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Abstract

Portfolio management involves position sizing and resource allocation. Traditional and generic portfolio strategies require

forecasting of future stock prices as model inputs, which is not a trivial task since those values are difficult to obtain in

the real-world applications. To overcome the above limitations and provide a better solution for portfolio management,

we developed a Portfolio Management System (PMS) using reinforcement learning with two neural networks (CNN and

RNN). A novel reward function involving Sharpe ratios is also proposed to evaluate the performance of the developed

systems. Experimental results indicate that the PMS with the Sharpe ratio reward function exhibits outstanding performance,

increasing return by 39.0% and decreasing drawdown by 13.7% on average compared to the reward function of trading

return. In addition, the proposed PMS CNN model is more suitable for the construction of a reinforcement learning portfolio,

but has 1.98 times more drawdown risk than the PMS RNN. Among the conducted datasets, the PMS outperforms the

benchmark strategies in TW50 and traditional stocks, but is inferior to a benchmark strategy in the financial dataset. The

PMS is profitable, effective, and offers lower investment risk among almost all datasets. The novel reward function involving

the Sharpe ratio enhances performance, and well supports resource-allocation for empirical stock trading.

Keywords Portfolio management · Equity market neutral · Reinforcement learning · Convolutional and recurrent neural network

1 Introduction

Most conventional trading strategies generate trading

signals based on predetermined subjective indicators,
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such as moving averages [1], relative strength index

[2], and opening range breakout [3, 4]. However, most

indicators provide only long (buy) and short (sell) signals,

regardless of position size (the quantity of commodities)

and risk management (the relevance of commodities). Thus,

portfolio management is used to provide additional control

over investments. There has been considerable research into

the selection of commodities, position sizing, and resource

allocation [5, 6].

Common portfolio strategies, such as modern portfolio

theory (MPT) [7] and the Kelly criterion [8], require

predictions pertaining to future stock prices as inputs

for portfolio management. MPT relies heavily on the

accuracy of the future mean and variance, whereas the

Kelly criterion depends on the probability distribution

of future returns. Nonetheless, a small deviation in the

implementation of these strategies can greatly affect the

weights used in the portfolio. Michaud [9] claimed that

the main problem associated with MPT is its tendency

to maximize error effects in input assumptions. Note

that difficulties in forecasting the mean and variance of

future commodity prices make this approach unsuitable

for portfolio management in actual stock markets. Among

the variants of portfolio strategies, Equity market neutral
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(EMN) is a hedging strategy that enhances risk management

[10] by balancing the holding of relatively strong stocks

with the selling of relatively weak stocks; however,

quantifying and classifying stocks according to their relative

strengths and weaknesses can be difficult.

Reinforcement learning (RL) is an important topic in

machine learning due to its flexibility in many domains

[11, 12], and are used to support decision-making through

enormous trial-and-test schemes. Neural network (NN)

models can also be used as policy agents within the

RL architecture. NNs comprise a number of highly-

interconnected elements, processing information at multiple

levels via dynamic responses to external information [13,

14]. With the rapid development of computing power

and parallel computing, numerous layers of NN are

then formalized, which is known as deep-learning [15,

16]. Common deep-learning architectures include recurrent

neural networks (RNN) [17, 18] and conventional neural

networks (CNN) [19, 20]. Financial data comprises time-

series information related to prices, i.e., opening, highest,

lowest, and closing prices (abbreviated as OHLC prices).

Time-series can be regarded as sequential data well-suited

to prediction tasks based on the RNN model.

The learning mechanism of RL is similar to human

investment activities. Through the interaction between

investors (learning agent) and the stock market (environ-

ment), investors can learn knowledge for further invest-

ment through trial-and-test of actions (investment decision)

and rewards (investment return). Therefore, in this paper,

we sought to overcome the above-mentioned limitations

by developing an efficient Portfolio Management System

(PMS) through the implementation of CNN and RNN

networks within the RL architecture in order to support

decision-making in the allocation of resources. The PMS

presented in this paper comprises three modules: (1) data

pre-processing; (2) NN-based RL portfolio; and (3) EMN

strategy. The first data pre-processing module transforms

price data into input tensors for the NN-based RL portfo-

lio module, which in turn learns trading information from

the data in order to generate long- and short-term portfo-

lios. The EMN strategy module combines long and short

positions to obtain the final states for portfolio manage-

ment. In addition, we use two NN-based models (CNN and

RNN) to deal with spatial and temporal information in order

to refine the portfolio strategy. This makes it possible for

the PMS CNN and PMS RNN systems to assign appropriate

weights to stocks to assist in the allocation of resources

for each training day. Previous works based on RL [21–

23] employed trading returns as a reward function aimed at

optimizing profitability; however, they tend to neglect sta-

bility and risk. The Sharpe ratio [24, 25] is a well-known

indicator of trading performance used to optimize the trade-

off between profitability and risk. In this study, we applied

the Sharpe ratio to the reward function to estimate the

profitability and stability of given strategy.

In our experiments, we used a number of indicators to

evaluate performance of our PMS. Total return measures

the profitability of the used strategy. The Sharpe ratio

indicates the amount of profit that can be earned for a

given unit of risk (volatility), whereas maximum drawdown

(MDD) [26] indicates the maximum losses that can be

borne during trading. These are the most common terms

used to indicate the effectiveness and efficiency of trading

strategies. Experiment results indicate that the proposed

PMS scheme in conjunction with the reward function of

Sharpe ratio can outperform that with the reward function

of trading returns, resulting in a 39% improvement in

returns and a 13.7% reduction in drawdown (novel and

effective reward function). Furthermore, the PMS CNN

outperforms PMS RNN in terms of returns and the Sharpe

ratio, making it suitable for EMN portfolios. The proposed

PMS outperformed existing benchmark strategies (UCRP

[27], Winner, Loser [28, 29]) on all measures using

industrial and TW50 datasets. Our PMS was outperformed

by conventional methods when using datasets from the

financial industry; however, it still achieved positive profits

and Sharpe ratio. When applied to a dataset from the

electronics industry, our PMS suffered large drawdown

and fluctuations in the second half; however, it remained

more profitable than conventional strategies (scalability in

different datasets). Overall, the proposed PMS remains

profitable and low-risk regardless of the dataset, and the

novel reward functions involving the Sharpe ratio and

return factors truly enhance performance. In conclusion,

the proposed PMS is a highly valuable tool for resource-

allocation for empirical stock trading, and makes three

major contributions:

1. Proposed a RL-based portfolio management system,

concatenated with CNN and RNN networks to support

resource-allocation for empirical stock trading.

2. Provide a novel and effective reward function based

on the Sharpe ratio to assess the trade-off between

profitability and risk.

3. Experiment results demonstrate the applicability of CNN

to the formulation of an EMN portfolio as well as the

scalability of the proposed PMS to a variety of datasets.

2 Literature review

2.1 Equity market neutral (EMN)

EMN is a hedging strategy commonly used for portfolio

management, and aims to exploit the differences trends

in stock trend and attribute [10]. EMN is based on short
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selling relatively weak commodities, holding onto relatively

strong commodities, and earning the spread between the

two positions. All of the cash from short positions is

reinvested in the market and covers all of the long positions,

while the equivalent long and short positions are used to

reduce systemic risk in the market. Theoretically, EMN does

not impose any investment capital, and the net investment

money is zero. In fact, short selling requires a certain margin

to maintain the balance of EMN, and EMN still requires

some investment capital in practice.

Many variants of the EMN model have been developed

in recent decades. Alexander and Dimitriu [30] proposed

the EMN strategies with enhanced index tracking, wherein

portfolios are optimized through cointegration rather than

correlation, resulting in 2% annual volatility in the DJIA.

Shyum et al. [31] proposed a multi-factor model using

fundamental and technical descriptors to construct EMN

strategies for the Taiwan stock market. The multi-factor

EMN strategies generated 25.4% returns with a Sharpe

ratio of 1.80, at a time when the market produced 32.0%

returns and Sharpe ratio of 1.26, which enhanced the stables

but sanctify the profitability. Vijayalakshmi and Michel

[32] solved complex constrained EMN portfolios using

differential evolution for optimization.

The above studies demonstrate the effectiveness and

profitability of EMN-based strategies for portfolio man-

agement; however, it should be noted that quantifying and

classifying stocks according to their attributes (strongness

and weakness) is not a trivial task. Practically, investors usu-

ally treat the stock’s past performance as a prediction of

the stock’s future performance, and use it to measure the

attribute of strong. However, it requires a strong assump-

tion that the attribute is stationary, which cannot be proven

and is usually wrong in financial markets. Attributes can

also be evaluated according to their features, such as the

multi-factor model [31] mentioned above; however, feature

collection is costly and there is always the problem of over-

fitting. Thus, we tried to utilize the state-of-art technique of

RL to evaluate stock attributes, determine portfolio weights,

and establish an EMN portfolio strategy.

2.2 Reinforcement learning (RL)

RL is a major discipline of machine-learning, inspired by

the mechanisms underlying human learning, which is the

interaction between the environment and the agent [11, 12].

The simple concept of RL is shown in Fig. 1. Software

agents take appropriate action within the context of the

current state. For infinite number of actions and states, the

agents are usually constructed by the policy networks that

uses the power of neural networks to memorize and predict

appropriate action based on the current state. The rewards

deriving from actions are then estimated by the environment

Fig. 1 A simple architecture of reinforcement learning

to guide the agent learning the subsequent actions in an

iterative process. This progress can gradually improve the

overall performance and find the potential models of the

given problem based on the obtained experiences with the

several trial-and-error steps.

RL is based on the framework of Markov decision

process, which state that the future is independent of the

past given the present [33]. The attributes of the Markov

decision process can also be found in financial markets.

The efficient market hypothesis demonstrates that historical

information is fully and efficiently reflected in the present

price [34]. Therefore, future information can be extracted

from current information, which means that RL and Markov

decision processes have the same view as financial markets

and are suitable for financial problems.

With the rapid development of RL, two main branches

including Q-learning and policy gradient have been

developed. Q-learning is a model-free algorithm to learn

optimal reaction under Markovian circumstances, and

establishes a Q-table to memorize and predict actions

with the concept of dynamic programming. Policy gradient

is a RL approach to model and determine the policy

(action) to obtain optimal rewards, and contains a policy

network that predicts a probability distribution over actions

based on current state [35]. Several derivative models

are also developed, including deep policy gradient, deep

deterministic policy gradient [36], etc.

The flexibility and generalizability of RL makes it an

attractive scheme for many domains, particularly in plan-

ning business strategies [37], implementing automation sys-

tems, and controlling robot [38] for industrial applications.

In the field of finance, Jiang and Liang [21, 22] formed a

cryptocurrency portfolio using deep reinforcement learning,

which resulted in 10-fold returns over periods of 1.8 months.

However, the cryptocurrency market is quite frequent and

volatile, and the trading returns are unstable compared with

the stock market. Almahdi and Yang [23] proposed an

adaptive portfolio trading system using recurrent RL and
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mean-variance optimization. That system makes it possi-

ble to estimate drawdown risk and automatically retrain

the system. Other relative RL-based works have also been

implemented and discussed [39, 40], and the development

is still in progress.

2.3 Convolutional and recurrent neural network
(CNN & RNN)

CNN and RNN are deep neural-network architectures

utilized in a variety of domains [19, 20]. CNN has

demonstrated successful performance in the processing of

multi-dimensional data (images and videos) [20], which

is a subtype of the discriminative deep architecture. It

also reduces learning complexity using convolution and

pooling strategies. CNN has been used for recognition and

classification tasks in multimedia, and is also used for

financial data analysis. Tsantekidis et al. [41] proposed a

deep CNN scheme for the prediction of price movements

using a large dataset of high-frequency transactions records.

Their scheme outperformed simple DNN and SVM in terms

of recall as well as precision. Chen et al. [42] formulated

a deep CNN model using planar feature representation for

the analysis and prediction of stock prices. Their scheme

achieved accuracy of 57.88% in three-category prediction.

RNN [17] differs from feedforward networks in its

use of a feedback loop to maintain a connection with

previous decisions to enable iterative progress. Their

memory architecture was inspired by the learning and

memory processes in humans, wherein past information

and decisions held in memory can affect subsequent

behaviors. RNN has proven highly effective in natural

language processing [43] as well as finance. Gao and Chai

[44] predicted stock closing prices by RNN model with

principal component analysis (PCA) dimension reduction.

Wang et al. [45] developed an Elman RNN architecture

for the prediction of price indices on stock markets.

Rout et al. [46] used a low-complexity recurrent neural

network and evolutionary learning to forecast S&P500

data. Their scheme demonstrated very low variance and

good performance in predicting volatility. Their scheme

was shown to outperform common neural networks in

forecasting financial time series. Most current research

on the use of CNN and RNN in the field of finance

focuses on price forecasting. By contrast, we focused

on developing specific trading strategies and methods for

portfolio management.

3Methodology

The flowchart of the proposed PMS is presented in Fig. 2,

including three major modules. The first module involved

data preprocessing, which included data normalization and

tensor packaging. The normalized training data was packed

for use as an input tensor (features) for the RL module.

Testing data was then used to verify the performance of the

PMS and to generate portfolio weights for testing period.

The second is the RL module, including long and

short RL models. RL module learn the portfolio weighting

scheme through the interaction between the environment

and the agent, and determines the long and short portfolios

separately. The final module is EMN, which combines long

and short portfolio weights to prevent long and short a same

stock from wasting trading costs. At the same time, the

EMN module establishes the final EMN portfolio weight.

3.1 Data pre-processing

Since there are differences in the scale of time-series

features (different price scales for each stock) , thus the

values of features (in this case prices) are required be

normalized. The normalization method is shown in (1), and

referred from [21]. We design the input tensor, T , as a

M × 4 × N vector. M is the number of investment assets, 4

is the number of features, and N is the length of the times-

series for each feature. In this paper, we set N as 20 to gather

the price information in the last 20 trading days.

Tt = [P 1
t , P 2

t , ..., P M−1
t , P M

t ]

P i
t = [Openi

t , Highi
t , Lowi

t , Closei
t ]

Openi
t =

[

openi
t−n+1

closei
t

,
openi

t−n+2

closei
t

, ...,
openi

t−1

closei
t

,
openi

t

closei
t

]

Highi
t =

[

highi
t−n+1

closei
t

,
highi

t−n+2

closei
t

, ...,
highi

t−1

closei
t

,
highi

t

closei
t

]

Lowi
t =

[

lowi
t−n+1

closei
t

,
lowi

t−n+2

closei
t

, ...,
lowi

t−1

closei
t

,
lowi

t

closei
t

]

Closei
t =

[

closei
t−n+1

closei
t

,
closei

t−n+2

closei
t

, ...,
closei

t−1

closei
t

, 1

]

(1)

Tt is the input tensor for a period t , which includes M

price vectors (Pt ) for each investment asset. P i
t is the price

vector (4 × N-dimensional) for each asset i at a period

t , including four dimensions, Openi
t , Highi

t , Lowi
t , and

Closei
t . Each price is then divided by the latest closing price

as closei
t , to change the features into relative changes in

price. Note that the notation of lower letters (open, high,

low, close) represents a price data, and the notation of

capital letters (Open, High, Low, Close) represents a

N-dimensional price vector.

For example, if the closing prices of an asset i for the

previous N days is [77.0, 80.0, 81.5, ... ,90.5], then all of
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Fig. 2 The flowchart of the

designed PMS

the prices are divided by 90.5 (i.e., the latest closing price

(closei
t ) to become [0.851, 0.884, 0.901, ..., 1]. Following

normalization, the price scale of all stocks is the same,

such that the features represent the changes in price. The

same normalization method is applied to Highi
t , Lowi

t , and

Openi
t , as shown in (1).

After preprocessing of the price normalization, the input

tensors obtain the change rates and fluctuations of stock

prices. Since the short-rebalancing investment is considered

in the developed systems, the short-term information of

price changes should be concerned for the RL model to learn

the weighting values of varied portfolios.

3.2 RL environment

There are two major tasks for the RL environment as shown

in Fig. 1, which are calculating the reward of the received

action and transferring the next state to the agent.

The environment of RL architecture receives the actions

from agent, and provides the reward of the corresponding

actions (portfolio weight, Wt ). Firstly, the environment will

calculate the asset value and daily return by the following

equations. In (2), PCt is the price change from period t − 1

to t (closing price of period t divided by the closing price

of period t − 1), and is a transposed M-dimensional vector

8123Portfolio management system in equity market neutral...



for M assets. at is the net asset value of period t . Wt is the

portfolio weight, which is a M-dimensional vector. Wt−1 ×
PCt denotes that the portfolio weight multiplies the price

change, which is the change of the net asset value compared

to the previous period. The 1-norm term represents the

change of portfolio weight (how much stocks you would

sell or buy), after multiplied by the rate of transaction fee,

δ, it becomes the value of transaction fee, which will deduct

your net asset value. In the following experiment, we set δ to

0.25%, which is the average transaction fee for the Taiwan

stock market. rt is the daily return at period t , and is the

natural logarithm of the change for the net asset value.

PCt =

[

P close
1,t

P close
1,t−1

,
P close

2,t

P close
2,t−1

, ...,
P close

M,t

P close
M,t−1

]T

at = at−1 · Wt−1 × PCt − δ · ‖at · Wt − at−1 · Wt−1‖1

rt = ln

(

at

at−1

)

= ln

(

Wt−1 × PCt −
δ · ‖at · Wt − at−1 · Wt−1‖1

at−1

)

(2)

Trading Return =
aT

a0

Sharpe Ratio =
Annual Return

Annualized Standard Deviation of Return

=
years

√

Trading Return

Annualized Standard Deviation of Return

=
years

√

aT

a0

std(rt ) ×
√

252

(3)

Secondly, the environment will calculate the reward

for the corresponding actions. Most previous works used

trading return as a reward function of RL to optimize

the profitability. However, these studies failed to consider

stability or risk. In this paper, we adopted the Sharpe ratio

as a novel reward function to optimize profitability while

considering the tradeoff with risk. Therefore, we utilize

both the trading return (general factor) and the Sharpe

ratio (novel factor) as two different reward functions, and

the mathematical expressions of which are shown in (3).

Trading return is the final asset value (in a given period T ,

aT ) divided by the initial asset value, a0. Sharpe ratio is the

annual return divided by annualized standard deviation of

the return, where the annual return is the years root of the

trading return (years is the number of years of the trading

process). The annualized standard deviation of return is the

standard deviation of the daily return multiplied by
√

252

(252 is the approximate number of trading days in a year,

and is the frequently used factor in the financial field).

The RL environment adopts the above formula to provide

rewards (trading return or Sharpe ratio) of the corresponding

actions (Wt ), which will guide the agent to update the

prediction model. At the same time, the environment

will transfer the next state (normalized price tensor in

Section 3.1), for the agent to predict the next action (Wt+1).

The rebalance period (trading period) in the following

experiments was set at one day, which means that the

environment sends historical OHLC data to the agent (state)

daily in order to obtain a portfolio weight (action) from the

agent.

3.3 NN-based policy network for RL agent

In this study, RL is used for portfolio management. The

policy network we designed takes the price tensor (T , M ×
4 × N tensor) as an input, and predicts the weight of the

portfolio (W ) as an output. W is designed as a M-dimension

vector with a sum of 1 (by the softmax layer), representing

the portfolio weight of M asset. For each period, the

environment transfers a reward by the given action, which

will guide the agent to upgrade the policy network. For each

updating epoch, the NN agent will obtain better patterns for

portfolio management, enabling construction of a suitable

portfolio strategy.

In this paper, we utilize two types of neural networks

in the designed PMS to obtain the temporal and spatial

information. In the proposed system, the PMS with

CNN and RNN are respectively named as PMS CNN and

PMS RNN, and the networks are shown in Tables 1 and

2. Table 1 presents the designed network of the CNN

agent, which determines the spatial coherence of features

via convolution. In the layers of Conv 2D, we implement

the stride of convolution on the direction of the time series

to discover the patterns of time series through the network.

In addition, the second layer of Conv 2D has a kernel

of (1, 3rd -dim previous output), which can compress the

size of the third dimension as 1 of the output tensors

regardless of the input size N . After feature extraction by

convolution layers, we simply add a dense layer with M

neurons and softmax activation function at the end of the

network as the portfolio weights. Compared with the basic

neural network, the utilized RNN in the design system can

obtain past information through the memory states, and the

utilized CNN can extract spatial information from different

linear-transformations through the learned kernels, which

can solve the limitations of basic neural networks. In this

way, a better balance between profit and risk can be obtained

and achieved in portfolio management. Note that in all

convolutional layers of the CNN network, the stride is set as

1, and there is no padding involved in the network.

Table 2 presents the designed network of the RNN

agent, which excels at detecting coherence in time series

of features using memory states. In the designed RNN,

we adopt a single-layer LSTM with a dropout layer, and

end at a M-neuron dense layer with softmax to construct

8124 M.-E. Wu et al.



Table 1 The designed network of the CNN agent

Layer # Filter Filter size Activation

Input M × 4 × N Vector

Conv 2D 2 (1,2) relu

Conv 2D 48 (1, 3rd -dim previous output) relu

Conv 2D 1 (1, 3rd -dim previous output) relu

Flatten – – –

Dense M – softmax

Output M-dimensional Vector

a M-dimensional output, which is treated as the weight of

portfolio.

3.4 EMN strategy

EMN is a powerful hedging portfolio strategy in which rel-

atively weak commodities are shorted (sold) and relatively

strong commodities are bought. We innovatively utilize the

EMN strategy as the trading mechanism of the RL-based

portfolio management system. Based on the concept of

EMN strategy, the size of long and short positions should be

equal. We design the PMS to be decomposed into long and

short independent RL models, and equally sum the output

weights (of each stock) of both models to construct the final

portfolio weight.

Two independent models are used to learn the patterns

associated with taking long and short positions with the

aim of recommending appropriate portfolio weights for

each asset. Equation (4) shows that the sum of long-weight

(WL) and short-weight (WS), are both equal to 1, where

M is the number of assets. To prevent situations where

a given asset is simultaneously bought and sold, the final

portfolio weight, WC , combined with the long-weight

and short-weight, WL and WS . Equation (5) shows that

the sum of the combined weights. The zero WC indicates

that the size of the long position is equal to the short

position, and indicates that EMN reinvested all the cash

from short position into the market, and EMN-based PMS

Table 2 The designed network of the RNN agent

Layer Detail

Input M × 4 × N Vector

LSTM Neurons = 51

Dropout 0.2

Flatten –

Dense Neurons = M , softmax

Output M-dimensional Vector

does not require any investment capital (money) in theory.

In the designed system, the long and short RL models are

repetitively named as -Long and -Short.

WL=(WL1, WL2, ..., WLM), WLi ∈ [0, 1],
M

∑

i=1

WLi=1

WS=(WS1, WS2, ..., WSM), WSi ∈ [0, 1],
M

∑

i=1

WSi = 1

(4)

WC = (WL1 − WS1, WL2 − WS2, ..., WLM − WSM)

M
∑

i=1

WCi =
M

∑

i=1

WLi − WSi

=
M

∑

i=1

WLi −
M

∑

i=1

WSi = 1 − 1 = 0

(5)

4 Experimental results

In this paper, the trading target (stock pool) was constituent

stocks of the 50 premium stocks approved by the

government of Taiwan, Taiwan 50 (TW50) [47]. The data

of stock price was provided by Taiwan Stock Exchange,

including the daily OHLC data.

We first split the TW50 data into training and testing

datasets. Data from Aug. 1 2015 to Jul. 31 2017 was

used as training data, and the remainder (Aug. 1 2017

to Jul. 31 2019) was used as testing data to verify the

performance of the proposed systems. Total return, Sharpe

ratio, maximum draw down (MDD), and profit factor

(PF) were used as performance measures verifying the

performance of the proposed PMS. Total return refers to

the net profits throughout the entire trading period divided

by the initial assets. Sharpe ratio refers to the total return

divided by the standard deviation of daily profits [24, 25].
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MDD refers to the maximum observed loss from a peak to

a trough, before a new peak is reached [26]. Essentially,

it indicates the maximum rate of loss during the trading

period, where a lower value indicates better performance.

PF refers to the net profit divided by the absolute value of

the net loss.

4.1 Comparison of different reward function

The reward function in PMS is used to assist RL agents

to learn when trading on an actual market. Different to the

conventional reward function of trading returns [21], we

use the Sharpe ratio as a novel reward function in order to

account for investment risk when learning and building the

system.

Table 3 compares the performance of the proposed

PMS CNN and PMS RNN when using average return (Ret)

and Sharpe ratio (Sha) as reward functions. As shown

in Table 3, the performance of PMS CNN was similar to

that of PMS RNN; however, the choice of reward function

significantly affected the results. Overall, the Sharpe

ratio reward function (PMS_CNN-Sha and PMS_RNN-Sha)

outperformed the return reward function (PMS_CNN-Ret

and PMS_RNN-Ret) in terms of profitability and risk. On

average, PMS_CNN-Sha and PMS_RNN-Sha increase, 39.0%

return 0.11152 Sharpe ratio, and 0.31781 profit factor (PF),

indicating that the Sharpe ratio reward function achieved

11.152% higher profits than those obtained using the

return reward function when facing a unit of volatility and

31.781% higher profits when facing a unit of loss. Using the

Sharpe ratio reward function also reduced the average MDD

value from 27.179% to 13.436%.

Figure 3 shows the equity curves of the compared

systems under various reward functions on TW50 dataset.

The PMS_CNN-Sha achieved the highest profits, whereas

PMS_RNN-Sha was the most stable (i.e., extremely small

drawdown). PMS_CNN-Ret and PMS_RNN-Ret presented

larger fluctuations, despite achieving profits on par with

PMS_RNN-Ret. Overall, the Sharpe ratio reward function

outperformed the return reward function. Thus, the Sharpe

ratio reward function is used in all subsequent experiments.

Fig. 3 Equity curves of PMS with different reward functions on

TW50. Systems with reward function of Sharpe ratio are relatively

profitable and stable

4.2 Performance of long and shortmodels in the PMS

In the proposed PMS, we created two neural networks for

the RL agents, respectively referred to as PMS CNN and

PMS RNN. As described in Section 3.4, we trained and

tested a long model to derive buying patterns and a short

model to derive selling patterns from actual markets. In

the following experiments, we respectively investigated the

trading performance of taking long and short models when

using our PMS, as shown in Table 4. Please note that the

values shown in bold are the best performance for each

column.

Table 4 shows that the total return and Sharpe ratios

of PMS_CNN-Long and PMS_CNN-Short are similar. Note

that the MDD of the short models (PMS_CNN-Short and

PMS_RNN-Short) was 1.85 times of the long models

(PMS_CNN-Long and PMS_RNN-Long). It also indicates that

a short position is subject to higher risks, higher losses,

and a smaller PF. The phenomenon is consistent with

domain knowledge that short selling is relatively risky but

profitable [48], which can be seen as the left figure of Fig. 4.

In the end, the long and short models produced similar

profits; however, the long model (blue curve) rose steadily,

Table 3 Performance indicators of PMS with different reward functions on TW50

Developed systems Return Sharpe MDD PF

PMS CNN-Ret 39.839% 0.38759 0.24989 1.10880

PMS RNN-Ret 22.859% 0.39872 0.29369 1.12610

PMS CNN-Sha 103.041% 0.57819 0.17843 1.54761

PMS RNN-Sha 37.735% 0.43116 0.09028 1.32291

The values in bold are the best performance for each column
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Table 4 Performance indicators of the long, short, and combined models of the PMS

System Return Sharpe MDD PF

PMS CNN-Long 47.971% 0.64282 0.08999 1.46895

PMS CNN-Short 55.069% 0.65812 0.16640 1.23901

PMS CNN-Combine 103.041% 0.57819 0.17843 1.54761

PMS RNN-Long 30.680% 0.57117 0.08210 1.38457

PMS RNN-Short 7.056% 0.44713 0.20648 1.04442

PMS RNN-Combine 37.735% 0.43116 0.09028 1.32291

while the short model (green curve) fluctuated. Despite

similar profitability, the short model was subject to greater

fluctuations and greater risk.

The second row in Table 4 presents the indicators of

PMS RNN when applied TW50. PMS RNN-Long achieved

better results than that of PMS RNN-Short regardless

of the indicator, which indicated that the portfolio could

achieve higher profitability with lower risk. The Sharpe

ratio and PF of PMS RNN-Long (57.117% and 1.38457)

are superior to those of the PMS RNN-Short model

(12.404% and 0.34015). In terms of risk, the MDD of the

long model was 60% lower than that of the short model.

Note that drawdown represents the scale of asset loss, such

that a larger drawdown indicates a larger asset loss within a

given trading period.

In the PMS CNN and PMS RNN systems, the short models

always resulted in greater risk and MDD. These results are

in line with empirical experience, in which a short position

always entails greater risk. Our experiment results indicate

that PMS CNN-Combine outperformed all of the other

systems in terms of total return, Sharpe ratio, and PF. In the

end, investors are free to choose a system in accordance with

their risk tolerance and expected returns.

4.3 Comparison of latest research

Three state-of-art and highly cited papers are compared

with our systems and listed in Table 5. All papers adopt

RL to form a portfolio on different markets, reward

functions and network design. Jiang 2017 Conf. and

Jiang 2017 arXiv the performance of designed CNN

agent from [21, 22], Almahdi 2017 is the performance

of Calmar-RRL from [23] (without stop-loss model and

with transaction cost the same as ours). Since comparing

models on different markets, we only list indicators that

can be compared between trading performance on different

datasets, namely the Sharpe ratio (measures the trade-off

between profit and risk) and MDD (measures the risk).

Jiang’s works focus on high-frequency trading and high

volatility markets, aiming to pursue extraordinary profits

(reword function of trading return), but ignores trading risks.

Compared with Jiang’s performance, since we focus on the

stableness of trading (reward function of Sharpe ratio), our

proposed systems have significantly better Sharpe ratio and

MDD. As for Jiang’s work, the transaction frequency of

their model is much lower, with only 221 transactions in

two years (about half of our transactions), and their goal is

to optimize risk and return at the same time. Therefore, they

have a higher Sharpe ratio, but due to the implementation of

the EMN strategy in our systems, we still have the lowest

drawdown risk, MDD.

4.4 Scalability of proposed PMS

In real-world application, industries have obtained varied

stock attributes. Thus, the scalability of the proposed PMS

in various industries (datasets) is then verified and shown in

Fig. 5. Also, the trading performance with three benchmark

strategies such as symmetrical, momentum, and contrarian

are then compared Under the symmetrical strategy, a

Fig. 4 Equity curves of the long,

short, and combined models of

the PMS. The left and right

figures are for PMS CNN (left)

and PMS RNN (right) systems
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Table 5 Performance indicators of state-of-art researches

System Sharpe MDD

PMS CNN 0.578 0.178

PMS RNN 0.431 0.090

Jiang 2017 Conf. 0.037 0.296

Jiang 2017 arXiv 0.059 0.216

Almahdi 2017 1.0273 0.9550

The values in bold are the best performance for each column

uniform constant rebalanced portfolio (UCRP) [27] is created

to rebalance a portfolio using a constant weight, such that

long and short positions are nearly symmetrical. Under the

momentum strategy, Winner [28, 29], investors long the

stock with the biggest rise the day before, and short the stock

with biggest decline the day before. Under the contrarian

strategy, Loser [28, 29], the investor longs the stock with

biggest decline the day before, and shorts the stock with

biggest rise the day before.

We first trained the system on TW50 dataset, test and

build the specific portfolios to various industries. The TW50

includes three major industries such as traditional, financial,

and electronics. Stocks with ID of 1101, 1102, 1216, 1301,

1303, 1326, 1402, 2002, 2105, and 2207 are classified as

the traditional industry. Stocks with ID of 2801, 2823, 2880,

2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2890, 2891,

2892, 5876, and 5880 belong to the financial industry.

Stocks with ID of 2301, 2357, 2382, 2395, 4938, 3045,

4904, 2308, 2327, 2317, 2474, and 3008 are the electronics

industry.

Figure 5 presents the equity curves of the proposed

PMS (PMS CNN and PMS RNN) compared with the different

benchmark strategies in various industries (datasets). The

upper right and upper left subfigures are the trading results

on TW50 and traditional industries. The lower right and

lower left subfigures are the trading results on finance and

electronics datasets. In traditional industries, PMS CNN and

PMS RNN (red and orange curves) dominated the other

curves throughout the entire period, indicating a gradual

rise without significant drawdown. Both of them achieved

outstanding profitability and outperformed the stand-alone

benchmark strategies. In the financial industry, PMS CNN

and PMS RNN are struggle in the first half, but generate

stable profits in the second half, whereas the contrarian

strategy Loser (blue curve) generate the largest profit. In

the electronics industry, PMS CNN and PMS RNN achieved

outstanding growth in the first half, but suffered huge

drawdown and fluctuations in the second half; the overall

result indicates the positive profit. Among four datasets, it

Fig. 5 Equity curves of strategies and systems in different industries
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can be seen that the proposed PMS is suitable for the TW50

and traditional industries, whereas the contrarian strategy is

more suitable for the finance industry. Note that the equity

curves of UCRP were nearly horizontal in all industries, which

showed the small profit with a tiny drawdown is then obtained.

5 Conclusions and discussion

Portfolio management is important to investors seeking to

optimize commodity selection, position sizing, and resource

allocation. Common portfolio strategies, such as MPT and

Kelly, require forecasts of future outcomes as model inputs.

Obtaining reasonable forecasts is not a trivial task and small

deviations can greatly affect investment outcomes. Among

the variant portfolio strategies, EMN is a hedging strategy

that has proven effective in managing risk by balancing long

and short positions. In this study, we established a novel

Portfolio Management knowledge-based System (PMS) to

support human decision-making and resource allocation

in practical trading situations. The system is based on

artificial intelligence (RL and NN), which gains trading and

portfolio management knowledge by interacting with the

market. We integrated two NN models with the proposed

RL system to enable the extraction of spatial and temporal

information and developed two reward functions to optimize

profitability while taking risk into account.

In experiments, the proposed PMS with Sharpe ratio

reward function outperformed the conventional return-

based reward function, resulting in 39.0% higher profits

and 13.7% less drawdown. The PMS CNN outperformed

PMS RNN in terms of returns and Sharpe ratio; however, the

risk of drawdown was 1.98 times higher. The proposed PMS

outperformed existing benchmark strategies in terms of all

measures in traditional industry or TW50 datasets. Although

the PMS did not match the performance of conventional

strategies when applied to the finance industry; however, it

still achieved positive profits and Sharpe ratio with lower

risk. Thus, the PMS is profitable and effective with lower

investment risk among almost all datasets, and the novel

reward function was also shown to enhance investment

performance. In conclusion, the PMS can well support the

resource-allocation in the empirical stock trading.
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