT QT

XT + YT − CT

]
.(A35)

Since both assets can be traded at time zero,

(A36) C = w(X + Y + P +Q) − PN −QM.

By substituting this expression into Equations (A32) through (A35), the values P and Q can be eliminated,
resulting in a system of two equations in the two unknowns M and N . Again, this system is straightforward
to solve numerically. Once N and M are determined, the values of P and Q are given directly by substituting
N and M back into the first-order conditions.

To minimize the computational burden, we make a number of simplifying assumptions in implementing
the algorithm. First, we set Δt equal to one year (except when we solve the model for an illiquidity horizon
of one year, in which case Δt equals six months). Second, we model the binomial process and value the
cash flows out only to 100 years. Third, rather than using the closed-form solutions for the fully-liquid case,
we solve for these numerically using the same binomial grid. This allows us to compare the fully-liquid
case directly with the illiquid-asset case without introducing small discretization errors. Finally, rather than
evaluating the expectations on the right hand side of Equations (A34) and (A35) directly as of time zero,
we use a similar type of lookup table approach to solve for the values of the expectations sequentially from
time T − 1 to time zero (using the double expectation theorem repeatedly).

Finally, since an unconstrained equilibrium may not exist, it is important to consider how the algorithm
should be modified in this situation. First, it is important to recognize that agents will never take a short
position in the liquid asset at time 0 < t < T . The reason for this is that the dividends for the illiquid asset
could decline to the point where an agent’s consumption became negative, and therefore, his utility became
negative infinity. Thus, zero and one are upper and lower bounds for Nt. Now consider the situation where
the first agent has a lower valuation for the liquid asset even when Nt = 0. Since the first agent cannot sell
any more shares to the second agent, his first-order conditions cannot be satisfied. In this situation, Nt = 0,
and Pt is given from the second agent’s first-order conditions. A similar argument holds for the second agent.

Now consider the situation at time zero. Similar reasoning to the above shows that agents will not
take short positions in either asset at time zero. Thus, zero and one become upper and lower bounds for N
and M . If one agent has a lower valuation for an asset even when his holdings of the asset are zero, then
that agent’s first-order condition for the asset cannot be satisfied. In this situation, we use the first-order
condition for the other agent in determining the equilibrium values for the other portfolio weight and for the
asset prices at time zero.

3. The A(·, Xt, Yt) and B(·, Xt, Yt) Functions.
We define A(c, Xt, Yt) as the expectation

(A37) A(c, Xt, Yt) = Et

[∫ ∞

0

e−cs

(
Xt+s

Xt+s + Yt+s

)
ds

]
,

that appears in various forms in the agents’ first-order conditions. This can be rewritten as

(A38) Et

[∫ ∞

0

e−cs

(
1

1 + qeu

)
ds

]
,

where q = Yt

Xt
, and u is a normally distributed random variable with mean μs and variance σ2s, where
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μ = μY − μX − σ2
Y /2 + σ2

X/2,(A39)
σ2 = σ2

X + σ2
Y − 2ρσXσY .(A40)

Introducing the density for u into the above expectation gives

(A41)
∫ ∞

0

∫ ∞

−∞
e−cs 1√

2πσ2s

1
1 + qeu

exp
(−(u− μs)2

2σ2s

)
du ds.

Interchanging the order of integration and collecting terms in s gives,

(A42)
∫ ∞

−∞

1√
2πσ2

1
1 + qeu

exp
(μu
σ2

) ∫ ∞

0

s−1/2 exp
(
− u2

2σ2

1
s
− μ2 + 2cσ2

2σ2
s

)
ds du.

From Equation (3.471.9) of Gradshteyn and Ryzhik (2000), this expression becomes,

(A43)
∫ ∞

−∞

2√
2πσ2

1
1 + qeu

exp
(μu
σ2

)( u2

μ2 + 2cσ2

)1/4

K1/2

(
2

√
u2(μ2 + 2cσ2)

4σ4

)
du,

where K1/2(·) is the modified Bessel function of order 1/2 (see Abramowitz and Stegum (1970) Chapter 9).
From the identity relations for Bessel functions of order equal to an integer plus one half given in Gradshteyn
and Ryzhik Equation (8.469.3), however, the above expression can be expressed as,

(A44)
1
ψ

∫ ∞

−∞

1
1 + qeu

exp
(μu
σ2

)
exp

(
− ψ

σ2
| u |

)
du,

where

ψ =
√
μ2 + 2cσ2.

In turn, Equation (A44) can be written

(A45)
1
ψ

∫ ∞

0

1
1 + qeu

exp (γu) du +
1
ψ

∫ 0

−∞

1
1 + qeu

exp (θu) du,

where

γ =
μ− ψ

σ2
, θ =

μ+ ψ

σ2
.

Define y = e−u. By a change of variables Equation (A37) can be written

(A46)
1
qψ

∫ 1

0

1
1 + y/q

y−γ dy +
1
ψ

∫ 1

0

1
1 + qy

yθ−1 dy.

From Abramowitz and Stegum Equation (15.3.1), this expression becomes

(A47)
1

qψ(1 − γ)
F (1, 1 − γ; 2 − γ; −1/q) +

1
ψθ

F (1, θ; 1 + θ; −q).

6



Substituting in for q gives the expression for A(c, Xt, Yt)

(A48) A(c, Xt, Yt) = k1 (Xt/Yt) F
(
1, 1 − γ; 2 − γ; −Xt

Yt

)
+ k2 F

(
1, θ; 1 + θ; − Yt

Xt

)
,

where
k1 =

1
ψ(1 − γ)

, k2 =
1
ψθ
.

The function B(c, Xt, Yt) is defined as the expectation,

(A49) B(c, Xt, Yt) = Et

[∫ ∞

0

e−cs

(
Yt+s

Xt+s + Yt+s

)
ds

]
.

The evaluation of this expectation is omitted since it is virtually the same at that for A(c, Xt, Yt) above.
The resulting expression for B(c, Xt, Yt) is

(A50) B(c, Xt, Yt) = k3 (Yt/Xt) F
(
1, 1 + θ; 2 + θ; − Yt

Xt

)
− k4 F

(
1, −γ; 1 − γ; −Xt

Yt

)
,

where
k3 =

1
ψ(1 + θ)

, k4 =
1
ψγ

.

Substituting the solutions for A(c, Xt, Yt) and B(c, Xt, Yt) into Equations (A8) and (A9) gives the expressions
for Pt and Qt in Equations (11) and (12).
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