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Portfolio delegation under short-selling constraints

Investors delegate portfolio decisions to managers because of their alleged skill
in gathering superior information on movements in security prices. When the man-
ager’s research activity is not observed, the investor could face problems associated
with moral hazard. Then, it is in the investor’s interest to provide the manager with
incentives to gather better information. In studying the nature of such incentive con-
tracts, past literature has assumed that the manager’s portfolio choice is unbounded.
Yet, we seldom observe environments where the manager’s portfolio choice is totally
“unrestricted.” Practices like borrowing money, margin purchases, short-selling or
investment in derivative securities are usually restricted.! Our purpose is to study
the effect of such constraints on incentive provision.

We assume that the manager’s ability to short-sell is restricted and that investors
have to cope with moral hazard. Our primary interest is in the impact of short sell-
ing restrictions on the power of incentives provided by linear symmetric contracts.?
We report three main results. First (Corollary 2), linear performance-adjusted con-
tracts do provide managers with incentives for gathering better information. Second
(Proposition 4), we show that the manager’s share in the portfolio return is different
from the first best.®> Third, using numerical methods, we show that the manager’s
share in the optimal portfolio is higher than the first best and decreases as we re-
lax the leverage constraint. We also present some additional results. In a scenario
without moral hazard, but with short selling restrictions: (i) under the optimal linear
contract, the manager’s share in the portfolio is equal to the first best (Proposition
4); (ii) linear contracts dominate quadratic contracts (Proposition 6, in Appendix
A). With moral hazard and short selling restrictions, numerical methods show that,
quadratic contracts dominate linear contracts only for certain parameter values (Table
2 in Appendix A).

We take portfolio restrictions as given and focus on the impact of their variation
on optimal incentives. These restrictions can be thought as internally imposed by

! Almazan, Brown, Carlson and Chapman (2001) document that approximately 70% of mutual
funds explicitly state (in Form N-SAR handed in to the SEC) that short-selling is not permitted.
This figure rises to above 90% when the restriction is on margin purchases. These percentages are
quite robust among different categories of funds, sorted by objective (value/growth, small-cap/large-
cap), fund age, management type (single manager/multiple managers) and load charges (front/back
load or no load). Koski and Pontiff (1999) examine the use of derivative securities in a large sample
of mutual funds. They report that 79% of equity mutual funds make no use of derivatives whatsoever
(either futures or options).

2Linear contracts have a fixed payment component or asset-based fee and a component, the
incentive fee, which depends on the performance (possibly relative to some benchmark index) of
the portfolio. With symmetric or “fulcrum” contracts the manager receives a bonus or a penalty,
depending on whether the portfolio return was above or below the benchmark return. On the other
side, under the bonus schedule, the penalty is bounded below a given value, usually zero.

3A “first best” corresponds to the situation where there is no moral hazard, i.e. the manager’s
effort is observable and verifiable by a third party, and there is no restriction on short selling.



funds or externally imposed by regulating agencies. We model these restrictions as
constraints on short-selling. The motivation is two-fold. First, according to Almazan
et al (2001), this is the most frequent restriction together with margin purchases.
Second, our assumption can be seen as a simplification of the scenario where prices
change as the manager borrows or lends large amounts. Assuming that the manager’s
opportunity set is bounded implies that she faces infinite prices for borrowing over a
certain limit. Alternately, as is often done in the contract literature, this amounts to
assuming bankruptcy constraints for the manager.

Our main focus is on the incentives provided by linear symmetric contracts. Such
contracts need not be optimal in the domain of all contracts and quadratic contracts
are known to perform better than linear contracts in certain environments. We com-
pare linear and quadratic contracts in Appendix A.* There are two reasons for focusing
on linear contracts in the main text of the paper. First, from an institutional point
of view, the Security Exchange Commission (SEC) restricts compensation contracts
in the mutual fund industry to only linear symmetric contracts.” Second, restrict-
ing our domain to symmetric linear contracts provides us with the very well known
“no-incentive” benchmark. When no restrictions on short-selling exist, Stoughton
(1993) and Admati and Pfleiderer (1997) have shown that linear (fulcrum) contracts
fail to affect the manager’s decision to gather better information. In other words,
the manager’s optimal effort choice is independent of the contract she receives from
the investor. As a consequence, the only role for the linear contract is to split the
risk efficiently between the manager and the investor: a higher risk aversion of the
former relative to the later would then imply no performance adjustment component
in managers fees. We call the pure risk sharing optimal contract, the first best. Re-
stricting the domain to linear contracts allows us to understand the reason behind
the “no-incentive” result.

In contrast to the “no-incentive” result, our first result asserts that under moral
hazard and finite short-selling bounds, linear contracts do provide the manager with
incentives to gather better information. Notice that both assumptions are necessary
for this result. With moral hazard but no short-selling bounds, the no-incentive
result prevails. With short-selling constraints but no moral hazard, incentives for
performance are not required. Hence, as we show in Proposition 4, the first best split

4We thank an anonymous referee for persuading us to carry out this exercise

>The Investment Advisers Act (as amended in 1970) allows the use of relative performance adjust-
ment fees to compensate portfolio managers in the mutual fund industry. In 1986, the Department
of Labor approved the use of performance fees for ERISA-governed pension funds. In both cases,
the fee must be a fulcrum fee.

6Stoughton studies “raw” performance-adjusted contracts while Admati and Pfleiderer analyze
contracts that include “relative” performance fees. In a “raw” performance contract the return on
the benchmark index is fixed, as say the portfolio’s previous highest return (“high water-mark”). In a
“relative” performance contract the return on the benchmark index is stochastic, as say the contem-
porary return on the S&P 500. The non-incentive result arises regardless of whether performance
is measured in raw or relative terms.



is optimal.

The intuition behind our first result is as follows. With no short selling constraints
the manager is able to undo the effects of incentives by appropriate modifications of
the portfolio. Hence, we get the “no incentive” result. With finite short selling
bounds, no matter how large they are, the manager anticipates that with positive
probability she shall not be able to form the portfolio of her choice. This leads
her to reduce effort in gathering better information. Under such circumstances, by
increasing the incentive fee the investor expands the manager’s portfolio set, thereby
partially undoing the effects imposed by short-selling bounds. This in turn, provides
her with incentives for spending more effort.

Given the principal’s utility function, the cost of increasing effort through linear
contracts may be too high. As a result, the principal may simply desire to share
risk through the first best sharing rule and ignore effort inducement. Our second
result rules out such behavior: the first best sharing rule is never optimal. This
result is interesting in the light of a recent paper. Elton, Gruber and Blake (2001)
document that although less than 2% of US mutual funds use (fulcrum) incentive
fees, they account for 10.5% of the total assets under management. Furthermore,
the rate of growth for those funds is higher than that for the industry in general.
Though, on average, these funds do not earn positive incentive fees, their risk-adjusted
performance is higher than that for other funds, suggesting a tendency to induce more
effort from managers in place. We interpret these findings as evidence in favor of our
model’s predictions: at least for large mutual funds, symmetric incentive contracts
may be better for the firm than no incentive contracts (recall that by regulation,
mutual funds are constrained to offer linear contracts).

We are not able to derive closed form solutions for the optimal linear contract.”
Using numerical methods, we show that the manager’s share in the portfolio is higher
than in the first best. Importantly, this share converges to the first best level as
the bounds on short selling get relaxed. Thus, the “no-incentive” result is a special
case. This final result can be interpreted as follows. In the constrained scenario,
the performance adjustment fee plays an additional role beyond risk sharing, namely
effort inducement. When the short-selling bounds shrink (making the restriction
tighter) the volatility of the portfolio decreases as well since fewer “extreme” portfolios
are feasible. If the investor does not increase the performance adjustment fee the
manager will be under-exposed to management risk. As a consequence, effort will
also decrease. The risk sharing and the effort inducement arguments are aligned in
the same direction: the optimal incentive fee increases above the first best value.
This effect is enhanced by the manager’s risk-aversion: given a certain level of short-
selling, the (percentage) deviation from the first best share increases as the manager’s
risk-aversion augments.

Our paper is concerned with deriving the optimal contract in the class of all linear

"The optimal program of the investor requires that we integrate over a Chi-square distribution
of degree one. To our knowledge, such integration can only be be performed numerically.



contracts. More recently, using the first order approach, Dybvig, Farnsworth and
Carpenter (2000) study the optimal contract in a broader game (i.e. in the class
of all contracts) with moral hazard concerns. Implementing a contract derived un-
der the first order approach may be problematic. Our formulation gets around the
problem since we allow the manager to form the portfolio. This makes information
revelation trivial. The signal precision structure in our model is also different. An-
other difference between our paper and theirs is that their optimal contract (when
implementable) might induce large punishments for the manager in some states. Such
large punishments may not be credible due to bankruptcy constraints. Our formula-
tion simplifies the agency problem and allows us to explicitly deal with the sensitivity
of the manager’s effort decision to changes in the manager’s share in the portfolio.

The rest of the paper is organized as follows. Section 1 introduces the basics of
the model. We distinguish four possible scenarios, depending on the restrictions on
portfolio choice (constrained/unconstrained) and the observability of effort (public-
information/moral hazard). The optimal linear unconstrained contract under public-
information is termed the first best. The second best scenario is reserved for the
unconstrained, moral hazard contracts. The third best scenario refers to the con-
strained, moral hazard contracts. Section 2 studies linear contracts. Here we study
linear contracts without restrictions on portfolio choice, both in the first best and sec-
ond best scenarios. The same analysis is repeated for constrained portfolio problems
in Section 3. Section 3.1 presents numerical results on the optimal linear contract
under limited leverage, the third best contract. Section 4 concludes the paper. Lin-
ear and quadratic contracts are compared in Appendix A. All proofs are provided in
Appendix B.

1 The model

A typical fund will inform the customer that managers (who are involved in invest-
ment research) are responsible for choosing each fund’s investments. Customers may
also be informed about how the managers are compensated. Given the information,
the customer decides how much to invest in the fund. In this paper we shall abstract
from the decision problem of the consumer. Instead, assuming that the interests of
the customer and the fund owner are the same, we shall focus on the determination
of the manager’s compensation scheme by the owner of the fund. Slightly abusing
terminology, we call the owner of the firm the investor.

Let the manager and the investor have preferences represented by exponential
utility functions. Throughout the paper we will use a > 0 (b > 0) to denote the
manager (investor) as well as her (his) absolute risk aversion coefficient.

The manager’s investment opportunity set consists of two assets: a risky asset
with net return Z and a riskless bond. Assume that 7 is distributed as a standard
normal variable. The distribution of the risky asset return and the return on the
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bond are public information. As in Heinkel and Stoughton (1994), the bond is taken
as the benchmark portfolio against which the returns on the manager’s portfolio are
measured.®

The investment horizon is one period. At the beginning of the period, the investor
transfers one unit of wealth to the manager who also receives a compensation contract
from the investor. This contract sets the management fee as a percentage of the wealth
under management and consists of two components: a fixed flat fee, denoted by F,
and a performance adjustment fee. The performance adjustment rate is calculated as
a percentage a of the portfolio’s excess return over the net return of the benchmark
(which by assumption is the bond). Denote such a contract as (a, F'). Normalize the
net return of the bond to zero. If the manager refuses the contract the game ends
and she receives her reservation value (normalized to —1). If she accepts the contract,
she puts in some effort e which results in a signal y. The signal y is a realization of
random variable 7.2 After observing y, the manager forms a portfolio {0(y), 1 —6(y)}
where 0(y) and 1 — 6(y) respectively denote the proportions invested by the manager
in the risky asset and the bond. Conditional on the contract (a, F') and 6(y), the

wealth of the manager and the investor are random outcomes W, (y) and Wy(y) with
associated utilities U, <Wa> and U, <Wb>

The variable g is partially correlated with the stock’s return, y = x + € with €
the noise term. The return on the risky asset and the noise term are assumed to
be uncorrelated. Let € ~ N(0,0?%), with 0% < oo such that higher o2 implies a less
precise signal.

Recall that the manager observes the signal after putting in her privately observed
effort. The amount of effort is assumed to affect the precision of the signal. More
concretely we assume that o2 = e, Therefore, the signal’s precision is an increasing
and concave function of effort, =-. On the other hand, effort is costly for the manager.
With constant absolute risk aversion a, let V(a,e)/a be the monetary value of the
manager’s disutility of effort e.

After receiving the signal the manager updates her beliefs about the distribution
of the risky asset, such that Z |y ~ N (1%@ Y, ﬁ).lo Given these updated beliefs,
the manager chooses 0(y). For any («, F') and 6, the conditional (net) wealth of the

manager and the investor can be written as, respectively:

Waly) = F+abily, (1)

Wily) = (1-a)0z|y—F. (2)

The utilities of the investor and the portfolio manager are given by, respectively,

8The choice of the benchmark is a strategic decision that we do not address in this paper. See
Ou-Yang (1999) for a justification of the riskless asset as the optimal benchmark.

9We will follow the standard notation whereby a symbol with a tilde on top will represent the
variable and the same symbol, without a tilde, its realization.

10The vertical bar reads as “conditional to.”



U, (Wa> = —exp(—aW, + V(a,e)) and U, <Wb) = —exp(—bWW,). We assume the
function V'(a,e) is continuous and twice differentiable, with continuous derivatives.
Moreover, the function is assumed to satisfy:!!

Assumption (S1) V(a,0) =V'(a,0) =0

Assumption (S2) V’(a,e) > Ofor all e > 0

Assumption (S3) VVH,((‘Z’;))@ > P(e) for alle >0

Assumptions (S1) and (S2) are standard in the literature. Assumption (S3) sets
an upper bound to the signal’s precision: the marginal cost of effort must increase fast
enough. This will guarantee the existence of an optimal effort level for the manager.
This assumption discards, for instance, linear disutility functions. Any quadratic
function of effort that satisfies (S1) and (S2) will verify (S3) as well.

2 Unconstrained linear contracts

Assume that the manager’s effort decision is publicly observable. Given the negative
exponential utility functions for both the investor and the manager, the Pareto effi-
cient sharing rules are linear -see Wilson (1968). Hence, each individual receives the
fraction of the risky asset equal to his risk tolerance divided by the aggregate social
risk tolerance. We will denote this result the first best outcome, o, = where
r = ¢ represents the manager’s “relative” (to the investor) risk aversion.

1
1+r?

To derive the non-incentive result, assume that the signal is observed only by the
manager who decides, privately, how much effort to put in. Proceeding by backward
induction, we first solve the manager’s optimal portfolio problem. When the manager
is unconstrained in her portfolio choice, she can select any 6 from the real line R.
Given some effort choice e and some signal realization y, the manager chooses 6(y)

to maximize her conditional expected utility of wealth E [Ua (Wa(y)>] subject to
0(y) € R. Solving this we get:1?

e
0(y) = —. 3
)=y 3)
Having solved for the manager’s optimal portfolio problem, we now need to solve
for her effort (previous stage) decision. Given (3), the manager forms her indi-

rect unconditional utility function by taking expectations over y. This is written

as B [Ua <Wa(e)>} = —exp (—aF 4+ V(a,e)) x g(e), where

1Prime (/) and double prime (#7) denote, respectively, first and second derivative with respect to
effort.
12Gee Stoughton (1993).



0= (1) " (@)

Notice that the manager’s expected utility is independent of . The expected utility
maximizing effort solves the first order condition:

1
2(1+eg,) )

Assumptions (S1)-(S3) guarantee the existence of e, > 0 satisfying equation (5). The
second best effort choice is a function only of the manager’s risk aversion coefficient;
in particular, it does not depend on o or F. This, in essence, is the non-incentive
result.

Finally, in the first stage, the investor offers the manager a contract (a, F) that
maximizes her expected utility subject to the manager’s incentive compatibility con-
straint, (5), and the manager’s participation constraint. Since e, is unique with
respect to (o, F'), we can write the investor’s utility as a function of e, and solve

for (ag,, F,,) € argmax, rp B [Ub (Wb(a, F, eSB)>] subject to the participation con-

straint £ [Ua (Wa(eSB))} > —1.

We define the functions m(a) = £2 and M(«) = m(a) (2 —m(a)). These
functions will also help in later analysis. Let us denote ®(z) = [ ¢(s)ds, with
o(s) = \/%73_1/2 exp(—s/2) when s > 0; s = 0 otherwise. ®(-) is the cumulative
probability function of a Chi-square variable with one degree of freedom and ¢(-) is
the corresponding density function.

With these definitions, Appendix B shows that the investor’s expected utility can

be written as

V/(CL, ess) =

3 1 1/2
E [Ub (Wb(oz,F, e))} = —exp(aF/r) (m) . (6)
Since the manager’s expected utility (4) is independent of «, the optimal contract
satisfies the first order condition %M (ag,) = 0. The function M («) is concave for
all & < 3/2(1 4 r), convex otherwise. Thus, given the later equation, it follows that
g, = ﬁ is the (unique) solution to the investor’s problem. The reader can verify
that this result corresponds to the first best share of risk. In the second best, unre-
stricted scenario, the first best split prevails in spite of the asymmetry in information.
Finally note that when b tends to zero o, tends to zero and hence the performance
adjustment fee (captured by «) has no role.
Replacing a, = a,, in (6) and provided that the manager’s participation con-
straint is binding in the optimum, the investor’s expected utility in the unconstrained
linear scenario will be given by:



a+b

B[ (v“vb<e>)]:—exp<v<a,e>/r>( : ) )

1+e

Maximizing the later expression with respect to effort, we obtain the first best
effort condition:

Vi(a,e,p) = (1+7) (8)

2(1+e

FB)

Comparing (5) with condition (8), it follows that the second best effort is always
smaller than the first best effort.

3 Constrained linear contracts

We now study the effort and portfolio decisions of a manager who, unlike in the pre-
vious section, is restricted in her portfolio choice. We will distinguish between a con-
strained public-information scenario (where the manager’s effort decision is publicly
observable) and a third best scenario, where the manager’s effort decision is private.
In this scenario we will also analyze the effect of the restriction on the investor’s
optimal linear contract problem.

The restriction, that we call “bounded short-selling” [BSS], can be expressed as
0] < k, 1 < Kk < oo. The symmetry with respect to x is convenient in order to
simplify the algebra.'® Note that x can be any large number. All we require is that
it should not be infinite.

Recall that 6 and 1 — 6 denote, respectively, the proportions invested by the
manager in the risky asset and the bond. Also, in our model, the bond is taken as
the benchmark portfolio. So, given the contract («, F'), the [BSS] restriction can be
interpreted as a constraint on the manager’s “personal” portfolio, {af, a(1 — 0)}, as
well as a constraint on the portfolio leverage. For instance, if x = 1, [BSS] implies
that the maximum short-selling allowed is 100% of the initial wealth (# > —1).
Symmetrically, it also implies that 1 — 6 < 2. Hence, the maximum amount of money
the manager is allowed to hold in the benchmark is 2a: (in our model, the initial
wealth is normalized to 1 unit).

We start by providing an intuitive answer to the following question: How does
our restriction influence the manager’s effort decision? Increasing effort expenditure
implies that the signal’s precision becomes sharper. However, introducing [BSS] “dis-
torts” the manager’s portfolio decision: for certain signals, the manager may not be
able to form the portfolio of her choice. From an ex-ante perspective, the net effect
of this trade-off results in a decrease in the marginal utility of effort as compared to

BNote that § has a normal distribution. None of our results depends, qualitatively, on this
assumption.



the case where [BSS| does not hold. As a consequence, a now plays an additional
role: by increasing « the investor can “marginally” relax the restriction imposed by
[BSS]. Hence, a higher « induces the manager to exert higher effort.

Based on the above intuition, it follows that the manager’s optimal effort under
[BSS] will be: (i) smaller than e, for all a and (ii) increasing in a. Also, the
distortion between the two effort levels should be inversely related to the manager’s
risk aversion: i.e. the larger is a the smaller is the effect of [BSS] on the manager’s
effort decision. In the limit, when either x or a tend to infinity, the effect of the
restriction should vanish and we should return to the second best. In what follows,
we formalize this intuition.

As in Section 1, we proceed by backward induction. The manager’s optimal

portfolio solves the following “constrained” problem 6(y) = arg maxy E [Ua (Wa(y))]

subject to kK > 0 > —k. Let A, > 0 (lower bound) and A\, > 0 (upper bound) denote
the corresponding Lagrangian multipliers, such that, at the optimal (f+x)\;, = 0 and

(0 — Kk)A, = 0.
Conditional on the signal realization y, and a given level of effort e, there are three
possible solutions: (i) If A, =0 and \; = —; (y + %) > 0, then short-selling is

at the maximum and 0(y) = —; (ii) if ; = 0 and A\, = ;£ (y — =) > 0, then
leverage is at the maximum and 6(y) = . Otherwise, \; = A, = 0, and the optimal
portfolio is O(y) = Zy.

The later, “interior” solution coincides with the manager’s optimal portfolio (3)
in the unconstrained problem. The dollar amount, af, invested in the risky asset
by the manager in her “personal” portfolio is independent of a. In the “corner”
solutions the dollar amount invested (ar) or sold short (—ak) in the risky asset is,
in absolute value, increasing in a: the manager will “behave” indeed as an investor
with decreasing absolute risk aversion.

Writing the optimal portfolio as a function of the signal y, we have:

: Kkao
—K 1fy < —

Oy) =< Sy if |y| <22 9)

3 rax
K if y >#22.

We are now in a position to solve for the manager’ choice of effort. Let us first
investigate the manager’s utility of effort. Recall that the manager had accepted some
contract (a, F') in the beginning of the game. To decide on how much effort to put in
she uses the knowledge that for each y that she observes in the future, she will form
the portfolio f(y). Replacing the optimal portfolio #(y) in the manager’s conditional
expected utility function and taking expectations over y we arrive at the manager’s
unconditional expected utility function.

Proposition 1 Given the contract (o, F') and the constraint k < oo, the expected

9



utility function of the risk-averse manager is

E [Ua <Wa(Oé,F,€’/£)>:| = —exp(—aF 4+ V(a,e)) X gs(e|a), with g.(e|a) =

<1i6>1/2 % @ ((m—;)Z> + exp (@) y (1 % <(/€aeoz)2<1+e))> (10)

a decreasing and convex function of effort e.

Equation (10) confirms the intuition presented at the beginning of this section.
The unconditional expected utility of the constrained manager (i.e. after introducing
[BSS]) can be expressed as the weighted sum of two utility functions.!* The first
function corresponds to the “interior” expected utility in (4) where the manager is
not affected by the constraint. The second function is the manager’s expected utility
when the constraint is binding. In that case the manager sets |#| = k. Note that,
unlike the unconstrained case, g, (e |«) depends on «. So, an interesting question is:
how will changes in « affect the manager’s utility? Corollary 1 answers this question.

Corollary 1 Given some contract (o, F') and the constraint k < oo, the manager’s
unconditional expected utility is increasing in «. In the limit, when either the con-
straint, Kk, or the manager’s risk aversion coefficient, a, tend to infinity, the marginal
utility of a is zero.

Note that the second part of the corollary derives the no-incentive result as a
special case of our model. To see the intuition behind the corollary, let us rewrite the
constraint [BSS], given (3), as follows:

lyle < kaa. (11)

The left-hand term represents the risky asset’s conditional mean return (absolute
value) weighted by its precision. The right-hand side term is the short-selling limit,
k, multiplied by the manager’s risk aversion coefficient weighed by «. Clearly, as long
as |y| < kaa/e, the manager’s optimal decision will not be affected by [BSS]. In this
case, the marginal utility of « is zero and the manager’s effort decision is independent
of the contract. However, when the signal exceeds either bound (i.e. for “very good”
or “very bad” signals) the manager would want to invest in her portfolio more than
she is allowed to. Clearly, such a distorting effect will diminish as « and/or the risk
aversion a increase. So, for all a < oo, the manager’s marginal utility of « is positive.

4 The disutility function, V(a,e), affects both terms. This is because the effort decision is taken
ex-ante, before the signal is observed. Note that the weights are not constant: they are a function
of effort themselves.
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In the limit, when the right-hand side term in (11) tends to infinity the restriction
vanishes and (10) converges towards the unconstrained utility function (4).

We now consider the manager’s choice of effort. The manager chooses effort to
maximizes her unconditional expected utility. Given (a, F'), the manager’s (third
best) effort solves:

erpa) = arg max —exp(—aF 4+ V(a,e)) X gs(e| ). (12)

We are interested in the properties of the third best effort. Note that, unlike in the
unconstrained second best case, effort now depends on «. Corollary 1 had shown that
the utility of the constrained manager increases in «a: by increasing the performance
adjustment fee in the contract, the investor allows the manager to get “marginally”
closer to her optimal unconstrained personal portfolio. The investor can now exploit
this phenomenon to influence the manager’s effort choice. In fact, effort turns out to
be an increasing function of «.

The intuition works as follows. Recall that the manager decides how much effort
to exert after accepting the contract («, F') and before receiving the signal. When the
manager is unconstrained then, for any signal y, the absolute value of the manager’s
unconstrained portfolio (3) is increasing in effort. This marginal benefit is traded
off against the inherent marginal disutility of effort to get at the second best level
of effort. However, when the manager is constrained, equation (11) tells us that by
exerting more effort the manager could actually “enhance” the distortion induced by
[BSS]. Therefore, the marginal utility of effort and (hence) effort is lower than in the
second best case.

Proposition 2 Given assumptions (S1)-(S3), the contract (o, F') and the constraint
K < 00, there exists a unique e,,(a) > 0 that mazimizes the manager’s expected
utility. Moreover, e, > e, (a) for all a € [0,1]. Both are equal, in the limit, when
either the constraint, k, or the manager’s risk aversion coefficient, a, tend to infinity.

Now, following up with the argument in (11), a contract with a higher o marginally
enlarges the manager’s personal portfolio opportunity set: certain portfolios that were
not feasible before turn now to be feasible. As a consequence, the marginal utility
of effort increases. Thus, the optimal effort put by the manager is higher. In other
words, the third best effort moves towards the second best.

Corollary 2 The manager’s effort e, () is a continuous and differentiable function.
Moreover, it is increasing in o.

We now turn now to the investor’s (first stage) problem. First, we introduce the in-
vestor’s unconditional utility function when the manager faces [BSS]. The constrained
manager solves the restricted problem in Section 3 and her optimal portfolio is (9).

Given (2), the investor’s conditional utility function £ [Ub (Wb(y | /{))] can be written
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as a function of m(«a) and M («) defined in Section 2. Following the same procedure
we used to derive the manager’s unconditional expected utility function, we arrive at
the investors’s expected utility function. It is stated in the following proposition.

Proposition 3 Under [BSS], for a given contract (o, F'), the expected utility function
of the risk-averse investor is £ [Ub <Wb(a, F, e|/<o))} = —exp(aF/r) x f.(a,e), with

Foloe) = (;@)1/2 D <(/<eaoz)2 1+ eM(a)) N (13)

1+eM e 1+e
cap ((ma;n(a)) ) y (1 % ((m:x) (1 +1ej:1£a)) ))

After deriving the close-from solution to the investor’s expected utility, we want
to investigate how the presence of portfolio constraints and moral hazard affects
the optimal linear contract. Assume first that the manager’s effort decision were
observable. In this case the investor maximizes his expected utility with respect to «
and effort subject to the participation constraint —exp(—aF + V(a,e)) X gq(e|a) >
—1. Clearly, effort is not a function of F. This, along with the facts that the left-
hand side is increasing in F' and the investor’s utility is decreasing in F', implies that
under the optimal contract the participation constraint is binding. So, the investor’s
problem is reduced to finding the optimal split and effort that maximize

E [Ub (Wb(a,em)ﬂ — —exp(V(a,e)/r) x gu(e]|a)V" x fa(a,e). (14)

On the other hand, when the manager’s effort decision is not observable by the
investor, the third best problem consists in finding the optimal split o, that maxi-
mizes (14) subject to the manager’s optimal effort condition (12). Note that, due to
first order condition (B7) in the Appendix B, (12) is uniquely solvable in terms of a.

Despite this simplification, it is difficult to find a closed form solution for the
optimal linear contract. Yet, we can still show that under [BSS] and in the absence
of moral hazard, the first best risk-share is still optimal, consistently with the result
in Haugen and Taylor (1987). On the contrary, in the presence of moral hazard, the
optimal ., is no longer equal to «,,. This is to be expected because under [BSS]
a plays an additional role over risk-sharing. As in most moral hazard problems,
efficiency in risk allocation has to be traded off against effort inducement. These
results are summarized in the following proposition.

Proposition 4 When the effort decision is public information, the first best risk
share, o, is optimal under [BSS]. Moreover, for any finite k, the investor’s optimal
effort choice is smaller than the first best effort. When k — oo both levels of effort
coincide.

When the effort decision is not observable by the investor, the first best risk share,
Ay, 1S not optimal under [BSS].
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3.1 A numerical solution to the linear third best contract

As mentioned in the previous section, it is difficult to solve analytically for the optimal
contract. In this section we present a numerical solution for the third best contract.
Our interest will pertain to the optimal third best share, v, ,. We assume a quadratic
disutility function of effort, V(a,e) = ae?. Exercises will be carried out by setting
the investor’s risk-tolerance coefficient (1/b) to 24. We will consider four different
values for the manager’s risk-tolerance coefficient 1/a = {3,8,15,24}. We will vary
the short-selling/leverage constraint, s, through 10 integer values, from 1 (tightest
restriction, no leverage) through 10 (weakest restriction).

Given the disutility function, condition (5) implies that the second best effort of

a manager with risk-tolerance coefficient 1/a is ey, (1/a) = 3 ( 1+1/a— 1). Thus,
for the four different values of the risk tolerance coefficient under study we obtain the
corresponding values of e, (1/a) = {1/2,1,3/2,2}. Note that the second best effort
increases with the manager’s risk tolerance.!®

For each k, the algorithm creates a grid of 99 values of a from 0.01 through
0.99. Condition (B7) in the Appendix B is solved for each pair (a, k). That gives a
numerical value of e, for each pair («, k). The resulting matrices of third best efforts
(which we do not report) confirm the predictions of Proposition 2 and Corollary 2:
for all risk-aversion coefficients and all leverage bounds, the third best effort is (i)
smaller than the corresponding second best effort and (ii) increasing in a. Figure 1
plots e, as a function of « for four values of x when 1/a =1/b = 8.

For each &, the investor’s expected utility (14) is evaluated across a. Note that e_.,
and F,, as functions of « are implicitly taken into account in these calculations (the
latter is a function of a due to the fact that the participation constraint is binding).
Figure 3 plots the investor’s expected utility function as a function of « for four values
of Kk when 1/a = 1/b = 8. In all cases, the investor’s expected utility as a function of
a is concave. In such a case, the proof of Proposition 4 implies that a,, > a.,.

The first row within each panel in Table 1 reports the values of a..,(1/a,1/b)
which maximize the investor’s expected utility for 1/b = 24, 1/a = {3,8,15,24}
and £ = 1,...,10. In all cases, the figures illustrate an important numerical result:
Q. > ., in the constrained scenario. This, as mentioned earlier is a consequence
of the concavity of the investor’s utility function. Interestingly, as k increases (i.e.,
the constraint is relaxed) a,., monotonically converges to a,.

The relationship between the manager’s risk-aversion and Aa/a = %, for
different ks, is reported in the second row of each panel in Table 1. We see that,
for each k, the difference in percentage is higher for higher values of the manager’s

5The region of “acceptable” relative risk aversion coefficients varies from source to source -see
Mehra and Prescott (1985). Our manager’s expected relative risk aversion coefficient is defined as
her absolute risk aversion coefficient a times the manager’s unconditional expected portfolio wealth,
E,(afz(y)) = £. Thus, the values of a are chosen so as to yield e, (1/a) € [1/2,2].
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risk-aversion. The difference can be very dramatic: it ranges from over 280% for
(1/a =3,k =1) to 20% for (1/a = 24, k = 10).

These results suggest that benchmarked contracts may play a significant role in
providing incentives to managers for exerting effort. When the short-selling bounds
decrease (making the restriction tighter) the volatility of the portfolio decreases as
well since fewer extreme portfolios are feasible. If the investor does not increase the
performance adjustment fee the manager will be under-exposed to active management
risk. As a consequence, effort will also decrease. The risk sharing and the effort
inducement arguments are aligned in the same direction: the optimal performance
adjustment fee increases. The change in o due to the incentive role is more visible the
smaller the manager’s risk tolerance because «,.,, in that case is relatively smaller.

The third and fourth rows of each panel in Table 1 report the percentage differ-

ence in effort, Ae/e = eTB(aeTB )(; eTB)(aF L ), and certainty equivalent wealth, AC/C =
TB FB

Crplorg)—Crplapg)
C

(app)
interprTeBte(f "as the net return (on the end-of-period wealth C.(a,,)) that would
compensate the investor for the lower utility of the suboptimal split, « in the
third best scenario.

The last column in Table 1 represents very relaxed constraints (k = 10). Even
here, Ae/e is around 30% for the most risk averse manager. In all cases Ae/e decreases
with the manager’s risk tolerance. An analogous result follows when we study the
difference in effort across k.

With respect to the percentage change in the certainty equivalent wealth, we
see that the potential “efficiency” loss that arises from compensating the manager
through the suboptimal «,, is almost negligible when the manager is sufficiently
risk-tolerant (1/a = 24). However, in the standard situation where the manager is
assumed to be more risk-averse than the investor this loss can rise up to 9%, even
when k = 10. Moreover, as x gets tighter, this difference gets substantially enhanced.
Also note that in the reverse direction, when the constraint vanishes the third best
scenario converges into the unconstrained second best scenario.

, in the constrained scenario.'® Hence, the ratio AC/C, can be

FB?

4 Conclusions

Our paper deals with a normative rather than a positive issue. We do not attempt
to explain the different forms of managerial compensation that exist in the financial
system. However, our paper provides a starting point for such analysis. In particular,
our second and third results suggest a simple yet important fact. If moral hazard
on the part of fund managers is an important consideration and this manager is
leverage constrained then simple performance based incentives (as allowed by SEC

16C . () denotes the amount of end-of-period wealth that gives the constrained investor the same
utility as (14).
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regulations) should alleviate moral hazard problems. If moral hazard is not much
of a problem then performance based incentives are not necessary. This explanation
seems simple and intuitive in light of agency theory. Yet, to reach such conclusions we
need to take recourse to leverage constraints. Once we recognize the context where
performance based incentives may be useful, we can move on to more specific and
detailed analysis on the exact nature of such incentives. Though we leave this task
to future research, below we provide a brief discussion of managerial compensation
in different fund industries.

Linear performance-based contracts are quite prevalent in the hedge funds indus-
try. Hedge fund industry managers typically receive a proportion of the fund return
each year in excess of the portfolio’s previous “high watermark.” Note that present
returns are independent of this watermark and, hence, this index is similar to bond
returns (normalized to zero) in our model. If one were to consider life-time earnings,
then for patient managers, contracts in the hedge fund industry would look linear
and similar to the contracts considered in this paper.

As for the mutual fund industry, the lack of explicit performance-based incen-
tives, inspite of the SEC Act, has prompted an ongoing debate among researchers
and practitioners questioning the symmetry stipulated in the Act. The debate fo-
cuses on fund performance and risk-taking incentives provided by symmetric versus
asymmetric contracts (see for example, Starks (1987), Cohen and Starks (1988), Golec
(1988), Grinblatt and Titman (1989)). More recently, Das and Sundaram (1998, 1999)
and Cuoco and Kaniel (1999) have focused on the equilibrium volatility and portfolio
turnover of both types of contracts. In particular, Das and Sundaram (1998) suggest
that if the Act were to allow for asymmetric contracts then one could perhaps see
more performance based contracts in the industry.

In this paper, we have argued that linear (and symmetric) performance-adjusted
contracts do provide managers with incentives for gathering better information when
the manager is constrained in her ability to short-sell. Our numerical results suggest
that under short selling constraints the investor would be substantially worse off if
he were to set performance adjustment fees only to share risk. By enhancing this
component of compensation he can induce the manager to gather better information
and as a result be better off. Our numerical results also show that such incentive
schemes provide strong incentives when restrictions on short-selling is tight. Since
mutual funds impose tighter restrictions on short-selling (compared to hedge funds)
we should, ceteris paribus, see a larger prevalence of linear contracts in the mutual
funds industry. In light of the discussion in the previous paragraph, our results seem
to add to the paradox. Of course, whether, or not, our results are paradozical is an
empirical 1ssue. Nevertheless, we provide some reasons as to why we think our results
may not be paradoxical.

First, moral hazard may not be perceived to be of much importance in the mutual
fund industry, at least relative to the hedge fund industry (Goetzmann, Ingersoll and
Ross (1998)). On the other hand, our results suggest that leverage constraints in
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the hedge fund industry may be (implicitly) tighter than usually accepted, thereby
explaining the higher incentive fees among hedge fund managers.!”

Second, if consumers were to shift assets between funds based on performance,
then compensation through “flat” fees (asset-based fees) would indirectly act as per-
formance based fees. In other words, such contract could provide indirect incentives
via fund flows over time. For example, Sirri and Tufano (1992), Brown, Harlow and
Starks (1996), Gruber (1996) and Chevalier and Ellison (1997) have documented a
convex relationship between the net investment flow into mutual funds and the fund’s
performance relative to its peers. From a temporal point of view, flat fees could then
act as a non-linear performance based contract and such contracts could simply out-
perform our (or the SEC’s) linear contracts. The degree of non-linearity is, however,
not very clear. Especially, in light of our next observation.

Third, of late some mutual funds have started offering performance based contracts
to their managers. For example, at Fidelity Funds, the flat fee (F') for Small Cap
Stock, Mid-Cap Stock and Large Cap Stock funds for the fiscal year ended April 30,
2000, was 0.73%, 0.58% and 0.58%, respectively, of the funds’s average net assets.
The respective performance adjustment fees is calculated comparing the performance
of the corresponding fund to the performance of the Russell 2000, S&P MidCap 400
and S&P 500. The maximum performance adjustment rate is +0.20% of the fund’s
average net assets. Furthermore, as mentioned in the introduction, Elton, Gruber and
Blake (2001) document that though less than 2% of US mutual funds use (fulcrum)
incentive fees, they account for 10.5% of the total assets under management. The
rate of growth for these funds is also higher than that for the industry in general.
Though, on average, these funds do not earn positive incentive fees, their risk-adjusted
performance is higher than that for other funds, suggesting a tendency to induce more
effort from managers in place. Whether, or not, the mutual funds industry as a whole
follows in the direction of these leaders is something to be observed over time.
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Appendix A: Quadratic contracts

In this section, we study the quadratic contracts proposed by Bhattacharya and Pfleiderer (1985).
This type of contracts are interesting because they are known to elicit truthful information about
the signal observed by the portfolio manager. Hence, the portfolio can be formed by the investor.

Assume the investor offers the manager a quadratic contract (v, F). Given the contract, the
manager puts in effort and reports the signal to the investor. The investor incorporates this infor-
mation (Z|y) and decides the optimal portfolio §(y). Hence, the conditional payoffs for the investor
and the manager are, respectively:!8

Wily) = F—~(@ly— M),
Wiy) = ~(@|ly— M)*—F +0z|y,

where M (y) = %y is the reported conditional mean of the risky asset, Z|y.
According to Bhattacharya and Pfleiderer (1985), the manager’s expected utility under the

quadratic contract is given by

E [Ua (Wg)} = —exp(—aF + V(a,e)) x (1 - 12176)1/2. (A1)

In deriving this result, Assumption (S4): v < 1;; €. is necessary to guarantee the convergence

of the expected utility integrals.!® This assumption will play an important role when we compare

18We will use the superscript ¢ to distinguish between linear and quadratic contracts.

9The authors claim (Section 4, page 15) that “the distribution of wealth obtained by the agent
when this inequality is violated is dominated by every distribution which can be obtained when the
inequality is observed.”
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linear and quadratic contracts.
From the appendix in Stoughton (1993) we obtain the investor’s conditional expected utility as
a function of his portfolio choice f(y) and the conditional mean, M:

E v, (Ww)] = - <1 + fi) o exp (bF S f;fi 575 " b9M> . (A2)

In the public-information case, the investor maximizes (A2) with respect to § € R and then
averages across the signal . The result is the investor’s ex ante unconstrained expected utility?° as
a function of v and e.

Under [BSS], the investor’s optimal portfolio solves for #(y) = argmaxy E [Ub (qu(y)ﬂ sub-
ject to k > 6 > —k. Like in the linear case, let A\; > 0 (lower bound) and A\, > 0 (upper bound)
denote the corresponding Lagrangian multipliers, such that, at the optimal (67 + k)A; = 0 and
(07 — k), = 0.

~1
Define now the function Q(v) = (fﬂ + r) . Notice that, given assumption (S4), Q(y) >
o, for all v. Conditional on y, there are three possible solutions: (i) If A, = 0 and N =

T 1+e e
b (y — %ﬁ)) > 0, the leverage is at the maximum and 09(y) = k. Otherwise, A\; = A, = 0,
and the optimal portfolio is 6%(y) = oY

Writing the optimal portfolio as a function of the signal y, we have:

b (y + M) > 0, then short-selling is maximum and 6%(y) = —&; (ii) if Ay = 0 and A\, =

—K ify < —Lgm
0(y) = sy i [y <=9 (A3)
K if y >£a90)

The reader can verify that the optimal constrained portfolio for linear contract, (9), and the
quadratic contract, (A3), coincide for o = Q(7).

Plugging the portfolio choice (A3) in (A2) we obtain the following conditional expected utility
for the constrained investor:

E [Ub (Wf(y)ﬂ = —exp(aF/r)x (Ad)
exp (#mﬁm@(v) (y + %j’”)) if < — 2220
2b’7 71/2 b 2 2 . NGQ(,Y)
(1+1—|—e> x eXp(—mﬁy) if | y| < xeQ)
exp (_#(’y)(]_%e)"{aQ(’Y) (y— %j”)) if y > £eQ0),

We are now in a position to derive the investor’s unconditional expected utility as a function
of the contract (v, F') and effort. The result is presented in the following proposition whose proof
follows trivially given (A4) and the proof of Proposition 1 in the Appendix B.

20Stoughton (1993), Proposition 2, equation (25).
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Proposition 5 Under [BSS], for a given quadratic contract (v, F'), the expected utility function of
the risk-averse investor is:

[0 (0Pl ) ] = —esptery) < (1+ f_bﬂ)/ < (el @) 7

Provided that the participation constraint is binding, the investor’s expected utility becomes a
function of v and e:

E [Ub (Wf(me\n))} = —exp(V(a,e)/r)x

9 —b/(2a) 2 —-1/2 ﬁ
(1-2) < (1) x (adelan) T (A3)

At this point, we can compare linear and quadratic contracts when the manager’s effort decision
is observed by the investor, both under [BSS] and in the unconstrained case.

Proposition 6 Assume that the manager’s effort decision is observable by the investor. Then,
given (S4), the risk averse investor prefers the linear over the quadratic, both under [BSS] and in
the unconstrained case.

We are unable to analytically compare linear and quadratic contracts under moral hazard. So
we resort to numerical methods. We assume that quadratic contacts induce truthful revelation even
under [BSS]. Thus, in what follows, the investor’s utility under quadratic contracts should be thought
of as an upper bound. Furthermore, investor’s utility under linear contracts are derived under the
model where the manager (instead of the investor) forms the portfolio. The results would remain the
same if we were to allow the investor to form the portfolio, and the investor commits to the schedule
0(y,e) which the manager forms in our model. This trivially induces truthful reporting of (y,e).
However, it may not be the optimal mechanism to induce truthful reporting under linear contracts.
Thus, the reported investor’s utility under linear contracts should be thought of as a lower bound.
To recapitulate, in what follows, we compare the highest possible investor’s utility under quadratic
contracts to the lowest possible investor’s utility under linear contracts.

In the presence of moral hazard, the manager maximizes her expected utility (A1) with respect
to effort given the contract (v, F). This yields the following first-order condition for the quadratic
second best effort, el :

1 2ary -t 2ary
Vv’ 9 V= ——o— 11— . A6
(@€¢50) = 3 ety ( 1+egB) 1+ el (46)

Notice that, for the quadratic contract, the manager’s effort decision in increasing in . Hence,
the non-incentive result from linear contracts can be overcome by offering the manager a quadratic
contract.

The investor will maximizes his expected utility (A5) subject to the manager’s optimal effort
decision (A6). Like in the linear case, we cannot solve analytically for the quadratic third best
contract. We follow a numerical procedure similar to the analysis we used in Section 3.1.

We assume the same effort disutility function, V' (a,e) = ae?. Replacing this function in (A6)

we obtain the following condition:
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2e(1+e)?

T dae(lte)+ 1 (AT)

v(a,e)

The reader can easily verify that y(a,e) < 1;; ¢ hence satisfying assumption (S4). Notice that
v(a, e) is decreasing in a.

We replace the later expression in (A5) and solve for the optimal third best effort as a function
of the manager’s risk aversion coefficient (1/a € {3,8,15,24}) and « = 1,2,...,10. The investor’s
risk tolerance is assumed to be 1/b = 24. Plugging these values back into (A7) we obtain the third
best values of 7. Like in the linear case, the plots (not shown here) of the expected utility as a
function of v are always concave. The quadratic second and third best optimal effort expenditure,
~vs and expected utility are reported in Table 2. We also report, for comparison, the corresponding
linear values for effort and expected utility.

For all values of the manager’s risk tolerance except the highest (1/a = 1/b = 24), the second
best quadratic effort is higher than the linear effort. Inspite of this, the investor derives higher utility
from linear contracts (except for 1/a = 3 and x > 4). This is because it is “cheaper” to induce effort
through linear contracts. Moreover, and in general, when the short selling constraint gets tighter (x
decreases) both levels of effort converge.

Like in Stoughton (1993), when the gap in risk tolerance coefficients between agent and principal
is large enough (in our case, for 1/a = 3), unconstrained, second best quadratic contracts dominate
linear contracts. Interestingly, when the manager’s constraint becomes tighter (concretely for k < 5)
the result reverses: linear contracts dominate quadratic contracts.

To gain more intuition about this result, Figure 2 shows, for four different values of xk €
{1,10, 100, 1000}, the investor’s percentage loss in certainty equivalent wealth (relative to the first
best certainty equivalent wealth), as a function of his risk tolerance coefficient, when the man-
ager is compensated with a quadratic contract. This is a measure of the efficiency loss induced by
moral hazard relative to the public-information scenario. The lower right corner graph (x = 1000)
corresponds, in the limit, to the (unconstrained) second best convergence result (Figure 2, page
2022) reported in Stoughton (1993): the agency cost under quadratic contract drops off rapidly as
a function of the principal’s risk tolerance. However, when & is finite, increasing the manager’s risk
tolerance produces quite the opposite result: after an initial reduction (the more limited the lower
k is), the efficiency loss from using quadratic contracts increases with the investor’s risk tolerance.

Appendix B: Proofs

The investor’s unconditional expected utility. Given her utility function and the definition of
her conditional wealth in (2), the investor’s (conditional) expected utility function can be written
as a function of M(«) as follows:

E [Ub (Wb(y))] — —exp(aF/r) X exp <_2(f+e)y2M(a)> . (B1)

The investor’s unconditional expected utility, £ [Ub (Wb(m F, e))} =[" E {Ub (Wb(y))} dF(y).

The signal variable is normally distributed, 5 ~ N (O7 He). Then, define the investor’s uncondi-
2

e

[ 1/ o0 € «
tional exp 2 [Uy (Wia Fre))| = —exp(@F/r) x (1) S g oo (~(1/2)%e H5E ) dy.
: : 14+eM(a
Substituting s = y2617+;)
equation (6).

in the later equation and given the definition of ®(-) we arrive at
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Proof of Proposition 1. The manager’s conditional expected utility is E [Ua (Wa(y))} =

oxp (phoraa (y+52)) iy < -

2 M Krao

—exp(—aF +V(a,e)) x ¢ exp (—ﬁyz) if |y| < =2
exp( (He)naa( mo‘)) if y > =22,

Taking the expectation across y we obtain F {Ua (Wa(a, Fe| m))} = —exp(—aF + V(a,e)) x

1/2 HaaZ _ kKoo . Kao .
(i52) o [oww (7)o G o (“ara(y — maa)?) dy + 72 G ep (—507) dy +

exp <(ma) )fma Fexp( m(ernaa)Q) dy} , the manager’s unconditional expected util-

ity. We propose the following change of variable: s = ﬁ(y — kaa)?if y < =892 5 = (1 +

e )
e)y?if |y| < £9% and s = g+ kaa)? if y > £9% Replacing the new variable in the manager’s
unconditional expected utility and given the definition of ®(-) we arrive at (10).

The first derivative of g, (e|a) with respect to e is:

T TEn N

for all a € (0,1]. Taking the second derivative with respect to e we obtain:

gi(ela) = % <1ie>3/2 B (1ie) o ((mea)Q) - (%)2 X“ﬁ((meayﬂ >0 (B3

Proof of Corollary 1. First, we need the following lemma:

Lemma 1 For all 0 < z < 00, ¢(z) — 3 (1 — @(x)) > 0.

Proof: For all z > 0, 1 ( — <I>(x)) = \%exp(—x/Q) g2 1 \/%exp(—sﬂ) 573/2 ds. There-

fore, ¢(z) — 1 (1 — =17 5= exp(—5/2) s73/2ds > 0.

Given the manager’s expected utility in Proposition 1 the first part of the corollary will be
proved if we can show that the function g.(e|a) is decreasing in o. Given Lemma 1, a%gﬁ (ela) =

—2(ra)? {gb (“““‘) (1+ e)) ~1 (1 ) (“‘“a) (1+ e)))} X exp (M) <0, for all a € (0, 1].

To prove the second part, we show that lim,, ..o gx (€] ) = g(e). By definition, lim,_ ., ®(z) =
1. Therefore, we need to show that

Jim. [exp(m/Q) x (1 — (x 1:6»} = 0. (B4)
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1-0(z 1)

Let us re-write (B4) as lim;—, o p(—z3) - Both functions (exponential and ®(-)) are continuous

and differentiable. Taking the derivative of the numerator and the denominator with respect to =z,
eXp(=z/e) =0
— .

the limit in (B4) is equal to lim,

Proof of Proposition 2. First, we prove the existence and uniqueness of e,..,. Let us call J.(e]|
a) = V'(a,e) x gele]a) + g.(e| «), the first derivative of the manager’s expected utility function
with respect to e. The third best effort satisfies:

Te(ers | @) =0, (B5)
Ti(ers | @) > 0. (B6)

Condition (B5) can be written like follows:

Vl(a’7€TB) = —2(erp | Q). (B7)
For a =0, e, (0) = 0. Let us prove that the right-hand side term is monotonous decreasing in
e for all o € (0, 1]. Taking the derivative of this term with respect to e and given (10) and equations

(B2) and (B3) we get g/(c | a) x gule | @) — (dL(e | @))? > %(1;) B2 ((azaf) > 0. Thus,

—q—( e|a) is (monotonous) decreasing in e for all a € (0,1] with domain (0,1/2]. By assumption,

V'(a,e) > 0 for all e > 0. Hence, for any o € (0, 1] there exists a unique e, («) > 0 that solves
condition (B5).

Condition (B6) can be written as V' (a,e) > —g—”( o) x V'(a,e) — g” (e|). Since ——( o) <
and g“ “(e|a) > 0 for all o € [0, 1], then assumption (S3) implies (B6).

2(1+e)
We prove next that e,, > e,,(a) for all @« € [0,1]. The case of @« = 0 is trivial since
e;5(0) =0 < eg,. Fora > 0, let us re-write the function Jy(e|a) as J.;(e|a) = [V’(a7 e)— ﬁ] X

gle) x @ ((mo‘) ) + V'(a,e) X exp (@) X (1 - <(m°‘) (1 —l—e))) . Evaluating this function
at the second best effort and given (5) we obtain Ji(eq, | @) = V'(a,e.,) X exp (@) X

(1 - ((mo‘) (1+ eSB)>) > 0. This implies F’ [Ua (Wa(a, F, BSB|I€)>:| = —exp(—aF+V(a,e,,)) %
SB
Js(esp | @) < 0. Therefore, for the constrained manager, the marginal utility of effort at e, is neg-
ative. Since e,., is unique and the function is continuous in e, given conditions (B5) and (B6), it
follows that e, > e, .
Finally, given equation (B4), J.(eq, |@) tends to zero when xa tend to infinity.

Proof of Corollary 2. We know that e, ,(0) = 0. According to (B5), for any & € (0,1], there
exists e, (&) > 0 such that J.(e,, | &) = 0. The function J is continuous and differentiable with
respect to (a, e). Given (B6), the implicit function theorem allows us to solve “locally” the equation;
that is, to express e as a function of « in a neighborhood of (&, e, ).

More formally: given & € (0, 1] there exists a function e(a),continuous and differentiable, and an
open ball B(&), such that e(&) = e,., and J.(e(a)|a) =0 for all & € B(&). Taking the derivative
of the last equation with respect to « and evaluated at &, a%e(d) = —a%JH(eTB &) x Tt e,, |&).
From (B6), J/(e,, | &) > 0. Therefore, the proposition will be proved if we show 2 J,(e,, | &) =
V'(a,ery) X 2=gu(ers| &) + 2 gl(eq | &) <0, for all & € (0,1]. From (S2), V/(a,e,,) >0 . From
Corollary 1, 2 g,(e,,|&) < 0. Finally, given equation (B3), 2g.(e,,|&) < 0. Since the proof
holds for any & € (0, 1], the Corollary is proved.
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Proof of Proposition 3. Given the investor’s indirect utility function in Section 3 the investor’s

- 1/2
unconditional expected utility will be £ {Ub (Wb(a, F,e] I{))} = —exp(aF/r) x (1;) X

Kao

= 14 eM(a)
— —(1/2)y?e ———" ) 4
+/_ﬁzameXp< (1/2)y7e 1o e ) Y+

exp (“‘“La ;’L(O‘)>2> /OC \/12? exp (‘2(116)@ + mam(a))2> dy

We propose the following change of variable: s = @(y — kaam(a))? if y < —He s =
y2e H%MJG) if |y| < £9¢ and s = (l—ie)(y + kaam(a))? if y > £ Replacing the new variable in

the investor’s unconditional expected utility we obtain (13).

Proof of Proposition 4. First, we prove the results under the assumption of public information.
The following Lemma shows that the first best split is (first-order) optimal in the absence of moral
hazard:

=0.

FB

Lemma 2 Given any effort e > 0, %E [Ub (Wb(a, e|l€)>}

=

Proof: Given the definition (14), B%E [Ub (Wb(a,em))] = —exp(V(a,e)/r) x gule|a)'/"

x (Lgu(e|a)™ x Zgule|a) x fula,e) + 5= fu(a,e)). Evaluating this equation at .,

0 ~
2 E [Ub (Wb(am,em))] - (BS)
—exp(V(a,e)/r) X gu(e]a,,)" x lig (e|a )Jrif (apg,€) |-
? K FB r aa K FB aa K FB?
2
Taking the derivative of g, (e | @) with respect to «, %gn(e | @) ‘Dﬁa = -2 %exp (é (%) ) X
~SB

2 2
[¢ <1ie (1’117-) ) _ % (1 _P <1Jer€ ({fr) ))} . Taking now the derivative of fy(a, e) with respect
(a)?

10 o, 55 Fx(@sp:€) = 2iiry exp (é (fjrar)?) - [¢ <14£e (ffr)Q) ~3 (1 ) (1156 (:&)2))} '

Replacing the two later expressions in (B8) the lemma is proved.

Evaluating (14) at «,, yields the investor’s expected utility function in the constrained public-
information scenario as a function of effort:

E [Ub (Wb(aFB,eM))] = —exp(V(a, e)/r) X gule]ap, )+, (B9)

Finally, taking the derivative of (B9) with respect to effort and making it equal to zero we
obtain the following characterization of the constrained public-information effort e..,.,: V/(a,e,,,) =

—(14r) 5—:’7 (écp; | @pp)- Tt is easy to show that when x — oo the later condition converges to condition
(8) for the first best effort. Clearly, for any finite &, e,,, < €.
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We now prove the result under moral hazard. According to (B5), given the second best a, =
> 0, there exists a unique e, (ag,) > 0such that J. (e, | @,,) = 0. Since the participation con-

1+r
straint is binding, «, will be optimal (necessary condition) only if a%E {Ub (Wb(m e(a) |m))] ’

=%sB
0, where e(a) is, according to Corollary 2, a continuous and differentiable function, increasing in «
with e(ag,) = epp-

We take the derivative of (14) with respect to a,

%E [Ub (Wb(a,e(a)m)ﬂ -
%E [Ub (Wb(a,e) m)] n %E [Ub (Wb(a,eﬂn))] x %e(a).

Evaluating (14) at a,, E {Ub (Wb(aSB,eM)H = —exp(V(a,e)/r) x ge(e|ag,)7)/7. Taking the
derivative of the latter expression with respect to e and evaluating it at e, ,:

%E [Ub (Wb(assaem |’i)>} -

1
B ; eXp(V(a’ eTB)/T) X g’ﬁ(eTB |aSB)1/T. X [jﬁ(eTB |aSB) + Tgl{i(eTB |aSB>] N

By definition, J. (e, |agy) = 0. From (B2), ¢l.(e,, | ag,) < 0. Therefore, given Lemma 2, the
definition of g, (-) in Proposition 1 and Corollary 2:

0 _ 1/r / 0
F=E Uy (Wolarsy elasy) 7)) | = —exp(V (@) /1) %0u(erp [0sp) 7 Xgh(ery [asy) x5 —e(asp) > 0.

Therefore, a,, is suboptimal in the third best scenario.

SB
Proof of Proposition 6. The measure used to compare both contracts is the investor’s certainty
equivalent wealth. Given the investor’s utility function, Uy(W,) = —exp(—bW}), the certainty
equivalent wealth of the expected utility u is given by the inverse of this function, C(u) = —In(—u)/b.
Clearly, for any two values of the investor’s expected utility, u; and usg, u; > wue if and only if
C’(ul) > C(UQ)

Given Lemma 2, ., is optimal in the linear, constrained public-information case. Hence, the
investor’s expected utility is given by equation (B9) and the constrained, linear certainty equivalent
wealth (net of disutility of effort) turns out to be Cy (e, a,,) = 2 (-Ingy(e|a,,)).

In the case of quadratic contracts, given (A5), the constrained, quadratic certainty equivalent

L % 2 Ing (| Q7)) ~
(net) wealth is given by C(e,y) = o ln(l - 1+'é) + %ln(l + ﬁ) - % Taking the

first-order Taylor expansion of the logarlthmlc function, we can rewrite the later expression as
Ci(e,7) ~ 2o (Ingu(e] Q(1))):

From PropObltlon 1 and Corollary 1 we know that gx(e|a) is decreasing in « and e and bounded
below one. Moreover, given equation (B2) in the Appendix B, % g..(e]a) < 0. Since, by definition,
Q(y) > o, then |gr(e| Q(Y))| < |gr(e | a,y)| for any e and . Therefore, given the definition of

Q(v), we can write Cy(e,a) — Cl(e,v) > (1 — fil) (_lngk(eJamj> , for any v, a and e. Tt is

now straightforward to see that the right-hand term in the later expression is strictly positive if and
only if assumption (S4) holds.

Notice that the later proof holds for any . It is trivial to prove that the same result follows in
the unconstrained scenario when x — oo.
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Table 1: Optimal third best values of o and comparative statics with the
first best for 1/b = 24.

Aa/a and Ae/e represent, respectively, the (percentage) change in the investor’s optimal contract
and the manager’s effort expenditure when the later is offered the (sub-optimal) first best split ;. ,
in the constrained, third best scenario. AC/C, can be interpreted as the net return that would
compensate the investor for the lower utility of the suboptimal share o, in the third best scenario.
The manager’s disutility function of effort is assumed to be V(a, e) = ae®. First best values a,, are

reported in parenthesis.

Value of the short-selling constraint x

1 2 3 4 ) 6 7 8 9 10

Manager’s risk tolerance 1/a =3 (o, , = 0.11)

Ay 043 035 031 0.28 025 024 022 021 020 0.19
Aa/a 287 215 179 152 125 116 98.0 89.0 80.0 70.9
Aefe 128 969 804 681 56.3 51.3 433 388 344 30.2
AC/C 29.0 228 193 168 149 134 121 11.0 10.0 09.1

Manager’s risk tolerance 1/a =8 (o, = 0.25)

FB
Oy 0.61 053 048 046 043 042 040 0.39 038 0.38
Aa/a 144 112 92.0 84.0 720 68.0 60.0 56.0 52.0 52.0
Ae/e 69.8 54.0 44.5 40.3 34.7 325 28.7 26.7 247 244
AC/C 131 101 085 075 06.7 06.2 057 053 050 04.7

Manager’s risk tolerance 1/a =15 (a,, = 0.38)

Oy 0.72 0.65 0.60 0.58 056 0.54 053 0.52 051 0.50
Aa/a 872 69.0 56.0 50.8 456 40.4 37.8 352 32.6 30.0
Ae/e 440 342 277 249 223 198 185 172 159 146
AC/C 06.7 05.0 04.1 035 031 028 026 024 023 021

Manager’s risk tolerance 1/a = 24 (a,, = 0.50)

Opp 079 0.73 0.69 0.68 0.65 0.63 062 0.61 061 0.60
Aa/a 58.0 46.0 38.0 36.0 30.0 26.0 24.0 220 22.0 20.0
Aefe 30.0 23.22 189 177 148 128 11.8 10.8 10.7 09.8
AC/C 037 027 022 01.8 01.6 014 01.3 012 01.1 010
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Table 2: Optimal values of v, effort expenditure and expected utility for

1/b = 24. The manager’s disutility function of effort is assumed to be V' (a,e) = ae®.

2

The superscripts @ and L denote quadratic and linear case, respectively. The second

best values (SB) are reported in the last row.

Manager’s risk tolerance 1/a =3 Manager’s risk tolerance 1/a = 8
K Yom e?B eﬁB EUtility®  EUtility" | ~,, e?B egB EUtility®  EUtility"
1 034 0.16 0.16 -0.991087 -0.990022 | 0.48 0.19 0.20 -0.990211  -0.989047
2 0.55 0.25 0.22 -0.979621 -0.978200 | 0.77 0.28 0.28 -0.977943  -0.975501
3 071 032 0.26 -0.967645 -0.966392 | 1.03 0.35 0.33 -0.965316 -0.961540
4 0.85 0.38 0.28 -0.955652 -0.954970 | 1.26 041  0.38 -0.9528 -0.947647
5 098 044 030 -0.943858 -0.944080 | 1.46 046 041 -0.940589  -0.934030
6 1.10 049 0.32 -0.932377 -0.933765 | 1.67 0.51 045 -0.928777  -0.920793
7 1.21 054 0.33 -0.92127 -0.924058 | 1.85 0.55  0.48 -0.917407 -0.907998
8 1.32 059 0.35 -0.91057 -0.914938 | 2.03 0.59  0.50 -0.906501  -0.895667
9 141  0.63 0.36 -0.900294 -0.906402 | 2.21  0.63  0.53 -0.89606 -0.883818
10 | 1.52  0.68 0.37 -0.890446  -0.898428 | 2.39 0.67 0.56 -0.886083  -0.872449
SB | 359 176 0.50 -0.713478 -0.804401 | 7.29 1.65 1.00 -0.704506 -0.656763
Manager’s risk tolerance 1/a = 15 Manager’s risk tolerance 1/a = 24
K Yorm e?B eﬁB EUtility®  EUtility" | ~,, eg’?B eﬁB EUtility®  EUtility"
1 0.57 0.21 0.22 -0.98981 -0.988605 | 0.62  0.22  0.23 -0.989596  -0.988357
2 091 030 031 -0.977114 -0.974225 | 099 031 033 -0.976654 -0.973472
3 1.22 037 037 -0.964085 -0.959209 | 1.33  0.38  0.40 -0.963387  -0.957794
4 1.51 043 043 -0.951195 -0.944096 | 1.65 0.44 0.46 -0.950262 -0.941906
5 1.76 048 0.47 -0.938635 -0.929127 | 2.00 0.50  0.51 -0.937472  -0.926050
6 2.04 053 051 -0.926493 -0.914429 | 224 054 0.55 -0.925109 -0.910391
7 226 0.57 0.55 -0.914813  -0.900075 | 2.57  0.59  0.59 -0.913206 -0.895004
8 250 0.61 0.58 -0.90361 -0.886108 | 2.85 0.63  0.63 -0.901786  -0.879943
9 275 0.65 0.61 -0.892884  -0.872550 | 3.14  0.67  0.67 -0.890849 -0.865238
10 | 3.00 0.69 0.64 -0.882634 -0.859416 | 3.37 0.70 0.70 -0.880389  -0.850908
SB | 10.78 1.66 1.50 -0.689056  -0.521662 | 14.01 1.698 2.00 -0.675152  -0.393787
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Figure 1: Manager’s effort as a function of a for different values of x =
{1(steepest), 4, 7,10(flatest)}. The manager risk tolerance coefficient is 1/a = 8.
The horizontal line represents the second best effort e, = 1, constant for all a.
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Figure 2: The investor’s percentage certainty equivalent loss, AC/C, (relative to the
first best certainty equivalent wealth), as a function of his risk-tolerance coefficient
1/b, when the manager is offered a quadratic contract.
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Figure 3: Investor’s expected utility as a function of « for different values of k. The
manager and the investor are assumed to have the same risk tolerance coefficient
1/a =1/b = 8. The vertical lines denote the corresponding optimal third best alpha.
The first alpha is equal to 0.50.
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