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ABSTRACT

This paper analyzes portfolio diversification for nonlinear transformations of heavy-tailed risks. It is
shown that diversification of a portfolio of convex functions of heavy-tailed risks increases the portfolio’s
riskiness, if expectations of these risks are infinite. On the contrary, for concave functions of heavy-tailed
risks with finite expectations, the stylized fact that diversification is preferable continues to hold. The
framework of transformations of heavy-tailed risks includes many models with Pareto-type distributions
that exhibit local or moderate deviations from power tails in the form of additional slowly varying or
exponential factors. The class of distributions under study is therefore extended beyond the stable class.

KEYWORDS: heavy-tailed risks; nonlinear transformations; portfolios; diversification; riskiness;
value at risk; risk bounds; Pareto-type distributions; power laws; local and moderate deviations; domain
of attraction of stable distributions

JEL Classification: G11

1 Introduction

In the recent four decades, we have witnessed a rapid expansion of the study of heavy-tailedness and the
extreme outliers phenomena in economics and finance. Beginning with Mandelbrot (1963) and Fama
(1965b), numerous studies have documented that time series encountered in many fields in economics
and finance are typically heavy-tailed and have infinite moments of order p ≥ α for certain α > 0 (see
the discussion in Loretan & Phillips 1994, Gabaix, Gopikrishnan, Plerou & Stanley 2003, Ibragimov
2004a,b, 2005, Rachev, Menn & Fabozzi 2005, Ibragimov & Walden 2007, and references therein).

In models involving a heavy-tailed cdf F with infinite moments of order greater than or equal to α,
it is typically assumed that F has Pareto (power) tails:

F (x) =
c1 + o(1)
|x|α , x → −∞; 1− F (x) =

c2 + o(1)
xα

, x → +∞, (1)

or, more generally, that F is of Pareto-type, so that

F (x) =
c1 + o(1)
|x|α l(|x|), x → −∞; 1− F (x) =

c2 + o(1)
xα

l(x), x → +∞. (2)

Here, c1, c2 are some positive constants and l(x) is a slowly varying function at infinity: l(λx)/l(x) → 1,

as x → +∞, for all λ > 0, and α is the so-called tail index. Well-known examples of distributions
satisfying (1) are stable laws with α ∈ (0, 2), that is, distributions that are closed under portfolio
formation (see Section 2).

We mention a sample of estimates of the tail index α for returns on various stocks and stock
indices: 3 < α < 5 (Jansen & de Vries 1991), 2 < α < 4 (Loretan & Phillips 1994), 1.5 < α < 2
(McCulloch 1997), 0.9 < α < 2 (Rachev & Mittnik 2000), α ≈ 3 (Gabaix et al. 2003). As discussed by
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Nešlehova, Embrechts & Chavez-Demoulin (2006), tail indices less than one are observed for empirical
loss distributions of a number of operational risks. Furthermore, Scherer, Harhoff & Kukies (2000) and
Silverberg & Verspagen (2004) report the tail indices α to be considerably less than one for financial
returns from technological innovations. Rachev et al. (2005) discuss and review the vast literature that
supports heavy-tailedness and Pareto distributions for equity and bond returns.2

As was shown in Ibragimov (2004a,b, 2005) in a general context based on majorization theory
and arbitrary portfolio weights comparisons, diversification may be inferior for convolutions of stable
extremely heavy-tailed and possibly dependent risks whose cdf’s F satisfy power law (1) with α < 1.
According to Ibragimov (2004a,b, 2005), diversification is typically preferable for convolutions of stable
heavy-tailed risks that follow (1) with α > 1. Recently, Ibragimov & Walden (2007) showed that, with
bounded risks concentrated on a sufficiently large interval, diversification may be suboptimal up to a
certain number of risks and then become optimal. The above findings generalize the results in Fama
(1965a), Samuelson (1967) and Ross (1976) on portfolio choice in the stable framework and riskiness
analysis for portfolios of stable risks with equal weights. Several examples that illustrate the phenomenon
that diversification is not always preferable are presented in Kaas, Goovarets & Tang (2004).

Clearly, understanding the conditions under which diversification is preferable is core to fields such
as finance, banking and insurance. Stable distributions form a small subclass of the class of Pareto-
type laws and the previous examples of heavy-tailed distributions may not belong to this subclass. A
natural question is therefore whether the stylized facts about riskiness and portfolio diversification can
be extended beyond the subclass of stable distributions. The main objective of this paper is to carry
out such an extension. We analyze portfolio diversification for nonlinear transformations of heavy-tailed
risks, to understand under what distributional assumptions failure of diversification occurs. We use the
framework of value at risk as a measure of portfolio riskiness.

Our contribution to the literature is two-fold. First, we show that diversification of a portfolio of
convex functions of heavy-tailed risks increases its riskiness if expectations of these risks are infinite
(Theorem 2). However, the stylized fact that diversification is always preferable continues to hold for
concave (on R+) functions of heavy-tailed risks with finite expectations (Theorem 1).

Second, we use the results on nonlinear transformations to model a large class of Pareto-type distri-
butions. The class of nonlinear transformations of heavy-tailed r.v.’s considered in this paper provides a
natural framework for modeling risks with distributions exhibiting departures from power laws. Specifi-
cally, let us define recursively the iterations of a logarithm by ln0(x) = x, lnk(x) = ln

[
lnk−1(x)

]
, k ≥ 1,

for all large positive x. Let m ≥ 0 and let γ1, ..., γm ∈ R be some constants. The stochastic framework
considered in the paper covers risks Y whose tails behave as

P
(
|Y | > x

)
³ x−α

m∏

i=1

[
lni (x)

]γi

= x−α(ln x)γ1(ln ln x)γ2 ...(ln ln ... ln x)γm , x →∞ (3)

2Recently, using the framework of nonlinear transformations of r.v.’s, Malevergne & Sornette (2003) have focused on
the analysis of value at risk (VaR) and other measures of risk for the class of heavy-tailed risks with Weibull-like (stretched
exponential) distribution. Contrary to our analysis, these tails decay faster than any power law (1) (see also Malevergne
& Sornette 2004b,a, for a review of properties of Weibull-type distributions).
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(here and throughout the paper, g(x) ³ h(x) as x → ∞ denotes that there are constants, c and C

such that 0 < c ≤ g(x)/h(x) ≤ C < ∞ for large x > 0). In particular, the choice γk = −1, γs = 0,
1 ≤ s ≤ m, s 6= k, produces deviations from power law (1) of the form P

(
|Y | > x

)
³ 1

xα lnk(x) . Similarly,
the choice γk = 1, γs = 0, 1 ≤ s ≤ m, s 6= k corresponds to the deviations from power law (1) of the
form P

(
|Y | > x

)
³ lnk(x)

xα . Also, when α = 1 the above relations correspond to deviations from the Zipf

law (1) of the form P
(
|Y | > x

)
³ 1

x lnk(x) ; P
(
|Y | > x

)
³ lnk(x)

x . Reminiscent of the terminology in the
time series unit root literature (see Phillips 1988, Phillips & Magdalinos 2004), it is natural to refer to
distributions whose tails satisfy one of relation (3) as exhibiting “local” or “moderate” deviations from
power laws. Corollaries 1 and 2 provide results for when diversification will and will not be preferred
for such deviations. We also show that the results above can not be generalized to the whole class of
Pareto-type distributions (see Examples 2 and 1 in In Subsection 3.1). In order to highlight the main
ideas and concepts discussed, the results in this paper are formulated in the framework of independent
risks, which is the case where diversification works best. One can obtain analogous results for wide
classes of dependent risks, including those with α−symmetric distributions and convolutions of models
with common shocks. The extension to dependent risks is quite straightforward, and is similar to the
extensions in Ibragimov (2004a,b, 2005), Ibragimov & Walden (2007).

The paper is organized as follows. Section 2 introduces classes of distributions we are dealing with
throughout the paper and discusses their main properties. Section 3.1 presents our main results on
diversification and its effects on the value at risk of portfolios of nonlinear transformations of heavy-
tailed risks. Section 3.2 discusses implications of the results for local and moderate deviations from
power laws in form (3). Finally, Section 4 makes some concluding remarks. All proofs are left to the
Appendix.

2 Notations and classes of distributions

We say that a r.v. X with density p : R → R and the convex distribution support Ω = {x ∈ R : p(x) >

0} is log-concavely distributed if log p(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω, and any
λ ∈ [0, 1], p(λx1+(1−λ)x2) ≥ (p(x1))λ(p(x2))1−λ (see An 1998). A distribution is said to be log-concave
if its density p satisfies the above inequalities. Examples of log-concave distributions include the normal,
uniform, exponential and logistic distributions, the Gamma distribution Γ(α, β) with α ≥ 1, the Beta
distribution B(a, b) with a ≥ 1 and b ≥ 1, and the Weibull distributionW(γ, α) with α ≥ 1. If a r.v. X is
log-concavely distributed, then its density has at most an exponential tail, that is, p(x) = o(exp(−λx))
for some λ > 0, as x → ∞ and all the power moments E|X|γ , γ > 0, of the r.v. exist (see Corollary 1
in An 1998). We denote by LC the class of symmetric log-concave distributions.

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with
the index of stability α, the scale parameter σ, the skewness parameter β and the location parameter
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µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic function

E(eixX) =





exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x) ln |x|)} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0
and sign(x) = −1 otherwise. In what follows, we write X ∼ Sα(σ, β, µ), if the r.v. X has the stable
distribution Sα(σ, β, µ). A closed form expression for the density f(x) of the distribution Sα(σ, β, µ)
is available only in the following cases: α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy
distributions); α = 1/2 and β = ±1 (Lévy distributions). If X ∼ Sα(σ, β, µ), then its distribution
satisfies power law (1). Distributions Sα(σ, β, µ) with µ = 0 for α 6= 1 and β = 0 for α = 1 are
called strictly stable. If Xi ∼ Sα(σ, β, µ), α ∈ (0, 2], are i.i.d. strictly stable r.v.’s, then, for all

ai ≥ 0, i = 1, ..., n, with
∑n

i=1 ai 6= 0, we have
∑n

i=1 aiXi/
(∑n

i=1 aα
i

)1/α
∼ Sα(σ, β, µ) (see Zolotarev

(1986), Embrechts, Klüppelberg & Mikosch (1997) and Rachev & Mittnik (2000) for a detailed review
of properties of stable distributions).

Let R+ = [0,∞). Throughout the paper, M denotes the class of differentiable odd functions f : R →
R such that f is concave and increasing on R+ and M denotes the class of odd functions f : R → R
such that f is convex and increasing on R+. Further, M

′ (resp. M ′) denotes the subclass of M (resp.
M) consisting of functions f which are strictly concave (strictly convex) on R+.

By CT SLC, we denote the class of convolutions of log-concave distributions and distributions of
transforms f(Y ), f ∈ M , of symmetric stable r.v.’s Y ∼ Sα(σ, 0, 0) with characteristic exponents
α ∈ [1, 2] and σ > 0. In what follows, we write X ∼ LC (resp., X ∼ CT SLC) if the distribution of the
r.v. X belongs to the class LC (resp., CT SLC). The class CT SLC thus consists of distributions of r.v.’s
X such that, for some k ≥ 1, and independent r.v.’s Y0 ∼ LC and Yi ∼ Sαi(σi, 0, 0), αi ∈ [1, 2], σi > 0,

i = 1, ..., k,

X = θY0 + f1(Y1) + ... + fk(Yk), (4)

where θ ∈ {0, 1}, fi ∈ M , if αi > 1, and fi ∈ M
′ if αi = 1, i = 1, ..., k. (It will follow from our

analysis that αi = 1 is a special case, for which the assumption fi ∈ M
′ is needed for the value at risk

comparisons to be strict).

3 Main results

3.1 Diversification of nonlinear transformations of heavy-tailed risks

Let 0 < q < 1/2. Given a r.v. (risk) Z, we denote by V aRq[Z] the value at risk (VaR) of Z at level q, that
is, its (1− q)−quantile: V aRq[Z] = inf{z ∈ R : P (Z > z) ≤ q} (throughout the paper, we interpret the
positive values of Z as a risk holder’s losses). For n ≥ 1, the sample mean Xn represents the return on
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the portfolio of risks X1, ..., Xn with equal weights wn = (1/n, 1/n, ..., 1/n): Xn =
1
n

n∑

i=1

Xi. Theorem

1 shows that diversification continues to be preferable for convex transformations of heavy-tailed risks
with finite expectations.

Theorem 1 The following conclusions hold.

• Let Y1 ∼ Sα(σ, β, 0), α ∈ [1, 2], σ > 0, β ∈ [−1, 1]. Further, let X1 and X2 be i.i.d risks such that
X1 = f(Y1), where f ∈ M ; f ∈ M

′ for α = 1. Then V aRq[X2] < V aRq[X1].

• Let k ≥ 1 and let X1, ..., X2k be i.i.d risks such that X1 ∼ CT SLC. Then V aRq[X2k ] <

V aRq[X2k−1 ] < ... < V aRq[X1].

On the contrary, Theorem 2 demonstrates that the stylized fact on diversification being preferable is
reversed for concave (on R+) transformations of heavy-tailed risks with infinite expectations.

Theorem 2 Let Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1], σ > 0, β ∈ [−1, 1]. Further, let X1 and X2 be i.i.d. risks
such that X1 = f(Y1), where f ∈ M ; f ∈ M ′ for α = 1. Then V aRq[X1] < V aRq[X2].

These results may seem intuitive, as α = 1 is the value at which the preferability of diversification is
reversed for stable distributions (see Ibragimov 2004a,b, 2005, Ibragimov & Walden 2007). For example,
in the case of i.i.d. symmetric Cauchy risks Xi ∼ S1(σ, 0, 0), i = 1, ..., n, we have Xn ∼ S1(σ, 0, 0), so that
diversification has no effect on the portfolio VaR. However, outside the class of stable distributions the
effects of diversification on portfolio riskiness are not that simple. In fact, the intuition that distributions
with thinner tails than Cauchy-type power laws (equations (1) with α = 1) are always “good” to diversify
and distributions with heavier tails are always “bad,” may not hold. Let us give two examples:

Example 1 Risks with heavier tails than those of Cauchy distributions, where diversification may be
preferable: An example of dependent risks with such properties is provided by the following construction.
Consider risks Ui given by Ui = ZXi, i = 1, ..., 2k, where Xi = f(Yi), f ∈ M

′, Yi ∼ S1(σ, 0, 0) are i.i.d.
symmetric Cauchy r.v.’s and Z > 0 is a positive r.v. independent of Y ′

i s. This is an example of a
model with a common shock Z that affects all dependent risks Ui. The risks Ui have tails that are
heavier than those of Cauchy distributions with α = 1 in the case of common shocks Z with infinite first
moments: EZ = ∞. However, using Theorem 1 and conditioning arguments, we get that V aRq[U2k ] <

V aRq[U2k−1 ] < ... < V aRq[U1], so diversification is preferable.

Example 2 Risks with thinner tails than those of Cauchy distributions, where diversification may not
be preferable: Consider i.i.d. risks X1, X2 such that Xi = f(Yi), where f ∈ M ′ and Yi ∼ S1(σ, 0, 0)
are i.i.d. symmetric Cauchy r.v.’s. In particular, as discussed in the introduction and in the next
subsection, the above setup models risks with tails exhibiting deviations from power laws (1) in the form
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P
(
|Xi| > x

)
³ lnk(x)

x . Further, let Zi, i = 1, 2, be i.i.d. symmetric stable risks with the tail index α > 1,
say α = 1.1 : Zi ∼ Sα(σ, 0, 0), so that the tails of their distributions decline to zero faster than those of
Cauchy distributions. Given A > 0, define the risks Y

(A)
i = XiI(|Xi| < A) + ZiI(|Zi| > A), where I(·)

stands for the indicator function. Clearly, the tails of distributions of the risks Y
(A)
i behave like those

of Zi: P (|Y (A)
i | > x) ³ P (|Zi| > x) ³ 1

xα for large x and are thus thinner than the tails of Cauchy
distributions with α = 1.

From Theorem 2 it follows that V aRq[X1] < V aRq[12(X1 + X2)]. Since, evidently, Y
(A)
i → Xi (in

distribution) as A → ∞, this implies that there exists a sufficiently large A such that diversification
can not be said to be optimal for the risks Y

(A)
i with thinner tails than those of Cauchy distributions:

V aRq[Y
(A)
1 ] < V aRq[12(Y (A)

1 + Y
(A)
2 )].

3.2 Diversification and value at risk under deviations from power laws

As indicated in the introduction, the class of nonlinear transformations of heavy-tailed r.v.’s considered
in this paper provides a natural framework for modeling risks with distributions exhibiting local to
moderate departures from power laws in forms (2) and (3).

Let m ≥ 0, γ1, ..., γm ∈ R. Further, let x0 be a large positive constant. Consider the odd increasing
on R function V defined by

V (x) = (x + x0)
m∏

i=1

[
lni (x + x0)

]γi/α
− x0

m∏

i=1

[
lni (x0)

]γi/α
, V (−x) = −V (x), x > 0.

For k ∈ {1, 2, ..., m} and sufficiently large x we have that the function G(x) = x
∏m

i=k gi(x), where
gi(x) =

(
lni (x)

)γi/α
, satisfies

G′′(x)
g′k(x)

∏m
i=k+1 gi(x)

=
m∑

i=k

g′i(x)gk(x)
g′k(x)gi(x)

+
m∑

i=k

(
1 +

xg′′i (x)
g′i(x)

)g′i(x)gk(x)
g′k(x)gi(x)

+
∑

k≤i<j≤m

g′i(x)gk(x)
g′k(x)gi(x)

· xg′j(x)
gj(x)

. (5)

Let us show, using (5), that

G′′(x)
g′k(x)

∏m
i=k+1 gi(x)

= 1 + o(1) (6)

as x →∞. Since

g′i(x) =
(γi/α)gi(x)

x
∏i

j=1 lnj(x)
(7)

we get that g′i(x) = o
(gi(x)

x

)
as x →∞ for k ≤ i ≤ m, and g′i(x)

gi(x) = o
(g′k(x)

gk(x)

)
as x →∞ for k + 1 ≤ i ≤ m.

To show that 1+ xg′′i (x)
g′i(x)

= o(1) as x →∞ for all k ≤ i ≤ m, we rewrite 1+ xg′′i (x)
g′i(x)

= 1+x
d(ln[g′i(x)])

dx which

by (7) is equal to 1+x d
dx

(
ln(γi/α) + ln[gi(x)]− ln(x)−∑i

j=2 lnj(x)
)

= x
g′i(x)
gi(x) −

∑i
j=2 x d

dx [lnj(x)]. The
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first term in this expression is o(1) as shown above, and, as d
dx [lnj(x)] = (x

∏j−1
k=1 lnk(x))−1 for j ≥ 2,

each of the other summands is also o(1). From (5) and the above relations it follows that (6) indeed
holds and, consequently, G′′(x) (and, therefore, V ′′(x)) has the same sign as g′k(x) for sufficiently large
x.

This implies that the function V (x) is strictly convex on [0,∞) for a sufficiently large x0 if γ1 = 0, ...,
γk−1 = 0, γk > 0 for some k ∈ {1, 2, ..., m}. Similarly, V (x) is strictly concave on [0,∞) for a sufficiently
large x0 if γ1 = 0, ..., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m}. In addition, since, for Y = V (Z),

P
(
|Y | > x

)
= P

(
|Z| > V −1(x)

)
and V −1(x) ³ x

∏m
i=1

[
lni (x)

]−γi/α
as x → ∞, one gets that the

distribution of Y satisfies (3) if Z is a r.v. whose cdf F follows power law (1).

The results on nonlinear transformations of heavy-tailed risks imply Corollaries 1 and 2 below. These
corollaries concern the analysis of portfolio diversification under local, and moderate deviations from
power laws in form (3). For instance, Corollary 1 demonstrates that the stylized facts on portfolio
diversification continue to hold for portfolios of nonlinear transformations of risks with the tail index
α ≥ 1 whose distributions have tails that satisfy (3) with α > 1 or with α = 1, γ1 = 0, ...., γk−1 = 0,
γk > 0 for some k ∈ {1, 2, ..., m}. Thus, Corollary 1 implies that portfolio diversification decreases
portfolio riskiness in the world of risks whose distributions are even slightly thinner than those of
Cauchy r.v.’s.

Corollary 1 Let the parameters of the function V be such that γ1 = 0, ..., γk−1 = 0, γk < 0 for some
k ∈ {1, 2, ...,m}. Further, let x0 in the definition of V be sufficiently large so that the function is well-
defined, odd and increasing on R and is strictly concave on [0,∞). If X1 and X2 are i.i.d risks such
that X1 = V (Y1), where Y1 ∼ Sα(σ, β, 0), α ∈ [1, 2], σ > 0, β ∈ [−1, 1], then the conclusions of Theorem
1 hold.

However, Corollary 2 implies that diversification always leads to an increase in riskiness for portfolios
of nonlinear functions of risks with α ≤ 1 whose distributions have tails satisfying (3) with α < 1 or with
α = 1, γ1 = 0, ...., γk−1 = 0, γk < 0 for some k ∈ {1, 2, ..., m}. Thus, Corollary 2 shows that riskiness of
a portfolio increases with diversification for risks with distributions whose tails are even slightly heavier
than those of Cauchy r.v.’s.

Corollary 2 Let the parameters of the function V be such that γ1 = 0, ..., γk−1 = 0, γk > 0 for some
k ∈ {1, 2, ...,m}. Further, let x0 in the definition of V be sufficiently large so that the function is well-
defined, odd and increasing on R and is strictly convex on [0,∞). If X1 and X2 are i.i.d risks such that
X1 = V (Y1), where Y1 ∼ Sα(σ, β, 0), α ∈ (0, 1], σ > 0, β ∈ [−1, 1], then the conclusions of Theorem 2
hold.
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4 Concluding remarks

The concept of diversification is a corner stone of financial theory. Understanding when diversification is
preferable is therefore important. This paper provides an extended analysis of this issue beyond the class
of stable distributions. It is an empirical question whether the Pareto-type behavior of economic and
financial data, discussed in the introduction, falls within this extended class. This question is outside
the scope of the current paper, but should be addressed by future research.

Appendix - Proofs

Proof of Theorems 1 and 2. Let α1 ∈ [1, 2], α2 ∈ (0, 1], and let f1 ∈ M, f2 ∈ M. Suppose that f1 ∈ M
′ if

α1 = 1 and f2 ∈ M ′ if α2 = 1. For j = 1, 2, let Y
(j)
1 and Y

(j)
2 be i.i.d. r.v.’s such that Y

(j)
i ∼ Sαj (σ, β, 0),

σ > 0, β ∈ [−1, 1], i = 1, 2, and let X
(j)
i = fj(Y

(j)
i ), i = 1, 2, j = 1, 2. As in the proof of Lemmas 2.7

and 2.8 in Proschan (1965), by the definition of the classes M and M we have that

|f1((y1 + y2)/2)| ≥ |(f1(y1) + f1(y2))/2|, (8)

|f2((y1 + y2)/2)| ≤ |(f2(y1) + f2(y2))/2| (9)

for all y1, y2 ∈ R. In addition, inequality (8) is strict for y1 + y2 6= 0 if f1 ∈ M
′. Similarly, inequality

(9) is strict for y1 + y2 6= 0 if f2 ∈ M ′. Since the functions |fj(x)|, j = 1, 2, are increasing in |x|, we,
therefore, get that

|f1((y1 + y2)/21/α1)| ≥ |(f1(y1) + f1(y2))/2|, (10)

|f2((y1 + y2)/21/α2)| ≤ |(f2(y1) + f2(y2))/2|. (11)

Obviously, inequality in (10) is strict for y1 + y2 6= 0 if α1 > 1 and inequality in (11) is strict for
y1 + y2 6= 0 if α2 < 1. Since 2−1/αj (Y (1)

1 + Y
(1)
2 ) ∼ Sαj (σ, β, 0), j = 1, 2, and the functions fj , j = 1, 2,

are odd, this implies that, for all q ∈ (0, 1/2),

V aRq

[X
(1)
1 + X

(1)
2

2

]
= V aRq

[f1(Y
(1)
1 ) + f1(Y

(1)
2 )

2

]
<

V aRq

[
f1

(Y
(1)
1 + Y

(1)
2

21/α1

)]
= V aRq

[
f1(Y

(1)
1 )

]
= V aRq

[
X

(1)
1

]
(12)

and

V aRq

[X
(2)
1 + X

(2)
2

2

]
= V aRq

[f2(Y
(2)
1 ) + f2(Y

(2)
2 )

2

]
>

V aRq

[
f2

(Y
(2)
1 + Y

(2)
2

21/α2

)]
= V aRq

[
f2(Y

(2)
1 )

]
= V aRq

[
X

(2)
1

]
. (13)
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According to relation (12), the part of Theorem 1 for transformations of stable r.v.’s holds. Relation
(13) shows that Theorem 2 is true.

Let now n = 2k, k ≥ 2, and let X1, ..., Xn be i.i.d. r.v.’s such that X1 ∼ CT SLC. By definition of the
class CT SLC, there exist i.i.d. r.v.’s Yit, t = 0, 1, ..., k, i = 1, ..., n, and functions ft ∈ M, t = 1, ..., k, such
that Yi0 ∼ LC and Yit ∼ Sαt(σt, 0, 0), αt ∈ (1, 2], σt > 0, t = 1, ..., k, and Xi = θYi0+f1(Yi1)+...+fk(Yik),
θ ∈ {0, 1}, i = 1, ..., n. From (12) we have that for all i = 1, ..., n/2 and t = 1, ..., k,

V aRq

[ft(Yit) + ft(Yn/2+i,t)
2

]
< V aRq[ft(Yit)]. (14)

In addition, by Proschan (1965),

V aRq

[Yi0 + Yn/2+i,0

2

]
< V aRq[ft(Yi0)]. (15)

According to Theorem 2.7.6 in Zolotarev (1986), p. 134, and Theorem 1.10 in Dharmadhikari &
Joag-Dev (1988), p. 20, the densities of the r.v.’s Yit, t = 0, 1, ..., k, i = 1, ..., n, are symmetric and
unimodal. This implies, as it is not difficult to see, symmetry and unimodality of the densities of the
r.v.’s ft(Yit), ft ∈ M, t = 1, ..., k, i = 1, ..., n. By Theorem 1.6 in Dharmadhikari & Joag-Dev (1988),
p. 13, we get, in turn, that the densities of the r.v.’s (Yi0 + Yn/2+i,0)/2 and (ft(Yit) + ft(Yn/2+i,t))/2,

t = 1, ..., k, i = 1, ..., n, are symmetric and unimodal.

From Lemma in Birnbaum (1948) and its proof it follows that if ξ1, ξ2 and η1, η2 are independent
absolutely continuous symmetric unimodal r.v.’s such that, for j = 1, 2, and all q ∈ (0, 1/2), V aRq[ξj ] <

V aRq[ηj ], then V aRq[ξ1+ξ2] < V aRq[η1+η2], q ∈ (0, 1/2). This, together with (14) and (15), implies by
induction (see also Theorem 1 in Birnbaum, 1948, and Theorem 2.C.3 in Dharmadhikari and Joag-Dev,
1988) that

V aRq[Xn] = V aRq

[ 1
n

n/2∑

i=1

{
θ(Yi0 + Yn/2+i,0) + (f1(Yi1) + f1(Yn/2+i,1))... + (fk(Yik) + fk(Yn/2+i,k))

}]
<

V aRq

[ 2
n

n/2∑

i=1

{
θYi0 + f1(Yi1) + ... + fk(Yik)

}]
= V aRq

[
Xn/2

]
.

This completes the proof of Theorem 1 for distributions from the class CT SLC.

Proof of Corollaries 1 and 2. Corollary 1 follows from Theorem 1 since, under the assumptions of
the corollary, the function V belongs to the class f ∈ M

′. Similarly, Corollary 2 is a consequence of
Theorem 2 and the fact that, under its assumptions, the function V belongs to the class f ∈ M ′.
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