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Preface

Managing financial portfolios is primarily concerned with finding a combination of

assets that serves an investor’s needs and demands the best. This includes a wide

range of aspects such as the analysis of the investor’s attitude towards risk, expected

return and consumption; estimations of future payoffs of the financial securities and

the risk associated with it have to be made; assessing the relationships between se-

curities; determining fair prices for these securities – and finding an optimal combi-

nation of financial securities. Many of these tasks are interrelated: what is an optimal

combination depends on the investor’s preferences as well as on the properties of the

assets, which, in return, will affect what is considered a fair price and vice versa.

The usual (theoretical) frameworks for portfolio management and portfolio op-

timization assume markets to be frictionless. Though it drives the models away from

reality, this assumption has long been considered the only way to make these mod-

els approachable. However, with the advent of a new type of optimization and search

techniques, heuristic optimization, more complex scenarios and settings can be in-

vestigated and many of these simplifying assumptions are no longer necessary.

This book is merely concerned with problems in portfolio management when

there are market frictions and when there are no ready-made solutions available. For

this purpose, the first two chapters present the foundations for portfolio manage-

ment and new optimization techiques. In the subsequent chapters, financial models

will be enhanced by problems and aspects faced in real-life such as transaction costs,

indivisible assets, limits on the number of assets, alternative risk measures and de-

scriptions of the returns’ distributions, and so on. For each of these enhanced prob-

lems, a detailed presentation of the model will be followed by a description of how

it can be approached with heuristic optimization. Next, the suggested approaches

will be applied to empirical studies and the conclusions for financial theory will be

discussed.
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Non-technical Summary

The theoretical foundation to portfolio management as we know it today was laid

by Harry M. Markowitz by stating a parametric optimization model. The gist of this

model is to split the portfolio selection process into two steps where first the set of

optimal portfolios is determined and then the investor chooses from this set that

portfolio that suits her best. Markowitz’s approach therefore includes (i) measuring

the expected return and risk of the available assets (independently of the investor’s

believes and preferences), and (ii) making certain assumptions about the investor’s

utility functions (independently of the available assets). These two steps are then

brought together in a quadratic optimization problem. This model, by now the cen-

tre of Modern Portfolio Theory, provoked a revised notion of risk and in due course

of what is a fair risk premium.

Chapter 1 presents some aspects of the financial theory underlying this contri-

bution, including the portfolio selection problem in a Markowitz framework and

selected related and follow-up literature. In addition, two equilibrium models will

be presented: the Capital Asset Pricing Model (CAPM), which, in this contribution,

will be used to generate data for equilibrium markets, and the concurring Arbitrage

Pricing Theory (APT) for which relevant risk factors will be identified. The chapter

concludes after a short presentation of alternative approaches to portfolio manage-

ment.

With all its merits, the Markowitz model has a major downside: to get a grip

of the computational complexity, it has to rely on a number of rather strict tech-

nical assumptions which are more or less far from reality: markets are assumed to

be perfect in the sense that there are neither taxes nor transactions costs and as-

sets are infinitely divisible; investors make their decisions at exactly one point in

time for a single-period horizon; and the means, standard deviations and correla-

tion coefficients are sufficient to describe the assets’ returns. Though there exists no

closed-form solution for the Markowitz model, the simplifying assumptions allow

for a solution with standard software in reasonable time if the number of assets is

not too large.

The limitations of the original Markowitz framework have stimulated a num-

ber of extended or modified models. These models allow for valuable insights – yet
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still have to make simplifying assumptions in order to be solvable: seemingly sim-

ple questions such as adding proportional plus minimum transactions costs, taking

into account that usually stocks can be traded in whole-numbered lots, or allow-

ing for non-parametric empirical distributed returns are unsolvable with standard

methods. It therefore appears desirable to have alternative methods that can handle

highly demanding optimization problems.

One way out of this dilemma is heuristic optimization (HO). The techniques em-

ployed in HO are mostly general purpose search methods that do not derive the so-

lution analytically but by iteratively searching and testing improved or modified so-

lutions until some convergence criterion is met. Since they usually outperform tra-

ditional numerical procedures, they are well suited for empirical and computational

studies. Chapter 2 presents some general concepts and standard HO algorithms.

Having introduced some basic concepts, heuristic optimization techniques are

applied to some portfolio selection problems which cannot be solved with other,

more traditional methods.

The effects of magnitude of initial wealth, type of transactions costs as well as in-

teger constraints on the portfolio selection problem will be discussed based on DAX

data in chapter 3. We distinguish a number of cases where investors with different

initial wealth face proportional costs and/or fixed transactions costs. As the associ-

ated optimization problem cannot be solved with standard optimization techniques,

the literature so far has confined itself to rather simple cases; to our knowledge,

there are no results for an equally comprehensive model. This problem is usually

approached by first solving the problem without these aspects and then fitting the

results on the real-world situation. The findings from the empirical study illustrate

that this might lead to severely inferior solutions and wrong decisions: Unlike pre-

dicted by theory when the usual simplifications apply, investors are sometimes well-

advised to have a rather small number of different assets in their portfolios, and the

optimal weights are not directly derivable from those for frictionless markets.

For various reasons, investors tend to hold a rather small number of different as-

sets in their portfolios. Also, it is a well-known fact that much of a portfolio’s diver-

sification can be achieved with a rather small number of assets – yet, to our knowl-

edge there exist only rough estimates based on standard rules or simple simulations

to evaluate this fact. Chapter 4 focuses on the selection problem under cardinality
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constraints, i.e., when there are explicit bounds on the number of different assets.

The empirical study uses data for the DAX, FTSE and S&P 100. The main results

are that small (yet well-selected) portfolios can be almost as well-diversified as large

portfolios and that standard rules applied in practice can be outperformed.

Chapter 5, too, investigates the effects of cardinality constraints yet in a differ-

ent setting where not just one specific portfolio, but the whole so-called “efficient

sets” are to be identified. In order to meet the high computational complexity of this

problem, a new algorithm is developed and tested against alternative optimization

heuristics. With the focus on the computational aspects, it is shown that hybrid algo-

rithms, combining aspects from different heuristic methods can be superior to basic

algorithms and that heuristic optimization algorithms can be modified according to

particular aspects in the problems. With this new algorithm at hand, the highly de-

manding optimization problem can now be approached.

The usual definition of “financial risk” captures the assumed (positive and neg-

ative) deviations from the expected returns. In some circumstances, however, the

investor might be more interested in the maximum loss with a certain probability or

the expected loss in the worst cases. Hence, alternative risk measures such as Value

at Risk (VaR) and Expected Shortfall (ES) have gained considerable attention. Chap-

ter 6 is concerned with the question of whether these new risk measures actually

make good risk constraints when the investor is interested in limiting the portfolio’s

potential losses. Based on empirical studies for bond markets and stock markets, we

find that VaR has severe shortcomings when it is used as an explicit risk constraint,

in particular when the normality assumption of the expected returns is abandoned

(as has often been demanded by theory and practice).

The Arbitrage Pricing Theory (APT) is sometimes considered superior to other

equilibrium pricing models such as, e.g., the CAPM as it does not use an (actually

unobservable) market portfolio but a set of freely selectable (and observable) fac-

tors. The major shortfall of the APT, however, is that there are no straightforward

or a priori rules of how to find the ideal set of factors: there are not always “natural”

candidates for factors, standard choices do not work equally well for all assets (or are

not applicable for other reasons). Given a set of potential candidates, the associated

selection problem is computationally extremely demanding. Chapter 7 finds that

this model selection problem, too, can be approached with heuristic search meth-

ods. The selected combinations of factors are likely to identify fundamentally plau-
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sible indicators and they are likely to explain a considerable share of the variation in

the assets’ returns.

Chapter 8 concludes and presents an outlook on possible follow-up research.

The prime focus of this contribution is on individual investment decisions under

market frictions. The main part of the study will therefore consider individual in-

vestors who already have estimates for future returns and risks but face the problem

of how to translate these estimates into optimal portfolio selections (chapters 3 – 6)

or how to translate estimates for aggregated market factors into pricing models for

individual assets (chapter 7) in the first place. In all of these problems, the investors

are considered to be rational and risk averse price takers operating in equilibrium

markets.

This contribution therefore aims to answer financial management problems that

are well identified in financial theory and faced by the investment industry but could

not yet be answered satisfactorily by the literature. Due to the restrictions in tradi-

tional optimization methods, the respective models had to rely on simplifying as-

sumptions and stylized facts that restrained the applicability of the results. In this

contribution, an alternative route is chosen and new optimization methods are ap-

plied that are capable of dealing with otherwise unanswerable problems. The results

show that this approach is capable of identifying shortcomings of traditional ap-

proaches, that market frictions and complex constraints can now easily and com-

pletely be incorporated in the optimization process without the usual prior simpli-

fications (which, as will be shown, can even be misleading), and that problems can

be solved for which just approximations or rules of the thumb existed so far.

The results from these studies also indicate the gain from the application of new

methods such as heuristic optimization: Models and problems can be investigated

that allow for more complexity and are therefore closer to reality than those ap-

proachable with traditional methods, which eventually also contributes to a better

understanding of financial markets.



x Preface

Acknowledgement

This project would not have been possible without the input, suggestions, participa-

tion, guidance, moral support, and comments of many people. My special thanks go

to Edwin O. Fischer and Peter Winker for stimulating, fostering, and supporting my

interest in finance and computational economics; for guiding, encouraging and sup-

porting my first steps in the world of academia; for valuable comments, supervision

and critique; and, not least, for their patience. Also, I would like to express my grati-

tude to W. Burr, U. Derigs, E. Dockner, M. Gilli, H.-O. Günther, R. Hartl, C. and U. Ke-

ber, H. Kellerer, E. Kontoghiorghes, L. Kruschwitz, K. Krycha, A. Lehar, M. Leitinger,

K. Lerch, E. Loitlsberger, G. Meeks, U. Ott, V. Priemer, B. Rustem, C. Strauss, S. Sun-

daresan, F. W. Wagner, U. Wagner, P. Walgenbach, J. Zechner, my colleagues (past

and present), to journal editors and referees, numerous anonymous participants at

conferences and research seminars, the “Habilitation” committee at the Faculty of

Economics, Law and Social Sciences at the University of Erfurt who accepted this

book for a habilitation thesis, C. van Herwaarden, H. Drees, the series editors from

Springer – and many, many more.



Contents

1. Portfolio Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mean-Variance Analysis . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Modern Portfolio Theory (MPT) . . . . . . . . . . . . . . . . 6

1.1.3 Risk Reconsidered . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Implications of the MPT and Beyond . . . . . . . . . . . . . . . . . . 24

1.2.1 The Capital Market Line . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Capital Asset Pricing Model . . . . . . . . . . . . . . . . . . 26

1.2.3 Alternative Versions of the CAPM . . . . . . . . . . . . . . . 29

1.2.4 The Arbitrage Pricing Theory . . . . . . . . . . . . . . . . . 32

1.3 Limitations of the MPT . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2. Heuristic Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1.1 The Problems with Optimization Problems . . . . . . . . . . 38

2.1.2 Techniques for Hard Optimization Problems . . . . . . . . . 40

2.2 Heuristic Optimization Techniques . . . . . . . . . . . . . . . . . . . 51

2.2.1 Underlying Concepts . . . . . . . . . . . . . . . . . . . . . . 51

2.2.2 Characteristics of Heuristic Optimization Methods . . . . . . 52

2.3 Some Selected Methods . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.1 Simulated Annealing and Threshold Accepting . . . . . . . . 55

2.3.2 Evolution Based and Genetic Methods . . . . . . . . . . . . . 57

2.3.3 Ant Systems and Ant Colony Optimization . . . . . . . . . . 59

2.3.4 Memetic Algorithms . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Heuristic Optimization at Work . . . . . . . . . . . . . . . . . . . . 63



xii Contents

2.4.1 Estimating the Parameters for GARCH Models . . . . . . . . 63

2.4.2 Tuning the Heuristic’s Parameters . . . . . . . . . . . . . . . 67

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3. Transaction Costs and Integer Constraints . . . . . . . . . . . . . . . . . 77

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2 The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.1 The Optimization Model . . . . . . . . . . . . . . . . . . . . 78

3.2.2 The Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2.3 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3 Results from the Empirical Study . . . . . . . . . . . . . . . . . . . . 84

3.3.1 The Influence of Non-Negativity and Integer Constraints . . . 84

3.3.2 Simple Transaction Costs . . . . . . . . . . . . . . . . . . . . 86

3.3.3 Compound Transaction Costs . . . . . . . . . . . . . . . . . 92

3.4 Consequences for Portfolio Management . . . . . . . . . . . . . . . 95

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4. Diversification in Small Portfolios . . . . . . . . . . . . . . . . . . . . . 100

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 Optimization Problem . . . . . . . . . . . . . . . . . . . . . 101

4.2.2 Ant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2 Computational Study for the Modified Update Rule . . . . . 114

4.3.3 Financial Results . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5. Cardinality Constraints for Markowitz Efficient Lines . . . . . . . . . . . 122

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 The Optimization Problem . . . . . . . . . . . . . . . . . . . 122

5.1.2 The Problem of Optimization . . . . . . . . . . . . . . . . . . 124

5.2 A Hybrid Local Search Algorithm . . . . . . . . . . . . . . . . . . . 127



Contents xiii

5.2.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.2 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2.3 Considerations behind the Algorithm . . . . . . . . . . . . . 132

5.3 The Computational Study . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Data and Parameters . . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Evaluation of the Suggested Algorithm . . . . . . . . . . . . . 135

5.3.3 Contribution of Evolutionary Strategies . . . . . . . . . . . . 139

5.4 Financial Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6. The Hidden Risk of Value at Risk . . . . . . . . . . . . . . . . . . . . . 144

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Risk Constraints and Distribution Assumptions . . . . . . . . . . . . 147

6.2.1 The Stock Market Investor . . . . . . . . . . . . . . . . . . . 147

6.2.2 The Bond Market Investor . . . . . . . . . . . . . . . . . . . 150

6.3 A Modified Version of Memetic Algorithms . . . . . . . . . . . . . . 152

6.3.1 Memetic Algorithms and Threshold Accepting . . . . . . . . 152

6.3.2 The Elitist Principle . . . . . . . . . . . . . . . . . . . . . . . 154

6.3.3 Computational Study . . . . . . . . . . . . . . . . . . . . . . 158

6.4 Results for Stock Portfolios . . . . . . . . . . . . . . . . . . . . . . . 162

6.4.1 Assumed and Resulting Distribution . . . . . . . . . . . . . . 162

6.4.2 Great Expectations and Broken Promises: The Resulting

Stock Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Results for Bond Portfolios . . . . . . . . . . . . . . . . . . . . . . . 171

6.5.1 Assumed and Resulting Distribution . . . . . . . . . . . . . . 171

6.5.2 The Hidden Risks in Optimized Bond Portfolios . . . . . . . 174

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7. Finding Relevant Risk Factors in Asset Pricing . . . . . . . . . . . . . . . 180

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.2 The Selection of Suitable Factors . . . . . . . . . . . . . . . . . . . . 183

7.2.1 The Optimization Problem . . . . . . . . . . . . . . . . . . . 183

7.2.2 Memetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . 185

7.3 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.3.1 Data and Model Settings . . . . . . . . . . . . . . . . . . . . 186



xiv Contents

7.3.2 Main Results for the Selection of Factors . . . . . . . . . . . . 187

7.3.3 Alternative Models . . . . . . . . . . . . . . . . . . . . . . . 194

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  201

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Index  217.... .

.



Chapter 1

Portfolio Management

1.1 Portfolio Optimization

1.1.1 Mean-Variance Analysis

A common property of investment opportunities is that their actual returns might

differ from what has been expected; or in short: they are risky. This notion of finan-

cial risk, defined by the (potential) deviation from the expected outcome, includes

not only a lower than expected outcome (downside risk) but also that the actual re-

turn is better than initially expected (upside risk) because of positive surprises or

non-occurrences of apprehended negative events.1

When all available information and expectations on future prices are contained

in current prices,2 then the future payoffs and returns can be regarded and treated

as random numbers. In the simplest case, the returns of an asset i can be described

with the normal distribution: the expected value (mean) of the returns, E(ri), and

their variance, σ2
i , (or its square root, σi, in the finance literature usually referred

to as volatility) capture all the information about the expected outcome and the

likelihood and range of deviations from it.

1 See also section 1.1.3, where alternative concepts of risk and risk measures as well as sources of risk

will be presented.

2 Fama (1970) has initiated a still ongoing discussion about information efficiency. Note that in port-

folio management, these expectations are not necessarily rational but can also reflect herding be-

havior, market anomalies and the like. See also section 1.3.
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Fig. 1.1: Daily returns of the DAX (black line) and the stocks contained in it (gray lines) for the

4th quarter of the year 2000

When comparing investment opportunities and combining them into portfolios,

another important aspect is how strong their returns are “linked”, i.e., whether pos-

itive deviations in the one asset tend to come with positive or negative deviations

in the other assets or whether they are independent. If the assets are not perfectly

positively correlated, then there will be situations where one asset’s return will be

above and another asset’s return below expectance. Hence, positive and negative de-

viations from the respective expected values will tend to partly offset each other. As a

result, the risk of the combination of assets, the portfolio, is lower than the weighted

average of the risks of the individual assets. This effect will be the more distinct

the more diverse the assets are. The intuition is that similar firms (and hence their

stocks) do similarly poorly at the same time whereas in heterogeneous stocks, some

will do better than expected while others do worse than expected. The positive and

negative deviations from the expected values will then (to some degree) balance,

and the actual deviation from the portfolio’s expected return will be smaller than

would be the deviation from an asset’s expected return even when both have the

same expected return. Figure 1.1 illustrates this effect for the daily returns of the

German DAX and the 30 stocks included in it: the index’s daily returns appear more

stable over time (i.e., exhibit less risk) than the assets’ included in the index, yet the

reduction in risk does not necessarily come with a reduction in the average return.



1.1. Portfolio Optimization 3

Technically speaking, the risk and return of a portfolio P consisting of N risky

assets can be treated as a convolution of the individual assets’ returns and covari-

ances when the included assets can be described by the distributions of their returns.

The portfolio P will then have an expected return

E (rP ) =
N

∑
i=1

xi ·E(ri) (1.1)

and a variance

σ2
P =

N

∑
i=1

N

∑
j=1

xi · x j ·σi j (1.2)

where xi is the share of asset i in the portfolio, hence ∑i∈P xi = 1. σi j denotes the

covariance between the returns of i and j return with σii = σ2
i and σi j = σ ji = σi ·

σ j ·ρi j where ρi j ∈ [−1,1] is the correlation coefficient.

Assuming that all assets in the portfolio have the same weight xi = x = 1
/

N, then

equations (1.1) and (1.2) can be rewritten as

E (rP ) =
N

∑
i=1

1

N
·E(ri)

= ri

and

σ2
P =

N

∑
i=1

N

∑
j=1

1

N
· 1

N
·σi j

=
1

N
· 1

N
·

N

∑
i=1

σ2
i

︸ ︷︷ ︸
=σ2

i

+
N − 1

N
· 1

N · (N − 1)
·

N

∑
i=1

N

∑
j=1
j �=i

σi j

︸ ︷︷ ︸
=σ i j

=σ i j +
1

N
·
(
σ2

i −σ i j

)

where ri is the average of the expected returns of the N assets, σ2
i represents the

average of the N variances and σ i j is the average of the N · (N − 1) covariances be-

tween assets i �= j. The larger N, the closer the portfolio’s variance will be to the

average covariance while the expected value for the return remains the same. The

diversification effect will be the larger the lower the correlation between the assets’
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Fig. 1.2: Average diversification under σ2
i

and σ i j with equal asset weights

Country 1− σ i j

/
σ2

i

Switzerland 56.0%

Germany 56.2%

Italy 60.0%

U.K. 65.5%

France 67.3%

United States 73.0%

Netherlands 76.1%

Belgium 80.0%

International stocks 89.3%

Tab. 1.1: Percentage of risk that can be di-

versified when holding a portfolio rather

than a single “average” stock (values

based on Solnik (1973) and Elton, Gruber,

Brown, and Goetzmann (2003))

returns: 1− σ i j

/
σ2

i
is the ratio of risk that can be diversified when holding an equally

weighted portfolio rather than a single “average” stock. The less the stocks in the

market are correlated the more risk can be eliminated and the more advantageous is

the portfolio over an investment into a single stock. Figure 1.2 depicts this effect on

average when N assets are randomly picked and are given equal weights. Table 1.1

summarizes for some major stock markets what fraction of the average stock’s vari-

ance could be avoided by holding an equally weighted portfolio. As can be seen,

the diversification is the highest when diversification is internationally rather than

nationally; an effect that holds even when currency exchange risks are considered3

and, under a considerably more sophisticated methodology, when market declines

are contagious4.

The effect of diversification can be exploited even more when the weights xi are

optimized for each asset. Assuming the simple case of a two asset market, the in-

vestor can split her endowment into a fraction x1 for asset 1 and x2 = 1 − x1 for

asset 2. The expected return and risk of the resulting portfolio can then be rewritten

3 See Solnik (1974).

4 See de Santis and Gérard (1997).
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as

E(rP ) = x1 ·E(r1)+(1− x1) ·E(r2) (1.3)

and

σ2
P = x2

1 ·σ2
1 +(1− x1)

2 ·σ2
2 +2 · x1 · (1− x1) ·σ12

= x2
1 ·

(
σ2

1 +σ2
2 − 2 ·σ12

)
− 2 · x1 ·

(
σ2

2 −σ12

)
+σ2

2 . (1.4)

Solving (1.3) for x1 yields

x1 =
E(rP )−E(r2)

E(r1)−E(r2)
. (1.5)

Substituting (1.5) into (1.4) shows that the portfolio’s variance is a parabolic func-

tion of the portfolio’s expected return.

With every additionally available asset there is a chance of further risk diversi-

fication, and the left-hand side border of the opportunity set will be pushed even

farther to the left. However, it is not just the number of different assets in the portfo-

lio5 but merely their correlation that contributes to the diversification. In the words

of Markowitz (1952, p. 89): “Not only does [portfolio analysis] imply diversification,

it implies the ‘right kind’ of diversification for the ‘right reason.’” This is illustrated

in Figure 1.3: the lower the correlation, the more the curve is bent, i.e., the higher

the curvature of the opportunity set. When there are more than two assets in the

portfolio, the opportunity set is no longer represented by a line but by a whole area:

Any point within the area in Figure 1.4 represents a feasible portfolio for a given

combination of risk and return which can be selected by computing the respective

weights, xi.

Harry M. Markowitz was the first to come up with a parametric optimization

model to this problem which meanwhile has become the foundation for Modern

Portfolio Theory (MPT).

5 Chapter 4 will focus on this aspect in more detail.
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Fig. 1.3: Opportunity set for a two asset

portfolio depending on ρAB

Fig. 1.4: Opportunity set for a four asset

portfolio (dotted line: Opportunity set with

A and B only)

1.1.2 Modern Portfolio Theory (MPT)

1.1.2.1 The Markowitz Model

In his seminal paper,6 Markowitz (1952) considers rational investors who want to

maximize the expected utility of their terminal wealth at time T , E(U(wT )). In-

vestors are price takers and make their sole investment decision at time 0. If an

investor prefers more terminal wealth to less and is risk averse, then her utility func-

tion U with respect to terminal wealth wT has the properties

∂U
∂wT

> 0 and
∂ 2U
∂w2

T

< 0.

If the expected terminal wealth is wT = w0 · (1+ rP ), where w0 is the (known) initial

wealth and rP is the (risky) return of the investment over the single-period horizon

[0,T ] and if the investor’s utility is quadratic of the type

U(wT ) = β ·wT −γ ·w2
T

= β ·w0 · (1+ rP )−γ ·w2
0 · (1+ rP )2

=
(
β ·w0 −γ ·w2

0

)
︸ ︷︷ ︸

≡a

+
(
β ·w0 − 2 ·γ ·w2

0

)
︸ ︷︷ ︸

≡b

·rP −
(
γ ·w2

0

)
︸ ︷︷ ︸

≡c

·r2
P ,

6 For a praise of the work of Markowitz, see, e.g., Varian (1993).
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where the only risky element is rP , then her expected utility is

E(U) = E
(
a+b · rP − c · r2

P
)

= a+b ·E(rP )− c ·E
(
r2
P
)
.

By the relationship E
(
r2
P
)

=σ2
P +E(rP )2, the expected utility can be rewritten as

E(U (wT )) = a+E(rP ) · (b+ c ·E(rP ))− c ·σ2
P . (1.6)

This implies that the expected returns and (co-)variances contain all the neces-

sary information not only when the returns are normally distributed (and, hence,

are perfectly described with mean and variance), but also for arbitrary distribu-

tions when the investor has a quadratic utility function. More generally, it can be

shown that the mean-variance framework is approximately exact for any utility

function that captures the aspects non-satiation and risk aversion.7 Some subse-

quent models also assume decreasing absolute risk aversion, i.e., ∂A(wT )/∂wT < 0

with A(wT ) = U ′(wT )/U ′′(wT ), a property captured, e.g., by a logarithmic utility

function, U(wT ) = ln(wT ).8

The Markowitz model also assumes a perfect market without taxes or transac-

tion costs where short sales are disallowed, but securities are infinitely divisible and

can therefore be traded in any (non-negative) fraction.

Given this framework, the identification of the optimal portfolio structure can

be defined as the quadratic optimization problem9 of finding the weights xi that

assure the least portfolio risk σ2
P for an expected portfolio return of rP = r∗.10 The

Markowitz portfolio selection model therefore reads as follows:

min
xi

σ2
P (1.7a)

7 See, e.g., Alexander and Francis (1986, chapters 2 and 3) or Huang and Litzenberger (1988, chapters

1–2).

8 See, e.g., Elton, Gruber, Brown, and Goetzmann (2003, chapter 10).

9 See sections 2.1.2.3 and 2.1.2.4.

10 For better legibility, the expectance operator E(·) will be dropped henceforth.
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Fig. 1.5: Opportunity set and efficient line

in a Markowitz framework

Fig. 1.6: Portfolio selection in a Markowitz

framework depending on the investor’s at-

titude towards risk

subject to

σ2
P = ∑

i
∑

j

xi · x j ·σi j (1.7b)

rP = r∗ (1.7c)

rP = ∑
i

xi · ri (1.7d)

∑
i

xi = 1. (1.7e)

xi ∈ R
+
0 ∀i. (1.7f)

This optimization problem has a solution when the following technical condi-

tions hold:

min
i

ri ≤ rP ≤ max
i

ri

σi > 0 ∀i

ρi j > −1∀(i, j)

∃ (i �= j) such that ri �= r j.

Depending on the covariance matrix, the portfolio with the lowest expected re-

turn is not necessarily the portfolio with the least risk. In this case, the Minimum
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Variance Portfolio (MVP) has the least risk, as can be seen from Figure 1.5. Hence,

searching for the portfolio structure with least risk for the portfolio’s expected re-

turn of r∗ is reasonably only for r∗ ≥ rMV P. It is also apparent that rational investors

will choose portfolios on the “upper” frontier of the opportunity set, represented

with a bold line: For any portfolio P that is not on the border, there exists a port-

folio P ′′ with the same expected return but less risk, and a portfolio P ′
with equal

risk but higher expected return. In this case P is an inferior portfolio whereas P ′

and P ′′ are both efficient portfolios. The upper bound of the opportunity set above

the MVP is therefore called efficient set or efficient line.

In model (1.7), the target expected return r∗ is chosen exogenously and might

therefore well be below rMV P since the MVP is not known beforehand. This pitfall

can be avoided by combining the return constraint (1.7c) and the corresponding

risk. The original objective function (1.7a) of minimizing the risk can then be re-

placed with maximizing the expected return, diminished by the incurred risk,11

max
xi

(
λ · rP − (1−λ) ·σ2

P
)
, (1.7a*)

where the trade-off between risk and return is reflected. The efficient line can then

be identified by solving this problem for different, exogenously determined values

of λ ∈ [0,1]: If λ = 1, the model will search for the portfolio with the highest possible

return regardless of the variance. Lower values for λ put more emphasis on the port-

folio’s risk and less on its expected return. With λ = 0, the MVP will be identified.

Due to the convexity of the Markowitz efficient line, the marginal risk premium

is decreasing when there are only risky assets; also, an efficient portfolio’s variance

can be expressed as a function of its expected return. The portfolio selection process

therefore includes the determination of the set of efficient portfolios and the identi-

fication of the optimal portfolio where the marginal risk premium equals the mar-

ginal utility (see Figure 1.6). It is one of the major contributions of the Markowitz

models that the efficient set can be determined without actually knowing the in-

vestor’s exact utility: The efficient set can be determined without explicit knowl-

edge of the investors attitude towards risk (as long as investors are rational and risk

averse).

11 Note also the correspondence to equation (1.6).
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The non-negativity constraint not only inhibits an analytic solution, it also

makes the standard Markowitz model NP-hard.12 Nonetheless, for a reasonably

small number of different assets, N, it can be solved numerically with standard opti-

mization software for quadratic optimization problems13 within reasonable time.14

1.1.2.2 The Black Model

According to constraint (1.7f), any asset’s weight must be a non-negative real num-

ber. If the non-negativity constraint is removed from the original set of assumptions

and replaced with

xi ∈ R ∀i, (1.7f⋆)

i.e., any asset’s weight can be any real number – as long as constraint (1.7e) is met

and they add up to 1. Negative asset weights represent short sales where the investor

receives today’s asset price and has to pay the then current price in future.

This modification is done by Black (1972), who is therefore able to find an exact

analytic solution for this simplified portfolio selection problem. With short sales

allowed, a closed-form solution exists and the efficient portfolio’s risk and asset

weights for a given level of return, rP = r∗, can be determined by

σ2
P =

[
rP 1

]
A−1

[
rP
1

]
=

a− 2 · rP + c · (rP )2

a · c− b2
(1.8a)

with

A =

[
a b

b c

]
=

[
r′

I′

]
Σ−1

[
r I

]
(1.8b)

and

x = Σ−1
[
r I

][a b

b c

]−1 [
rP
1

]
(1.8c)

12 See Garey and Johnson (1979). A classification of computational complexity, including the group of

the most demanding, namely NP complete, problems, will follow in section 2.1.2.1.

13 See sections 2.1.2.3 and 2.1.2.4.

14 Jagannathan and Ma (2003) present a way of incorporating the non-negativity constraint by modi-

fying the covariance matrix – which, however, does not lower the computational complexity of the

problem.
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where r = [ri]N×1 is the vector of the securities’ expected returns, Σ =
[
σi j

]
N×N

is

the covariance matrix, and I is the unity vector.15 The return and risk of the Mini-

mum Variance Portfolio are b/c and 1/c, respectively.

The Black Model is sometimes used as a benchmark for efficient portfolios un-

der additional constraints, merely due to its closed form solution, but also because

it comes with some convenient properties. One of these is the fact that a linear com-

bination of two efficient portfolios is again efficient – and vice versa: Any efficient

portfolio can be represented as a linear combination of any two other efficient port-

folios. Hence, knowing just two portfolios on the efficient line allows the replication

of any efficient portfolio. On the other hand, it might produce solutions that cannot

be translated into practice: when short sales are permitted in the model, the solution

is likely to assign negative weights to at least some of the assets. Ignoring these re-

sults by setting the respective weights to zero and readjusting the remaining weights

so that they add up to one again might result in inefficient solutions.16

Dyl (1975) acknowledges that the assumption of unlimited short sales might be

far from reality. He therefore introduces limits for short sales, xi ≥ x� with x� ≤
0 – which also leads to implicit upper limits since the available resources become

restricted.

1.1.2.3 The Tobin Model

Tobin (1958, 1965) removes the condition that all assets must be risky. If the endow-

ment is invested into a safe asset s and some risky portfolio T , then the return of the

resulting portfolio P is

rP =α · rs +(1−α) · rP . (1.9)

By assumption, s is risk-free, and therefore σ2
s = σsT = 0; hence, the portfolio’s

volatility is simply σP =α ·σT :

σ2
P =α2 · σ2

s︸︷︷︸
=0︸ ︷︷ ︸

=0

+(1−α)2 ·σ2
T +2 ·α · (1−α) · σsT︸︷︷︸

=0︸ ︷︷ ︸
=0

15 See also Roll (1977, p. 160).

16 See, e.g., the results in chapter 4 as well as Sharpe (1991).
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⇒σP = (1−α) ·σT . (1.10)

Solving (1.10) for α and substituting the result into (1.9) reveals the linear relation-

ship between the portfolio’s return and volatility in a Tobin framework:

α = 1− σP
σT

rP = rs +(rT − rs) ·
σP
σT

. (1.11)

This result has far reaching implications: Unlike in the Markowitz model, the

efficient line is no longer a curve but a straight line in the mean-volatility space (see

Figure 1.7), and any portfolio on this Tobin efficient line is a combination of the safe

asset and the portfolio T : As can be seen for either utility curve in Figure 1.8, both

the investor with high and the investor with low risk aversion will be better off when

the safe asset is part of the overall portfolio than she would be without it, i.e., if she

would be restricted to a Markowitz efficient portfolio with risky assets only.17 As a

consequence, the different levels of risk aversion and different utility curves will lead

to different values for α but not to different structures within the tangency portfolio

T . Hence, the optimization of the portfolio T can be separated from the individual

investment decision (separation theorem).

With the linear relationship between risk and return, the marginal risk premium

is constant. Finding the optimal structure for the portfolio T therefore is equivalent

to finding the asset weights that maximize the risk premium per unit risk, i.e., the

slope of the Tobin efficient line, θT , with

θT =
rT − rs

σT
. (1.12)

Thus, the Tobin efficient line in equation (1.11) can be rewritten as

rP = rs +θT ·σP , (1.11*)

going through (0;rs) and (σT ;rT ). Graphically speaking, it should be tangent to

the efficient line of the “risky assets only” portfolios; T is therefore referred to as

tangency portfolio. The combination with any other portfolio T ′ would result in a

lower risk premium, i.e., θT ′ <θT ∀T ′ �= T . When short sales are not allowed and

17 If short sales are not allowed, a necessary technical condition is rT > rs.
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Fig. 1.7: Efficient Line for the Tobin model

(curved thin line: efficient “risky assets

only” portfolios according to Markowitz)

Fig. 1.8: Portfolio selection in a Tobin

framework (thick lines: utility curves tan-

gent to the Tobin efficient line; thin

dashed lines: utility curves tangent to the

Markowitz efficient line)

all the assets’ weights must be non-negative, T is one particular portfolio from the

Markowitz efficient set where, again, there exists no closed-form solution. If risky

assets may not be short sold, the investor should consider a combination of safe asset

plus the original Markowitz model, whenever the condition rs < maxi{ri} holds.

When there are no restrictions on short sales, then T will be located on the re-

spective efficient line from the Black model; this framework is usually referred to

as modified Tobin model. The exact solution for T ’s asset weights, return and risk,

respectively, can be computed according to

xT = Σ−1
[
r I

][ 1
b−rs·c
−rs

b−rs·c

]
(1.13a)

rT =
a− rs · b
b− rs · c

σ2
T =

a− 2 · b · rs + c · r2
s

(b− c · rs)
2 (1.13b)
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Fig. 1.9: Efficient line in a Brennan framework

with the parameters a, b, and c as introduced in (1.8b). Substituting and rearranging

then implies that the optimal slope will be

θT =

√
a− 2 · rs · b+ r2

s · c.

Note that the combination of the safe asset plus Black model (i.e., no constraints on

short selling) will lead to a reasonable solution only if rs < b/c, i.e., if the safe return

is lower than the return of the Minimum Variance Portfolio.

When investors want to have a portfolio with an expected return exceeding T ’s,

rP > rT , then this implies α < 0, i.e., going short in the safe asset, as is the case for

the investor with utility curve U1 in Figure 1.8. Brennan (1971) distinguishes differ-

ent risk-free rates for lending, rs1 , and borrowing, rs2 , where usually rs1 < rs2 . In his

model, the investor ends up with two tangency portfolios leading to three different

strategies: (i) investing in the safe asset and the respective tangency portfolio T1 for

rP ∈ [rs1 ,rT1
]; (ii) investing along the Markowitz efficient line (without safe asset)

for rP ∈ [rT1
,rT2

]; and (iii) going short in the safe asset (i.e., taking a loan at rs2 )

and investing the additional amount together with the initial endowment into port-

folio T2 for rP > rT2
. Figure 1.9 illustrates this result: the left and right bold lines

represent the solutions for (i) and (iii), respectively, and the solutions according to

strategy (ii) are represented by the medium bold curve connecting T1 and T2. Note

that in the absence of transactions costs and perfect markets with rs1 = rs2 = rs, the

Brennan model collapses into the original Tobin model and T1 = T2 = T .
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1.1.2.4 Further Advances

It is a well-known fact that the empirical distributions of asset returns frequently

exhibit skewness and fat-tails (i.e., third and fourth moments that differ from the

normal distribution’s) or higher moments are not even existing.18 The normality as-

sumption (as a theoretically necessary prerequisite for the Markowitz model when

the utility functions are not quadratic) has often been seen as unrealistic. Early at-

tempts19 include preferences for higher moments than the variance in their analy-

ses.20 These extensions, however, lead to severe problems in terms of solvability and

complexity of the resulting models. A more usual way is to transform the data in a

way that they are closer to the normal distribution. The simplest (and by now stan-

dard) transformation would be to use first differences of the logarithms of the prices

(i.e., continuous returns), rc = ln
(

St

/
St−1

)
= ln(St)− ln(St−1), rather than the tradi-

tional “change : price” ratio (i.e., discrete returns), rd = (St −St−1)
/

St−1
= St

/
St−1

− 1

where St (St−1) is the current (previous) price of the asset and the relationship

rc = ln(1 + rd) holds. The rational behind this approach to assume the prices to be

log-normally distributed: A random variable S is said to be log-normally distributed

if S = a + c · ez where a and c are constants and z is normally distributed. Alterna-

tively, a random variable J is said to be SU –normal if sinh−1(J) = λ +θz where λ

and θ are constants and z, again, is normally distributed. This latter distribution,

suggested by Johnson (1949), is a very flexible skewed and leptokurtic distribution

and is therefore also well apt for modeling asset returns.

A different way of modeling higher moments would be the introduction of dy-

namics. By splitting the considered period into several (or infinitely many) subpe-

riods, a discrete (continuous) price process can be modeled that reflects a random

walk. The arguably most popular of these processes is based on the geometric Brown-

ian motion for a price path of St+∆t = St · exp(α ·∆t +σ · dz) where E(St+∆t) =

St · exp
(
α ·∆t +(σ2/2) ·

√
∆t

)
and the Wiener process dz = lim

∆t→0

√
∆t ·εt+∆t with

εt+∆t ∼ N(0,1). Higher moments can then be depicted whenα and, in particular,σ2

are no longer kept constant but are assumed to change over time or to be stochastic,

18 See also Mandelbrot (1997) who stimulated the debate whether the second moment, the variance, is

finite for all time series.

19 See, e.g., Tsiang (1972), Francis (1975), Friend and Westerfield (1980) or Scott and Horvath (1980).

20 For more recent results, see Dittmar (2002) and the literature quoted therein.
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too. The resulting models are demanding21 and are hence applied merely in fields

such as Financial Engineering or EconoPhysics, e.g., for pricing single assets, yet are

rarely applied when a larger group of assets is to be investigated at the same time.

If these technical difficulties are to be avoided, a less demanding (and quite pop-

ular) approach is to assume the validity of the central limit theorem according to

which the combination of random variables will have a probability that is close to

the normal if the number of such variables is sufficiently large and if the variables

themselves are independent identically distributed (iid) and have non-zero finite

variance. This assumption is often made for portfolios where the returns are suf-

ficiently close to the normal even when the returns of the included asset are not.

However, more recent results indicate that portfolios’ returns are not closer to nor-

mality than the included assets’ – in particular when the assumption of iid returns

is violated and, e.g., a portfolio contains both derivates and the underlying assets.

As will be shown in chapter 6, asset selection with a mere focus on expected (utility

of) return and risk can provoke and enforce undesired properties of the resulting

portfolio’s return distribution, in particular when and inappropriate risk measures

are applied. Likewise, abandoning the normality assumption and introducing em-

pirical distributions might turn out as a Pandora’s Box: the parametric distribution

might be superior even when it is known that it is not stable, as will also be shown

in chapter 6.

In the recent literature, dynamic aspects have gained considerable interest. Not

least because of the theoretical complexity, the respective models have to rely on

strong assumptions in order to remain manageable: Discrete time models are of-

ten tackled with dynamic programming approaches22 starting with solving the my-

opic problem for the last period and then, step by step, solving the problem for the

preceding period.23 However, not all dynamic optimization problems are manage-

able with this approach: not all dynamic problems can be “chopped” into a series of

myopic problems without destroying relevant dynamic aspects; the number of sub-

21 For a presentation of these methods, see Brooks (2002) or Campbell, Lo, and MacKinlay (1997).

22 See Hillier and Lieberman (1995) and section 2.1.1.

23 See, e.g., Huang and Litzenberger (1988, section 7.9).
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problems might exceed the computational resources, and not all continuous-time

problems can be transferred into a discrete-time framework.24

Extensions to the traditional MPT models by relaxing assumptions on friction-

less markets, including the introduction of transactions costs, allowing for whole-

numbered quantities rather than infinitely divisible stocks, upper limits on the num-

ber of different stocks, non-parametric distributions, alternative risk measures etc.,

cause severe computational problems, some of which will be discussed in the follow-

ing chapters. The traditional finance literature therefore has either to exclude these

aspects or be rather selective in incorporating frictions, frequently at the cost of ex-

cluding other aspects relevant in practice. Chapters 3 through 6 will discuss some of

these extensions, present some attempts from the literature and offer new answers

by original work.

1.1.3 Risk Reconsidered

1.1.3.1 Definitions of Risk

So far, the term risk has been used to characterize a situation where the exact out-

come is not known and where the employed risk measure indicates the magnitude of

deviations from the expected value. “Risk” therefore reflects not only the “dangers”

associated with an investment, but also the chances; in this sense, a risky situation

is one in which surprises and unexpected developments might occur. A typical rep-

resentative of this type of risk measures is the volatility of returns which not only is

one of the foundations of portfolio theory as introduced so far, but will also be the

prime measure of risk for most of the remainder of this contribution.

Alternatively, risk can denote the fact that things “can go wrong” and losses or

underachievement can be incurred. For this notion of risk, semi-variance is an early

example which measures only the negative deviations from the expected value. More

recently, Value at Risk has become a very prominent figure. It denotes the maximum

24 See Merton (1992) or Duffie (2001). Cvitanić and Karatzas (1999) discuss dynamic risk measures.

Sundaresan (2000) gives a concise review of the major models. For literature on continuous portfolio

selection, see, e.g., Loewenstein (2000), Nilsson and Graflund (2001), Brennan and Xia (2002), An-

dersen, Benzoni, and Lund (2002) or Gaivoronski and Stella (2003) and the literature quoted therein.

An alternative view is offered by Peters (1996) who applies chaos theory.
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loss within a given period of time with a given probability. Chapter 6 will be con-

cerned with the concept (and, notably, the shortcomings) of this risk measure. A

third notion of risk refers to a situation of danger or peril. In finance, this concept is

applied, e.g., in Stress Testing where the effects in extreme and undesired situations

are investigated. This aspect of risk as well as downside risk measures are merely

applied in circumstances where catastrophes ought to be prevented, investors ought

to be saved from hazardous situations, or additional or supplementary information

on an investment is wanted. This includes tasks of supervising bodies and regula-

tory authorities as well as issues in corporate and financial governance. Much like

measures that focus only on the positive surprises and upside risk, the associated

risk measures, however, appear less appropriate as a prime (or sole) risk measure in

financial management.

Risk can also be characterized by its sources, fundamental causes and effects.

This contribution is mainly concerned with

financial risk where the future value of an asset or portfolio is not known exactly

and the potential outcomes are associated with uncertainties.

This might include or add to other types of risks, such as

inflation or price-level risks which reflect that the future purchasing power of a cer-

tain amount of money is unknown;

exchange risk in cases where investments include assets in foreign currencies and

the future exchange rates might be uncertain;

interest rate risks since the prices of many assets are linked to the general interest

rate, (unanticipated) changes in which will therefore move these assets’ prices

into (unanticipated) directions;

political and legal risks which affect the assets’ issuer and his ability to carry on his

businesses as planned and might have a severe effect on the issuers operations

or profit situations when the legal situations or the tax systems are changed;

credit risk, default risk of major suppliers and customers which can affect the profit,

production, or distribution;
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to name just a few. Hence, there also exist risk measures that asses the current expo-

sure to an undesired situation and the disadvantages resulting from it. A typical rep-

resentative for this type would be a bond’s duration that measures the price changes

due to changes in the interest rate (i.e., the bond’s interest rate risk).

Arguably, volatility is the most widespread risk measure in financial manage-

ment – and is often even used synonymously for the term risk.25 The reasons for this

are various, most notably among them perhaps the fact that it reflects the assump-

tion of normally distributed returns or of price processes with normally distributed

price movements. Also, it measures not just potential losses but the whole range

of uncertain outcomes and therefore serves the demands on a “general purpose”

risk measure in finance. Not least, it also has a number of favorable (technical and

conceptual) properties. Hence, this contribution, too, will use volatility as preferred

measure of risk.

1.1.3.2 Estimating the Volatility

The concept of volatility is rather simple and straightforward: Since the variance

measures the average squared deviation of the expected value, the volatility, calcu-

lated by taking the square root from the variance, allows for ranges or bandwidths

around the expected value within which the actual value will be realized with a cer-

tain probability. Estimating the actual value for an asset’s volatility, however, is not

always as simple and straightforward. A more fundamental problem with the im-

plicit approach is that it demands market participants to have knowledge of the true

future volatility – which, of course, might be a rather daring assumption. Or, in the

words of Lewellen and Shanken (2002):

“Financial economists generally assume that, unlike themselves, in-

vestors know the means, variances, and covariances of the cash-flow

process. Practitioners do not have this luxury. To apply the elegant

framework of modern portfolio theory, they must estimate the process

using whatever information is available. However, as [Black (1986)] so

memorably observes, the world is a noisy place; our observations are

necessarily imprecise.”

25 For a critical discussion of commonly used risk measures in finance, see, e.g., Szegö (2002) and

Daníelsson (2002).
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There are several approaches to estimate the volatility, all of which have their

advantages and disadvantages. In theory as well as in practice, two major groups of

approaches have gained considerable popularity:

Implicit approaches search for values of the volatility that justify currently observed

prices for securities the price of which depends on the volatility and under the

assumption of valid (and actually employed) equilibrium pricing models.

Historic approaches are based on past time series and assume that history will re-

peat or will be continued. The past (“in sample”) data are thought well apt

to characterize future (“out of sample”) developments. Hence, it is assumed

that the historic, in sample volatility allows a reasonable estimate for the out

of sample volatility.

A typical way of estimating the implied volatility of a stock would be to find the

value that “explains” the current price of a buy (call) or sell (put) option on this

stock. These derivative securities depend on their time to maturity, their exercise

price (at which the underlying can be bought or sold), the safe interest rate, the

current stock price, possible dividend payments and dates before maturity – and the

underlying stock’s volatility which is the only variable that is neither specified in the

option contract nor directly observable from market data. With exact option pricing

formulas or analytic approximation models,26 the implicit volatility can be found by

searching the value for σ where the empirically observed (i.e., quoted) price equals

the theoretical price. Classical numerical search methods are usually able to find the

implicit value for σ .

The implicit approach is sometimes considered superior as it does not require

historic data and is able to capture current market expectations that are not (or can-

not be) represented by past observations. However, this approach has also some se-

vere shortcomings. Apart from “plain vanilla” type options, option pricing models

tend to be rather demanding, and their implementation might easily turn into a

real challenge reaching (or even exceeding) the capacities of standard spreadsheet

applications and programming environments. The assumption that the quoted op-

tion price results from the (majority of the) market participants using these models

26 For a comprehensive introduction to options and derivatives and pricing models, see Hull (2003).
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might therefore not always be justified. This might contribute to phenomena such

as the often observed volatility smile: other things equal, the more the underlying’s

current price and the option’s exercise price differ, the higher the implicit volatility.

In addition, most models assume constant volatility until maturity which is often

seen as strong simplification, in particular for options that can be exercised prema-

turely. Not least, for the vast majority of financial assets, there exist no derivatives

from which to estimate the implicit volatility. Hence, while suitable (and reasonably

reliable) for assets on which derivatives exists and where both assets and derivatives

are traded at a high frequency, the implicit approach is not generally applicable.

Historic approaches, on the other hand, are easier to apply when standard ap-

proaches are assumed, yet might become demanding when usual assumptions (such

as stable volatility over time) are dropped and might become imprecise when there

are not enough historic data, when there are structural breaks within the time series

or when there is a fundamental event that affects the issuer’s future situation but is

not yet reflected in the (past) data used for estimating the volatility. Nonetheless,

application of historic approaches is common practice in both theory and practical

application, for one because they are the only alternative, but also because they are

rather simple and have been found to work sufficiently well.

1.1.3.3 Estimation of the Historic Volatility

Given a series of past observations of an asset’s returns, rt , the straightforward way

of estimating its volatility would be to calculate the in sample variance by

σ̂2 =
1

τ − 1

τ

∑
t=1

(rt − r̄)2

or, under maximum likelihood, by

σ̂2 =
1

τ

τ

∑
t=1

(rt − r̄)2

where r̄ is the in sample average return and τ is the number of observations. For

many instances, this approach is sufficiently exact; yet it might get imprecise when

data from the too distant past ought to predict the near future27 and when the gen-

eral (market) situation has changed. Financial time series often exhibit what is called

27 To take this into account, the data might be weighted where the more recent observations might get

a higher weight than ancient ones.
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volatility clustering, i.e., volatility is changing over time, and days with high risk are

likely to be followed by days with high risk, and days with low risk are likely to be

followed with days with low risk.

To account for this fact, models have been developed that abandon the assump-

tion of constant volatility and allow for autocorrelation, i.e., correlation of a vari-

able with its own past observations. Generalized Autoregressive Conditional Het-

eroskedasticity (GARCH) models28 therefore assume that the current volatility de-

pends not only on a constant term, but also on the p recent values for the volatility

and on the magnitude of the q recent error terms in the data series which is also

considered to exhibit autocorrelation. The specification for a GARCH(p,q) model

therefore reads

σ2
t =α0 +

q

∑
i=1

αi · e2
t−i +

p

∑
j=1

β j ·σ2
t− j

with

rt = x′tγ + et ,et ∼ N
(

0,σ2
t

)

where xt and γ are the explanatory variables and regression parameters, respec-

tively, for the returns.29

Under the assumption of conditionally normally distributed errors, there is

no closed-form solution for the parameters α0,αi, β j and γ. They can be deter-

mined, though, by maximizing the respective log-likelihood function which, for a

GARCH(1,1), is

L = −T

2
ln(2π)− 1

2

T

∑
t=1

ln
(
σ2

t

)
− 1

2

T

∑
t=1

(yt − x′tγ)
2

σ2
t

. (1.14)

Many statistics and econometrics software packages offer solutions to this problem

by employing iterative methods. However, as the function (1.14) can have many dif-

ferent local maxima, the numerical methods employed by these software packages

28 GARCH models where introduced independently by Bollerslev (1986) and Taylor (1986). For a

more detailed presentation and preceding models such as ARCH (Autoregressive Conditional Het-

eroskedasticity) and ARMA (Autoregressive Moving Average) models, see, e.g., Brooks (2002, chap-

ter 8) or Campbell, Lo, and MacKinlay (1997, chapter 12).

29 Note that xt might also contain lagged values of the return.
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might produce different results when they start off with different initial parameter

guesses.30 In section 2.4, it will be demonstrated how the problem of parameter es-

timation for GARCH models can also be approached with heuristic optimization

techniques.

1.1.3.4 A Simplified Approach: The Market Model

Frequently, estimating the volatilities needed for mean-variance based portfolio op-

timization is not as much of a problem of precision but of the rather large number

of parameters involved in the model: When there are N different assets, then N vari-

ances and
(
N2 −N

)/
2 different covariances need to be estimated. For a large number

of assets, the estimation problems arising from the large number of parameters can

quickly get out of hand. Sharpe (1963) suggests a simple, yet path breaking simpli-

fication by assuming that “the returns of various securities are related only through

common relationships with some basic underlying factor”31 and that the return of

any security i can be described by the linear relationship with this factor’s return

rit = ai +bi · rMt + eit (1.15)

where M is the factor of choice and eit is the error term. Finding the variance of

rit becomes then equivalent to finding the variance of the right-hand side of equa-

tion (1.15): The intercept ai is a constant and will therefore not contribute to σ2
i .

Also, if ri and rM are stationary and bivariate normal, then it follows that the error

terms are uncorrelated with rM, hence Var(bi ·rM+ei) = Var(bi ·rM)+Var(ei). Fur-

thermore, the error terms of different assets can be considered to be uncorrelated,

Covar(ei,e j) = 0.

Based on these definitions and considerations and after some straightforward

rearrangements, the simple, yet crucial result is that an asset’s variance and its co-

variance with other assets can be estimated via the market’s risk according to

σ2
i = b2

i ·σ2
M +σ2

ei
,

σi j = bi · b j ·σ2
M.

30 See Brooks, Burke, and Persand (2001).

31 Cf. Sharpe (1963, section iv).
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From a practical point of view, the Market Model makes the preliminary estima-

tions in portfolio optimization less cumbersome: to find the different variances and

covariances, one simply has to estimateσ2
M and for each of the N assets the parame-

ters ai, bi, andσ2
ei

– which is considerably below the original N + (N2 −N)
/

2 estimates

necessary for the covariance matrix32 and which can also be used as a simple means

to generate artifical market data.33

Yet, there is another interesting result from this approach. The variance of i is

split into two parts: σ2
ei

is called non-systematic, unsystematic or diversifiable risk

because it can be avoided by holding an appropriate portfolio rather than the sin-

gle asset. b2
i ·σ2

M is also known as systematic risk and denotes the part of the asset’s

volatility that cannot be diversified. With bi coming from an Ordinary Least Squares

(OLS) estimation, it can be determined by bi = σiM/σ2
M; after substituting the co-

variance’s definition, σiM = σi ·σM · ρiM, and simple rearrangements, the asset’s

variance can also be partitioned into

σ2
i = ρ2

iM ·σ2
i︸ ︷︷ ︸

=b2
i ·σ2

M

+
(

1−ρ2
iM

)
·σ2

i︸ ︷︷ ︸
=σ2

ei

. (1.16)

This refines the previous finding from section 1.1.1: A portfolio with many different

assets will have a variance closer to the average covariance than the average variance

(akin to Figure 1.2), hence investors with large and well diversified portfolios should

be merely concerned with the assets’ covariances (or correlations) with the market

and less with the assets’ overall risk, i.e., variance, since not all of the variance will

affect them.

1.2 Implications of the MPT and Beyond

1.2.1 The Capital Market Line

In the Tobin framework, the expected returns are exogenously given and the N si-

multaneous equations where solved for the weights. Under the assumption of ho-

mogenous expectations, all investors will hold the same optimal tangency portfolio

32 For another simplified approach, see Markowitz and Perold (1981).

33 Issues related with the modeling of variance and skewness in financial data series are presented in

Liechty (2003).
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with equal weights xi: the different utility curves affect only the fractions for the safe

asset and the tangency portfolio but not the composition of the tangency portfo-

lio itself. This implies that a certain asset j is represented either in any investor’s

portfolio with the same proportion (within T ) or in none; or in other words, all ex-

isting assets are held by all investors, since an asset an investor doesn’t hold will not

be included in any other investor’s portfolio.34 This then implies that in an equilib-

rium market the weights xi must correspond to the fraction asset i represents of the

market, xMi . In equilibrium, the ideal tangency portfolio must therefore equal the

market portfolio, i.e., T =M and xi = xMi .

Hence, the central relationship from the Tobin Model (see (1.11) on page 12)

between a portfolio’s risk and its return can be written as

rP = rs +(rM− rs) ·
σP
σM

. (1.17)

The linear relationship between the expected return of a portfolio and its volatility

expressed in Equation (1.17) is generally referred to as Capital Market Line (CML).

An important point is that for the derivation of the CML, short-sales are not ex-

cluded as models with limits on the weights and risk-free borrowing or lending, such

as in Markowitz (1952) or Dyl (1975), will not lead to equilibrium asset pricing mod-

els; cf. Alexander and Francis (1986, p. 125). However, Lintner (1971) showed that

allowing short-sales is a mathematically convenient, yet not a necessary assump-

tion. The intuitive argument is basically that no asset can have negative weight in

the equilibrium market portfolio since every investor would want to sell the asset

but none would want to buy it; if the market portfolio actually contained assets with

negative weights, then markets wouldn’t clear.

The underlying concept has also become a standard measure for ex post portfolio

evaluation, based on Sharpe (1966). Rearranging (1.17) yields

rP − rs

σP
=

rM− rs

σM
. (1.18)

34 Empirical studies confirm this view and show that funds with passive investment strategies (which

try to replicate some market index) are superior to most actively managed funds (i.e., where man-

agers have expectations diverging from the other market participants’ and therefore prefer other

weights); see Sharpe, Alexander, and Bailey (2003).
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When rM and σM are realized and observable ex post, then the slope of the ex post

CML (1.18) is the achieved reward to variability ratio or Sharpe Ratio (SR)35 of the

portfoliosM and P , respectively. The SR corresponds directly to the slope of Tobin’s

efficient line in equation (1.12) on page 12, and with the same argument, investors

will be better off the higher the Sharpe Ratio of their investments:

SRP∗ > SRP ⇒P∗ ≻ P . (1.19)

Due to its popularity as an ex post criterion for portfolio evaluation, Sharpe Ratio

has also become a common synonym for the (ex ante) slope of the Tobin efficient

line.

1.2.2 Capital Asset Pricing Model

As argued previously, rational investors with homogeneous expectations will all

hold some combination of the market portfolio,M, and a safe asset with a return of

rs. Given the proportions xMi , the variance of the market portfolio is

σ2
M = ∑

i
∑

j

xMi · xMj σi j.

Making use of the statistical property ∑ j xMj σi j =σiM, it can also be written as

σ2
M = ∑

i

xMi ·σiM = ∑
i

xMi ·σi ·σM ·ρiM

⇒σM = ∑
i

xMi σi ·ρiM.

The variance of the market portfolio is therefore the weighted sum of the assets’

covariances withM. Hence, it is not necessarily high asset volatility that contributes

to the portfolio’s risk, but large covariance between assets and the market as this is

the part of the volatility that cannot be diversified, σi ·ρiM. The investor therefore

expects assets with higher undiversifiable or systematic risk to contribute more to

the portfolio’s expected return than assets with low systematic risk.36

35 See also Sharpe (1994).

36 See also equation (1.16) in section 1.1.3.4.
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Given these considerations, the market will be in equilibrium only if the ratio

between contributed return and contributed systematic risk is the same for all as-

sets. If there was an asset that would pay a lower return for same additional risk,

it would not be held in any portfolio since its inclusion would lower the portfolio’s

return/risk ratio; assets with over-proportionate returns would be highly demanded

as they would increase the portfolio’s return/risk ratio. In either case, the market

would therefore be out of equilibrium: demand and supply would not balance, and

the market would not clear. With similar arguments, assets that have no systematic

risk should earn exactly the safe rate of return. Using the market’s expected return

as a benchmark and by σMM = σ2
M, the equilibrium expected return for an asset i

is therefore

ri − rs

σiM
=

rM− rs

σMM

or, in the usual notation

ri = rs +(rM− rs) ·βi (1.20)

with

βi =
σiM
σ2
M

=
σi ·ρiM ·σM

σM ·σM
=

σi ·ρiM
σM

. (1.21)

The Capital Asset Pricing Model (CAPM), independently developed by Sharpe

(1964), Lintner (1965) and Mossin (1966), therefore states that in equilibrium there

is a linear relationship between the systematic risk and the risk premium. Using the

beta coefficient as the relevant risk measure as defined in (1.21), all asset should

form a line in the return-beta space according to the Security Market Line (SML) in

equation (1.20).37 When considering expected values for a market in equilibrium,

only the systematic risk should affect the risk premium. The unsystematic risk can

be avoided (hence also referred to as diversifiable risk), an investor bearing it there-

fore doesn’t “deserve” an additional risk premium.

The validity of the CAPM was to be tested and confirmed in a number of empiri-

cal tests for many markets (most notably by Black, Jensen, and Scholes (1972), Fama

and MacBeth (1973), and Blume and Friend (1975)) which were eventually heavily

37 A more rigorous presentation of the underlying mathematics can be found in, e.g., Huang and

Litzenberger (1988); for a presentation of the theory of asset pricing, see, e.g., Duffie (2001).
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criticized by Roll (1977). Roll’s critique is that the use of a market proxy for the true

(yet unknown) market portfolio prohibits empirical tests; Roll, however, does not

reject the CAPM per se nor its testability in theory.38 Consecutive studies develop

alternative methods but are still undecided whether the CAPM is valid or not: Levy

(1978) acknowledges the fact that the average investor will not hold the market port-

folio but a very small number of different assets for various reasons and finds that

for widely held stocks, the beta is an appropriate risk measure whereas for others the

variance is more relevant. Cheng and Grauer (1980) find evidence against it yet con-

cede that their results might also be interpreted as evidence against the stationarity

assumption of the return distributions; Gibbons (1982) rejects two versions of the

CAPM39 for the New York Stock Exchange whereas Stambaugh (1982) finds evidence

in favor for the zero-beta CAPM. Other authors show the importance of alternative

aspects such as firm size40 or survivor bias41. Levy (1997), in response, emphasizes

that empirical ex post results are not enough to ultimately reject the (over time insta-

ble) ex ante parameters of the CAPM and concludes from his experiments “that the

risk-return equilibrium model is not dead; it is alive and doing better than previous

empirical studies have revealed.”

The question of whether the CAPM is valid or not is therefore still far from be-

ing answered:42 Whereas some see “damning evidence” (as does Haugen (2001, p.

249)), others concede that “although we couldn’t tell whether it was true or not, it

does give us insight into behavior in capital markets” (cf. Elton, Gruber, Brown, and

Goetzmann (2003, p. 358)).

38 See also Roll (1978) as well as Lo and MacKinlay (1990) and Lewellen and Shanken (2002).

39 In addition to the standard CAPM as presented, the zero-beta CAPM is tested: If both the CAPM

and the MM hold, an asset or portfolio with β = 0 ought to earn rs. This (efficient) zero-beta port-

folio then replaces the (missing) safe asset, making use of the property that any combination of two

efficient portfolios will again be efficient (provided short sales are allowed when necessary).

40 See Fama and French (1992).

41 See the opposing results from Kothari, Shanken, and Sloan (1995) and Fama and French (1996).

42 For a more in-depth discussion of the literature, see, e.g., Alexander and Francis (1986) or Sharpe,

Alexander, and Bailey (2003).
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1.2.3 Alternative Versions of the CAPM

Because of the problems associated with its empirical application, alternatives to

the standard CAPM have been presented which contain either extensions or mod-

ifications to the original version, or are based on alternative paradigms. Merton43

relaxes the myopic nature of the CAPM and introduces a continuous time version,

Intertemporal CAPM (ICAPM), where there is a safe return44 and the prices of the

risky securities follow a diffusion process. In particular, he assumes that investors

are concerned with market risks as well as “extra-market sources of risks” which are

referred to as factors. He consequently suggests a Multifactor CAPM where the as-

set’s risk premium depends not only on the market’s risk premium but also on these

factors’ risk premia:

ri = rs +(rM− rs) ·βiM +∑
f

(
r f − rs

)
·βi f

where r f is the expected return of factor f and βi f is the sensitivity of asset i to this

factor. As different investors might be concerned with different extra-market fac-

tors and might therefore have different strategies to hedge their respective relevant

risks, translating this model into practice or testing is not straightforward. Recently,

Campbell and Vuolteenaho (2003) operationalize the ICAPM by suggesting a two

beta CAPM: They break the market beta into two components which reflect the mar-

ket’s expectations about future cash flows (“bad” cash flow beta) and about future

discount rates (“good” discount-rate beta), respectively. Based on this distinction,

the authors find that small stocks have higher cash flow betas (and hence higher

returns) than large stocks and growth stocks; this might not only explain the size

effect, a common market anomaly, but also helps explain why the standard CAPM is

found to perform rather poorly for the last decades.

Breeden (1979) presents a Consumption-Based Continuous-Time CAPM where

the beta-coefficient is measured relative to aggregate consumption, and the change

in aggregate consumption is used rather than the market return. If marginal utility

of consumption will be high (low) in good (bad) times, assets with payoffs that are

positively correlated with aggregate consumption will not be as attractive as those

43 See Merton (1969, 1971, 1972, 1973).

44 This assumption is relaxed in Richard (1979).
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which are negatively correlated as the latter give their highest payoffs when they

are “most needed,” namely in “bad times.” Consequently, assets with positive (nega-

tive) correlation will have relatively low (high) present values – which results in high

(low) expected returns. Friend, Landskroner, and Losq (1976) also take inflation into

account and derive a multi beta CAPM where the additional price of inflation risk

enters the equilibrium nominal price.45 How intertemporal asset pricing models can

be evaluated econometrically, is discussed in Hansen, Heaton, and Luttmer (1995).

Grossman and Stiglitz (1980) present a model that takes into account informa-

tion gathering costs, and Admati (1985) shows that in this case decisions will still be

made within the mean-variance framework, yet each investor will have an individual

“market portfolio” which will be her individual benchmark and therefore contribute

to individual parameters for the CAPM.

An aspect frequently neglected in pricing models (as in the original CAPM) is

the effect of taxes. A first major breakthrough was presented by Brennan (1970) who

investigates the case where investors have different tax rates. He finds a modified

version of the CAPM where the expected return depends on the beta on the price

changes as well as on the dividend; hence the original CAPM’s security market line

is replaced with a security market plane. When dividends (together with safe re-

turns) are taxed at a different tax rate than capital gains, then a “dividend clientele

effect” can be observed: As investors will be concerned with their after-tax returns,

companies are likely to be owned by stockholders who are attracted by the respective

dividend policy with regard to the investors’ tax classes.46

Another concern is that in the long run, there will be hardly an asset that is

perfectly risk-free. One suggested solution to this problem is the zero-beta CAPM,

where an asset or portfolio with no systematic risk, i.e., with β = 0, is used for an

substitute: As can readily be seen from equation (1.20) of the SML, this zero-beta

asset (or portfolio, respectively) should earn no risk premium, and its yield should

reflect the supposed level of return for safe investments under the given market sit-

uation.47 Gilster, Jr. (1983) shows that in the absence of a risk-free asset, the com-

45 See also Elton and Gruber (1984), Halmström and Tirole (2001), and Brennan and Xia (2002).

46 Brennan’s results, however, stirred some discussion and counterarguments; a short review of the

main literature can be found, e.g., in Alexander and Francis (1986, section 8.3A).

47 See also footnote 39 on page 28 and the more detailed presentation in, e.g., Elton, Gruber, Brown,

and Goetzmann (2003, pp. 310-320).
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position of the efficient frontier is the same for any investment horizon. Also, the

existence of non-marketable assets implies that an investor might hold a combina-

tion of publicly available securities as well as individual investments. In particular

those stocks from the market portfolio that have a high correlation to these non-

marketable assets will therefore have a lower weight in the investor’s portfolio than

in the market portfolio.48 Gonedes (1976) finds the beta is a sufficient measure of

risk even when investors have heterogeneous expectations.49 Lindenberg (1979) de-

rives equilibrium conditions when investors are price affecters rather than price tak-

ers only.

Since empirical investigations show that betas tend to be unstable over time and

might even be random coefficients when estimated with an OLS regression50, there

are also alternative versions for estimating the beta coefficient itself. Rosenberg and

Guy (1976) were the first to distinguish industry betas and allow for adjustments of

the short-term beta forecasts based on investment fundamentals and balance sheet

information.51 Grossman and Sharpe (1984), too, estimate an asset’s beta via a fac-

tor model which consists of a fixed term depending on the asset’s industry and the

weighted size, yield, and past beta.52 Gençay, Selçuk, and Whitcher (2003) suggest

the use of wavelet variances for more precise beta estimates.

All of these extensions to the CAPM have improved the reliability of estimations

and have helped to understand important aspects of capital markets. However, de-

spite the shortcomings of the original CAPM when applied empirically, it is a com-

mon means in computational studies for generating data sets based on empirical

observations. While historic volatilities and covariances can be used for estimates of

the future risk,53 historic returns cannot simply be extrapolated into the future as

the last period’s return is not necessarily a good estimator for its expected value in

the next period. For most of the computational studies in this contribution, the orig-

inal CAPM will be used for generating plausible data for a market in equilibrium; for

48 See Mayers (1972), but also Mayers (1973) where non-marketable assets together with the absence

of the risk-free asset are investigated.

49 See also Grossman and Stiglitz (1976).

50 See, e.g., Fabozzi and Francis (1978) and Shanken (1992).

51 See also Rosenberg (1985).

52 See also section 16.B in Sharpe, Alexander, and Bailey (2003).

53 See also sections 1.1.3 and 1.2.1.
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this purpose, extended or alternative models would not lead to additional insights as

will be seen, e.g., in chapter 4. The CAPM as presented in equations (1.20) and (1.21)

will therefore be used in conjunction with empirical data for major capital markets.

1.2.4 The Arbitrage Pricing Theory

Whereas mean-variance analysis and certain assumptions on the investors’ behav-

ior are the foundation for the Markowitz and subsequent models, alternative ap-

proaches are based on other assumptions and relationships. One of these is the law

of one price: Any two investments with equal future claims and payoffs must have the

same price today. Assuming a perfect market where the number of possible future

states equals the number of (linearly independent) securities, than the future payoff

structure of any new asset can be replicated with an adequate portfolio of existing

(and already priced) securities. If the price for the new asset would differ from the

price for the replicating portfolio, arbitrage would be possible: the investor could

buy the asset while going short in the portfolio (or vice versa) and all future pay-

ments would perfectly offset each other. Since all future net payments of this com-

bination will be zero regardless of the actual market situation, then the net price of

this combination must not be positive.

The Arbitrage Pricing Theory (APT) by Ross (1976) is built on this consideration.

The central assumption of the APT is that asset i’s return, ri, has a linear relationship

to the returns of the factors f ∈ F , r f , of the form

ri = bi0 + ∑
f∈F

bi f · r f +εi. (1.22)

Ideally, the error term εi has zero variance, yet it is sufficient to assume that the

number of factors is large and the residual risk is small enough.54 Also, it is assumed

that it is uncorrelated with any other asset’s error term as well as the factor returns.

The factors themselves can be regarded as portfolios from the existing assets. Ideally,

these factors are uncorrelated to each other which facilitates the interpretation of the

bi f ’s as sensitivities of ri towards the factors.55

54 See, e.g., Dybvig (1983), Grinblatt and Titman (1983, 1985) and Ingersoll, Jr. (1984). MacKinlay and

Pástor (2000) discuss the effects of missing factors.

55 A set of correlated indices can be transformed into a set of uncorrelated indices; see Elton, Gruber,

Brown, and Goetzmann (2003, section 8.A). Hence, this assumption is useful, yet not necessary for

the validity of the APT.
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Taking the expected value of equation (1.22) and applying some algebra,56 the

APT can be written as

E(ri)− rs = ∑
f∈F

bi f ·
(
E(r f )− rs

)
. (1.23)

where rs is the risk-free rate of return. Hence, according to the APT, the expected

return of an asset ought to consist of the safe return plus a risk premium depending

on the sensitivity towards the expected “risk premium” of some factors. Here, it also

becomes apparent that the CAPM can be viewed as a special case of the APT where

the only factor is the market portfolio.57

The APT has several advantages over the CAPM: Though both equilibrium mod-

els assume perfect markets and concave utility functions, the APT does not require

the additional assumptions made in the CAPM; in particular, it does not demand

the existence and knowledge of the (unobservable) market portfolio. A number of

empirical tests58 found that the APT is superior to the CAPM in terms of explanatory

power and reliability of predictions. At the same time, there is no conclusive general

result on the selection of the factors. Chapter 7 of this contribution will present new

results for the factor selection problem; a more detailed presentation on the relevant

literature on the APT is therefore left to section 7.1.

1.3 Limitations of the MPT

Modern Portfolio Theory has become not only the basis for theoretical work on

portfolio optimization but also a major guideline for institutional portfolio manage-

ment. Direct application, however, of the theoretical results to practical problems is

not always possible for various reasons. First and foremost, the underlying assump-

tions and constraints are mostly chosen in a way to make the models solvable yet

often at the cost of strong simplifications of real market situations. Without these

simplifications and stylized facts, however, the capacities of traditional methods are

56 For a more rigorous presentation, see, e.g., Lehmann and Modest (1987).

57 See Sharpe, Alexander, and Bailey (2003, section 11.5).

58 See in particular Roll and Ross (1980). Shukla (1997) surveys relevant literature.
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quickly exceeded. With new methods at hand, these restrictions can be overcome,

as will be shown in the main part of this contribution.

There are a considerable number of problems which resist parameterization or

where a formal model would be bound to cancel out relevant aspects. Also the there

has been raised serious critique on quantitative methods and their implicit assump-

tions and consequences.59 In this respect, new approaches including Economic Re-

alism60 or Behavioral Finance61 make significant contributions to current research.

Some authors criticize the assumptions on the investors’ behavior: Empirical

studies as well as experiments show that investors’ behavior is not necessarily ra-

tional but can be severely irrational: Kroll, Levy, and Rapoport (1988), e.g., found in

their experiments that the participants failed to make investment decisions as pre-

dicted by the separation theorem; however, performance improved as the reward

was increased tenfold. Weber and Camerer (1992) report from their experiments

that investors tend to select suboptimal portfolios which differ from the (theoreti-

cally expected) market portfolio, trade too frequently, and might even select portfo-

lios with negative expected returns.62

Another point of critique is the usual assumption that investors base their expec-

tations about return merely on the associated risk. In practice, however, predictions

(and eventually investment decisions) are often based on technical analysis where

estimates for future prices and price movements are derived, e.g., from patterns in

past stock prices and trading volumes, preferably from graphical representations

(chart analysis).63 Though in use for more than a century (first attempts can be

traced back to Charles H. Dow in the 1890’s), it has been widely ignored or rejected

by academia, mainly on two reasons: (i) if relevant information could be gained by

looking at past prices, everybody would do it and current prices should immediately

59 See, e.g., McCloskey (1998, 1996).

60 See Lawson (1997).

61 See Thaler (1993), Goldberg and von Nitzsch (2001) or Shefrin (2001).

62 See also Shiller (2000) and Oehler (1995).

63 See, e.g., Kahn (1999) and Lo, Mamaysky, and Wang (2000), yet also Sullivan, Timmermann, and

White (1999)
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contain this information;64 (ii) technical analysis does not look at the fundamental

values of the underlying companies. Recent results, however, show that “the con-

clusions reached by many earlier studies that found technical analysis to be useless

might have been premature”65 and that even rather simple rules might generate buy

and sell signals that can lead to higher returns which cannot be explained with the

generally agreed econometric and financial methodology. Models for simulating as-

set price behavior as a result from investor behavior such as agent based models

therefore allow for a larger variety of investment styles.66

Behavioral financial economists also criticize the standard assumptions on how

investment decisions are made. In contrast to the often assumed utility maximiz-

ing individual with rational expectations, investors are not a homogenous group,67

let alone is there a representative investor.68 Some authors trace investors’ behav-

ior back to different trading styles and distinguish “smart money” (i.e., literate in-

vestors) and “noise traders” (i.e., trend followers)69 Hence, herding behavior can

be observed which might eventually lead to bubbles where demand drives the price

far beyond the actual fundamental value. With usually less dramatic consequences

for whole financial markets, individual often have expectations that deviate from

those of other market participants. Frequently, this results in an active investment

strategy where (both individual and professional) investors hold portfolios which

do not reflect the market portfolio. Empirical studies, however, repeatedly find that

on the long run these actively managed funds are outperformed by passive invest-

ment strategies where a market index is sought to be replicated. The disadvantage

of unjustified and wrong expectations is often worsened by transactions costs and

frequent trading: individual investors are therefore prone to “pay a tremendous per-

formance penalty for active trading.”70

64 In terms of the concept by Fama (1970), the weak information efficiency should hold where all past

information is contained in the prices. The semi-strong efficiency requires any publicly available

information to be included in the prices, and under strong efficiency, also non-public information is

reflected in the prices.

65 Cf. Brock, Lakonishok, and LeBaron (1992, p. 1757).

66 See LeBaron (1999).

67 See, e.g., Campbell and Kyle (1993).

68 See, e.g., Kirman (1992).

69 See, e.g., Shiller (1989).

70 Cf. Barber and Odean (2000, p. 773). See also section 1.2.1.
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These aspects are related to difficulties that emerge when information has to be

distinguished from rumors or noise71 and when “attracting attention” is the main

trigger for an investment: Barber and Odean (2003), e.g., find in an empirical study

on some 700 000 individual investors and 43 professional money managers that in-

dividual investors tend to be net purchasers of stocks that attract high attention,

either by high abnormal trading volume, previous extreme price movements, or

by (not necessarily positive) reports on these stocks in the news – and therefore

differ to some extent from institutional investors. Also, purchases on these “high-

attention days” are likely to underperform. Alternatively, a misperception of risk

and the probabilities at which extreme events occur might influence the decision

process, as Kunreuther and Pauly (2004) find.

In practice, investors seem to prefer simplified investment rules. One reason for

this might be rather straightforward: Theoretical models are often to demanding

when applied to large problems. As argued already, estimating a market’s complete

covariance matrix might be extremely time consuming (if not even impossible), the

optimization problems (in particular when market frictions exist) are not solvable

with available software, and not all requests (such as a “low” portfolio turn-over rate

during a given period of time) can be included satisfactorily in a formal optimiza-

tion model. Hence, Asset Class Management, e.g., simplifies the selection process by

splitting the universe of available assets into (sub-)groups of related or similar se-

curities, selecting the best of each group by some rule of the thumb or applying the

formal model only on these preselections.72

Though behavioral finance has attracted considerable research interests and

made valuable contributions to the understanding of capital markets, there are no

generally agreed evaluation methods, it is hard to test these models73 and many im-

portant aspects have yet to be addressed systematically.74

71 See in particular Black (1986), whose contribution on noise initiated a major stream of research.

72 See Farrell, Jr. (1997) and Gratcheva and Falk (2003), but also Lettau and Uhlig (1999) and Cesari

and Cremonini (2003).

73 See Campbell (2000)

74 See also Stracca (2004) and van der Saar (2004).
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1.4 Summary

This chapter presented a short introduction to some of the foundations of Mod-

ern Portfolio Theory (MPT) in the tradition of Harry Markowitz, James Tobin and

William Sharpe. With respect to computability, these models have to rely on rather

strict assumptions that are not always able to depict real market situations. Subse-

quent models try to include these missing aspects, yet suffer from other shortcom-

ings as they usually have to make strong simplifications in other aspects in order to

remain solvable.

In the main part of this contribution, too, the original MPT models will be en-

hanced to allow a more realistic study of portfolio management problems. Unlike

other approaches in the literature, however, the trade-off between model complex-

ity and its exact solvability will not be answered by “exchanging” one simplifying

constraints for another, but by applying new solution methods and optimization

techniques. The basic concepts of these methods will be presented in the following

chapter.



Chapter 2

Heuristic Optimization

2.1 Introduction

2.1.1 The Problems with Optimization Problems

Optimization problems are concerned with finding the values for one or several deci-

sion variables that meet the objective(s) the best without violating the constraint(s).

The identification of an efficient portfolio in the Markowitz model (1.7) on page 7

is therefore a typical optimization problem: the values for the decision variables xi

have to be found under the constraints that (i) they must not exceed certain bounds

((1.7f): 0 ≤ xi ≤ 1 and (1.7e): ∑i xi = 1) and (ii) the portfolio return must have a

given expected value (constraint (1.7c)); the objective is to find values for the assets’

weights that minimize the risk which is computed in a predefined way. If there are

several concurring objectives, usually a trade-off between them has to be defined: In

the modified objective function (1.7a*) on page 9, the objectives of minimizing the

risk while maximizing the return are considered simultaneously.

The Markowitz model is a well-defined optimization model as the relationship

between weight structure and risk and return is perfectly computable for any valid

set of (exogenously determined) parameters for the assets’ expected returns and

(co-)variances (as well as, when applicable, the trade-off factor between portfolio

risk and return). Nonetheless, there exists no general solution for this optimization

problem because of the non-negativity constraint on the asset weights. Hence, there

is no closed form solution as there is for the Black model (which is equal to the
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Fig. 2.1: Global and local optima

Markowitz model except for the non-negativity constraint). Though not solvable

analytically, there exist numerical procedures by which the Markowitz model can be

solved for a given set of parameters values.

Depending on the objective function, optimization problems might have mul-

tiple solutions some of which might be local optima. In Figure 2.1, e.g., a function

f (x) is depicted, and the objective might be to find the value for x where f (x) reaches

its highest value, i.e., max
x

f (x). As can easily be seen, all three points xA, xB, and xC

are (local) maxima: the first order condition, f ′(x) = 0, is satisfied (indicated by the

horizontal tangency lines), and any slight increase or decrease of x would decrease

the function’s value: f (x) ≥ f (x±ε)|ε→0. Nonetheless, only xB is a global optimum

as it yields the highest overall value for the objective function, whereas xA and xC

are just local optima. Unlike for this simple example, however, it is often difficult to

determine whether an identified solution is a local or the global optimum as the so-

lution space is too complex: All of the objective functions that will be considered in

the main part of this contribution have more than one decision variable, the problem

space is therefore multidimensional; and the objective functions are mostly discon-

tinuous (i.e., the first derivatives are not well behaved or do not even exist).

In portfolio management, these difficulties with the objective functions are fre-

quently observed when market frictions have to be considered. To find solutions

anyway, common ways of dealing with them would be to either eliminate these fric-

tions (leading to models that represent the real-world in a stylized and simplified

way) or to approach them with inappropriate methods (which might lead to sub-

optimal and misleading results without being able to recognize these errors). This
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contribution is mainly concerned with the effects of market frictions on financial

management which are therefore explicitly taken into account. Hence, for reliable

results, an alternative class of optimization techniques has to be employed that are

capable of dealing with these frictions, namely heuristic optimization techniques.

Opposed to the well-defined problems considered so far, there also exist prob-

lems where the underlying structure is unknown, partially hidden – or simply

too complex to be modeled. When an underlying structure can be assumed or

when there are pairs of input/output data, these questions can be approached, e.g.,

with econometric1 or Artificial Intelligence2 methods. In finance, time series analy-

sis, pricing of complex securities, model selection problems, and artificial markets

would be typical examples.3 In this contribution, however, only well-defined opti-

mization problems will be considered.

2.1.2 Techniques for Hard Optimization Problems

2.1.2.1 Measuring Computational Complexity

Before introducing specific optimization methods, it might be helpful to find a clas-

sification for the size and complexity of the considered problems – and, in due

course, a measure of the methods applied on them. The computational complex-

ity of an optimization problem as well as optimization procedures (and algorithms

in general) is frequently given in O(·) notation which indicates the asymptotic time

necessary to solve the problem when it involves n (instances of the) decision vari-

ables and the problem size is determined by the number of these decision variables.

An algorithm of order O (n), e.g., will consume a processor time (CPU time) of n · c,

i.e., the time necessary for solving the problem increases linearly in the number of

instances;4 a polynomial algorithm of order O
(
nk

)
will consume c · nk where k is

1 See, e.g., Winker (2001) or Gourieroux and Jasiak (2001).

2 See, e.g., Russell and Norvig (2003).

3 See, e.g., Winker and Gilli (2004), Kontoghiorghes, Rustem, and Siokos (2002), Rasmussen, Goldy,

and Solli (2002) or LeBaron (1999).

4 Note that these considerations exclude aspects such as memory management or time consumed

by interface communication. Practical implementations should account for these machine and pro-

gramming environment depending characteristics.
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a constant specific for the problem or algorithm. E.g., reading n pages of a book

might consume linear time (i.e., O(n)), but finding out whether there are any dupli-

cates in a pile of n pages demands that each of them is compared to the remaining

(n− 1) pages, and the complexity becomes O(n · (n− 1)) ≈ O(n2) and is therefore

quadratic in n.

The constant c will differ across programming platforms as well as actual CPU

capacities. For sufficiently large n, the main contribution to computational time will

come from the argument related to n or, if the argument consists of several compo-

nents, the “worst” of them, i.e., the one that eventually outgrows the other: When the

complexity is O
(
ln(n) · (n/k)2

)
then, for any constant k and sufficiently large n, the

quadratic term will outweigh the logarithmic term and the CPU time can be consid-

ered quadratic in n. A sole increase in CPU power which implies a reduction in c will

therefore not have a sustainable effect on the (general) computability of a problem. A

real improvement of the complexity can only be achieved when a better algorithm is

found. This applies not only for the (sometimes called “easy”) polynomial problems

where the exponent k can become quite large, too; it is all the more true for a special

class of optimization and search problems: For the group of non-deterministic poly-

nomial time (NP) complete problems, there is no deterministic algorithm known

that can find an exact solution within polynomial time.5 This means that for decid-

ing whether the found solution is optimal, the number of necessary steps is not a

polynomial, but (at least) an exponential function of the problem size in the worst

case. Two well-known problems of this group are the Traveling Salesman Problem

(TSP)6 and the Knapsack Problem (KP)7. One of the difficulties with optimization

5 Actually, it can be shown that if one of these problems could be solved in polynomial time, this

solution could be transferred and all of these problems could be solved in polynomial time.

6 In the TSP, a salesperson has to find the shortest route for traveling to n different cities, usually

without visiting one city twice. The problem can be modeled by a graph where nodes are the cities

and the arcs are the distances between any two cities. Finding the shortest route corresponds then

to finding the shortes path through this graph (or the shortest Hamiltonian cycle, if the salesperson

takes a round trip where the tour starts and ends in the same city). If the graph is fully connected,

i.e., there is a direct connection between any two cities, there are n! alternative routes to choose from

– which also characterizes the worst case computational complexity of this problem.

7 In the KP, a tourist finds a number of precious stones that differ in size and in value per size unit.

As the capacity of her knapsack is limited, the task of this 1/0 knapsack problem is to select stones

such that the value of the contents is maximized. Fast decisions to this problem are possible only

under rare circumstances. See Kellerer, Pferschy, and Pisinger (2004) and section 4.2.1.
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problems is that the complexity for solving them is not always apparent: Proofs that

an optimization problem belongs to a certain complexity class are therefore helpful

when deciding which solution strategy ought to be considered.8

2.1.2.2 Brute-Force Methods

Analytic, closed-form solutions to optimization problems are desirable as they allow

for exact and straightforward answers. The major advantage of these solutions is that

they can be derived without explicit knowledge of the included parameters’ values:

The optimization has to be done only once, and the result is in a form by which, given

the relevant (exogenous) parameters, the optimal values for the decision variables

can immediately be determined.

If such solutions do not exist, then the problem has usually to be solved for each

individual set of parameters. The approach that needs the least optimization skills

would be complete enumeration where simply all possible (and valid) values for the

decision variables are tested. This approach has some severe downsides: first and

foremost, it is frequently time-consuming far beyond acceptability. Second, it de-

mands the set of candidate solutions to be discrete and finite; if the decision vari-

ables are continuous (i.e., have infinitely many alternatives) then they have to be

discretized, i.e., transformed into a countable number of alternatives – ensuring that

the actual optimum is not excluded due to too large steps while keeping the resulting

number of alternatives manageable.

In chapter 4, e.g., the problem will be to select k out of N assets and optimize their

weights. The problem size can quickly get out of hand: there are
(

N
k

)
= N!

/
((N − k)! · k!)

alternative combinations for selecting k out of N assets without optimizing the

weights; correspondingly, the complexity of an exhaustive search would be O
((

N
k

))
.

Selecting just 10 out of 100 assets comes with
(100

10

)
= 1.73× 1013 alternatives. For

each of these alternatives, the optimal weights had to be found: When the weights of

10 assets may be either zero or multiples of 10% and short-sales are disallowed, the

granularity of the weights is g = 1
/

10% which comes with kg = 1010 possible weight

structures per alternative; the complexity is then increased to O
((

N
k

)
· kg

)
. Having

8 See Knuth (1997) and Harel (1993).
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a computer that is able to evaluate a million cases per second, complete enumera-

tion would take 1.32× 1011 years – which is approximately ten times the time since

the Big Bang. When k is increased by just one additional asset from 10 to 11 (other

things equal), the CPU time would increase to 233 times the time since the Big Bang;

and if, in addition, the granularity would be increased to multiples of 5% (which

would still be too rough for realistic applications), then the CPU time increased to

more than 6 trillion times since the Big Bang.

Some of the problems dealt with in the following chapters have opportunity sets

that are magnitudes larger; complete enumeration is therefore not a realistic alterna-

tive, nor would a sheer increase in computational power (by faster CPU’s or having

parallel computers) do the trick.

2.1.2.3 Traditional Numerical Methods and Algorithmic Approaches

Traditional numerical methods are usually based on iterative search algorithms

that start with a (deterministic or arbitrary) solution which is iteratively improved

according to some deterministic rule.9 For financial optimization, methods from

Mathematical Programming are often applied as these methods can manage prob-

lems where the constraints contain not only equalities, but also inequalities. Which

type of method should and can be applied depends largely on the type of problem:10

Linear Programming will be applied when the optimization problem has a linear

objective function and its constraints, too, are all linear (in-)equalities. The

most popular method is the Simplex Algorithm where first the inequalities are

transformed into equalities by adding slack variables and then including and

excluding base variables until the optimum is found. Though its worst case

computational complexity is exponential, it is found to work quite efficiently

9 For a concise presentation of applications in economics, see Judd (1998).

10 The following list of methods is far from exhaustive. For more details, see, e.g., Hillier and Lieber-

man (2003) for a concise introduction to Operations Research, and Stepan and Fischer (2001) for

quantitative methods in Business Administration. Hillier and Lieberman (1995) presents methods

in mathematical programming, a presentation of major algorithmic concepts can be found in Knuth

(1997). Seydel (2002) and Brandimarte (2002) tackle several issues in computational finance and

present suitable numerical methods.
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for many instances. Some parametric models for portfolio selection therefore

prefer linear risk measures (accepting that these risk measures have less de-

sirable properties than the variance).

Quadratic and Concave Programming can be applied when the constraints are lin-

ear (in-)equalities, yet the objective function is quadratic. This is the case for

the Markowitz model (1.7); how this can be done, will be presented in sec-

tion 2.1.2.4. When the Kuhn-Tucker conditions hold,11 a modified version of

the Simplex Algorithm exists that is capable of solving these problems – the

computational complexity of which, however, is also exponential in the worst

case.

Dynamic Programming is a general concept rather than a strict algorithm and ap-

plies to problems that have, e.g., a temporal structure. For financial multi-

temporal problems, the basic idea would be to split the problem into several

sub-problems which are all myopic, i.e., have no temporal aspects when con-

sidered separately. First, the sub-problem for the last period, T , is solved. Next

the optimal solution for last but one period, T − 1, is determined, that leads

to the optimal solution for T , and so on until all sub-problems are solved.

Stochastic Programming is concerned with optimization problems where (some of

the) data incorporated in the objective function are uncertain. Usual ap-

proaches include recourse, assumption of different scenarios and sensitivity

analyses.

Other types of Mathematical Programming include non-linear programming, inte-

ger programming, binary programming and others. For some specimen types

of problems, algorithms exist that (tend to) find good solutions. To approach

the optimization problem at hand, it has to be brought into a structure for

which the method is considered to work – which, for financial optimization

problems, often comes with the introduction of strong restrictions or assump-

tions on the “allowed” values for the decision variables or constraints.

Greedy Algorithms always prefer the next one step that yields the maximum im-

provement but does not assess its consequences. Given a current (subopti-

mal) solution, a greedy algorithm would search for a modified solution within

11 See, e.g., Chiang (1984, section 21.4).
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a certain neighborhood and choose the “best” among them. This approach is

sometimes called hill-climbing, referring to a mountaineer who will choose

her every next step in a way that brings the utmost increase. As these algo-

rithms are focused on the next step only, they get easily stuck when there are

many local optima and the initial values are not chosen well. Hence, this ap-

proach demands smooth solution spaces and a monotonous objective func-

tion for good solutions and is related to the concept of gradient search.

Gradient Search can be performed when the objective function f (x) is differen-

tiable and strictly convex12 and the optimum can be found with the first or-

der condition ∂ f /∂ x = 0. Given the current candidate solution, the gradient

∇ f (x′) =
(

∂ f
∂x1

, ..., ∂ f
∂xn

)
is computed for x′ = x. The solution is readjusted ac-

cording to x′ = x′ +δ ·∇ f (x) which corresponds to x′j := x′j +δ · ∂ f
∂xi

∣∣∣
x=x′

∀ j.

This readjustment is repeated until the optimum x∗ with ∇ f (x) = 0 is

reached. Graphically speaking, this procedure determines the tangency at

point x′ and moves the decision variables towards values for which the tan-

gency’s slope is expected to be 0 and any slight change of any x j would worsen

the value of the objective function f .

Divide and Conquer Algorithms iteratively split the problem into sub-problems un-

til the sub-problems can be solved in reasonable time. These partial results

are then merged for the solution of the complete problem. These approaches

demand that the original problem can be partitioned in a way that the quality

of the solutions for sub-problems will not interfere with each other, i.e., that

the sub-problems are not interdependent.

Branch and Bound Algorithms can be employed in some instances where parts of

the opportunity set and candidate solutions can be excluded by selection tests.

The idea is to iteratively split the opportunity space into subsets and iden-

tify as soon as possible those subsets where the optimum is definitely not

a member of, mainly by either repeatedly narrowing the boundaries within

which the solution must fall, by excluding infeasible solutions, or by “prun-

ing” those solutions that are already outperformed by some other solution

12 Here, maximization problems are considered. For minimization problems, the similar arguments

for concave functions can be considered. Note that any maximization problem can be transformed

into a minimization problem (usually by taking the inverse of the objective function or multiplying

it by −1) and vice versa.
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found so far. The opportunity set is therefore repeatedly narrowed down until

either a single valid solution is found or until the problem is manageable with

other methods, such as complete enumeration of all remaining solutions or

another numerical method.

As mentioned earlier, a salient characteristic of these methods is that they work

only for problems which satisfy certain conditions: The objective function must be

of a certain type, the constraints must be expressible in certain formats, and so forth.

Their application is therefore restricted to a rather limited set of problems. In prac-

tice, these limitations are often circumvent by modifying the problems and stating

the problems is a way that they are solvable. Another main caveat of these opti-

mization methods is that they are mostly based on rather strict deterministic rules.

Hence, they might produce wrong solutions when the considered problem has not

just one global, but also one or several local optima. Once deterministic search rules

converge towards such local optima, they might have problems leaving them again

(and therefore will never find the global optimum), given they converge in the first

place. Also, deterministic rules have it that, by definition, for a given situation, there

is a unique response. A deterministic search algorithm will therefore always produce

the same result for a given problem when the search strategy cannot be influenced

and the initial values, too, are chosen deterministically. This being the standard case,

repeated runs will always report the same local optimum, in particular when the ini-

tial value for the search process is found with some deterministic rule, too.

In the lack of alternatives, however, financial optimization problems have often

been modeled in a way that they can be solved with one of these methods. As a

consequence, they either had to be rather restrictive or had to accept strong sim-

plifications (such as the assumption of frictionless markets in order to satisfy the

Kuhn-Tucker conditions), or accepted that the solutions are likely to be suboptimal

(such as, e.g., in Asset Class Management, where the universe of available assets is

split into submarkets (subportfolios) which are optimized independently in a “di-

vide and conquer” fashion, ignoring the relationships between the classes). How-

ever, without this fitting of the problems to the available methods, the majority of

(theoretical and practical) optimization problems in portfolio management could

not readily be answered. Due to the fitting, on the other hand, it is difficult (and

quite often impossible) to tell whether a reported solution is unique or just one out

of many optima and how far away this reported solution is from the global optimum.
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2.1.2.4 Portfolio Optimization with Linear and Quadratic Programming

Many software packages for optimization problems offer routines and standard so-

lutions for Linear and Quadratic Programming Problems. Linear Programming (LP)

can be applied when the objective function is linear in the decision variable and the

constraints are all equalities or inequalities that, too, are linear. A general statement

would be

min
x

f ′x

subject to

Ax= a

Bx ≤ b

where x is the vector of decision variables and A, B, a, and b are matrices and vec-

tors, respectively, that capture the constraints. Note that any minimization problem

can be transformed into a maximization problem simply by changing the sign of the

objective function (i.e., by multiplying f with −1) and that by choosing the appro-

priate signs, inequalities of the type Cx ≥ c can be turned into −Cx ≤ −c, i.e., b

can contain upper and lower limits alike.

A simple application in portfolio selection might be to find the weights xi, i =

1, ...,N, that maximize the portfolio’s expected return when the weight of each of the

N assets must be within a given range, i.e., x� ≤ xi ≤ xu, and the weights must add

up to one, i.e., ∑i xi = 1. This can be achieved by setting f = −r; A = 11×N , a = 1,

B = [−IN×N IN×N ]′ and b = [−x�11×N xu11×N ]′ where r is the vector of expected

returns and I and 1 are the respective identity matrices and unity vectors with the

dimensions as indexed. This approach, however, is not able to cope with variance or

volatility as these are quadratic risk measures.

Quadratic Programming (QP) problems, like LP problems, have only constraints

that can be expressed as linear (in-)equalities with respect to the decision variables;

their objective function, however, allows for an additional term that is quadratic in

the decision variables. A standard general statement therefore might read as follows:

min
x

f ′x +
1

2
x′Hx
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subject to

Ax = a

Bx ≤ b.

This can be applied to determine the Markowitz efficient portfolio for a return of

rP by implementing the model (1.7) as follows. If r and Σ denote the return vector

and covariance matrix, respectively, then f = 01×N , H = 2Σ , A = [1N×1 r]′, a =

[1 rP ]′, B = −IN×N and b = 0N×1 where 0 is the zero vector.

If, however, the whole efficient line of the Markowitz model is to be identified,

then the objective function (1.7a*) is to be applied and the respective parameters

are f = −λr, H = 2(1 +λ)Σ , A = 11×N , a = 1, B = −IN×N and b = 0N×1. Since λ

measures the trade-off between risk and return, λ = 0 will lead to the identification

of the Minimum Variance Portfolio. On the other hand, λ = 1 puts all the weight on

the expected return and will therefore report the portfolio with the highest possible

yield which, for the given model with non-negativity constraints but no upper limits

on xi, will contain exclusively the one asset with the highest expected return. To

identify the efficient portfolios between these two extremes, a usual way would be

to increase λ in sufficiently small steps from zero to one and solve the optimization

problem for these values.

In a Tobin framework as presented in section 1.1.2.3 where the set of risky assets

is supplemented with one safe asset, the investor will be best off when investing an

amount α into the safe asset and the remainder of (1−α) into the tangency portfo-

lio T . Given an exogenously chosen value 0 < α < 1 (for convenience, α → 0), the

respective parameters for the quadratic programming model are f = −[r′ rs]
′, H =

2

[
Σ 0N×1

01×N 0

]
, A =

[
11×N 1

01×N 1

]
, a = [1 α]′, B =−I(N+1)×(N+1) and b = 0(N+1)×1.

The resulting vector x is of dimension (N +1)×1, where the first N elements repre-

sent (1−α) · xT , whereas the (N +1)–st element is the weight of the safe asset in the

investor’s overall portfolio and (by constraint) has the value of α. By the separation

theorem, the weights for T can then be determined by xT = 1
1−α

[
x1 ... xN

]′
.
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2.1.2.5 “Traditional” Deterministic versus Stochastic and Heuristic Methods

Classical optimization techniques as presented so far can be divided into two main

groups. The first group of methods is based on exhaustive search or (complete) enu-

meration, i.e., testing all candidate solutions. The crux of approaches like branch

and bound is to truncate as much of the search space as possible and hence to elim-

inate groups of candidates that can been identified as inferior beforehand. However,

even after pruning the search space, the remaining number of candidates might still

exceed the available capacities, provided the number of solutions is discrete and fi-

nite in the first place.

The second type comprises techniques that are typically based on the differen-

tial calculus, i.e., they apply the first order conditions and push the decision vari-

ables towards values where the first derivative or gradient of the objective function is

(presumably) zero. An implicit assumption is that there is just one optimum and/or

that the optimum can be reached on a “direct path” from the starting point. The

search process itself is usually based on deterministic numerical rules. This implies

that, given the same initial values, repeated runs will always report the same result

– which, as argued, is not necessarily a good thing: repeated runs with same (de-

terministically generated) initial values will report the same results, unable to judge

whether the global or just a local optimum has been found. To illustrate this prob-

lem, reconsider the function depicted in Figure 2.1 on page 39. If the initial guess

is a value for x that is near one of the local optima xA or xC, then a traditional nu-

merical procedure is likely to end up at the local maximum closest to the initial

guess, and the global optimum, xB, will remain undiscovered. In practice, the deter-

ministic behavior and the straightforward quest for the closest optimum from the

current solutions perspective can be a serious problem, in particular when there are

many local optima which are “far apart” from the global optimum, but close to the

starting value. Also, slight improvements in the objective function might come with

substantially different values for the decision variables.

One radical alternative to deterministic methods would be Monte Carlo (MC)

search: A large number of random (yet valid with respect to the constraints) guesses

for values for the decision variables are generated and the respective values of the
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objective function are determined.13 With a sufficiently large number of indepen-

dent guesses, this approach is likely to eventually identify the optimum or at least

to identify regions within which it is likely or unlikely to be found. This concept is

much more flexible than numerical methods as its main restrictions are a priori the

availability of a suitable random number generator and the time necessary to per-

form a sufficiently large number of tries. It can therefore be applied to narrow down

the search space which could then be approached with numerical methods. The ma-

jor downside of it is, however, that it might be quite inefficient and inexact: Quite

often, significant parts of the opportunity set can quickly be identified as far from

the actual optimum; further search in this “region” is therefore just time consuming.

Heuristic search methods and heuristic optimization techniques also incorporate

stochastic elements. Unlike Monte Carlo search, however, they have mechanisms

that drive the search towards promising regions of the opportunity space. They

therefore combine the advantages of the previously presented approaches: much

like numerical methods, they aim to converge to the optimum in course of iterated

search, yet they are less likely to end up in a local optimum and, above all, are very

flexible and therefore are less restricted (or even perfectly unrestricted) to certain

forms of constraints.

The heuristics discussed in due course and applied in the main part of this con-

tribution were designed to solve optimization problems by repeatedly generating

and testing new solutions. These techniques therefore address problems where there

actually exist a well-defined model and objective function. If this is not the case,

there exist alternative methods in soft computing14 and computational intelligence15.

13 It is not always possible to guarantee beforehand that none of the constraints is violated; also, ascer-

taining that only valid candidate solutions are generated might be computationally costly. In these

cases, a simple measure would be not to care about these constraints when generating the candidate

solutions but to add a punishment term to the objective value when this candidate turns out to be

invalid.

14 Coined by the inventor of fuzzy logic, Lotfi A. Zadeh, the term soft computing refers to methods and

procedures that not only tolerate uncertainty, fuzziness, imprecision and partial correctness but also

make use of them; see, e.g., Zadeh and Garibaldi (2004).

15 Introduced by James Bezdek, computational intelligence refers to methods that use numerical pro-

cedures to simulate intelligent behavior; see Bezdek (1992, 1994).
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A popular method of this type are Neural Networks which mimic the natural brain

process while learning by a non-linear regression of input-output data.16

2.2 Heuristic Optimization Techniques

2.2.1 Underlying Concepts

The toy manufacturer Hasbro, Inc., produces a popular game called Mastermind.

The rules of this game are rather simple: one player selects four colored pegs and

the other player has to guess their color and sequence within a limited number of

trials. After each guess, the second player is told how many of the guessed pegs are

of the right color and how many are the right color and in the right position. The

problem is therefore well-defined, as there are a clear objective function and a well-

defined underlying model: though the “parameters” of the latter are hidden to the

second player, it produces a uniquely defined feedback for any possible guess within

a game.

Although there are 360 different combinations in the standard case17 the second

player is supposed to find the right solution within eight guesses or less. Complete

enumeration is therefore not possible. The typical beginner’s approach is to per-

form a Monte Carlo search by trying several perfectly random guesses (or the other

player’s favorite colors) and hoping to find the solution either by sheer chance or

by eventually interpreting the outcome of the independent guesses. With unlimited

guesses, this strategy will eventually find the solution; when limited to just eight

guesses, the hit rate is disappointingly low.

More advanced players also start off with a perfectly random guess, but they re-

duce the “degree of randomness” in the subsequent guesses by considering the out-

comes from the previous guesses: E.g., when the previous guess brought two white

16 See Russell and Norvig (2003) for a general presentation; applications to time series forecasting are

presented in Azoff (1994).

17 The standard case demands all four pegs to be of different color with six colors to choose from.

Alternative versions allow for “holes” in the structure, repeated colors and/or also the “white” and

“black” pegs, used to indicate “correct color” and “correct color and position”, respectively – result-

ing in up to 6 561 combinations.
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pegs (i.e., only two right colors, none in the right position, and two wrong colors),

the next guess should contain some variation in the color; if the answer were four

white pegs (i.e., all the colors are right, yet all in the wrong position), the player

can concentrate on the order of the previously used pegs rather than experimenting

with new colors. The individual guesses are therefore not necessarily independent,

yet (usually) there is no deterministic rule for how to make the next guess. Master-

mind might therefore serve as an example where the solution to a problem can be

found quite efficiently by applying an appropriate heuristic optimization method.

2.2.2 Characteristics of Heuristic Optimization Methods

The central common feature of all heuristic optimization (HO) methods is that they

start off with a more or less arbitrary initial solution, iteratively produce new so-

lutions by some generation rule and evaluate these new solutions, and eventually

report the best solution found during the search process. The execution of the it-

erated search procedure is usually halted when there has been no further improve-

ment over a given number of iterations (or further improvements cannot be ex-

pected); when the found solution is good enough; when the allowed CPU time (or

other external limit) has been reached; or when some internal parameter terminates

the algorithm’s execution. Another obvious halting condition would be exhaustion

of valid candidate solutions – a case hardly ever realized in practice.

Since HO methods may differ substantially in their underlying concepts, a gen-

eral classification scheme is difficult to find. Nonetheless, the following list high-

lights some central aspects that allow for comparisons between the methods.18 With

the rapidly increasing number of new heuristics and variants or combinations of al-

ready existing ones, the following list and the examples given therein are far from

exhaustive.

Generation of new solutions. A new solution can be generated by modifying the cur-

rent solution (neighborhood search) or by building a new solution based on

past experience or results. In doing so, a deterministic rule, a random guess

or a combination of both (e.g., deterministically generating a number of alter-

natives and randomly selecting one of them) can be employed.

18 For an alternative classification, see, e.g., Silver (2002) and Winker and Gilli (2004).
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Treatment of new solutions. In order to overcome local optima, HO methods usually

consider not only those new solutions that lead to an immediate improvement,

but also some of those that are knowingly inferior to the best solution found

so far. To enforce convergence, however, inferior solutions might either be in-

cluded only when not being too far from the known optimum or might be

given a smaller “weight.” Also, the best found solution so far might be rein-

forced (elitist principle), new solutions might be ranked and only the best of

them are kept for future consideration, etc. The underlying acceptance rules

can be deterministic or contain certain randomness.

Number of search agents. Whereas in some methods, a single agent aims to improve

her solution, population based methods often make use of collective knowl-

edge gathered in past iterations.

Limitations of the search space. Given the usually vast search space, new solutions

can be found by searching within a certain neighborhood of a search agent’s

current solution or of what the population (implicitly) considers promising.

Some methods, on the other hand explicitly exclude certain neighborhoods

or regions to avoid cyclic search paths or spending too much computation

time on supposedly irrelevant alternatives.

Prior knowledge. When there exist general guidelines of what is likely to make a

good solution, this prior knowledge can be incorporated in the choice of the

initial solutions or in the search process (guided search). Though the inclusion

of prior knowledge might significantly reduce the search space and increase

the convergence speed, it might also lead to inferior solutions as the search

might get guided in the wrong direction or the algorithm might have severe

problems in overcoming local optima. Prior knowledge is therefore found in

a rather limited number of HO methods and there, too, rather an option than

a prerequisite.

Flexibility for specific constraints. Whereas there exist true general purpose meth-

ods that can be applied to virtually any type of optimization problem, some

methods are tailor-made to particular types of constraints and are therefore

difficult to apply to other classes of optimization problems.

Other aspects allow for testing and ranking different algorithms and might also

affect the decision which method to select for a particular optimization problem:
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Ease of implementation. The (in-)flexibility of the concept, the complexity of the

necessary steps within an iteration step, the number of parameters and the

time necessary to find appropriate values for these parameters are a common

first selection criterion.

Computational complexity. For HO methods the complexity depends merely de-

pends on the costs for evaluating per candidate solution, on the number of

iterations, and, if applicable, on the population size and the costs of admin-

istrating the population. Though the number of iterations (and population’s

size) will usually increase for larger problem spaces, the resulting increase in

computational costs is usually substantially lower than it would be for tradi-

tional methods. Hence, the computational complexity of HO methods is com-

paratively low; even for NP complete problems, many HO algorithms have

at most polynomial complexity. General statements, however, are difficult to

make due to the differences in the HO techniques and, above all, the differ-

ences in the optimization problems’ complexities.

Convergence speed. The CPU time (or, alternatively, the number of evaluated can-

didate solutions) until no further improvement is found, is often used as a

measure to compare different algorithms. Speed might be a salient property of

an algorithm in practical solutions – though not too meaningful when taken

as a sole criterion as it does not necessarily differentiate between local and

global optimum convergence and as long as a “reasonable” time limit is not

exceeded.

Reliability. For some major heuristics, proofs exist that these methods will converge

towards the global optimum – given sufficient computation time and an ap-

propriate choice of parameters. In practice, one often has to accept a trade-off

between low computational time (or high convergence speed) and the chance

that the global optimum is missed. With the inherent danger of getting stuck

in a local optimum, heuristics are therefore frequently judged by their ratio of

reporting local optima or other inferior solutions.

To reduce the vagueness of these aspects, section 2.3 presents some of the ma-

jor and commonly used heuristics that are typical representatives for this type of

methods and that underline the differences in the methods with regard to the above
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mentioned aspects: In Threshold Accepting (section 2.3.1), one solution is consid-

ered at a time and iteratively modified until it reaches an optimum; in Evolution

Based Methods (section 2.3.2), a number of promising solutions are further evolved

at the same time; in Ant Systems (section 2.3.3), collective experience is used; and

Memetic Algorithms (section 2.3.4) are a typical example for successful hybrid al-

gorithms where the advantages of several methods could be combined.19 There is

neither a heuristic that outperforms all other heuristics whatever the optimization

problem, nor can one provide a general implementation scheme regardless of the

problem type.20 The presentation in this introductory chapter is therefore reduced

to the fundamental underlying ideas of the heuristics; more detailed descriptions

will be offered when applied in the subsequent chapters.

2.3 Some Selected Methods

2.3.1 Simulated Annealing and Threshold Accepting

Kirkpatrick, Gelatt, and Vecchi (1983) present one of the simplest and most general

HO techniques which turned out to be one of the most efficient ones, too: Simulated

Annealing (SA). This algorithm mimics the crystallization process during cooling

or annealing: When the material is hot, the particles have high kinetic energy and

move more or less randomly regardless of their and the other particles’ positions.

The cooler the material gets, however, the more the particles are “torn” towards the

direction that minimizes the energy balance. The SA algorithm does the same when

searching for the optimal values for the decision parameters: It repeatedly suggests

random modifications to the current solution, but progressively keeps only those

that improve the current situation.

SA applies a probabilistic rule to decide whether the new solution replaces the

current one or not. This rule considers the change in the objective function (mea-

19 For general presentations and comparisons of HO methods, see, e.g., Osman and Kelly (1996), Tail-

lard, Gambardella, Gendreau, and Potvin (2001), Michalewicz and Fogel (1999), Aarts and Lenstra

(2003) or Winker and Gilli (2004). Osman and Laporte (1996) offer an extensive bibliography of the

theory and application of meta-heuristics, including 1 380 references. Ausiello and Protasi (1995)

investigate local search heuristics with respect to NP optimization problems.

20 See, e.g., Hertz and Widmer (2003).
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generate random valid solution x;

REPEAT

generate new solution x′ by randomly modifying

the current solution x;

evaluate new solution x′;

IF acceptance criterion is met THEN;

replace x with x′;

END;

adjust acceptance criterion;

UNTIL halting criterion is met;

Listing 2.1: Basic structure for Simulated Annealing (SA) and Threshold Accepting (TA)

suring the improvement/impairment) and an equivalent to “temperature” (reflect-

ing the progress in the iterations). Dueck and Scheuer (1990) suggest a determin-

istic acceptance rule instead which makes the algorithm even simpler: Accept any

random modification unless the resulting impairment exceeds a certain threshold;

this threshold is lowered over the iterations. This algorithm is known as Threshold

Accepting (TA).

Listing 2.1 summarizes the pseudo-code for SA and TA where the values for the

elements of a vector x are to be optimized; SA will be presented in more details when

applied in chapter 3; different acceptance criteria will be compared in section 6.3.1.

Both SA and TA usually start off with a random solution and generate new solutions

by perfectly random search within the current solution’s neighborhood. In either

method, the acceptance of impairments allows to overcome local optima. To avoid

a Monte Carlo search path, however, improvements are more likely to be accepted

than impairments at any stage, and with decreasing tolerance on impairments, the

search strategy shifts towards a hill-climbing search.

SA and TA are both extremely flexible methods which are rather easy to imple-

ment. Both are general purpose approaches which cause relatively little computa-

tional complexity and for which convergence proofs exist.21 Single agent neighbor-

hood search methods such as SA and TA have proofed successful when the solution

space is not too rough, i.e., if the number of local optima is not too large.22

21 See Aarts and van Laarhoven (1985) and Althöfer and Koschnik (1991), respectively.

22 For a concise presentation of TA, its properties and applications in economics as well as issues re-

lated to evaluating heuristically obtained results, see Winker (2001).



2.3. Some Selected Methods 57

generate P random solutions x1 ... xP;

REPEAT

FOR each parent individual i = 1...P

generate offspring x′i by randomly modifying

the "parent" xi;

evaluate new solution x′i;

END;

rank parents and offspring;

select the best P of these solutions for new parent population;

UNTIL halting criterion met;

Listing 2.2: Basic structure for Evolutionary Strategies (ES)

2.3.2 Evolution Based and Genetic Methods

Inspired by their natural equivalent, the ideas of simulated evolution and artificial

life have gained some tradition in machine learning and, eventually, in heuristic op-

timization.23 One of the first algorithms actually addressing an optimization prob-

lem are Evolutionary Strategies (ES) by Rechenberg (1965). Here, a population of P

initial solution vectors is generated. In each of the following iteration steps, each in-

dividual is treated as a parent that produces one offspring by adding a random mod-

ification to the parent’s solution. From the now doubled population, only the best P

agents are selected which will constitute the parent population in the next genera-

tion. Listing 2.2 summarizes the main steps of this original concept. Later versions

offer modifications and improvements; in Rechenberg (1973), e.g., multiple parents

generate a single offspring.

Evolution based methods gained significant recognition with the advent of Ge-

netic Algorithms (GA). Based on some of his earlier writings as well as related ap-

proaches in the literature, Holland (1975) attributes probabilities for reproduction

to the individual “chromosomes,” xi, that reflect their relative fitness within the pop-

ulation. In the sense of the “survival of the fittest” principle, high fitness increases

the chances of (multiple) reproduction, low fitness will ultimately lead to extinction.

New offspring is generated by combining the chromosomes of two parent chromo-

somes; in the simplest case this cross-over can be done by “cutting” each parent’s

chromosomes into two pieces and creating two siblings by recombining each par-

23 A survey on these topics can be found in Fogel (1998).
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generate P random chromosomes;

REPEAT

determine fitness of all chromosomes i = 1...P;

determine replication probabilities pi based on relative fitness;

FOR number of reproductions;

randomly select two parents based on pi;

generate two children by cross-over operation on parents;

END;

insert offspring into the population;

remove P chromosomes based on inverse replication probability;

apply mutation to some/all individuals;

UNTIL halting criterion met;

Listing 2.3: Basic structure for Genetic Algorithms (GA)

parents 1 0 0 1 0 1 1 0 1 1

offspring 1 0 0 1 1 1 1 0 1 0

(a) 1-point cross-over operation

before 1 1 0 1 0

after 0 1 0 1 0

(b) Mutation

Fig. 2.2: Examples for evolutionary operators on binary strings

ent’s first part with the other parent’s second part (see Figure 2.2(a)). In addition

mutation can take place, again by randomly modifying an existing (i.e., parent’s or

newly generated offspring’s) solution (see Figure 2.2(b)).

Over the last decades, GA have become the prime method for evolutionary op-

timization – with a number of suggestions for alternative cross-over operations

(not least because GA were originally designed for chromosomes coded as binary

strings), mutation frequency, cloning (i.e., unchanged replication) of existing chro-

mosomes, etc. Listing 2.3 therefore indicates just the main steps of a GA; the struc-

ture of actual implementations might differ. Fogel (2001) offers a concise overview

of methods and literature in evolutionary computation.
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Fig. 2.3: Simple foraging example for a colony with two ants

Whereas SA and TA are single-agent methods where a solution is persistently

modified (or “mutated”), evolutionary methods have to administer whole popula-

tions. At the same time, they all derive their new solutions by modifying existing

current solutions. Evolutionary methods are more demanding to implement than

are SA and TA. Also, they are more time-consuming because of their computational

costs for administrating the population. At the same time, they are less likely to get

stuck in local optima as the respective chromosomes are likely to be eventually be

replaced with “fitter” alternatives.

2.3.3 Ant Systems and Ant Colony Optimization

Evolution has provided ants with a simple, yet enormously efficient method of find-

ing shortest paths.24 While traveling, ants lay pheromone trails which help them-

selves and their followers to orientate.

To illustrate the underlying principle, we assume a nest N and a food source F

are separated by an obstacle O (Figure 2.3) and that there are two alternative routes

leaving N both leading to F , yet different in length. Since the colony has no infor-

mation which of the two routes to choose, the population (here consisting of two

ants) is likely to split up and each ant selects a different trail. Since the route on

the right is shorter, the ant on it reaches F while the other ant is still on its way.

Supplied with food, the ant wants to return to the nest and finds a pheromone trail

(namely its own) on one of the two possible ways back and will therefore select this

alternative with a higher probability. If it actually chooses this route, it lays a second

24 See Goss, Aron, Deneubourg, and Pasteels (1989).
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pheromone trail while returning to the nest. Meanwhile the second ant has reached

F and wants to bring the food to the nest. Again, F can be left on two routes: the left

one (=long) has now one trail on it, the right one (=short) has already two trails. As

the ant prefers routes with more pheromone in it, it is likely to return on the right

path – which is the shorter one and will then have a third trail on it (versus one on

the left path). The next time the ants leave the nest, they already consider the right

route to be more attractive and are likely to select it over the left one. In real live,

this self-reinforcing principle is enhanced by two further effects: shorter routes get

more pheromone trails as ants can travel on them more often within the same time

span than they could on longer routes; and old pheromone trails tend to evaporate

making routes without new trails less attractive.

Based on this reinforcement mechanism, the tendency towards the shorter route

will increase. At the same time, there remains a certain probability that routes with

less scent will be chosen; this assures that new, yet unexplored alternatives can be

considered. If these new alternatives turn out to be shorter (e.g., because to a closer

food source), the ant principle will enforce it, and – on the long run – it will become

the new most attractive route; if it is longer, the detour is unlikely to have a lasting

impression on the colony’s behavior.

Dorigo, Maniezzo, and Colorni (1991) transfer this metaphor to heuristic opti-

mization called Ant System (AS) by having a population of artificial ants search in

a graph where the knots correspond to locations and the arcs represent the amount

of pheromone, i.e., attractiveness of choosing the path linking these locations. Be-

ing placed at an arbitrary location and having to decide where to move next, the

artificial ant will choose (among the feasible) routes those with higher probability

that are marked with more pheromone. The pheromone is usually administered in

a pheromone matrix where two basic kinds of updates take place: on the one hand,

new trails are added that are the stronger the more often they are chosen and the

better the corresponding result; on the other hand, trails evaporate making rarely

chosen paths even less attractive.

Since the original concept of AS parallels the Traveling Salesman Problem,25 List-

ing 2.4 presents this algorithm for the task of finding the shortest route when a given

number of cities have to be visited. Meanwhile, there exist several extensions and

25 See section 2.1.2.1.
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initialize trails and parameters;

REPEAT

FOR all ants do;

deposit ant at a random location;

REPEAT

select randomly next city according to pheromone trail;

UNTIL route complete;

determine tour length;

END;

let a fixed proportion of all pheromone trails evaporate;

FOR all ants DO;

add pheromone to chosen paths (more for shorter tours);

END;

UNTIL halting criterion met;

Listing 2.4: Basic Structure for Ant System (AS)

variants most of which suggest improved trail update rules or selection procedures

leading to higher reliability. Also there exist modifications to open this algorithm

for optimization problems other than ordering. A survey can be found in Bonabeau,

Dorigo, and Theraulaz (1999).

The concept of the pheromone matrix facilitates the gathering and sharing of

collective knowledge and experience: While in the previously presented methods

SA, TA and GA derive their new solutions from one (or two paternal) existing so-

lution(s) and adding a random term to it, the contributions of many ants (from the

current and past generations) support the generation of a new solution. As a result,

ant based systems usually have high convergence speed and reliability – yet are also

computationally more demanding as trail updates and the generation of new solu-

tions is more complex. Another disadvantage is that ant based algorithms are less

flexible in their application.

2.3.4 Memetic Algorithms

Single agent neighborhood search methods such as SA or TA, where one solution

is modified step by step until convergence, are successful in particular when there

is a limited number of local optima, when the agent can at least roughly figure out

in which direction the global optimum can be expected and when this optimum
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initialize population;

REPEAT

perform individual neighborhood search;

compete;

perform individual neighborhood search;

cooperate;

adjust acceptance criterion;

UNTIL halting criterion met;

Listing 2.5: Basic Structure for a Memetic Algorithm (MA)

is easily reachable given the step size and the distance between initial and optimal

solution. If the algorithm appears to have problems of finding a solution or is likely

to get stuck in local optima, one common remedy is to have a higher number of

independent runs with different starting points, i.e., the optimization problem is

solved repeatedly, and eventually the best of all found solutions is reported. Though

the advantage of the independence between the runs is that mislead paths to local

optima cannot be misleading in the current search, prior experience is lost and has

to be gathered again. This increases inefficiency and run time. In population based

methods such as GA, a whole population of agents produces several solutions at a

time, which are regularly compared and the best of which are combined or re-used

for new solutions. Population based methods therefore tend to be more likely to

(eventually) overcome local optima. At the same time, they might have problems

when already being close to the optimum where local neighborhood search would

easily do the trick.

Moscato (1989) therefore suggests a method that combines the advantages of

both concepts by having a population of agents that individually perform local

search in a SA like fashion. In addition to the agents’ independent neighborhood

searches, they also compete and cooperate: competition is done in a tournament

fashion where one agent challenges another and, if winning, imposes his solution

onto the challenged agent; cooperation can be achieved by combining solutions with

a cross-over operation as known, e.g., from GA. Unlike in other evolutionary meth-

ods, however, replacement in competition and cooperation uses the SA acceptance

criterion instead of the replication probabilities and is therefore less time consum-

ing. Listing 2.5 indicates the main steps of a simple version of MA.
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This algorithm was inspired by a concept of Oxford zoologist Richard Dawkins

who found that ideas and cultural units sometimes behave like “selfish” genes: they

might be passed on from one person to another, they might be combined with other

ideas, they mutate over time, and they have a tendency to self-replication. To resem-

ble these properties, Dawkins introduced the term meme that reflects the French

word for “self,” même, and is pronounced in a way that it rhymes with “gene.”26

MA as presented here27 is a typical hybrid algorithm that combines elements of

other algorithms and enhances them with original ideas and approaches. Compared

to the other algorithms presented so far, MA has lower computational complexity

than GA (yet, of course, higher complexity than a pure SA implementation). Being

more flexible in shifting between independent neighborhood search and joint pop-

ulation search, they are more flexible than the methods they are built on.

2.4 Heuristic Optimization at Work

2.4.1 Estimating the Parameters for GARCH Models

2.4.1.1 The Estimation Problem

In section 1.1.3, different ways for estimating the volatility were presented, including

GARCH models where the volatility can change over time and is assumed to follow

an autoregressive process. Applying these models, however, is not always trivial as

the parameters have to be estimated by maximizing the likelihood function (1.14)

(see page 22) which might have many local optima. In the lack of closed-form so-

lutions, traditional numerical procedures are usually employed – which might pro-

duce quite different results.

26 See Dawkins (1976, chapter 7). For a more in-depth presentation and discussion of the meme con-

cept and its application in social sciences, see, e.g., Blackmore (1999).

27 Meanwhile, the literature holds many different versions of Memetic Algorithms, some of which are

population based whereas others aren’t, where the local search is not based on SA but on alternative

methods such as Fred Glover’s Tabu Search (where a list of recently visited solutions is kept that must

not revisited again in order to avoid cycles), etc.; more details can be found in several contributions

in Corne, Glover, and Dorigo (1999).
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Given a time series rt , Fiorentini, Calzolari, and Panattoni (1996) consider the

simple GARCH(1,1) model (our notation)

rt = µ− et , et |Ωt−1 ∼ N(0,σ2
t ) (2.1a)

σ2
t =α0 +α1 · e2

t−1 +β1 ·σ2
t−1 (2.1b)

with the objective of maximizing the conditional likelihood function, apart from the

constant −T
/

2 · ln(2 ·π),

max
ψ

L (ψ) =
T

∑
t=1

(
−1

2
ln(σ2

t )− 1

2

e2
t

σ2
t

)
(2.1c)

where ψ = [µ,α0,α1,β1] is the vector of decision variables and Ωt−1 is the infor-

mation set available at time t −1. They present a closed-form analytical expressions

for the second derivatives of (2.1c) which can be used for initial values of ψ; for the

actual search, they test gradient methods.

Based on these results, Bollerslev and Ghysels (1996) provide parameter estima-

tions for the daily German mark/British pound exchange rate.28 Their estimates for

the coefficients are then used for benchmarks by Brooks, Burke, and Persand (2001)

who estimate the parameters for the same data set with nine different specialized

software packages. They find that only one of these packages is able to hit the bench-

mark coefficients and Hessian-based standard errors using the default settings. As

this data set has become a benchmark problem for GARCH estimation29 it can be

used as a first example to illustrate how a heuristic optimization algorithm might be

implemented and how the algorithm’s performance can be optimized.

2.4.1.2 A Simple Heuristic Approach

To illustrate how to use heuristic optimization techniques and to test whether the

obtained results are reliable, we approach the maximization problem (2.1) with one

of the simpler of the introduced HO techniques, namely Simulated Annealing (SA)

which has been introduced in section 2.3.1. Based on the pseudo-code in listing 2.1,

the SA heuristic includes the following steps:

28 The data, comprising 1974 observations, are available at

www.amstat.org/publications/jbes/ftp.html → viewing existing

publications→ JBES APR-96 Issue→ bollerslev.sec41.dat.

29 See also McCullough and Renfro (1999).
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• First, initial values for all decision variables (collected in the vector ψ =

[µ,α0,α1,β1]) are generated by random guesses. The only prerequisite for

these guesses is that the guessed values are “valid” with respect to the con-

straints.

• The main part of SA consists of a series of iterations where the following steps

will be repeated:

– The algorithm produces a new candidate solution, ψ′, by modifying the

current solution, ψ. To achieve this, one element j from ψ is selected

arbitrarily. Then its current value is changed randomly. Formally, ψ′
j =

ψ j + u · z̃ where z̃ ∈ [−1,+1] is an equally distributed random number.

The other elements of ψ are left unchanged, i.e., ψ′
k = ψk ∀k �= j.

– Having generated a new candidate solution, ψ′, the change in the ob-

jective function (here: the log-likelihood function) is calculated: ∆L =

L (ψ′)−L (ψ). According to the SA principle, a stochastic acceptance

criterion for the new solution is applied that takes the change in the ob-

jective function, ∆L , into account as well as how progressed the algo-

rithm is: In early iterations, even large impairments have a consider-

able chance of being accepted while in latter iterations, the criterion is

increasingly less tolerant in accepting impairments. Usually, the accep-

tance criterion is the Metropolis function which will be presented in due

course.

Based on this criterion’s decision, the current solution is either replaced

with the new one (i.e., ψ ←ψ′) or not (i.e., ψ is left unchanged).

– The acceptance criterion is to be modified over the course of iterations.

SA is an analogue to the natural crystallization process while cooling.

SA’s acceptance therefore involves a “temperature” T which isgradually

lowered. The effect of this will be discussed in due course.

These steps of suggesting a new candidate solution and deciding whether to

accept it for a new candidate solution or not (plus modifying the acceptance

criterion), are repeated until some halting criterion is met. For the following

implementation, the number of iterations is determined beforehand.

Listing 2.6 provides a pseudocode for the algorithm as presented. As the counter

for the iterations starts with the value 2, the number of candidate solutions pro-
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Initialize ψ with random values;

FOR i := 2 TO I do

ψ′ := ψ;

j := RandomInteger ∈ [1, ...,narg(ψ)];

z̃i := RandomValue ∈ [−1,+1];

ψ′
j := ψ j +ui · z̃i;

∆L := L (ψ′)−L (ψ);

IF ∆L > 0 THEN

ψ := ψ′

ELSE

with probability p = p(∆L ,Ti) = exp
(

∆L

Ti

)
DO

ψ := ψ′

END;

END;

% New overall best solution?

IF L (ψ) > L (ψ∗) THEN

ψ∗ := ψ;

END;

Lower temperature: Ti+1 := Ti ·γT;

If applicable:

Adjust neighborhood range ui+1 := ui ·γu;

END;

Report best solution ψ∗;

Listing 2.6: Pseudo-code for GARCH parameter estimation with Simulated Annealing

duced by the algorithm (including the initialization) is equal to I; note also that the

iteration loop will be entered only if I≥ 2 and skipped otherwise.

A salient ingredient for an efficiently implement HO algorithm are proper values

for the algorithm’s parameters. For Simulated Annealing, the relevant parameters

and aspects include the admitted run time (i.e., the number of iterations), a concept

of “neighborhood” (i.e., the modification of ψ), and the acceptance criterion (i.e., a

suitable cooling plan). What aspects should be considered in finding values for the

respective parameters, will be discussed in the following section.

Unfortunately, there is no unique recipe for how to approach this task. Actually,

it can be considered a demanding optimization problem in itself – which is partic-
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ularly tricky: A certain parameter setting will not produce a unique, deterministic

result but rather various results that are (more or less) randomly distributed; the

task is therefore to find a combination where the distribution of the reported results

is favorable. And as with many demanding problems, there are many possible pa-

rameter settings that appear to work equally well, yet it is hard to tell which one is

actually the best among them.

Generally speaking, a good parameter setting is one where the algorithm finds

reliable solutions within reasonable time. A common way for tuning the algorithm’s

parameters is to predefine several plausible parameter settings and to perform a se-

ries of independent experiments with each of these settings. The results can then be

evaluated statistically, e.g., by finding the median or the quantiles of the reported

solutions, and eventually select the parameter setting for which the considered sta-

tistics are the best; this approach will be used in the following section. Alternative

approaches include response surface analysis and regression analysis where a func-

tional relationship between the algorithm’s parameters and the quality of the re-

ported solutions is considered.

For complex algorithms where the number of parameters is high and their effects

on the algorithm’s quality are highly interdependent, a preselection of plausible pa-

rameter values is more difficult; in these circumstances, the parameter values can be

found either by a Monte Carlo search – or by means of a search heuristic.

2.4.2 Tuning the Heuristic’s Parameters

2.4.2.1 Neighborhood Range

General Considerations Simulated Annealing is a typical neighborhood search

strategy as it produces new solutions that are close to the current solutions. It does

so by slightly modifying one or several of the decision variables, in the above im-

plementation by adding a random term to the current value: ψ′
j := ψ j + u · z̃. z̃ is

typically a normally or equally distributed random number; here it is chosen to

be equally distributed within [−1,+1]. The parameter u defines what is considered

a neighboring solution: the larger u, the larger the “area” surrounding ψ j within

which the new solution will be, and vice versa. Here, “small” and “large” steps have
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to be seen relative to the variable that is to be changed; hence, the proper value for u

will also depend on the magnitude of the different ψ j’s.

Large values for u allow fast movements through the solution space – yet also

increase the peril that the optimum is simply stepped over and therefore remains

unidentified. Smaller step widths, on the other hand, increase the number of steps

necessary to trespass a certain distance; if u is rather small, the number of iterations

has to be high. Furthermore, u is salient for overcoming local optima: To escape a

local optimum, a sequence of (interim) impairments of the objective function has to

be accepted; the smaller u, the longer this sequence is. Smaller values for u demand

a more tolerant acceptance criterion which might eventually lead to a perfectly ran-

dom search strategy, not really different from a Monte Carlo search. With a strict

acceptance criterion, small values for u will enforce an uphill search and therefore

help to find the optimum close to the current position which might be advantageous

in an advance stage of the search.

All this indicates that it might be favorable to have large values for u during the

first iteration steps and small values during the last. Also, it might be reasonable to

allow for different values for each decision variable if there are large differences in

the plausible ranges for the values of the different decision variables.

Finding Proper Values Given the data set for which the GARCH model is to be es-

timated, the optimal value for ψ1 = µ can be supposed to be in the range [−1,+1].

Also, it is reasonable to assume that the estimated variance should be non-negative

and finite at any point of time. For the variables α0, α1, and β1 in equation (2.1b)

(represented in the algorithm by ψ2, ψ3, and ψ4), it is plausible to assume that their

values are non-negative, but do not exceed 1; hence, their optimal values are ex-

pected in the range [0,+1].

As only one of these decision variables is modified per iteration and the number

of iterations might be rather small, we will test three alternatives where u1 will have

an initial value of 0.05, 0.025, or 0.01; the actual modification, u1 · z̃, will then be

equally distributed in the range [−u1,+u1].

As argued, it might be reasonable to narrow the neighborhood in the course

of the search process. We will therefore test four different versions where u is kept

either constant; the value of u in the terminal iteration I is u’s initial value divided by
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10, 100, or 1 000. The value for u shall be lowered gradually in the course of iterations

according to ui+1 = ui ·γu. This implies that the parameter γu is to be determined

according to γu = I
√

uI/u1. With the chosen values for u1 and uI, γu can take the

values 1, I
√

0.1, I
√

0.01, and I
√

0.001.

2.4.2.2 The Number of Iterations

General Considerations For some heuristic optimization algorithms, there exist

proofs that the global optimum will be identified – eventually. In practical applica-

tions, concessions have to be made in order to find solutions within reasonable time.

This is primarily done by restrictions on the run time or on the number of iterations.

For the latter alternative, common solutions include convergence criteria and upper

limits on the number of iterations. Convergence criteria assume that the algorithm

has found a solution which is either the global solution – or some local optimum

which is unlikely to be escaped and computation time therefore ought to be used for

new runs.

As indicated above, selecting the number of iterations is related to finding the

parameter for the step size, u, and vice versa: The neighborhood range should be

large enough that the optimum can actually be reached within the chosen number

of iterations and from any arbitrary starting point. Also, for some problems it might

be reasonable to have more runs with independent initial guesses for the decision

variables, whereas for others it might be advantageous to have fewer runs, yet with

more iterations per run.

Finding Proper Values The algorithm will report a solution which it has actually

guessed and reached by chance at one stage of the search process. The algorithm,

however, does not have a mechanism that guides the search, e.g., by using gradi-

ents, estimating the step width with some interpolation procedure or based on past

experience. At the same time, we demand a high precision for the parameters. The

algorithm is therefore conceded 50 000 guesses before it reports a solution; these

guesses can be spent on few independent runs with many iterations or the other way

round. We distinguish four versions where all guesses are used on one search run

(i.e., the number of iterations is set to I = 50000), 5 and 50 independent runs with

I = 10000 and 1000 iterations, respectively, and version where no iterative search
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is performed but all the guesses are used on perfectly random values; this last ver-

sion corresponds to a Monte Carlo search and can serve as a benchmark on whether

the iterative search by SA has a favorable effect on the search process or whether a

perfectly random search strategy might be enough.

2.4.2.3 Acceptance criterion

General Considerations In Simulated Annealing the acceptance probability, p, is

often determined via the Metropolis function, p = min
{

exp
(

∆L
/

Ti

)
,100%

}
.30 For

maximization problems, a positive sign for the change in the objective function,

∆L > 0, indicates an improvement, ∆L < 0 indicates an impairment. Ti is the

analogue for the temperature in iteration i and serves as an adjustment parame-

ter to make the criterion more or less tolerant to impairments: High temperatures

push the argument of the exp(·) expression towards zero and hence the acceptance

probability towards 100%, and changes with ∆L ≪ 0 might still be accepted; low

temperatures have the adverse effect and make even small impairments unlikely.

Improvements, however, are accepted whatever the temperature: as exp(·) > 1 (and

therefore exceeds the min-function’s limit of 100%) when the argument is positive,

the Metropolis function will return an acceptance probability of 100% whenever

∆L > 0.

Finding good values for the temperature is strongly dependent on what are “typ-

ical” impairments. This can be achieved by performing a series of modifications,

evaluating the resulting changes in the objective function, ∆L , and determining

the quantiles of the distribution of negative ∆L ’s.

Solving the Metropolis function for the temperature yields Ti = ∆L / ln(p).

Hence, during the early iterations, Ti should have values that allow most of the im-

pairments to be accepted with reasonable probability; Ti should therefore be chosen

such that a relatively large impairment is accepted with high probability. In the last

iterations, only few of the impairments ought to be accepted; here, Ti should have

a value such that even a relatively small impairment is accepted with low proba-

bility. Once the temperatures for the first and last iterations, T1 and TI, have been

30 See also the discussion in section 6.3.1.
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u 95% 90% 75% 50% 25% 10% 5%

0.05 –17.70569 –13.42215 –8.13720 –3.59098 –0.78051 –0.21308 –0.08924

0.025 –17.60417 –13.09995 –7.92351 –3.46938 –0.52063 –0.13813 –0.05751

0.01 –17.60372 –13.15639 –8.06564 –3.58483 –0.35556 –0.06503 –0.02704

0.005 –16.94350 –13.06744 –8.07430 –3.41242 –0.19775 –0.02877 –0.01147

0.0025 –17.65643 –13.24645 –8.00821 –3.44650 –0.11675 –0.01526 –0.00588

0.001 –17.59644 –13.15123 –8.05048 –3.45760 –0.12361 –0.00617 –0.00245

0.0005 –17.77629 –13.09759 –7.96761 –3.50134 –0.22632 –0.00315 –0.00127

0.00025 –17.63221 –13.09240 –7.93378 –3.41761 –0.17682 –0.00161 –0.00066

0.0001 –17.65130 –13.12136 –7.97900 –3.51114 –0.10407 –0.00063 –0.00025

0.00005 –17.05599 –12.85940 –7.7959 –3.43883 –0.1256 –0.00029 –0.00011

0.000025 –17.49037 –12.95163 –7.91984 –3.45329 –0.11150 –0.00016 –0.00006

0.00001 –18.15359 –13.32715 –8.06117 –3.57329 –0.23852 –0.00007 –0.00003

Tab. 2.1: Quantiles for modifications with negative ∆L for different values of u, based on 10 000

replications each (italics and boldface as explained in the text)

found, the cooling parameter γT = I

√
TI/T1 can be determined where I is the cho-

sen number of iterations per run. In each iteration, the temperature is then lowered

according to Ti+1 = Ti ·γT .

Finding Proper Values In order to find suitable values for the temperature, the dis-

tribution of the potential impairments due to one local neighborhood search step

has to be found. This can be done by a Monte Carlo approach where first a num-

ber of candidate solutions (that might occur in the search process) are randomly

generated and for which the effect of a modification is evaluated. As this distrib-

ution depends on what is considered a local neighborhood, Table 2.1 summarizes

the quantiles for impairments for the different values of u in the first and the last

iteration.

As stated above, the initial values for u were selected from the alternatives [0.05,

0.025, 0.01]. For these three alternatives, the 90% quantiles of the impairments were

approximately –13 (see figures in italics in Table 2.1). Hence, if in the beginning,

90% of all impairments should be accepted with a probability of at least p = 0.5,

then temperature should be set to T1 = −13
/

ln(0.5) ≈ 20.

The 10% quantiles of the impairments depend strongly on the value of u; they can

be approximated by –6 · u (see figures in boldface in Table 2.1). Hence, if only the
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10% of impairments that are smaller than this critical value shall be accepted with a

probability of more than p = 0.1 in the last iteration, I, the temperature should to be

set to TI = −6 ·uI
/

ln(0.1) ≈ 2.6 · uI. As this shall be the case in the last iteration, the

cooling factor is set to γT = I

√
uI · 2.6

/
20 where I is the number of iterations.31

2.4.3 Results

Based on the above considerations, there are three candidate values for the initial

value of u (u1 = 0.05, 0.025 or 0.01) and four alternatives for the terminal value of

u ( u1/uI = 1
/

1, 1
/

10, 1
/

100, and 1
/

1000; the values for γu follow directly according to

γu = I
√

u1/uI). In addition, we test four different alternatives to use the conceded

50 000 guesses (ranging from a single run with I = 50000 iterations to 50 000 inde-

pendent runs with I = 1, i.e., without subsequent iterations32), there are 48 different

parameter settings to be tested. With each of these combinations, the algorithm was

applied to the optimization problem several hundred times, and from each of these

experiments, the best of the 50 000 candidate solutions was reported and the dis-

tributions of the reported solutions are evaluated. Implemented in Delphi (version

7), the CPU time per experiment (i.e., per 50 000 candidate solutions) was approx-

imately 15 seconds on a Centrino Pentium M 1.4 GHz. Table 2.2 summarizes the

medians and 10% quantiles for the deviations between reported solutions and the

optimum.

When an adequate parameter setting has been chosen, the algorithm is able to

find good solutions with high probability: when the number of iterations is suffi-

ciently high (e.g., I = 50000) and the parameters for the neighborhood search are

well chosen (e.g., u1 = 0.025 and uI/u1 = 0.001), then half of the reported solutions

will have a L which is at most 0.00001 below the optimum. The best 10% of the

solutions generated with this parameter setting will deviate by just 0.000001 or less.

31 A more sophisticated consideration could take into account that during the last iteration, the al-

gorithm has converged towards the optimum and that a random step in this region might have a

different effect on ∆L as the same modification would cause in a region far from the optimum.

Also, the values for p where chosen based on experience from implementations for similar prob-

lems; more advanced considerations could be performed. However, for our purpose (and for many

practical applications), the selection process as presented seems to generate good enough results.

32 Note that in listing 2.6, the loop of iterations is not entered when I = 1: To assure that the initial

values, too, count towards to the total number of guesses, the loop is performed only I−1 times.
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runs × number of guesses per run (I)

u1
uI/u1

1×50000 5×10000 50×1000 50 000×1, MC

m
ed

ia
n

0.05

1 –0.011240 –0.016400 –0.347450

–17.895114

0.1 –0.000795 –0.000985 –0.233348

0.01 –0.000055 –0.000062 –0.425277

0.001 –0.000007 –0.000078 –2.224412

0.025

1 –0.004913 –0.005810 –0.489114

0.1 –0.000328 –0.000359 –0.650558

0.01 –0.000024 –0.000103 –5.468503

0.001 –0.000008 –1.144997 –23.693378

0.01

1 –0.001681 –0.001865 –1.288883

0.1 –0.000114 –0.000572 –16.841008

0.01 –0.000012 –6.891969 –65.365018

0.001 –7.289898 –32.970728 –99.662400

10
%

q
u

an
ti

le

0.05

1 –0.003348 –0.005210 –0.067568

–8.625649

0.1 –0.000309 –0.000363 –0.010878

0.01 –0.000020 –0.000025 –0.011645

0.001 –0.000002 –0.000008 –0.054592

0.025

1 –0.001790 –0.002157 –0.047682

0.1 –0.000123 –0.000127 –0.020024

0.01 –0.000008 –0.000024 –0.090048

0.001 –0.000001 –0.008738 –2.413633

0.01

1 –0.000614 –0.000749 –0.067869

0.1 –0.000041 –0.000112 –0.611584

0.01 –0.000004 –0.022991 –15.653601

0.001 –0.193161 –2.774787 –37.478838

Tab. 2.2: 10% quantiles and medians of differences between reported solutions and optimum

solution for different parameter settings from several hundred independent experiments (typi-

cally 400; MC: 7 800) with 50 000 candidate solutions each
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If, on the other hand, the heuristic search part is abandoned and all of the allowed

50 000 guesses are used on generating independent random (initial) values for the

vector of decision variables, then the algorithm performs a sheer Monte Carlo (MC)

search where there is no neighborhood search (and, hence, the values for ui are

irrelevant) and where, again, only the best of the 50 000 guesses per experiment is

reported. The results are by magnitude worse than for SA with a suitable set of pa-

rameters (see last column, labeled MC). This also supports that the use of the search

heuristic leads to significantly better results – provided an appropriate parameter

setting has been selected.

A closer look at the results also underlines the importance of suitable parameters

and that inappropriate parameters might turn the algorithm’s advantages into their

exact opposite. When there are only few iterations and the neighborhood is chosen

too small (i.e., small initial value for u which is further lowered rapidly), then the

step size is too small to get anywhere near the optimum within the conceded number

of search steps. As a consequence, the algorithm virtually freezes at (or near) the

initial solution.

However, it also becomes apparent that for most of the tested parameter com-

binations, the algorithm performs well and that preliminary considerations might

help to quickly tune a heuristic optimization algorithm such that it produces good

results with high reliability. Traditional methods are highly dependent on the initial

values which might lead the subsequent deterministic search to the ever same local

optimum. According to Brooks, Burke, and Persand (2001) the lack of sophisticated

initializations is one of the reasons why the tested software packages found solutions

for the considered problem that sometimes differ considerably from the benchmark.

Table 2.3 reproduces their parameter estimates from different software packages33

together with the benchmark values and the optimum as found by the SA algorithm

33 Brooks, Burke, and Persand (2001) report only three significant figures for the estimates from the

different software packages, also the packages might use alternative initializations for σ2
0 . (Our im-

plementation uses the popular approach σ2
0 = e2

0 = 1
T ∑

T
t=1 e2

t with et coming from equation (2.1a).)

Reliable calculations of the respective values for L that would allow for statistically sound tests on

the estimation errors are not possible.
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Method ψ0 = µ ψ1 =α0 ψ2 =α1 ψ3 = β1

Benchmark –0.00619041 0.0107613 0.153134 0.805974

Heuristic optimization –0.00619034 0.0107614 0.153134 0.805973

S
o

ft
w

ar
e

p
ac

k
ag

es

E-Views –0.00540 0.0096 0.143 0.821

Gauss-Fanpac –0.00600 0.0110 0.153 0.806

Limdep –0.00619 0.0108 0.153 0.806

Matlab –0.00619 0.0108 0.153 0.806

Microfit –0.00621 0.0108 0.153 0.806

SAS –0.00619 0.0108 0.153 0.806

Shazam –0.00613 0.0107 0.154 0.806

Rats –0.00625 0.0108 0.153 0.806

TSP –0.00619 0.0108 0.153 0.806

Tab. 2.3: Results for the GARCH estimation based on the benchmark provided in Bollerslev and

Ghysels (1996), the results from the software packages (with default settings) as reported in

Brooks, Burke, and Persand (2001)

– which, by concept, uses perfectly random initial values.34 Unlike with traditional

deterministic optimization techniques, this reliability can arbitrarily be increased

by increasing the runtime (which is the basic conclusion from convergence proofs

for HO algorithms).

2.5 Conclusion

In this chapter, some basic concepts of optimization in general and heuristic opti-

mization methods in particular were introduced. The heuristics presented in this

chapter differ significantly in various aspects: the varieties range from repeatedly

modifying one candidate solution per iteration to whole populations of search

agents each of them representing one candidate solution; from neighborhood search

strategies to global search methods, etc. As diverse these methods are, as diverse are

34 In practice, HO techniques do not always benefit when the initial values come from some “sophis-

ticated guess” or another optimization as this often means that the optimizer first and prime task

is to overcome a local optimum. On the contrary, heuristically determined solutions might some-

times be used as initial values for traditional methods. Likewise, it might be reasonable to have the

fine-tuning of the heuristic’s last iterations done by a strict up-hill search.
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also their advantages and disadvantages: Simulated Annealing and Threshold Ac-

cepting are relatively easy to implement and are good general purpose methods,

yet they tend to have problems when the search space is excessively large and has

many local optima. Other methods such as Genetic Algorithms or Memetic Algo-

rithms, on the other hand, are more complex and their implementation demands

some experience with heuristic optimization, yet they can deal with more compli-

cated and highly demanding optimization problems. Hence, there is not one best

heuristic that would be superior to all other methods. It is rather a “different courses,

different horses” situation where criteria such as the type of optimization problem,

restrictions on computational time, experience with implementing different HO al-

gorithms, the programming environment, the availability of toolboxes, and so on

that influence the decision which heuristic to choose – or eventually lead to new or

hybrid methods.

The following chapters of this contribution make use of heuristic optimization

techniques for approaching problems, merely from the area portfolio management,

that cannot be answered with traditional models. The diversity of the problems leads

to the application of different methods as well as the introduction of a new hybrid

approach. Though the main focus of these applications shall be on the financial im-

plications that can be drawn from the results, there will also be some comparisons

of these methods together with suggestions for enhancements.



Chapter 3

Transaction Costs and

Integer Constraints

3.1 Introduction

As presented in section 1.1.2, a central simplification in the classical models of Mod-

ern Portfolio Theory is that investors face no transaction costs. Although there exit

attempts to include proportional1 or fixed2 transaction costs, they are usually ig-

nored in the optimization process and explicitly considered only in association with

portfolio revision, if at all. When fixed transaction costs or minimum costs are con-

sidered, the investor’s endowment might become another crucial aspect as the ex-

pected return can be influenced significantly by the relative magnitude of these pay-

ments.

Based on Maringer (2002a), where, to our knowledge, the aspects of different

transaction costs, non-negativity constraints and integer constraints are jointly in-

vestigated for the first time, this chapter will primarily investigate the relationship

between transaction costs, type of costs, and initial endowment of the investor on

the one hand and the optimal portfolio structure on the other. In section 3.2 the

optimization problem will be formalized and the solution approach and the used

data will be presented. Based on an empirical study for a DAX investor, section 3.3

presents the central results and section 3.4 discusses some of the implications for

portfolio management. Section 3.5 concludes.

1 See, e.g., Pogue (1970).

2 See, e.g., Brennan (1975).
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3.2 The Problem

3.2.1 The Optimization Model

Typically, transaction costs are proportional to the traded volume and are therefore

variable. They may have a lower limit (i.e., minimum transaction costs), and they

may also come together with fixed costs, e.g., fees per order. Fixed costs only are

not very common, yet some brokers do offer cost schemes where the fees are fixed

within certain (more or less broad) ranges of the traded volume.

Let ni ∈ N
+
0 be the natural, non-negative number of asset i ∈ [1, ...,N] and S0i its

current price. If the investor faces proportional costs of cp and/or fixed minimum

costs of C f , investing into asset i comes with transaction costs Ci of

Ci =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C f fixed costs only

cp · ni · S0i proportional costs only

max{C f ,cp · ni · S0i} proportional costs with lower limit

C f + cp · ni · S0i proportional plus fixed costs

(3.1)

The total payments associated with the purchase of ni stocks i are then ni · S0i +

Ci. The investor has an initial endowment of V0 that shall be invested into stocks.

Due to the indivisibility of stocks via the integer constraint on ni, the actual amount

spent on stock purchases will not equal V0 exactly, and the remainder

R0 = V0 −
N

∑
i=1

(ni · S0i +Ci)

can be invested at the settlement account without cost and at a safe rate of rs. It is

assumed that the safe asset also has a non-negativity constraint, i.e., R0 ≥ 0, debt-

financed stock purchases are therefore excluded.

If there are no transaction costs at the end of the period, the effective return on

the initial endowment for the period will be

r
eff
P =

N

∑
i=1

(ni · S0i · (1+ ri))+R0 · (1+ rs)

V0
− 1
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where ri is the expected rate of return of asset i. Let

xi =
ni · S0i

V0
⇐⇒

N

∑
i=1

xi = 1− R0 +∑
N
i=1 Ci

V0
,

then the expected risk premium and volatility, respectively, for the portfolio after

transaction costs can be written as

r
eff
P − rs = ∑

i∈P

(
xi · (1+ ri)−

Ci

V0
· (1+ rs)

)

σP =
√

∑
i∈P

∑
j∈P

xi · x j ·σi j

where σi j is the covariance of i’s and j’s expected return.

As argued in section 1.2.1, an investor will want to maximize the ratio between

(expected) risk premium and total risk associated with the investment, also known

as Reward to Variability Ratio or Sharpe Ratio (SR). Under transaction costs, this

ratio has to be redefined as

SR
eff
P =

r
eff
P − rs

σP
.

The optimization problem for a myopic investor can therefore be summarized as

follows:

max
ni

SR
eff
P =

r
eff
P − rs

σP

subject to

r
eff
P − rs = ∑

i∈P

(
xi · (1+ ri)−

Ci

V0
· (1+ rs)

)

σP =

√√√√
N

∑
i=1

N

∑
j=1

xi · x j ·σi j

xi =
ni · S0i

V0

ni ∈ N
+
0

R0 = V0 −
N

∑
i=1

(ni · S0i +Ci) ≥ 0
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Ci =

⎧
⎨
⎩

Ci

(
ni,S0i,C f ,cp

)
ni > 0

0 otherwise
.

The additional objective of keeping as little cash in the settlement account as

possible is not stated explicitly (e.g., by adding a punishment term to the objective

function), but will be incorporated in the optimization process.

3.2.2 The Heuristic

The portfolio selection problem presented above will be approached with an

adapted version of Simulated Annealing3 (SA), a method successfully applied to

portfolio optimization in Chang, Meade, Beasley, and Sharaiha (2000) or Crama and

Schyns (2003) and a method closely related to Threshold Accepting, the method

used for portfolio selection in Dueck and Winker (1992).

In this application, the algorithm starts with an arbitrary portfolio that is valid

with respect to the constraints. According to the principle of SA, in each iteration

step slight random changes of the current portfolio structure are suggested by first

selecting one asset i and lowering its weight by a random amount and adding the

“saved” amount (including avoided transaction costs) to the remainder R0. Next,

another asset j is selected and n j increased by as much as possible given the current

amount R0. If this new solution has a higher SR
eff
P than the previous one, then this

new solution is accepted. If the value of the objective function has decreased, then

the suggested restructuring is rejected stochastically; the sharper the decline in SR
eff
P

and the more progressed the algorithm is (i.e., the lower the current temperature Tt),

the higher the chances that the suggested changes are not accepted and the previous

portfolio structure is kept. Listings 3.1 and 3.2 summarize the pseudo-code. The

algorithm is linear in the number of iterations, I, and quadratic in the number of

different assets, N, due to the computation of a candidate portfolio’s variance; hence,

the computational complexity of the algorithm is O
(
I ·N2

)
.

According to the acceptance criterion of SA, changes are kept rather generously

during the first iterations, implying that, although improvement are always more

3 See Kirkpatrick, Gelatt, and Vecchi (1983) and the presentation in section 2.3.1.
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n := RandomInitalStructure;

initialize parameters

T1 (Temperature), γ (CoolingFactor), neighborhood range;

FOR i = 1 TO MaxIterations (I)

perform neighborhood search (→ Listing 3.2);

∆SReff := SR
eff

n′ − SR
eff
n ;

ReplacementProbability := min
(

1,exp
(

∆SReff

Ti

))
;

with probability ReplacementProbability DO

n := n′;

check whether new elitist (overall best solution) has been found:

IF SR
eff
n > SR

eff
n∗ THEN

n∗ := n ;

END;

END;

Ti+1 := Ti ·γ;
END;

report n∗;

Listing 3.1: Pseudo-code for the main Simulated Annealing routine

randomly select assets i (where ni > 0) and j (where j �= i);

∆ni := round( (rand*maxChange) * xi * V0 / S0i );

n′i := ni −∆ni ;

compute R′
0 (including saved transaction costs);

determine maximum ∆n j without violating R0 ≥ 0,

n′j := n j +∆n j ;

return n;

Listing 3.2: Pseudo-code for the local search routine
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likely to be accepted than impairments, the change of the portfolio structure has a

considerable degree of randomness which fosters the search for the core structure

without getting stuck in a local optimum. During later iterations, however, the tem-

perature Ti has been lowered substantially, and the algorithm turns more and more

towards a hill-climbing search strategy where changes for the better are definitely

preferred over reductions in the objective function. At this stage of the algorithm,

the initially found core structure of the portfolio is refined. At any stage, there is

a certain chance to move away from an already found good solution, the algorithm

therefore records the best known solution found over all passed iterations, n∗, which

is ultimately reported. In order to reduce the risk of reporting a local optimum,4 each

of the optimization problems has been solved independently several hundred times,

in addition there was a series of concluding runs were the initial solution was set to

the overall best known solution from previous runs for this problem and “closely re-

lated” problems, i.e., with close values for V0, cp, and C f . The following evaluations

are based on the best overall result for each problem setting which can therefore be

assumed to either represent the global optimum or to be at least sufficiently close to.

3.2.3 The Data

The empirical study in this section is based on the 30 stocks represented in the Ger-

man stock index DAX. Using daily returns for the period Dec. 1, 1998 – Dec. 29,

2000, the covariances and volatilities, σi j and σi, respectively, and the historic cor-

relation coefficients between the DAX and the stock returns, ρiDAX, were computed.

The expected covariances (volatilities) for the optimization period are the annual-

ized historic covariances (volatilities), and the expected returns are estimated with

a standard CAPM approach.5 To reflect the market situation for the chosen time

frame (yet without loss of generality), the safe return was assumed to be rs = 4.5%

and the DAX’s expected risk premium was set to (rDAX − rs) = 6%. The estimated

returns are therefore generated by

ri = 0.045+0.06 ·βi with βi =
σi ·ρiDAX

σDAX

4 See also section 2.3.1.

5 See section 1.2.2.
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Fig. 3.1: Risk and expected return of considered stocks and efficient lines with (gray) and with-

out (black) safe asset

where σDAX is the expected volatility of the DAX, based on its historic value. Fig-

ure 3.1 depicts these expected returns and volatilities. Given the actual market de-

velopments it shall be emphasized that for the empirical study, these figures are es-

timated based on information available to investors at the end of the year 2000 and

that they are considered to be exogenous to the optimization process: the optimiza-

tion itself concentrates on the portfolio selection problem but not on the prediction.

The turbulences on the international and the German stock markets would lead, of

course, to readjusted estimates for risks, returns, and hence Sharpe Ratios; subse-

quent tests with modified estimates, however, did not affect the qualitative results of

the following analyses. To underline the generality of these results, the stocks will be

made anonymous in the following evaluations.

For the computational study, the following values were considered: The initial

endowment, V0, ranged frome 500 up toe 10 000 000; the proportional costs ranged

from 0 up to 5%, the fixed and minimum costs, respectively, ranged from e 0 to

e 100. The upper limits for the costs had been chosen rather high for stocks, yet

are not unusual for other investments such as international funds. In addition, these

broad bandwidths allow a clearer look at the underlying effects and mechanics be-

tween costs and optimal investment decisions.
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Fig. 3.2: Optimal portfolio structure for an investor with initial endowment V0 without fixed or

proportional transaction costs

3.3 Results from the Empirical Study

3.3.1 The Influence of Non-Negativity and

Integer Constraints

On Dec. 29, 2000, the closing quotes of the 30 DAX stocks ranged from e 16.50 up

to e 400.70 with an average of e 79.24. To an investor with an initial endowment

of just V0 = e 1 000, the cheapest stock represents 1.65% of her endowment, the

most expensive one almost half of the amount she is willing to invest. This is also

the bandwidth of the granularity up to which the investor can split her endowment.

Hence, for small investors, the usual assumption of arbitrarily divisible assets is not

a very realistic one. Large investors, on the other hand, come much closer to this

assumption as their step sizes are smaller by the magnitude their initial endowment

is larger. Hence, one might expect that integer constraints on the number ni held

of asset i in the portfolio will affect small investors significantly more than large

investors. Figure 3.2 depicts the optimal portfolio structure depending on the initial

endowment when there are neither fixed nor proportional transaction costs.

The results indicate that, for the given market, the integer constraint has no no-

ticeable effect on the optimal solution only when the amount invested is e 50 000 or
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more. Although there are slight alterations for higher V0, the differences in the re-

spective values for SR
eff
P , however, are negligible, and the solutions correspond more

or less to the optimal result without integer constraint. Here, it is the non-negativity

constraint that is the reason for not including all available assets into the portfo-

lio:6 under the assumed risk and return structure, ideally five of the assets should be

sold short – which, however, is prohibited by assumption. Though it influences the

portfolio structure, the non-negativity constraint’s harm on the Sharpe Ratio is very

limited: When abandoning this constraint, an investor with an endowment of V0 =

e 100 000 can increase her SR
eff
P from 0.24612 to 0.24625, i.e., by just about 0.05%.7

For an investor with V0 = e 10 000 or less, the effects of the integer constraint

become apparent. Stock with high prices (in particular the one with S0i = e 400.70)

are likely to be eliminated as the investor cannot buy the (small) quantity that would

contribute to the optimal solution the best and are therefore replaced with other

assets. As a consequence, the number of different assets, included in the portfolio,

decreases. Whereas large investors should pick 25 different stocks, those with low V0

would be best off with as little as ten to fifteen different stocks.

It is noteworthy, however, that the changes in the portfolio structure due to the

lower V0 are not always derivable from the theoretical solution for frictionless trad-

ing. Whereas the weight of asset i = 28 increases with decreasing V0, the weights

of assets i = 21 and i = 26 remain virtually constant. Since all three of these assets

are quoted at more or less the same price, these effects on the changing weights are

caused by the return and risk structure in relationship to the remaining other as-

sets. This implies that the simple rule, often applied in practice, of first finding the

optimum without the integer constraint and then determining the actual quantities

ni by rounding, can lead to inferior solutions.8 A numerical example underlines this

effect: When including the integer constraint, for an investor with V0 = e 5 000, the

optimal portfolio will have SR
eff
P = 0.24589, for an investor with V0 =e 500, it is SR

eff
P

= 0.23466. If, however, the second investor would have determined her asset weights

by simply “downsizing” the first investors portfolio and rounding the weights, the

6 According to Best and Grauer (1992), following Best and Grauer (1985) and Green (1986) and the

literature given therein, it is unlikely to have optimized portfolios where all weights are positive

when generated from historical data. See also Best and Grauer (1991).

7 The magnitude of this effect depends on the market structure as will be seen in chapter 4.

8 See, e.g., chapter 13 in Hillier and Lieberman (2003).
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result would have been SR
eff
P = 0.21975. In other words, the disadvantages of small

initial endowment on the limited opportunities of diversification can be avoided to

some extent when considered within the optimization process and not afterwards.

If there are no transaction costs, investors with an initial endowment of V0 =

e 5 000 or less will be affected noticeable by the integer constraint, and they should

rather account for this fact when determining the actual asset weights. Investors with

an endowment of up to V0 = e 50 000 will also be effected by the integer constraint,

yet with rather limited consequences. Only for investors with higher V0 the effect of

including an explicit integer constraint will vanish.

3.3.2 Simple Transaction Costs

3.3.2.1 Fixed Costs Only

When introducing fixed costs of Ci = C f∀i : ni > 0 diversification comes with higher

transaction costs the more different assets are included in the portfolio. This im-

plies that “aggregation” and spending a certain amount on one asset rather than two

similar stocks will cut the resulting costs in half. Small investors can therefore be

expected to (even more) reduce the number of different assets in their portfolios as

to them fixed costs are relatively higher than to large investors. In other words, the

contribution of an asset to the portfolio’s Sharpe Ratio has to be large enough so

that it is not outweighed by the additional relative costs due to the inclusion of this

asset. Both the reduced diversification and the relatively high costs will aggravate

and make a small investors’ SR
eff
P rather sensitive towards fixed costs. For large in-

vestors, on the other hand, the fixed amount of Ci per included different asset will

be relatively small; the effect on the Sharpe Ratio will therefore be less severe than

for small investors.

Figure 3.3 presents the effect of different levels of fixed costs on the optimal port-

folio structure for an investor with an initial endowment of V0 = e 50 000. As can be

seen, introducing fixed costs of as little as C f =e 5 causes the investor to include only

half of the different assets she would hold when there were no transaction costs. This

reduction affects merely those assets that would have low weights in a cost free port-

folio. Increasing C f leads to further decline in the portfolio’s diverseness and to a
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Fig. 3.3: Optimal portfolio weights for an investor with V0 =e 50 000 for different levels of fixed

costs without proportional costs

shift in the remaining assets’ weights. However, these transitions are not necessarily

smooth: Some securities, such as i = 28, can even gain substantially in weight while

being excluded both under lower and higher costs. The reason for this is their ability

to function as a substitute for a group of other assets under certain cost regimes: ex-

changing a bundle of assets for a single asset with equal properties might be a good

idea when the avoided costs more than offset the disadvantages in this assets risk/re-

turn structure before costs. Ultimately, assets of that kind will either be excluded as

well (as is the case for i = 28) – or might even become one of the few “survivors” (as

is the case for i = 3).

Investors with lower initial endowment face similar effects of reducing the num-

ber of different assets, yet already at lower fixed costs. The larger the initial endow-

ment, on the other hand, the less distinct the effects of fixed costs become; nonethe-

less, even with V0 as high ase 10 000 000, one or two of the otherwise included assets

might fall out of the optimal portfolio. Figure 3.4 illustrates this relationship.

As expected, fixed costs do have a negative effect on the investors’ optimal Sharpe

Ratios and small investors are affected the most. In some cases, the Sharpe Ratio

might even become negative, implying that in these situations the investor would be

better off when not holding any stock portfolio but keeping her (low) initial endow-

ment in the bank account as the portfolio’s expected return after transaction costs
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Fig. 3.4: The effects of fixed costs on the number of assets and the Sharpe Ratio

would be lower than the safe return. The higher V0 the lower the decrease in SR
eff
P :

large investors buy larger quantities, and the fixed payments for transaction costs

have a relatively insignificant effect on these investors Sharpe Ratios after transac-

tion costs. The still noticeable decline in the number of different assets for investors

with an endowment of up to V0 = 1 000 000 can be offset and does therefore not really

show in the respective values for SR
eff
P , as can be seen from Figure 3.4

3.3.2.2 Proportional Costs Only

Whereas fixed transaction costs can (more or less) be avoided by reducing the num-

ber of different assets in the portfolio, proportional costs depend exclusive on the

transaction volume. Hence, substituting some of the securities by higher volumes in

already included assets will not lead to a reduction in the overall transaction costs –

apart from insignificant changes due to integer constraint. Much akin to fixed costs,

however, the marginal contribution of an included security to the overall diversifi-

cation will be reduced and the portfolio’s Sharpe Ratio might even become negative.

As a consequence, proportional transaction costs, too, can be expected to lead to

less diversified portfolios and reduces Sharpe Ratios.

Figure 3.5 illustrates the influence of proportional transaction costs on the opti-

mal portfolio structure for an investor with an initial endowment of V0 = e 50 000.

As can readily be seen, increasing the proportional cost rate leads to a gradual re-

duction of included stocks and a shift of the portfolio weights. Whereas increasing
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Fig. 3.5: Optimal asset weights for an investor with V0 =e 50 000 with proportional transaction

costs only

the proportional costs from 0 to 0.5% (1%) will lead to a reduction from originally

24 down to 21 (19) different assets.

Again, the optimal weights under transaction costs are not necessarily obvious

from the weights for the unconstrained problem: Whereas assets i = 4, 25 and 28

are almost identical in weight in the absence of costs, the weight of the first one de-

creases continually, the weight of the second one remains almost constant and then

vanishes quickly, and the weight of the third one increases noticeable yet eventually

decreases and vanishes, too. Compared to the effects of fixed transaction costs only

(see Figure 3.3), some of the assets now show contrary behavior. Asset i = 2, e.g.,

has a below average weight when there are no transaction costs, but steadily gains

weight when the proportional costs rate rise; under a fixed costs regime, however,

this very title would have been excluded already at a rate of C f = e 5. Asset i = 3,

on the other hand, is eventually excluded under proportional costs, but turns out

to be one of the view securities included under high fixed costs whereas under low

fixed costs it might be replaced with asset i = 28. The main reason for this opposing

effects of different cost regimes is the fact that under proportional costs, the effec-

tive rate of return depends on the expected return of the asset and the proportional

cost rate, whereas under fixed costs, it also depends on the share the asset takes in

the portfolio which in return is influenced by the initial endowment. This means



90 3 Transaction Costs and Integer Constraints

Fig. 3.6: The effects of proportional costs on the number of assets and the Sharpe Ratio

that given proportional costs, the expected return after costs is independent of the

weight it has in the portfolio; given fixed costs, however, reducing an asset’s weight

also means reducing its expected return after costs and vice versa. If therefore a

single asset turns out to be a potential substitute for a group of other assets all of

which have small weights, than eliminating this group and increasing the single as-

set’s weight has a positive effect on this asset’s expected effective return. When the

costs are proportional to the traded volume, considerations of this kind are irrele-

vant, and “aggregating” or switching between single assets and bundles is no longer

an adequate measure to avoid costs. The changes in the weights are therefore much

smoother in a proportional cost regime.

Figure 3.6 shows the decline in the number of different included assets in depen-

dence of V0 and cp. When compared to the fixed cost regime, it is remarkable that

now the differences between small and large investors have largely vanished and that

an investor with V0 = 10 000 000 appears to have a portfolio quite similar to an in-

vestor with just V0 = 10 000. This also shows in the similar SR
eff
P the two investors

will expect (see Figure 3.6, right panel).

In practice, proportional costs of more than 1% are rather unusual for domestic

stock purchases, but can be substantially higher for investments into securities on

foreign markets or funds where issue surcharges as well as management fees have

to be paid. The seemingly generous upper limit of cp = 5% appears therefore jus-

tified when conclusions for securities of this kind are to be drawn. In this respect,

the empirical results from this study would indicate that ceteris paribus an individ-
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ual investing into funds should focus on a rather limited number yet well-chosen

combination of different securities.

3.3.2.3 Comparison of Simple Cost Schemes

Comparing the results for fixed costs with those for proportional costs also allows

some conclusions on preferences and effects from changing the type of costs. This

shall be illustrated with a numerical example for an investor with an initial endow-

ment of V0 = 50 000.

If there are no transaction costs, this investor will hold 24 different assets. If,

however, she faces fixed costs of C f = 15 per different asset, she will hold just eight

different securities, i.e., two thirds of the originally attractive securities won’t be

included in the optimal portfolio. In this case, the overall cost for this portfolio will

be 8 · 15 = 120. In proportion to the amount invested, this corresponds to pro-rata

costs of 0.24%. The expected Sharpe Ratio after costs will be SR
eff
P = 0.22960.

If, on the other hand, the investor had to face proportional costs of 0.25% of the

purchased volume yet neither fixed nor minimum transaction costs, than the in-

vestor will optimally purchase a portfolio that contains 23 different assets and that

has an initial value of e 49 863.24; the payments for transaction costs sum up to

124.66, and a remainder of only R0 = 12.10 remains on the settlement account. With

(more or less) the same overall costs, the investor is now able to diversify much

better than in the fixed costs case, which is apparent from the significantly higher

Sharpe Ratio of SR
eff
P = 0.23393. In this case, a change of the cost structure is there-

fore advantageous for the investor because she can get higher benefits (in terms of

the reward-to-variability ratio) for the same costs. Assuming that the costs are ex-

clusively for the benefit of the financial services provider, things look different from

their point of view: the number of different orders has almost tripled, yet the charges

remain almost unchanged.

When the purchase of 23 different stocks costs e 124.66 (as is the case for the

just mentioned example with cp = 0.25%), then this corresponds to e 5.42 per dif-

ferent stock. This does not imply, however, that changing from the proportional to

a fixed costs system where C f = 5.42 would lead to the same investment decision:

In the latter case, the investor would select just eleven different stocks for her port-

folio, and for the overall costs of 11 · 5.42 = 59.62 would get a portfolio that had a
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Sharpe Ratio of SR
eff
P = 0.23780 – which is above the one for cp = 0.25%. Again,

the possibility of reducing costs by aggregation and substituting sub-portfolios with

single assets is utilized. If a bank therefore considers changing its charging system

from proportional to fixed costs, using the current pro-rata figures for a benchmark

in the new system might result in a lasting reduction in the number of orders and

an increase in the volume per order; the benchmark for sustaining the current rev-

enues from transactions would therefore be the value for the initial considerations

in this numerical example, namely C f = 15 which is almost three times as high as

the equivalent fixed pro-rata figure under a proportional costs regime.

As pointed out previously, under fixed costs, the initial endowment has a major

effect on the portfolio structure. Investors with different V0 will therefore react dif-

ferently on changes in the cost system, the composition of a bank’s clients’ portfolios

and endowments are therefore crucial for a reliable evaluation of the relationship

between changes in the costs structures and the revenues. Nonetheless, this rather

simple example captures the basic mechanics behind.

3.3.3 Compound Transaction Costs

3.3.3.1 Proportional Costs with Lower Limit

If the purchase is associated with variable costs which, however, must not fall below

a minimum amount, than including ni > 0 assets i in a portfolio causes payments of

Ci = max{C f ,cp · ni · S0i} = max{C f ,cp · xi ·V0} .

Hence, fixed (minimum) costs are to be paid whenever xi is positive yet below the

critical value of

C f = V0 · x∗ · cp ⇒ x∗ =
C f

V0 · cp
.

Ceteris paribus, this critical value will be the lower, the lower C f is; the better en-

dowed the investor is – and the higher the rate of the proportional costs is. As has

been argued in the previous section, when there are only fixed costs, small investors

will differ substantially in their decision from large investors. Now, one also has to

consider that the fixed (minimum) costs have a low chance of coming into effect
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Fig. 3.7: Effects of proportional costs cp with a lower limit of C f for the case V0 = 50 000

and are therefore more unlikely to influence the investor’s decision when the pro-

portional costs are high. At the same time, this also means that the “advantage” of

fixed costs, namely avoiding costs by focusing on a small number of different assets

and aggregating, is lost. Hence, relatively low minimum costs, i.e., low x∗, will lead

to an investment behavior similar to the case of variable costs only, whereas a com-

paratively low rate for the proportional costs will increase x∗ and subsequently lead

to decisions similar to the case of fixed costs only.

This relationship also explains a phenomenon that, at first sight, might be sur-

prising (Figure 3.7): For given minimum costs, the number of included assets might

increase when cp increases. When the minimum transaction costs are C f = e 15,

an investor with V0 = e 50 000 will select just eight different stocks for her portfo-

lio when there are no variable costs, yet nine different assets when cp = 0.25% and

16 when cp = 1%, and only when cp ≥2.75% she will hold less than eight differ-

ent assets. Though the figures are different for investors with different V0, the effect

remains basically the same. Only when the minimum costs are rather high, the intro-

duction of low proportional costs does not affect the investment decision noticeably.

Otherwise, the introduction of variable costs eliminates the advantage of aggregat-

ing, and the reduction in the expected effective returns can be (largely) offset by

a higher degree of diversification. Nonetheless, increasing cp has always a negative

effect on SR
eff
P (see Figure 3.7).
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Fig. 3.8: Effects of proportional costs cp plus fixed charges of C f for the case V0 = 50 000

3.3.3.2 Proportional plus Fixed Costs

If a stock purchase causes proportional plus fixed costs, then the effects of the re-

spective type of costs are combined. This means that increasing variable costs (with

equal fixed costs) as well as increasing fixed costs (with equal proportional costs)

will reduce the opportunities for diversification and the number of included differ-

ent assets will decline. Figure 3.8 depicts this effect for an investor with V0 =e 50 000

– and also gives evidence that the integer constraint might make a difference: for C f

= e 5, increasing the proportional costs, cp, from 0 to 0.25% leads to an optimal

solution where the number of assets included also increases from twelve to thirteen.

Unlike in other circumstances, in this particular case the effect of the additional

asset is rather academic: the SReff is just 0.00001 higher than it would be for the op-

timal combination when the original twelve assets were kept and rearranged given

the same cost structure.

Figure 3.8 confirms the expectation that the case where proportional plus fixed

costs have to be paid has the most serious effect on the expected SR
eff
P of all cost

structures since in this case the payments for transaction costs are here the highest

in absolute figures.
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3.4 Consequences for Portfolio Management

For any of the discussed types of costs, the portfolio structures of different investors

should ideally differ not only in the number of included assets but merely in the

weights assigned to the different stocks. This implies that inferior solutions can only

be avoided when the portfolio selection process does consider the costs the investor

faces and her initial endowment. Consequently, individual and tailor-made portfolio

management might be reasonable also in a world where all investors have homoge-

neous expectations about the available assets’ risks and returns. The separation the-

orem for a perfect market with several risky assets and one risk-free asset, according

to which the risky assets’ weights have the same proportions for any investor and

their optimization is therefore separated from the individual’s investment decision,9

no longer holds when there are transaction costs.

This shall be illustrated by considering three different investment opportunities:

Individual selection: According to the optimization model presented in the previous

sections, the investor optimizes an individual portfolio given the constraints.

Market fund: We assume that there is a readily available investment fund offered

that faces neither non-negativity nor integer constraints, the weights are

therefore optimized for the respective unconstrained optimization problem

without transaction costs. Costs have to be paid only when investing into this

fund by considering it to be a single asset causing the same costs as when buy-

ing the respective quantity of any other single stock. In addition, we assume

frictionless trading, i.e., the investor can buy any quantity that fits her budget

constraint the best.

Replication: The investor finds the optimal solution for the unconstrained opti-

mization problem and tries to translate it according to her personal situation

by calculating the actual number of stock i, ni, for each i based on the theoret-

ical weights, the stock prices, initial endowment and costs. The values for ni

are scaled and rounded such that neither the integer nor the budget constraint

is violated and as much of the initial endowment as possible is spent. In the

sense of comparability, short sales are excluded.

9 See section 1.1.2.3.
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Fig. 3.9: Sharpe Ratio for an investor with V0 = e 50 000 and minimum transaction costs of

e 10

For an investor with, again, V0 =e 50 000 who faces fixed minimum costs of C f =

e 10, Figure 3.9 depicts the Sharpe Ratio she can expect for different rates of propor-

tional costs. As can easily be seen, simple replication of a portfolio optimized with

no constraints leads to severely inferior solutions which are clearly outperformed by

both other alternatives. The shortcomings of this solution steam not only from the

securities with low weights that would otherwise be excluded because of the mini-

mum costs or with too low effective returns when the proportional costs are consid-

ered, but also from the inappropriate weights of the other assets, as will be discussed

later. Individual selection can and does account for this fact, this alternative there-

fore finds definitely better solutions. The investor should therefore abandon the idea

of simply replicating a portfolio optimized for a perfect market.

When comparing the individual selection to the market fund, the latter might be

the preferred solution when the proportional costs are low (if existent at all) and the

investor had therefore to pay the minimum costs several times for all the different

assets in her portfolio, but only once when investing into the fund. The region where

the fund is the better alternative than the individual selection will be the larger the

higher the minimum costs, the lower the initial endowment and the lower the rate
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Fig. 3.10: Optimal funds without transaction costs (F) and with proportional costs of cp = 0.02

(F∗)

of proportional costs. The higher cp, on the other hand, the more advantageous the

individual selection will be.10

The reason for this becomes apparent from a closer look at the fund’s structure

and the way it is optimized. For the considered example, the minimum costs will be

exceeded by the proportional whenever cp > C f

/
V0

= 0.02%, and the investor will

then be able to invest a net amount of V0
/

1+ cp
into the fund F . The expected return

of this fund after transaction costs, r
eff
F , will therefore be

V0 ·
(

1+ r
eff
F

)
=

V0

1+ cp
· (1+ rF) ⇒ r

eff
F =

1+ rF

1+ cp
− 1,

where rF = ∑i xF
i · ri is the expected return of the fund and xF

i : ∑ j xF
j = 1 are the

respective weights of the unconstrained optimization problem, i.e., the weights of

the tangency portfolio in the Tobin model11 for a perfect market. After substituting

and rearranging, r
eff
F can be rewritten as

rF = ∑
i

(
xF

i · ri

1+ cp

)
− cp

1+ cp
.

10 See also Sharpe (1991) who considers restrictions on negative holdings as only impediment. He finds

that in this case, “the market portfolio may not be efficient” and that “overall welfare may be lower

than it would be if the constraints on negative holdings could be reduced or removed” (p. 505).

11 See the discussion in section 1.1.2.3.
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In the Tobin model, the portfolio weights are not linearly homogeneous in the

individual securities’ returns, hence adjusting all expected returns ri by 1
/
(1+ cp)

would demand re-optimizing and calculating the new weights xF∗
i – which, how-

ever, is not done when sticking to the original fund F . The higher cp, the greater

the resulting deviations will be. This can also be seen from Figure 3.10 for the DAX

investor in this empirical study. When there are no transaction costs, F would be

the optimal solution. Introducing proportional costs, however, of cp = 2% moves

the Markowitz efficient line down, and the original tangency portfolio has now be-

come F ′. Since the safe return remains unaffected by the proportional costs, F ′ is

no longer the optimal solution, and investing into F∗ would yield a higher effective

Sharpe Ratio which, in this diagram, corresponds with the slope of the respective

tangency lines. Investing in the fund with the original weights xF
i leads to an actual

effective Sharpe Ratio of

SR
eff
F ′ = SR

eff
F − 1+ rs

σF
·max

{
C f

V0
,cp

}
,

where SR
eff
F and σF are the Sharpe Ratio and volatility, respectively, of the uncon-

strained tangency portfolio in a perfect market without costs.

The Sharpe Ratio for an investment into the fund therefore linearly declines

when cp > C f

/
V0

is increased. Individual portfolio selection under transaction costs

can avoid this specification error and find a better portfolio, corresponding to a tan-

gency portfolio on a Markowitz efficient line with an integer constraint. At the same

time, the individual selection process comes with two downsides: first, the minimum

costs come into effect for any asset in the portfolio; and second, unlike the fund,

the individual portfolio does have integer and non-negativity constraints. Nonethe-

less, for the given market situation the advantages of individual portfolio selections

outweigh these shortcomings in most cases – in particular when considering that

investing in funds often comes at higher transaction costs than does purchasing

shares.12

12 The assumption of a perfect market for the market fund is based on the idea of having a “best case

scenario” for the fund. In practice, however, funds usually do have a non-negativity constraint, and

asset purchases often assume certain lot sizes which, too, affect the granularity of the assets’ weights.

The second of the mentioned disadvantages of individual portfolio selection is therefore less serious

than assumed in this study, the actual advantages of individual stock selection might therefore be

even greater.
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3.5 Conclusions

In this chapter, a model for portfolio selection under fixed and/or proportional

transaction costs together with non-negativity and integer constraints was pre-

sented and empirically studied on basis of DAX data. The major results from this

study are that the presence of transaction costs might lead to significantly different

results than for a perfect market and that the types of costs the investor occurs have

different effects. Also, the optimal solution under transaction costs can not always

be derived from the solution for frictionless markets.

Introducing transaction costs might have severe effects on the optimal portfolio

structure. Even low fixed costs can lead to a substantial reduction in the number of

different assets that ought to be included in a portfolio; the same is true for pro-

portional costs or compound cost schemes. In due course, the asset weights might

differ substantially. An investor facing transaction costs might therefore even have

distinct advantages from individual stock selection over investing into a market fund

– provided she does not simply try to replicate its weights but includes the relevant

costs and additional constraints into the optimization process. Unlike claimed for

a perfect market situation, in real world it might therefore be reasonable to hold a

portfolio that deviates from the market portfolio even when all investors have homo-

geneous expectations. Another conclusion from these results is that investors might

have advantages when they can invest in funds that are not just tracking the market

portfolio, but also anticipate their clients’ transaction costs.



Chapter 4

Diversification in Small Portfolios

4.1 Introduction

One of the central results of Modern Portfolio Theory is that, in perfect markets with

no constraints on short selling and frictionless trading without transactions costs,

investors will want to hold as many different assets as possible: Any additional se-

curity that is not a linear combination of the already included assets will contribute

to the portfolio’s diversification of risk and could therefore increase the investor’s

utility.

In practice, however, this situation is rather impractical, since the amount of

transactions costs which has to be paid for many different small stocks, would raise

the total cost considerably as has been shown in chapter 3. Moreover, the adminis-

tration of such portfolios with a large number of different assets may become very

tedious. Hence, investors seem to prefer portfolios with a rather small number of dif-

ferent assets (see, e.g., Blume and Friend (1975), Börsch-Supan and Eymann (2000),

Guiso, Jappelli, and Terlizzese (1996) or Jansen and van Dijk (2002)).

Another important aspect in portfolio selection is that most of the risk diver-

sification in a portfolio can be achieved with a rather small, yet well chosen set of

assets.1 Hence, in practice, the crucial question of finding the right weight for an

asset is linked to the problem whether or not to include this asset in the first place.

Following Maringer (2001), Maringer (2002b), Keber and Maringer (2001) and

Maringer and Kellerer (2003) as well as based on additional computational studies,

1 See, e.g., Elton, Gruber, Brown, and Goetzmann (2003, chapter 4) and section 1.1.1.
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this and the next chapter are concerned with the portfolio optimization problem

under cardinality constraints, i.e., when there is an explicit constraint on the num-

ber of different assets in the portfolio, with two alternative underlying models: First,

the case of an investor is considered who, much in the sense of the previous chap-

ter, wants to optimize her Sharpe Ratio in a modified Tobin framework, whereas in

the next chapter a Markowitz framework will be assumed and the effects on effi-

cient lines will be investigated. The remainder of this chapter is organized as fol-

lows. In section 4.2, the optimization problem and the optimization method will be

presented. Section 4.3 summarizes the main results from an empirical study of this

issue, section 4.4 concludes.

4.2 The Model

4.2.1

From a theoretical point of view, the portfolio selection problem with a cardinal-

ity constraint can be regarded as Knapsack Problem (KP)2. The KP in its simplest

version deals with selecting some of the available goods by maximizing the overall

value of the resulting combination (objective function) without exceeding the ca-

pacity of the knapsack (constraint(s)). The investor’s problem, however, demands

two significant modifications of the classical KP:

• In the classical KP, each good has a given value which does not depend on

what other goods are or are not in the knapsack. For portfolios, however, the

“value” of any included asset depends on the overall structure of the portfolio

and the other assets in the knapsack because of the diversification effects.

• In the classical KP, the goods have fixed weights, and one has to decide

whether to take the good or not (“0/1 KP”). The investor has to jointly decide

(i) whether to include an asset or not and (ii) what amount of her endowment

to invest in this asset.

2 See section 2.1.1 and Kellerer, Pferschy, and Pisinger (2004).

The Optimization Problem
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In this chapter we assume that investors can choose among one risk-free asset

and up to N risky securities and want to maximize their (standardized) risk pre-

mium.

Tobin (1958) showed that any portfolio consisting of one risk-free asset and one

or many risky assets will result in a linear relationship between expected return r

and the risk associated with this portfolio, σ ,

r = rs +θP ·σ

where rs is the return of the safe asset. θP is the risk premium per unit risk3 and is

often referred to as Sharpe Ratio, SRP .4 Given the standard assumptions on capital

markets with many risky and one risk-free asset, a rational risk averse investor will

therefore split her endowment and invest a portion of α in the safe asset and (1−
α) in some portfolio of risky assets, P , where the structure of P determines θP .

The investor will therefore choose the weights, xi, for assets i within the portfolio of

risky assets in order to maximize the investment’s risk premium per unit risk, θP .

In passing note that the investor’s level of risk aversion is reflected in her α and that

the xi’s ought to be the same for any investor. Thus, the portfolio P (usually called

tangency portfolio) can be determined without considering the investor’s attitude

towards risk and regardless of her utility function.

If there exists a marketM = {1, ..,N} with N assets k of which shall be included

in the portfolio P , the investor’s optimization problem can be written as follows:

max
P

θP = SRP =
rP − rs

σP

subject to

rP =
N

∑
i=1

xi · ri

σP =

√√√√
N

∑
i=1

N

∑
j=1

xi · x j ·σi j

3 See also the presentation in section 1.1.2.3.

4 As argued in section 1.2.1, the Sharpe Ratio was introduced as an ex post measure whereas θ is used

in an ex ante optimization framework; meanwhile, this distinction is no longer made and the term

“Sharpe Ratio” is used for ex ante considerations as well.
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N

∑
i=1

xi = 1 and

⎧
⎨
⎩

xi ≥ 0 ∀i ∈ P
xi = 0 ∀i �∈ P

P ⊂M
|P| = k

where σi j is the covariance between the returns of assets i and j and ri is the return

of asset i.

Like the (actually simpler) “0/1 KP” this optimization problem is NP–hard. It is

usually approached by rules of the thumb (based on certain characteristics of the

individual assets5 ) or by reducing the problem space by making a priori selections

(e.g., by dividing the market into several segments and choosing “the best” asset of

each segment6). As neither of these methods reliably excludes only “irrelevant” com-

binations, they tend to result in sub-optimal solutions. An alternative way to solve

the problem is the use of meta-heuristics which are not based on a priori neglect-

ing the majority of the problem space. The method suggested here has its origin in

biology, namely ant systems.

4.2.2 Ant Systems

Biologists found that ants lay pheromone trails while foraging and carrying the

found food to their nest. These trails serve themselves and their followers for ori-

entation. Since shorter paths are likely to be traversed more frequently within the

same period of time, these paths are also likely to have stronger pheromone trails

– which will attract more ants that will then lay even more trails and so on. By this

simple, reinforced strategy, ants are able to find shortest routes between two points,

i.e., the nest and the food source.7

As presented in section 2.3.3, Dorigo, Maniezzo, and Colorni (1991), Colorni,

Dorigo, and Maniezzo (1992a), Colorni, Dorigo, and Maniezzo (1992b) and Dorigo

5 One popular rule, which will also be applied in this study, states to prefer assets that have high

Sharpe Ratios SRi.

6 See, e.g., Farrell, Jr. (1997, chapter 4) on Asset Classes. Lacking appropriate information for our data

sets, this approach could not be applied.

7 See also section 2.3.3 for an illustrative description of the concept.
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(1992) first introduced this principle to routing problems (such as the Traveling

Salesman Problem8) by simulating real routes and distances between the cities in

artificial nets and implementing an artificial ant colony where the ants repeatedly

travel through these nets. Meanwhile, this concept resulted in the closely related

meta-heuristics Ant Systems (AS) and Ant Colony Optimization (ACO) which have

been applied successfully to a wide range of logistic problems and ordering tasks.9

In particular, the introduction of elitists turned out to be very effective. In this con-

cept the best solution found so far is reinforced each iteration in addition to the ants

of the colony a certain number of elitist ants are traveling along the best solution

found so far and by doing so reinforce this path.10 In addition Bullnheimer, Hartl,

and Strauss (1999) suggest a ranking system where ants with better solution spread

more pheromone than the not so good ones and where paths of bad solutions receive

no additional scent.

The concept of ant colony optimization and how it can be implemented will be

presented in the next section. We will also demonstrate that this approach can be

adopted for the Knapsack Problem in general and the investor’s problem in partic-

ular.

4.2.3 The Algorithm

4.2.3.1 Approaching the Knapsack Problem

Applied to the portfolio selection problem, we implement an iterative search strat-

egy where each iteration consists of three stages. In the first stage, artificial ants are

to travel within a net consisting of N nodes which represent the available assets. An

arc connecting any two nodes i and j where i, j ∈M and i �= j shall capture whether

a combination of these two is considered favorable or not. This can be achieved by

introducing a matrix
[
τi j

]
N×N

where τi j represents the amount of pheromone. The

trail information will then be used to calculate the probabilities with which the fol-

lowing ants will select assets.

8 See section 2.1.2.1.

9 For a comprehensive survey on applications as well as the methodical variants, see, e.g., Dorigo and

Di Caro (1999) or Bonabeau, Dorigo, and Theraulaz (1999).

10 See Dorigo, Maniezzo, and Colorni (1996).
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Let P ′
a be the incomplete portfolio of ant a with |P ′

a| < k. If i is some asset al-

ready included in this portfolio, i.e., i ∈ P ′
a, whereas j is not, i.e., j �∈ P ′

a, then the

probability of choosing asset j shall be

pa j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i∈P′

a

(τi j)
γ ·(ηi j)

β

∑
i∈P′

a

∑
h �∈P′

a

(τih)
γ ·(ηih)

β ∀ j �∈ P ′
a

0 ∀ j ∈ P ′
a

. (4.1)

The probability pa j is mainly influenced by the amount of pheromone τi j that

is on the paths from nodes i ∈ P ′
a to node j. γ is a parameter for tuning that influ-

ence. In line with other implementations of ant based strategies, a matrix [ηi j]N×N

is introduced which represents the visibility of j from i. In routing problems, this

information (which unlike the pheromone trails remains unchanged during the op-

timization) provides sort of a map thus providing the ants with guidelines or a pri-

ori information on preferred combinations. In the asset selection problem, ηi j ≥ 0

might be used to indicate whether the investor regards combination i and j as de-

sirable or not by transferring some general rule of the thumb onto [ηi j]. Also, the

visibility could be employed to reinforce constraints. E.g., if i and j represent com-

mon and preferred stocks, respectively, of the same company and the investor does

not want to hold both in her portfolio, she will set ηi j = 0, and the probability, asset

j is added to a portfolio P ′
a already containing i will become zero. If, on the other

hand, she has a strong preference for this combination, a high value for ηi j will in-

crease the probability that both i and j get included in the portfolio.

Results for the Traveling Salesman Problem suggest that in addition to elitists

and ranking systems, the ants ought to be provided with some sort of a “road map”

which usually is based on some a priori heuristics and is captured in the visibility

matrix
[
ηi j

]
.11 In ordering problems such as the Traveling Salesman Problem, the

number of updated trails is rather small because the sequence in which the nodes

are selected is of central importance. Thus, an ant visiting k nodes will update just

k− 1 arcs and the chance of not updated arcs and evaporation on “good” arcs must

not be neglected.

In our problem, however, it is the combination that matters, thus an ant selecting

k securities will update k · (k− 1) arcs in a symmetric matrix. Having experimented

11 See Bonabeau, Dorigo, and Theraulaz (1999).
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with general rules and incorporated them into
[
ηi j

]
,12 we found that they have a

rather limited effect on the overall result: favorable parameters have been found

to have far more influence on the reliability of the results and the speed at which

the algorithm converges. We therefore do not introduce heuristics and “save” the

visibility matrix for enhanced optimization problems, e.g., with possible individual

preferences. In this study we assume that there are no such preferences and that the

investor is interested only in maximizing the portfolio’s risk premium per unit risk,

θP . Thus, we set the visibility matrix
[
ηi j

]
= 1 and the parameter for tuning its in-

fluence β = 1. By also setting the parameter γ = 1, the probability from equation

(4.1) melts down to

pa j =

⎧
⎪⎪⎨
⎪⎪⎩

∑
i∈P′

a

τi j

∑
i∈P′

a

∑
h �∈P′

a

τih
∀ j �∈ P ′

a

0 ∀ j ∈ P ′
a

. (4.1*)

Once any ant has chosen their k assets, stage two of the model can be entered

and the optimal portfolio weights are determined by some standard solution: When

short sales are permitted, any ant can determine the maximum risk premium θPa

that can be achieved with the securities in its knapsack by the exact solution pre-

sented in equations (1.13) on page 13.13 However, since our optimization model dis-

allows negative asset weights, determining the θPa
is regarded as a quadratic pro-

gramming problem as stated in section 2.1.2.4.14

In the third stage, when all ants have packed their knapsack and know their θP ’s,

the trail information can be updated which comprises three steps:

• As time goes by pheromone evaporates. Thus, when a period of time has

elapsed, only ρ ·τi j of the original trail is left where ρ ∈ [0,1].

12 E.g., such rules could make use of the general result that diversification will be the higher the lower

the correlation between the included assets. Hence, the visibility matrix could be derived from the

correlation matrix or the covariance matrix by increasing (decreasing) the visibility between i and

j when the correlation or covariance is low (high).

13 See Keber and Maringer (2001).

14 For alternative approaches, see, e.g., Elton, Gruber, Brown, and Goetzmann (2003) and Brandimarte

(2002). In chapter 5, an algorithm will be presented that unites the two steps of asset selection and

weight optimization.
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• New pheromone trails are laid. In real life, ants tend to be permanently on

the run and are permanently leaving new pheromone trails without bothering

whether their colleagues have already returned to the nest. In artificial ant

systems, however, each ant chooses one path through the net and waits for

the other ants to complete their journey before starting the next trip. Thus,

artificial ant systems usually assume that any ant a spreads a fixed quantity Q

of pheromone on its path which has a length of La and by doing so updates

the trail by ∆aτi j = Q
/

La
for any arc (i, j) along a’s path. This implies that the

shorter the path the higher the additional trail. Since both in real life and in

ant systems La is to be minimized whereas here θPa
is to be maximized, we

adopt this concept and use 1
/
θPa

for a substitute of La. Thus, the trail update

for ant a would be ∆aτi j = Q ·θPa
for all securities i �= j and i, j ∈ Pa.

Bullnheimer, Hartl, and Strauss (1999) suggest a ranking system that rein-

forces the solutions of the best ants of the current population (here called

“prodigies”). In our application, this concept allows only the ω best ants to

update [τi j] where the rank µ = 1, ..,ω determines the quantity of pheromone

Qµ a prodigy can spread. Assuming a simple linear ranking system where the

quantity of pheromone depends on the ant’s rank, prodigy µ updates arc (i, j)

by

∆τi j,µ =

⎧
⎨
⎩

Qµ ·θPµ ∀i, j ∈ Pµ, i �= j

0 otherwise
(4.2)

where

Qµ =

⎧
⎨
⎩

((ω−µ)+1) ·Q µ ≤ω

0 µ > ω
.

• Assuming that, in addition to the ants of the current colony, ε elitist ants

are choosing the best portfolio found so far, P∗, and each of them spread

Q pheromone, then each elitist updates the matrix by

∆τ∗
i j =

⎧
⎨
⎩

Q ·θP∗ ∀i, j ∈ P∗, i �= j

0 otherwise
.
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initialize pheromone matrix τi j = τ0∀i �= j and τii = 0;

population size := N;

REPEAT

FOR a := 1 TO Population size DO

Pa := {a};
WHILE |Pa| < k DO

determine selection probabilities pa j∀ j �∈ Pa according to

definition (4.1*);

use probabilities pa j to randomly draw one additional asset j;

add asset j to the portfolio, Pa := Pa ∪{ j};
END;

determine optimal asset weights such that {SR|Pa} → max!;

END;

rank ants according to their portfolios’ Sharpe Ratios;

IF maxSRPa
> SRP∗

new elitist is found, replace previous elitist P∗ with new one;

END;

update pheromone matrix;

UNTIL convergence criterion met;

REPORT elitist;

Listing 4.1: Pseudo-code for the main Ant System routine

Combining evaporation and new trails, the pheromone matrix is to be updated

according to

τi j := ρ ·τi j +
ω

∑
µ=1

∆τi j,µ +ε ·∆τ∗
i j ∀i �= j. (4.3)

Due to this updates, the next troop of ants can apply their predecessors’ experiences:

In the next iteration, the probabilities according to (4.1*) will be influenced, and the

ants’ preferences will be shifted towards combinations of securities that have proven

successful. Listing 4.1 summarizes the main steps of the algorithm. The computa-

tionally most complex parts of the algorithm are the computation of a portfolio’s

volatility, O(k2), having to sort the population, O(A · ln(A)) where A is the number

of ants in the colony, and the update of the pheromone matrix which is quadratic in

k and linear in the number of prodigies plus the elitist, O((k2 − k) · (ω + 1)), and

quadratic in N due to the evaporation, O(N2). The overall complexity of the algo-

rithm is determined by these individual complexities times the number of iterations.
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4.2.3.2 First Applications of the Algorithm

In order to determine the essential parameters for the algorithm we ran a series of

tests with random numbers for elitists, ε, prodigies, ω, and factor of evaporation, ρ.

We then tried to find correlations between these values and the “effectiveness” (i.e.,

speed and level of improvement during the iterations) of the respective ant colony.15

According to these results we chose the colony size to equal the number of available

assets, i.e., 100,ε = 100 (i.e., equal to the number of securities and ants per iteration),

ω = 15 (i.e., only the best 15 per cent of ants where allowed to update according to

equation (4.2)), and ρ = 0.5 (i.e., half of last round’s trail information evaporates).

The version of the ant algorithm as just presented was first applied to the port-

folio selection problem in Maringer (2001) where the ex ante Sharpe Ratio (SR)

(which, as argued, is equal toθP ) is to be maximized for a DAX data set. In Maringer

(2002b) it is applied to finding cardinality constrained portfolios under a Markow-

itz/Black framework, and the computational study therein is based on subsets of a

FTSE data set with N = 25, ...,90 where the expected return is equal to the mar-

ket’s expected return and the risk is to be minimized, and the algorithm is found to

be superior to Simulated Annealing and a Monte Carlo approach. In addition, for

a number of problems, the heuristically obtained results were compared to those

from complete enumeration, and it was found that the ant algorithm reported the

optimal solution in the majority of runs (often all the runs) even when the alterna-

tive method Simulated Annealing was unable to identify the optimum even once. In

Keber and Maringer (2001), the ant algorithm is compared to Simulated Annealing

and Genetic Algorithm based on the SR maximization problem with the same FTSE

data set. Again, it was found that the results of population based heuristics are su-

perior to Simulated Annealing, that, however, the population based heuristics also

take more time to find appropriate parameter values.

For the sake of simplicity neither of these studies had a non-negativity constraint

on the weights which is included in this study. In addition, in all three previous stud-

ies, the ant algorithm did exhibit a typical property of this method: Ant algorithms

perform best when applied to large problems, whereas it is the rather “small” prob-

lems sometimes that cause slightly more problems to the ant algorithm. When k, the

15 For a short presentation to the parameter selection problem, see section 2.4 and Winker (2001,

chapter 7).
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number of different asset included in the portfolio, is rather small, the algorithm

converges quite fast, and the colony might get stuck in a local optimum which they

cannot escape. In Maringer (2002b), e.g., selecting k = 3 assets appears more de-

manding than selecting k = 6 assets for all markets with N ≤ 78. Though even for

these cases, the chances of identifying the actual global optimum in an independent

run is for the ant algorithms by magnitude higher than the results found by Simu-

lated Annealing, it is desirable to have equally high reliability for small problems.

4.2.3.3 Refining the Algorithm

In heuristic search strategies, a common stopping criterion is the number of itera-

tions the elitist has not changed, i.e., for how many iterations the algorithm has pro-

duced no further improvement. The search is then stopped and the current elitist

is reported. If there is a chance that the result is only a local one, a new indepen-

dent run is started and knowledge acquired in the previous run is lost. In Artificial

Intelligence, another common way of overcoming a potential local optimum is to

introduce a random shock:16 When an agent has not achieved an improvement over

a given number of iterations, it is randomly “positioned” at a different location and

will continue the search from there, yet without necessarily starting a new, perfectly

independent run. Based on this idea, we suggest a similar concept to the ant algo-

rithm.

In ant algorithms (as well as in real life), the ants tend to get stuck in a local opti-

mum when the pheromone trails for a good, yet not globally optimal solution are so

strong that chances of finding a route aside these tracks are very low – and are even

lowered in due course as the (probably) suboptimal routes are reinforced. Enforcing

alternative routes therefore demands lowering the pheromone level on these (prob-

ably) suboptimal tracks. We suggest a simple means that might do exactly this trick:

With a certain probability the initial pheromone matrix (or a weighted combination

of the current and initial matrices) is reinstated yet the current elitist is kept. This

implies that knowledge and experience acquired in previous runs is kept while the

ants have a higher chance of selecting alternative routes. Metaphorically speaking,

this corresponds to “rain” where current pheromone trails are washed away or at

16 See, e.g., Russell and Norvig (2003).
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least blurred. We therefore introduce a reset parameter ν ∈ [0,1] where ν = 1 corre-

sponds to “heavy rain” where all pheromone trails are swept away and the original

pheromone matrix is restored; the closer ν is to zero, the more of the current trail

information endures. This variant has a similar effect as the local updates of the

pheromone trail in Ant Colony Optimization (ACO),17 a variant of ant algorithms

which is to foster diversity within the colony’s solutions.

The updating rule (4.3) for the off-diagonal elements of the pheromone matrix,

[τi j] with i �= j, can then be enhanced with an option where a part of the old and

newly added trails are washed away and the initials trails are restored:

τi j :=

⎧
⎨
⎩

(
ρ ·τi j +∑µ ∆τi j,µ +ε ·∆τ∗

i j

)
· (1−ν)+τ0 ·ν “rain”

ρ ·τi j +∑
ω
µ=1 ∆τi j,µ +ε ·∆τ∗

i j “sunshine”
(4.3*)

where the option “rain” is chosen with a probability of prain and the alternatively

chosen option “sunshine” corresponds to the original updating rule (4.3). Whether

this concept is advantageous or not, was tested in a computational study; the main

results will be discussed in section 4.3.2.

4.3

4.3.1

The empirical study in this chapter is based on data sets for the DAX, the FTSE, and

the S&P 100. The DAX data set contains the 30 stocks represented in the German

stock index DAX30. The FTSE data set is based on the 100 stocks contained in the

London FTSE100 stock index; four of the stocks, however, had to be excluded due to

missing data. In both cases we used daily quotes over the period July 1998 – Decem-

ber 2000. Based on the corresponding historic returns we calculated the covariances

σi j which are used for estimators of future risk. The expected returns, ri, were gen-

erated with a standard Capital Asset Pricing Model (CAPM) approach18 according

to ri = rs +(rM− rs) ·βi with an expected safe return of rs = 5%, expected market

17 See Bonabeau, Dorigo, and Theraulaz (1999, p. 49) and the literature quoted therein.

18 See section 1.2.2.

The Empirical Study

The Data
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. . .

(a) DAX data set

. . ...

(b) FTSE data set

. . .

(c) S&P 100 data set

Fig. 4.1: Estimated return and risk for the data sets

risk premia of rDAX − rs = 5.5% and rFTSE − rs = 6%, respectively,19 and with beta

coefficients, βi, coming from the historic returns. The distributions of the assets in

the return-volatility space are depicted in Figures 4.1(a) and 4.1(b), respectively. In

the light of recent developments in the capital markets, we want to point out that we

focus exclusively on the selection problem and that in this optimization problem the

mean and variance of returns are regarded as exogenously determined.

Estimating the assets’ returns via the CAPM implies that their (estimated)

Sharpe Ratio differ in their correlation with the market:

SRi =
(

=ri︷ ︸︸ ︷
rs +(rM− rs) ·βi)− rs

σi

=
(rM− rs) · σi·ρiM

σM
σi

19 As in chapter 3, the values for the safe interest rate and the markets’ risk premia were chosen to rep-

resent what then would have made reasonable guesses. With the focus on the optimization where the

estimates for risk and return can be considered exogenously determined, the actual values proofed

to have little influence on the conclusions drawn in the computational study.
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=
rM− rs

σM
·ρiM

= SRM ·ρiM

whereM is the respective market index. Though this does not affect the covariances

of any two assets and therefore does not have an immediate effect on a portfolio’s

volatility and Sharpe Ratio, the values for the third data set, the S&P 100 data set,

are estimated differently. Based on daily returns for the stocks in the S&P 100 stock

index from November 1995 through November 2000 and for 23 country, 42 regional

and 38 sector indices, the expected returns for the stocks where estimated from the

first 1 000 days with an combined APT20 and GARCH21 approach: First, for any as-

set the bundle of five indices was determined that explains most of the asset’s return

in sample. Next, the expected returns and volatility for the indices where estimated

with a GARCH model and the assets’ expected out of sample returns based on the in-

dividual APT models. The assets’ volatilities where estimated with a GARCH model,

the covariances where determined with the assets’ volatilities and their historic cor-

relation coefficients. The factor selection process is presented in chapter 7 which also

offers a more detailed presentation of the underlying method. The results from this

estimation procedure appear quite reliable: Only for eight of the 100 assets, the ac-

tual out of sample returns differ statistically significant from their expected values.22

The volatilities and expected returns for this data set are depicted in Figure 4.1(c).

Though comparable to the DAX data set in the range of the assets’ volatilities and

the FTSE data set in the number of assets, the S&P data set differs from the others in

the range of the expected returns since it also contains assets with negative expected

returns.23

20 See Ross (1976) and section 1.2.4. A detailed presentation of the data set and the factor selection

problem can be found in chapter 7.

21 See Engle (1982), Bollerslev (1986) and Engle (1995), and the presentation in sections 1.1.3.3 and

2.4.

22 Significance test at the usual 5% level; corresponding tests for the DAX and FTSE data sets had to be

omitted in lack of out of sample data. The following presentation will therefore focus strictly on the

selection problem given a certain market situation which can be considered realistic.

23 When assets are negatively correlated with the index, both the APT and the CAPM predict negative

risk premia in equilibrium which, when exceeding the safe interest rate, can also result in negative

expected returns. The economic argument behind is that an investor is willing to pay an (“insur-

ance”) premium for assets that react opposite to the market trend and are therefore well suited for

diversification and hedging.
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4.3.2 Computational Study for the

Modified Update Rule

In order to test whether the concept of casually resetting the pheromone matrix has

a favorable effect on the algorithm’s performance or not, we ran a series of Monte

Carlo experiments where in the initialization step the value of the reset parameter ν

was randomly chosen from (0.1,0.25,0.50,0.75) and the probability for “rain” was

chosen to be prain ∈ {5%,10%,25%,50%,75%}, i.e., with a probability of prain of

the update steps, the modified update rule (labeled “rain” in (4.3*) was applied and

with a probability of (1− prain), the original update rule (4.3) (labeled “sunshine”

in (4.3*)) was applied. For each combination of parameters and different value of

assets in the portfolio, k, approximately 120 independent runs were performed. For

comparison, we also ran the algorithm in its previous version with update rule (4.3)

without the “rain” modification by simply setting prain = 0%; here 1 000 independent

runs were performed. For any parameter setting, the number of iterations per run

was limited to 200, the colony size equaled the number of included assets, k.

Based on the S&P 100 data set, the two cases k = 3 and k = 10 are considered.

These two problems differ considerable in the number of candidate solutions: the

former comes with just 161 700 alternatives,24 the latter with 1.73×1013 alternatives.

Figure 4.2 depicts the range for the reported solutions depending on the different

values for ν and prain. As can be seen for either value of k, the version without rain

reports quite diverse solutions. Though the global optimum is found eventually, a

high number of runs is necessary to reduce the likelihood that just a local optimum

is reported: for k = 3, in just 16% of all runs, the global optimum was found, and for

k = 10, in just 2 of the 1 000 independent runs the global optimum was reported.

With appropriate values for prain and ν, on the other hand, the algorithm per-

forms significantly better: For the case with k = 3, in two thirds of the runs the global

optimum was identified by any of the tested version with prain ∈ (5%,10%,25%)

(and arbitrary positive value for ν) or with ν = 0.10 (and arbitrary positive values

for prain). For the case where k = 10, in two thirds of the runs the global optimum

24 From a practical point of view, for k = 3, the number of alternatives would be small enough for

an exhaustive search. Nonetheless, a heuristic optimization method ought to work well with small

problems; hence this case is considered here, too.
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(a) Results for k = 3 (b) Results for k = 10

Fig. 4.2: Range from best to worst reported result (lines) and range covering 90% of reported

solutions (black area) with the traditional update rule (4.3) (with prain = 0%) and with rain

according to rule (4.3*) for different values of prain (in %) and ν (as decimals)
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was reported with the parameter combinations (p,ν) = (5%, 0.10) and (10%, 0.25),

and for any positive value of ν with prain ∈ (5%,10%,25%), half of the runs reported

the global optimum.

Additional experiments showed that the performance of the traditional version

without rain could be improved by increasing the number of iterations, yet never

reached the modified version’s high ratio of runs in the global optimum was identi-

fied.

4.3.3 Financial Results

According to the theory, increasing the number of assets k in the portfolio P causes

an increase in the risk premium SRP provided the right assets are chosen and as-

signed the optimal weights. In addition, the marginal contribution of any additional

security to the portfolio’s diversification is decreasing. Both effects can be found in

the results for either of the markets: The graphs in Figure 4.3 depict the bandwidth

within which the Sharpe Ratio will lie when the asset weights are optimized for the

best and the worst possible combination of k assets.25 As can easily be seen, in all

three markets, a relatively small yet well chosen set of assets can achieve a higher

SRP than a large yet badly chosen set of assets. E.g., in the FTSE data set, the op-

timal combination of k = 5 assets might outperform a poor combination of k = 84

assets: SRmax
P(k=5) = 0.2863 > SRmin

P(k=84) = 0.2860. Note that this is all due to good or

bad selection of the assets and not due to suboptimal asset weights.26

The bandwidth for the Sharpe Ratio will be the larger the smaller the portfolio

and the larger and more diverse the market is: selecting any k = 15 assets from the

DAX data set, e.g., the achievable SRwill be in the range from 0.1658 to 0.2447; if

the same number of different assets is selected from the FTSE and the very diverse

S&P data set, the Sharpe Ratios will range from 0.1294 to 0.3202 and from 0.2545 to

1.4497, respectively.

25 Finding the “worst” combinations, too, represents an optimization problem where the sign in the

objective function is changed, yet not the way the weights xi∀i ∈ P are determined. This assures

that low values for the Sharpe Ratios actually do come from selecting the “wrong” assets and not by

an inappropriate loading of the weights.

26 See the approach of Solnik (1973) and its presentation in section 1.1.1.
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(a) DAX data set (b) FTSE data set

(c) S & P 100 data set

Fig. 4.3: Range for Sharpe Ratios for portfolios under cardinality constraint with optimized

weights

A simple rule of the thumb suggests to prefer assets which themselves have a high

Sharpe Ratio. According to this rule, the available assets are sorted by their SRin de-

scending order, and the first k assets are selected for the portfolio. A downside of

this rule is that it does not consider the correlation or covariance between the assets

which largely affects the portfolio’s volatility. Hence, this rule will not necessarily

find the optimal solution, particularly when k is rather small. Having a method that

has a higher chance of identifying the actually best combination, one can also evalu-

ate how large the gap between the SR rule based portfolios and the optima is. As can

be seen from Figure 4.4 for the DAX data, the Sharpe Ratios of portfolios selected

with this popular rule could mostly be achieved with one or more assets less. For the

FTSE data set, this is even more apparent: For the optimal portfolio with k = 10, the

SR is higher than for a portfolio with k = 38 when selected with the SR rule. The con-

sequences of this gap become even more severe when the investor faces transactions

costs that contain a fixed fee as can be seen from the results in the previous chap-
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(a) DAX data set

(b) FTSE data set

(c) S & P 100 data set

Fig. 4.4: Sharpe Ratios for portfolios under cardinality constraint with different selection

processes
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ter. Other rule-based selection methods such as selections based on the companies’

industry, size, or geographic aspects exhibit equal shortcomings.

For the Monte Carlo approach, k assets are drawn randomly and their weights

are optimized. This selection process has been replicated a 1 000 times, and the best,

the worst, and the average SR for any k and data set are plotted on the bandwidth for

the possible outcomes. As can be seen for the larger markets, it is very unlikely to

randomly draw the worst possible solution – yet it is also unlikely that the optimal

solution is chosen: In the best of the 1 000 replications, a solution close to that from

the SR rule is found, on average, however, a random selection is significantly below

what could be achieved with a superior selection method: the upper limit, indicating

the optima are the results found with the heuristic search method.

As neither the SR rule nor the MC approach includes the correlations and co-

variances between the assets into the selection process, a main aspect from portfolio

selection might be lost. A closer look at what assets actually are selected and what

weights they are given also confirms that the decision of whether to include a certain

asset or not depends on what other assets are included. In Figure 4.5 the cumulated

asset weights are depicted for the different values of k. In particular the results for

the FTSE data set illustrate that the optimal selection with k assets cannot be deter-

mined by simply searching the asset that fits best to the solution with k− 1 assets:

as has already been argued in the previous chapter, in smaller portfolios one asset

might serve as a substitute for a bundle of other assets which, however, cannot be

included because of the constraints (be it transactions costs, be it cardinality). Also,

what makes a good choice in a portfolio with few different assets might or might not

be a good choice for large portfolios.

The results for the S&P 100 data set (Figure 4.5(c)) also exhibits a particularity of

this data set: Given the estimates for the assets’ returns and covariances, only a lim-

ited number of assets are actually assigned positive weights, i.e., even for large k only

a small number of different assets is included in the portfolio, and the cardinality

constraint is no longer binding. The selection of these assets depends to some extent

on the choice of the safe interest rate, rs, as (geometrically speaking) the tangency

line from the Tobin efficiency line crosses the y-axis of the mean-variance-diagram

at a different point, yet the basic results are unchanged. The SR rule “filters” most

of the assets that ought not to be included in any of the optimal portfolios but again

still ignores some better combinations in the lack of considering the covariances. In
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(a) DAX data set

(b) FTSE data set

(c) S & P 100 data set

Fig. 4.5: Cumulated weights for optimal portfolios under cardinality constraints
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this type of market situation, however, a Monte Carlo approach will be likely to also

pick one or several of these undesirable assets – and will therefore be clearly inferior

to a heuristic search strategy.

4.4 Conclusion

For various reasons, investors tend to hold a rather small number of assets. In this

chapter, a method has been presented to approach the associated NP hard optimiza-

tion problem of selecting the optimal set of assets under a given market situation

and expectations. The main results from this empirical study are twofold: (i) the

well known fact of decreasing marginal contribution to diversification is not only

confirmed, but can be exploited by identifying those assets that, in combination, of-

fer the highest risk premium; (ii) it has been shown that alternative rules, frequently

found in practice, are likely to underperform as they offer solutions with risk premia

lower than would be possible under the same constraints and market situations.



Chapter 5

Cardinality Constraints for

Markowitz Efficient Lines

5.1 Introduction

5.1.1 The Optimization Problem

A salient feature of financial portfolios is that any additionally included assets might

contribute to the diversification of risk without necessarily decreasing the expected

return. Hence, an investor seeking an optimal ratio between risk and risk premium

within a Markowitz framework will seek to include as many different assets as pos-

sible.1 The results in chapter 3, however, have shown that in non-perfect markets,

there might be good reasons for not including all available assets even when the

market is in equilibrium and all assets are fairly priced and there are no restrictions

on the asset prices. In addition, it was found in chapter 4 that most of the diversifica-

tion can be achieved with an even smaller number of different assets than is usually

argued in the literature. Furthermore, it was argued that there exist various other

grounds as well as empirical findings that investors prefer portfolios with a rather

limited number of different assets.

Following these arguments, this chapter, too, focuses on the case that an investor

wants to hold at most k different assets in her portfolio. The previous two chapters

assumed that there exists a risk-free asset, implying that, by the separation theorem,

the optimal weights of the risky portfolio can be found without explicit knowledge

1 See section 1.1.2



5.1. Introduction 123

of the (risk averse) investor’s attitude towards risk.2 In practice, however, a truly

safe return, valid for any investor, is not always available (in particular when long

investment horizons are considered). Consequently, the efficient line in the tradition

of Markowitz has to be identified from which the investor will choose individually.

This selection problem will be considered in this chapter.

If at most k out of the N available assets are to be included in the portfolio, then

a cardinality constraint has to be introduced, e.g., by defining a binary variable bi

that is set to 1 when asset i is included and to 0 otherwise where the sum of all

bi’s must not exceed k. In order to calculate the entire efficient frontier rather than

the risk minimizing combination for a single given return, an exogenous parameter

λ ∈ [0,1] is introduced. In correspondence to model (1.7) on page 7 with the mod-

ified objective function (1.7a*), this parameter is to regulate the trade-off between

risk and return in the objective function by multiplying the expected return, rP ,

with λ and the punishment term for the risk, −σP , with (1− λ): If λ is equal to or

close to zero, then the risk term gets all or most of the weight, and portfolios from

the efficient set with low volatility will be identified. The larger a value for λ is cho-

sen, the more the weight is shifted towards the portfolio’s expected return, and the

optimization process will preferably identify those portfolios from the efficient set

that have high expected yield.

Summarizing, the portfolio problem with cardinality constraint reads as follows:

max(λ · rP − (1−λ) ·σP )

subject to

rP =
N

∑
i=1

xi · ri

σP =

√√√√
N

∑
i=1

N

∑
j=1

xi · x j ·σi j

xi ≥ 0 ∀i

2 See section 1.1.2.3.
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N

∑
i=1

xi = 1

N

∑
i=1

bi ≤ k where bi =

⎧
⎨
⎩

1 xi > 0

0 otherwise
.

The optimal traditional algorithms which are well-known from the literature are

based on existing algorithms for solving mixed-integer nonlinear programs,3 and

are thus not applicable to problems with a large number of variables: A common

approach are “branch and bound methods”4 which in the course of searching the

solution demand a relaxation of constraints; difficulties can therefore emerge as the

algorithm might eventually end up with some solution that is either infeasible, or

that is just a local optimum that cannot be overcome because of the constraints. An

alternative approach has therefore to be considered.

5.1.2 The Problem of Optimization

If there are N assets to choose from but only k are to be included in a portfolio,

then there are
(

N
k

)
alternatives. If an investor wants to have ten different stocks in

her portfolio, selecting from the 4 200 stocks at the Frankfurt stock exchange comes

with some 5×1029 alternatives – a number which corresponds to about 50 times the

diameter of the universe when measured in millimeters. Reducing the set of available

assets to 300 (which is approximately the number of shares quoted at the Hanover

stock exchange) still offers one billion billions of different combinations, and re-

stricting oneself to the fifty stocks contained in the Euro Stoxx 50 still comes with

about ten billon possible combinations – the weight structure of which had still to be

optimized. Finding the optimal solution by enumerating all the possible solutions is

therefore out of the question.

To come to grips with this vast problem size, theory and practice offer different

approaches. A popular way is to generate so called Asset Classes by grouping the

available assets according to predefined criteria (such as industry, size, geographical

aspects, and so on) and then preselecting from each of these groups one or a small

3 See, e.g., Bienstock (1996) and Brandimarte (2002, chapter 6).

4 See section 2.1.2.3.
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number of assets which is/are considered to be the best within their groups.5 The ac-

tual optimization is then performed on this reduced problem. The downside of this

approach is that it has to a priori exclude the vast majority of potential solutions,

and by doing so the actually optimal solution, too, might get dismissed. By selecting

just the best asset within a group without considering how well it can be combined

with the other selected assets, the salient feature of portfolios, the assets’ contribu-

tion to the overall diversification of risk, has to be largely ignored. This corresponds

well to the results from chapter 4 where it was shown that asset selection based on

a rule of the thumb that ignores the actual correlations between assets can lead to

severely inferior solutions.

In the previous and this chapter, two cases of the portfolio selection problem

with a cardinality constraint are investigated: identifying the portfolio that has the

highest Sharpe Ratio, and identifying the whole of the efficient set. For reasonable

values of N, neither case can be solved with traditional optimization methods due to

the complexity behind the problem, yet the two cases differ in one significant aspect:

given a bundle of selected assets, standard optimization methods can be used to find

the risk minimizing assets’ weights, the heuristic can therefore focus on the selection

problem. If, however, the whole efficient set has to be identified, then it appears

favorable to have the selection and the weight allocation problems both solved by

the heuristic.

The cardinality constraint makes the solution space quite rough and demand-

ing. This type of problem could be approached with a single agent local search al-

gorithms such as Simulated Annealing (SA) applied in chapter 3 or Threshold Ac-

cepting6 (TA) – yet with a caveat: Both SA and TA can be shown to find the global

optimum7 given the heuristics’ parameter meet certain requirements. In practice,

determining the heuristics’ parameters has to account for convergence quality as

well as convergence speed, hence the relevant parameters, such as initial tempera-

ture and cooling factor for SA and threshold sequence for TA, respectively, the max-

imum number of iterations, definitions of local neighborhood, etc. are chosen in a

way that are likely to find good solutions within reasonable time at the risk of get-

ting stuck in a local optimum. To reduce the peril of eventually reporting such a local

5 See Farrell, Jr. (1997) and section 1.3.

6 See, e.g., Winker (2001).

7 See section 2.3.1.
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optimum, the optimization problem is usually solved several times in independent

runs, and only the best of all results is considered.8 Though acceptable for many op-

timization problems, it might become ineffective for solution spaces that are highly

complex: The number of independent runs had to be increased noticeably, and ex-

perience gained in preceding runs is usually not reused. In addition and foremost,

the concept of finding the global optimum by local search might demand to traverse

the single agent the whole of the solution space when the starting point is chosen

unlucky.

Hence, it is found that problems with many local optima and a highly complex

solution space can be approached more efficiently with multi-agent methods that

also incorporate global search aspects rather than with single-agent local search

methods. These methods usually have elements that allow for pooling experience

and passing on knowledge between the agents, and the available computational time

can therefore be used more economically. The downsides of these methods are that

their implementation is usually more demanding and fine-tuning of the involved

parameters can become quite cumbersome.

In Maringer (2002b), a Black portfolio framework is enhanced with a cardinality

constraint. This optimization problem is considered as a special version of the Knap-

sack Problem and then solved with Simulated Annealing and a modified version of

Ant Systems.9 The results show that a population based multi-agent is better suited

to solve this optimization problem than the single-agent method SA. Equally, Keber

and Maringer (2001) investigate an investor who wants to maximize her portfolio’s

Sharpe Ratio in a traditional Tobin framework as presented in chapter 3, yet en-

hanced with a cardinality constraint. Comparing Genetic Algorithms, the modified

version of the Ant Systems and Simulated Annealing, all three methods are found

capable of solving the problem, yet again the single-agent method SA is clearly out-

performed by the two multi-agent methods.10

Though multi-agent global search methods, such as Ant Systems, Genetic Algo-

rithms or Evolutionary Computing, usually exhibit a better convergence behavior,

the lack of local search aspects in these methods might lead to reporting a result

8 See also section 2.4.

9 See also sections 2.1.1, 2.3.1 and 2.3.3 as well as chapter 4.

10 See also Chang, Meade, Beasley, and Sharaiha (2000).
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near the global optimum rather than the global optimum itself. It appears therefore

desirable to have a method that combines global and local search elements. Based

on Maringer and Kellerer (2003), this chapter will present such a method for the

portfolio optimization problem with cardinality constraints. After formalizing the

optimization problem, this hybrid algorithm is presented in section 5.2. Section 5.3

summarizes a comparative computational study where Simulated Annealing, a spe-

cial version of Simulated Annealing and this algorithm are applied to data of stocks

represented in the DAX and FTSE stock indices, respectively. In section 5.4 the impli-

cations of the cardinality constraints from the financial point of view are discussed,

and section 5.5 concludes.

5.2 A Hybrid Local Search Algorithm

5.2.1 The Algorithm

In order to solve the presented problem we apply an iterative algorithm in which

a “population” of crystals is to find the optimal portfolio structure. Each of these

crystals represents a portfolio where the structure of a crystal depicts both the assets

included and their respective weights. The algorithm starts with a random initial-

ization of the crystals the structure of which is random yet valid with respect to the

constraints. This is done by selecting k of the N available assets and assigning them

random positive weights such that they add up to 1, i.e., ∑i xict = 1 where xict is the

weight of asset i in crystal c’s portfolio in iteration t = 0.

The subsequent iterations consist of three stages: modification of each crystal’s

portfolio structure; valuation and ranking of the modified crystals; and replace-

ment of the poorest crystals in the population. Reinforcement of promising portfolio

structures takes place not only in the third stage where the weakest individuals are

eliminated and replaced with supposedly stronger ones, but also in the first stage

when assets are to be exchanged.

In iteration t the three stages comprise the following activities:

Modification. For each crystal c, d assets of this crystal’s current portfolio, Pct,

are selected. For these assets the respective weights are changed according to
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x′ict = max{xict+ z̃ict,0} where z̃ict ∈ [−Ut;Ut] is an equally distributed ran-

dom variable. The other assets’ weights are left unchanged, i.e., x′ict = xict. Ut

indicates the bandwidth for changes in iteration t which is steadily narrowed,

Ut = Ut−1 ·γU with 0 < γU ≤ 1. If x′ict becomes zero, then with a probability

pr the respective asset is replaced with a new asset j which is not yet included

(i.e., b jct = 0) and is given some random weight x′jct ∈ [0,2 ·Ut]; in addition

the respective binary variables are set b′ict = 0 and b′jct = 1. When selecting

j, preferences based on the “Averaged Idol” as introduced later are used. With

probability 1− pr asset i is kept in the portfolio with weight x′ict = 0 which

means that there are actually less than k assets represented in the portfolio.

Having changed the weights and standardized them such that ∑i x′ict = 1,

the fitness of the resulting modified portfolio, P ′
ct, is calculated. According

to the principles of SA, the modifications are accepted with probability p =

min
{

1,exp
(

∆F
/

Tt

)}
according to the Metropolis function. ∆F = FPct

−FP ′
ct

is the change in the fitness function (here: objective function) and Tt is the

temperature in iteration t. Due to this definition, impairments become less

likely with larger decreases in the fitness function and with lower tempera-

tures, i.e., the more iterations have already been passed. The temperature is

reduced once per iteration according to Tt = Tt−1 ·γT where 0 < γT < 1 is

the cooling parameter. For each crystal, this procedure of generating a mod-

ified portfolio and deciding whether to accept it or not is repeated for a fixed

number of times.

Evaluation. The crystals are ranked according to their fitness. This evaluation and

ranking procedure is crucial for the decision which solutions to reinforce

and which portfolios to replace. Akin to the rank based system introduced in

Bullnheimer, Hartl, and Strauss (1999) we allow only the best π of all crystals

to be “role models” for others (we shall call them prodigies). Based on their

ranks, the prodigies’ portfolios are assigned linearly decreasing amplifying

factors, act, ranging from π + 1 down to 1. Crystals of the current population

that are not prodigies, have an amplifying factor of 0. In addition we enlarge

the group of “role models” by ε elitists all of which represent the best overall

solution found so far.

Replacement. To reinforce promising tendencies on the one hand and eliminate

rather disappointing ones on the other, the ω worst crystals of the current
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population are replaced with crystals that are considered to have promising

structures. We distinguish two alternatives of candidates with high potential:

Clone: Based on the amplifying factors, probabilities for selecting an exist-

ing portfolio are calculated such that prodigies with better fitness have

a higher probability to be chosen. An unchanged copy of this portfolio

replaces the poor portfolio. The effect of cloning is that a new crystal

starts off with a supposedly good structure but will ultimately develop a

different structure than its twin.

Averaged Idol: An average weight xit for each asset is calculated based on the

elitists’ and prodigies’ portfolios. The weights xict of asset i in prodigy c’s

portfolio are multiplied by their respective amplifying factors act, added

to the ε elitists’ weights x∗it, and normalized so that the overall sum is 1:

xit =
∑c∈Πt

act · xict+ε · x∗it
∑

N
i=1

(
∑c∈Πt

act · xict+ε · x∗it
) (5.1)

where Πt is the set of the current iteration’s prodigies. Usually, the Aver-

aged Idol does not represent a valid solution because more than k assets

will have positive weights. These “averaged weights” are therefore used

for probabilities to select k assets and assign them weights that again re-

flect these averaged weights (yet with a random component). The effect

of this averaging is that an asset is preferred when it is found in many

a prodigies’ and/or the elitists’ portfolio and has a high weight in these

portfolios. Unlike in usual Genetic Algorithm systems, there are not just

two parents but a whole group of successful ancestors that pass on their

endowment.

With a probability of pc a “Clone” will be chosen, with a probability of 1−
pc a newly generated crystal based on the “Averaged Idol” will be used for a

replacement.

The algorithm, summarized in Listing 5.1, stops after a fixed number of iterations

and reports the best solution found, i.e., the last elitists’ portfolio. The algorithm’s

runtime is merely influenced by the population size, C, and the maximum number of

different assets included in the portfolio, k. The ranking of the crystals can be done

with a standard sorting algorithm where the computational complexity is of order
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FOR c := 1 TO population size DO

randomly select k assets and assign them positive random weights;

assign non-chosen assets 0 weight, x jc := 0,

standardize weights such that ∑i xic = 1;

end;

FOR t := 1 TO MaxIteration;

modification (→ Listing 5.2);

evaluation (→ Listing 5.3);

replacement (→ Listing 5.4);

update parameters:

Ut+1 := Ut ·γU ;

Tt+1 := Tt ·γT ;

END;

REPORT elitist;

Listing 5.1: Pseudo-code for the main Hybrid Algorithm routine

FOR c := 1 TO population size DO

x′ic := xic;

FOR changes := 1 TO d DO

randomly select i with x′ic > 0;

find random value for z̃ic ∈ [−U,+U ];

x′ic := max{x′ic + z̃ic,0};
IF (x′ic = 0) AND (rand < pr )

randomly select i with x′jc = 0;

find random value for z̃ jc ∈ [0,2 ·U ];

x′ic := x′jc + z̃ jc;

END;

END;

determine change in the objective function ∆F;

with probability min{1,exp(∆F/T )} DO

xic := x′ic ∀i;

END;

END;

Listing 5.2: Pseudo-code for the Modification routine of the Hybrid Algorithm
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rank crystals c according to their current objective value Fc;

determine amplifying factors ac based on ranks;

check for new elitist (argmaxFc > FP∗ ?) ;

Listing 5.3: Pseudo-code for the Evaluation routine of the Hybrid Algorithm

with each of the ω worst crystals DO

with probability pc DO

Clone:

based on ac, randomly selected role model c∗;

xic := xic∗;

otherwise DO

Averaged Idol:

replace xic with weights according to equation (5.1);

END;

END;

Listing 5.4: Pseudo-code for the Replacement routine of the Hybrid Algorithm

O (C · ln(C)). For the evaluation of the portfolios, the portfolios’ variances have to

be calculated. The computational complexity of this is linear in C and quadratic in k,

i.e., it comes with a complexity of O
(
C · k2

)
. The algorithm’s complexity is at most

linear in all other parameters – if affected at all.

5.2.2 Variants

In the course of developing the reported version of the algorithm, we experimented

with several modifications and extensions which were eventually turned down for

different reasons. Some of these variants are variants to concepts ultimately used,

others try to mimic or transfer ideas that have proofed useful in other circumstances.

Variants for the modification of portfolios included different ways of changing

the weights, xict, and exchanging assets. Amongst these were alternative versions

for calculating z̃ict which was either distributed within a constant bandwidth (i.e.,

with constant Ut = U) or the distribution of which was distorted towards to the

Averaged Idol. Additional versions concentrated on the selection of a new asset j

which was either perfectly random or took the covariances σi j into account. All of



132 5 Cardinality Constraints for Markowitz Efficient Lines

these variants led to either lower reliability of the results or increased the runtime

significantly without noticeable effect on the quality of results.

Variants for the evaluation stage included a nonlinear system for generating the

amplifying factors, exclusion of the elitists and/or prodigies, and allowing all mem-

bers of the current population to contribute to public knowledge and not just the

prodigies. Both elitists and prodigies turned out to have positive effects on conver-

gence speed and stability of the results. At the same time, too high a number of

agents that contribute their experience to the “Averaged Idol” merely increases run-

time without apparent positive effect. For the ranking system, the linear version of

the amplifying factors turned out to be both simple and effective.

The replacement was found to be most effective when clones of existing good

portfolios as well as newly generated portfolios based on successful role models were

allowed. To avoid the danger of getting stuck in a local optimum due to “inbreeding”

with extremely similar prodigies, we also introduced a third alternative were a ran-

dom portfolio was generated independently of the other portfolios. Since the other

portfolios have already passed a number of steps within the optimization process,

this new portfolio was given an extra number of iterations. As turned out, however,

this alternative mainly increased the runtime (because of the extra number of iter-

ations) but had hardly any positive effect on the results since these new portfolios

almost never made it into the group of the best portfolios with a portfolio structure

that differed significantly from some already existing prodigies’ portfolios.

5.2.3 Considerations behind the Algorithm

The main goal for the algorithm was to overcome some of the shortfalls of strict

local search heuristics such as Simulated Annealing. Though a more or less sophis-

ticated local search heuristic is well capable of finding the proper portfolio weights

for assets if there are no “hard” additional constraints, the introduction of cardi-

nality constraints in combination with non-negativity rapidly increases the peril of

getting stuck in local optima. In addition, the success of local search methods might

well depend on the starting point for the search. Therefore, it appears only natural to

overcome these downsides by (i) having more than one starting point and (ii) elim-

inating solutions that either are already or are likely to get stuck in a local optimum.
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This is done by having a population rather than a single agent and by allowing for

interaction, role models, and replacement of supposedly poor solutions. Most of the

later principles are standard in methods using genetic or evolutionary ideas: Inter-

action is usually introduced by some form of cross-over, where two parents gener-

ate offspring that inherits a combination of (parts of) the parental genetic material.

Transfer of good solutions frequently comes together with the extinction of individ-

uals with poor fitness and replacing them with the clone of a better individual.

In the course of experimenting with the different variants we found that for our

problem, two significant extensions to the “standard toolbox” of evolutionary prin-

ciples are helpful: the reinforcement of the elitist concept and the aspect of having

role models that goes beyond copying already existing solutions.

The traditional elitist principle ensures that the best solution found so far is

maintained. If, in addition, the current best individuals are reinforced as well, the

danger of potentially keeping and fostering a local optimum, namely the elitist, is

reduced. Also, a strict selection mechanism for eliminating crystals deliberately ac-

cording to their bad fitness (rather than due to a lower probability for selection as

would, e.g., a Genetic Algorithm do), seemed to increase convergence speed. How-

ever, whether this later principle is just typical for our optimization problem or a

general rule remains to be investigated.

At an early stage the introduction of the “Averaged Idol” allows to find those

assets which are most popular in good portfolios found so far. It therefore helps

to form the core structure of the portfolio. During the later iterations, it enables

the pooling of different good solutions and turned out helpful when the prodigies

have found a sound core structure but struggle with the fine tuning, i.e., they have

the same assets in their portfolios but with different weights. In both cases, poor

crystals can therefore be replaced with new crystals which are not only clones of

already existing portfolios but rather of pooled experience.
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5.3 The Computational Study

5.3.1 Data and Parameters

The algorithm is tested on the DAX and the FTSE data sets presented in section 4.3.1:

Based on daily observations for 30 DAX stocks and 96 FTSE stocks over a period

from July 1998 through December 2000, the historic variances, covariances and beta

factors were estimated. The volatility of the stocks was set equal to the respective his-

toric volatilities, and the expected return were estimated with the CAPM according

to ri = rs +(rM− rs) ·βi with an expected safe return of rs = 5%, expected market

risk premia of rM=DAX − rs = 5.5% and rM=FTSE − rs = 6%, respectively.11

To find their appropriate values, we ran experiments with random values for the

parameters used in the algorithm for different k’s. Since the two data sets differ con-

siderably in their size, we determined separate parameters for the DAX30 and the

FTSE100 data sets (the latter reported in brackets when different). The population

size is set to 100 (200) where the π = 12 (15) best portfolios represent the prodigies

and where the number of elitists is ε = 100 (200). Each population has 750 (1 000)

generations to find the optimum. In each iteration a crystal produces 2 modified

portfolios by changing d = 2 of the current assets’ weights. For the modification of

the weights the bandwidth for z̃ict was [−Ut;+Ut] with U0 = 0.3 and γU = 0.9925.

The probability that an asset i with modified weight x′ict = 0 was replaced with some

new asset was pr = 0.4. In the replacement stage the ω = 12 (15) worst agents were

replaced with a clone with probability pc = 0.3 or a new agent based on the “Aver-

aged Idol” with probability 1− pc = 0.7. For the SA part, the initial temperature was

T0 = 750, and the cooling parameter was γT = 0.97 (0.95). It is noteworthy, however,

that the algorithm appears to be rather “tolerant” with respect to the parameters:

exchanging the parameters for the two data sets has no major impact on the quality

of the results.

The algorithm was implemented in Delphi 5. For the original study, the resulting

program was executed on a 900 MHz Pentium III where the runtime was approxi-

mately 2 seconds for the smallest problems (k = 3) and approximately 45 seconds for

the largest (k = 39). Executed on a more up-to-date Centrino Pentium M 1.4 GHz,

the runtime for the largest problem (k = 39) reduces to approximately 14 seconds.

11 See also sections 3.2.3 and 4.3.1.
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5.3.2 Evaluation of the Suggested Algorithm

The graphs in Figure 5.1 depict the results for the case where portfolios consisting of

up to k = 9 (left column) and k = 39 (right column), respectively, out of the N = 96

available securities represented in the FTSE100 are to be selected. For the first case

there are
(96

9

)
= 1.3×1012 different valid combinations of stocks, in the second case

there are
(96

39

)
= 1.2×1027 alternatives. For each of these alternatives, of course, there

is an infinite number of different valid combinations of weights since xi ∈ R
+
0 ∀i :

bi = 1 with ∑i bi = k. For λ, a random value in the range [0,1] was chosen before

each run.

As can be seen from the graphs, the three methods differ in their reliability to

find the optimal solutions: Ideally, portfolios should be reported that are on (or at

least close to) the so called efficient set or efficient frontier, the upper border of the

area of all theoretically possible portfolios in the volatility-return space. A portfolio

is said to be efficient if there is no other portfolio with same constraints that has the

same risk but higher expected return or the same expected return but lower risk.

Conversely, a portfolio is called inefficient or inferior if it is below the efficient line.

Although the exact efficient line under a given cardinality constraint is not known,

a portfolio can definitely be identified to be inferior if it is “south-east” (i.e., right

and/or below) of at least one other portfolio with same k in the mean-variance dia-

gram.

The results reported by the method Simulated Annealing (SA) (top row in Fig-

ure 5.1) form an area rather than a line. This indicates that there are many infe-

rior portfolios that, in addition, are far from optimal. The GSA method comes with

clear improvements, yet there are still regions where the method apparently reports

inferior solutions. Eyeballing suggests that the Hybrid Algorithm (HA) is the most

reliable of the three methods.

All three algorithms include heuristic local search procedures where the current

solutions (i.e., portfolio structures) undergo slight changes. With local search, an

asset i will be exchanged for some other asset j by first reducing i’s weight, xi, un-

til i has zero weight and then increasing j’s, x j. This procedure leads to a more or

less rapid exclusion of assets with low contribution to the portfolio’s fitness. On the

other hand, it is less likely that a highly weighted asset i that fits quite good in the

current portfolio is replaced with some asset j since the algorithm had to accept a
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Method constraint: k = 9 constraint: k = 39

SA

GSA

HA

Fig. 5.1: Reported solutions (black) and supposed efficient line (gray) for the FTSE data set

depending on different optimization methods and cardinality constraints
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series of impairments while eliminating i. Though this allows for a fast evolving core

structure, there is also a chance that some asset j which is just slightly better than i

remains excluded once the core structure has settled and i is regarded a central part

of it. Our heuristic reduces this inherent danger of getting stuck in a local optimum

by using a population of crystals rather than isolated agents. Since both assets are

equally likely to be selected in the beginning, one can expect that there is the same

number of portfolios containing i or j, but those with j have a higher probability

to be cloned or enter the Averaged Idol due to their higher fitness. Nonetheless, in

some cases the algorithm returns portfolios with optimal weights for a close to op-

timal selection of assets, i.e., portfolios that are slightly inferior.

As said earlier, the cardinality constraint makes it impossible to determine the

exact efficient frontier analytically. One can, however, merge all results from the dif-

ferent methods for the same cardinality constraint k and remove those that can be

identified as inferior. The remaining solutions form the sets of best known solutions

for the different values of k which can be used as an estimation for the actual ef-

ficient line with a cardinality constraint which will be called supposed efficient line

henceforth.12

To assess the dimension of these deviations in particular and the reliability of

the algorithm in general, we first determined which of the found solutions are de-

finitively inferior, i.e., which of the portfolios have higher risk with lower expected

return than at least one other portfolio. In practice the efficient line can be assumed

to be linear between two points given these points are sufficiently close to each other.

As the supposed efficient portfolios found by the algorithm form a sufficiently dense

line, we determined the two supposed efficient portfolios L and U neighboring an

inferior portfolio I, and estimated the deviation ∆rI of the actual return, rI , from

the estimated efficient return r̂eff
I by linear interpolation:

∆rI = rI − r̂eff
I = rI −

(
rL +

rU − rL

σU −σL
· (σI −σL)

)

where rL, rU , σL, and σU denote the return and risk of the lower and upper neigh-

bors, respectively. ∆rI therefore indicates, how much more return could be achieved

12 For obvious reasons and as will be discussed in due course, efficient portfolios for a higher k must

have at least the same expected return as those with lower k when their volatility is the same. The

same is true when the number of assets with non-zero weights rather than the limit k is considered.

This property is met by all supposed efficient lines. Nonetheless, being not able to identify a certain

portfolio as inferior does – strictly speaking – not imply that it actually is efficient.
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DAX data set FTSE data set

k SA GSA HA SA GSA HA

3 –0.952% –0.174% –0.001% –1.722% –0.631% –0.064%

6 –0.833% –0.479% –0.118% –1.565% –0.922% –0.233%

9 –0.777% –0.477% –0.065% –1.341% –0.793% –0.256%

12 –0.682% –0.417% –0.127% –1.179% –0.646% –0.189%

15 –0.591% –0.375% –0.039% –1.023% –0.508% –0.120%

18 –0.514% –0.324% –0.013% –0.861% –0.390% –0.063%

21 –0.455% –0.278% –0.001% –0.738% –0.321% –0.046%

24 –0.380% –0.239% –0.001% –0.644% –0.267% –0.028%

27 –0.338% –0.222% –0.001% –0.557% –0.209% –0.018%

30 — — — –0.474% –0.150% –0.009%

33 — — — –0.418% –0.111% –0.006%

36 — — — –0.362% –0.083% –0.004%

39 — — — –0.320% –0.072% –0.005%

Tab. 5.1: Estimated average deviations of inferior portfolios’ returns from the respective sup-

posed efficient line in dependence of k

with equal volatility under the same cardinality constraint by choosing a portfolio

on the respective supposed efficient line rather than I. Table 5.1 summarizes the esti-

mated average deviations between best known solutions (i.e., the supposed efficient

line) and the reported inferior portfolios.

As can be seen from the results, these average deviations are for our suggested

algorithm (HA) at most one eighth of an per cent for the DAX data set and at most

about a quarter of a per cent for the FTSE data set. It might be surprising, how-

ever, that the largest deviations can be found not in the problems with the largest

problem space but where k = 6,...,12 (DAX data set) and k = 6, ...,15 assets are to be

selected. The main reason for this is the fact that most of the diversification within

a portfolio can be achieved with a rather small number of assets. The marginal con-

tribution of any additional asset to the reduction of risk for a given expected return

is decreasing. Thus, according to a rule of thumb, a well chosen third of the avail-

able assets will result in an efficient line that is already very close to the efficient line

of the unconstrained efficient line, whereas portfolios with less assets face increas-

ingly higher risk for a given expected return than the unconstrained efficient line (or
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an increasing reduction of expected return for a given level of risk). In passing note,

that therefore the efficient line without constraints on cardinality and non-negativity

cannot be used as a (general) benchmark.

The main problem in finding the optimal solution is to identify the core assets

and in due course assigning the proper weights. When k is sufficiently large, chances

are that at least some of the populations’ crystals find (groups of) these core assets

and the applied evolutionary concepts enforce the exchange of information about

such groups. A rather small k on the other hand comes with a small number of pos-

sible combinations of assets. In both cases, the population quickly identifies the op-

timal (core) combination and can focus thus on the adjustment of the asset weights.

This has positive effects on the quality of the algorithm: not only can most of the op-

timized portfolios be assumed to lie on or very close to the efficient line, but deviate

the apparently inferior ones much less from the best known solutions.

For “medium sized” values of k, more iterations are needed for the selection

process in itself leaving less iterations for the fine tuning of the weights. In addition,

with this size of the problem space the possibility of getting stuck in a local opti-

mum as described earlier is greatest. Therefore, the portion of inefficient portfolios

is highest in this group, too. Nonetheless, the deviations of these inferior portfolios

from the supposed efficient line are rather small, especially when compared to the

results from other methods, as will be discussed in the next section.

5.3.3 Contribution of Evolutionary Strategies

To determine whether a group of agents outperforms individual agents and whether

the use of evolutionary strategies improves the algorithm’s performance we imple-

mented the problem with a standard Simulated Annealing (SA) approach where sin-

gle crystals are to solve the problem. In addition we applied a variant of Simulated

Annealing with a group of isolated crystals (GSA) without elimination of unfit in-

dividuals and with no ranking system and elitists. GSA is therefore a variant of our

algorithm without the stages evaluation and replacement. Where applicable, SA and

GSA used the same values for the parameters as our algorithm. SA had 4 000 runs

per k, GSA and our hybrid algorithm (HA) had each 1 000 runs per k.

Table 5.2 compares the portions of inefficient portfolios within the runs for dif-

ferent values of k and data sets. In SA a single agent had 750 (1 000) iterations for
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DAX data set FTSE data set

k SA GSA HA SA GSA HA

3 98.75% 73.4% 0.6% 98.9% 85.7% 1.4%

6 100.0% 99.4% 32.9% 99.3% 91.4% 51.6%

9 100.0% 99.8% 41.8% 99.4% 91.9% 57.2%

12 100.0% 100.0% 43.7% 99.7% 91.8% 62.8%

15 100.0% 100.0% 19.0% 99.7% 93.1% 62.9%

18 100.0% 100.0% 27.1% 99.8% 92.6% 56.6%

21 100.0% 99.8% 2.5% 99.9% 95.1% 53.5%

24 100.0% 99.9% 4.0% 99.7% 93.1% 47.8%

27 100.0% 99.9% 2.5% 99.7% 92.7% 47.7%

30 — — — 99.7% 92.2% 31.0%

33 — — — 99.5% 93.1% 22.0%

36 — — — 99.2% 90.0% 17.4%

39 — — — 99.0% 91.0% 13.6%

Tab. 5.2: Portion of inefficient portfolios

the DAX (FTSE) data sets, whereas in GSA and HA 100 (200) agents were used per

run. Hence it does not surprise that SA finds almost exclusively inefficient portfolios.

However, it seems remarkable that GSA is clearly outperformed by the algorithm ap-

plying evolutionary principles. E.g., for the DAX data set, the worst case for the HA

method is with k = 12 where some forty per cent of the portfolios can be considered

more or less inferior to the supposed efficient line, but so can all the GSA (and SA)

optimized portfolios. For the FTSE data set, virtually all of the SA solutions and at

least nine in ten of the GSA solutions are inferior, whereas it is just approximately

six in ten or even less, when elimination of weak individuals and orientation to the

populations’ best individuals takes place.

The boost from evolutionary principles is even more evident when the deviations

from the supposed efficient line are analyzed. Considering the case with k = 6 for the

FTSE data set, it can be seen that on the average a portfolio optimized with HA has a

return of 0.120% below the supposed efficient line (0.233% when inferior portfolios

only are averaged). With GSA the average deviations are 0.843% (0.922%) when all

portfolios (inferior portfolios only) are considered, the respective deviations for SA

optimized portfolios are 1.553% (1.565%). Figure 5.2 depicts the average deviations



5.4. Financial Implications 141

(a) DAX data set (b) FTSE data set

Fig. 5.2: Average deviation of all optimized portfolios from the respective supposed efficient

lines

of all portfolios of the runs per k per method from the supposed efficient line; the

results for the average deviation of inferior portfolios were summarized in Table 5.1.

The average deviation is the smallest when the portfolios are optimized with HA.

Hence, the introduction of evolutionary principles not only reduces the number of

portfolios that are clearly inferior but also leads to lower deviations from the sup-

posed efficient line.

5.4 Financial Implications

As mentioned earlier, empirical studies find that investors tend to hold a rather small

number of different assets in their portfolios. Figure 5.3 therefore compares the ef-

ficient line of the unconstrained problem with the supposed efficient lines of the

constrained problems with different values for k. In passing note that, because of

the cardinality constraint in combination with the non-negativity constraint on as-

set weights, the (actual and supposed) efficient lines need no longer to be concave.

For portfolios with high volatility, if existent the differences in the efficient lines

are rather small. The reason for this is the non-negativity constraint: in this region

there are only few assets an investor should hold with a positive weight, and the

cardinality constraint does not come into effect. In low volatility areas, however,

strict cardinality constraints come at the cost of reduced returns with equal risk –

or having to accept more risk for a given level of expected return. For the FTSE data
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(a) DAX data set (b) FTSE data set

Fig. 5.3: Supposed efficient lines for constrained portfolios and efficient lines for unconstrained

portfolios

set, e.g., the optimal portfolio with a volatility of 0.20 will have an expected return

of 9.4% (10.6%; 11.1%; 11.3%) when the cardinality constraint is k = 3 (6; 9; 12);

without cardinality constraint an investor could expect a return of 11.4%. On the

other hand, the optimal portfolios for an expected return of 8% will have volatilities

of 0.177 (0.141; 0.130; 0.122) for k = 3 (6; 9; 12) whereas in the unconstrained case

the optimal solution would be 0.107.

For the FTSE data set, the differences between unconstrained portfolios and con-

strained portfolios with k > 15 are virtually negligible, for the DAX data set, opti-

mized portfolios with k > 12 are virtually as good as the unconstrained – provided

that the portfolio structure is determined with a reliable optimization method. Sim-

ply speaking, reasonable diversification is possible with few, yet well-chosen assets.

In a world where transactions costs, information gathering costs and portfolio man-

agement fees depend on the number of different included assets, a cardinality con-

straint might be crucial for successful investment.

The financial implications from this empirical study therefore confirm those

found in the previous chapter where the case of identifying the constrained portfo-

lio with the maximum Sharpe Ratio is considered. The optimal portfolios identified

in the previous chapter are particular members of the respective Markowitz efficient

sets with the same cardinality constraint that have been identified in this chapter.
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5.5 Conclusion

In this chapter a meta-heuristic was presented that basically combines principles

from Simulated Annealing with evolutionary strategies and that uses additional

modifications. Having applied this algorithm to the problem of portfolio selection

when there are constraints on the number of different assets in the portfolio and

non-negativity of the asset weights, we find this algorithm highly efficient and reli-

able. Furthermore, it is shown that the introduction of evolutionary principles has

significant advantages.

The algorithm is flexible enough to allow for extensions in the optimization

model by introducing additional constraints such as transaction costs, taxes, up-

per and/or lower limits for weights, alternative risk measures and distributions of

returns, etc. First tests with such extensions led to promising results and supported

the findings for the algorithm presented in this chapter.



Chapter 6

The Hidden Risk of Value at Risk

6.1 Introduction

When it comes to measuring the risk of financial assets, volatility, i.e., the stan-

dard deviation of the returns, is a common choice. Meanwhile, this concept of risk

has been adopted by almost all participants in the investment industry and is the

foundation for many a seminal piece of academic work with the foundations be-

ing formalized in the 1950’s by H. Markowitz in his Modern Portfolio Theory and

its assumption of normally distributed returns. However, the finance and financial

econometrics literature raised serious doubts that this assumption holds: hardly any

time series of returns can be described reliably with mean and variance only, and

the existence of skewness, excess kurtosis, and autocorrelation seems to be the rule

rather than the exception.

The decision whether to rely on the normality assumption or not becomes even

more important with the introduction of alternative risk measures such as Value at

Risk (VaR, also known as Capital at Risk or Money at Risk)1, which describes the

loss that is not exceeded with a given probability α, or Expected Tail Loss (ETL, also

known as Conditional Value at Risk, Mean Excess Loss, or Expected Shortfall), which

is to measure the expected loss given that one encounters a loss at or beyond the VaR

1 See Riskmetrics Group (1996). Jorion (2000) and Simons (2000) present concepts and applications.

Longin (2000) compares VaR to stress testing which is also concerned with rare yet hazardous situ-

ations where extreme losses may occur. In this respect, see also Keenan and Snow (2002) and Gilli

and Këllezi (2003).
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threshold.2 The VaR risk measure gained additional relevance as the Basel accord

accepts it as a valid risk measure for estimating banks’ exposure to credit risk.3

Much akin to the traditional mean-variance framework, the objective for port-

folio optimization with alternative risk measures can either be the minimization of

risk given a constraint on the expected return or wealth (if considered at all)4 or the

maximization of the expected (utility of the) return (wealth) with a constraint on

the risk measure.5

To estimate the VaR, three basic methods are employed: parametric estimation

assumes that the assets’ returns follow a parametric distribution with known para-

meters; historic simulation takes past realizations and assumes that their empirical

distribution is apt to describe future outcomes; and Monte Carlo simulation gener-

ates prices based on a parametric and/or empirical distribution. The use of empirical

distributions or Monte Carlo approaches leads to apparently better results than the

assumption of normally distributed returns6 – yet at the cost of considerably higher

computational complexity. This is all the more true for models that use VaR rather

than ETL. The latter has much more pleasant properties7 whereas the first one usu-

ally comes with a large number of local optima and is difficult to solve due to its

non-convexity: As shown by Daníelsson, Jorgensen, de Vries, and Yang (2001), the

portfolio optimization problem under a general VaR constraint is NP hard. Hence,

2 For a discussion of these concepts and related approaches, see Manganelli and Engle (2001). Frey

and McNeil (2002) address these risk measures with respect to credit risk.

3 See Basel Committee on Banking Supervision (2003, §§109, 149—152 and 490). For a discussion of

related literature, see Alexander and Baptista (2001). Berkowitz and O’Brien (2002) empirically test

the accuracy of VaR models in commercial banks; their “findings indicate that banks’ 99th percentile

VaR forecasts tend to be conservative, and, for some banks, are highly inaccurate” (p. 1108).

4 See, e.g., Rockafellar and Uryasev (2000) (extended in Krokhmal, Palmquist, and Uryasev (2001)),

Uryasev (2000), or Pflug (2000).

5 See, e.g., Arzac and Bawa (1977) (following Roy (1952)), or more recently Campbell, Huisman, and

Koedijk (2001) (and the comment by Huang (2004)), and Basak and Shapiro (2001).

6 See, e.g., Pritsker (1997) or Lucas and Klaasen (1998).

7 See Pflug (2000) and Rockafellar and Uryasev (2002). For a critical discussion of VaR see Daníelsson,

Embrechts, Goodhart, Keating, Muennich, Renault, and Shin (2001).
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the literature so far tends to confine themselves to a rather small set of assets in-

cluded in the portfolio when using empirical distributions.8

An alternative way out of this dilemma might be the use of heuristic optimization

methods. Dueck and Winker (1992) were the first to solve portfolio choice problems

with a heuristic method, namely Threshold Accepting9 (TA). Gilli and Këllezi (2002)

build on this approach and with the same heuristic tackle a portfolio optimization

problem where the expected wealth is to be maximized with constraints on the num-

ber of assets included, with lower and upper limits to the included assets’ weights,

demanding the number of assets to be integers – and constrain the shortfall prob-

ability for a given Expected Shortfall and VaR, respectively. Their results show that

this optimization problem can be handled with heuristic methods. Maringer and

Winker (2003) approach a similar optimization problem with a modified version

of Memetic Algorithms (MA), a search heuristic combining local and global search

methods which we will follow in this article.

Based on the findings in Maringer and Winker (2003), Maringer (2003a, 2005),

and Winker and Maringer (2003), the aim of this chapter is to study some of the

consequences that arise from the assumed distribution of the asset returns and the

choice of the risk constraint. The following section presents a formalization of the

optimization problems and a description of the data used for the empirical studies.

In section 6.3, the modified version of Memetic Algorithms, applied for this opti-

mization problem, is presented. In section 6.4 a computational study for the stock

market data set is presented where the results due to different risk constraints are

compared, section 6.5 reports a corresponding empirical study for a bond market.

The chapter concludes with a short summary of the main results and their conse-

quences.

8 See also Andersson, Mausser, Rosen, and Uryasev (2001) and Krokhmal, Palmquist, and Uryasev

(2001) who suggest the use of linear programming for simplified frameworks under ETL and VaR,

respectively.

9 See Dueck and Scheuer (1990), Winker (2001), and section 2.3.1.
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6.2 Risk Constraints and

Distribution Assumptions

6.2.1 The Stock Market Investor

6.2.1.1 The Optimization Model

Following standard assumptions about behavior of a risk averse and rational in-

vestor making myopic investment decisions, the objective for the stock market par-

ticipant is to maximize the expected utility of the investment’s return, r, (which, in

particular for a unit investor, is equivalent to the (logarithmic) utility of the portfo-

lio’s wealth) in one period of time without possibilities for restructuring the portfo-

lio in between. The investor’s decision variables are mainly the assets’ weights within

the portfolio which must not be negative and sum up to 1. In addition, the investor

can rely on the validity of the separation theorem10 which, for the current problem,

allows to split her endowment and to invest a fraction q into a risky portfolio P with

return rP and volatility σP and the remainder of (1−q) into a risk-free asset which

has a safe return of rs. The fraction q is chosen in a way the risk constraint is met.

Depending on the risk constraint (VaR and ETL for Value at Risk and Expected

Tail Loss, respectively) and the assumed distribution of the assets’ returns (with su-

perscripts emp and norm for empirical and normal, respectively), the investor’s op-

timization problem can therefore be summarized as follows:

max
xi

E(U(r))

subject to

r = q · rP +(1− q) · rs

rP = ∑
i

xi · ri

σP =

√
T

T − 1

(
E(r2

P )− (E(rP ))2
)

N

∑
i=1

xi = 1

10 See, e.g., De Giorgi (2002).
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xi ≥ 0 i = 1...N

and one of the risk constraints

VaRemp : prob(r ≤ rVaR) =α

⇐⇒ q · rτP +(1− q) · rs = rVaR where τ =α ·T
ETLemp : E (r|r ≤ rVaR) = rETL

⇐⇒ q ·
(

1

α ·T
α·T
∑
τ=1

rτP

)
+(1− q) · rs = rETL

VaRnorm : prob(r ≤ rVaR) =α

⇐⇒ q · (E(rP )−|uα | ·σp)+(1− q) · rs = rVaR

ETLnorm : E (r|r ≤ rVaR) = rETL

⇐⇒ q ·
(

E(rP )− φ(uα)

α
·σP

)
+(1− q) · rs = rETL

where r is the (overall) return from the investment into safe asset and risky portfolio.

rτP denotes the τ-th worst return of the T observed days. U(·) is the (logarithmic)

utility function, uα is theα-quantile of the normal distribution such that Φ(uα) =α,

and φ(·) returns the density of the normal distribution. In this model, rVaR is fixed

a priori, hence q can be determined by rearranging the risk constraints.

6.2.1.2 The Stock Market Data

The data base for the computational study consists of the daily returns of the Stan-

dard and Poor’s 100 stocks over the period from November 1995 through November

2000 which is known to cover a time span with a rather particular market situation.

In order to find a suitable trade-off between reasonable length of in sample periods

and the peril of over-estimation, the in sample period is set to 200 trading days and

the number of risky assets in the portfolio P is 25. We generated a number of cases

by randomly picking a starting point for the time frame and then randomly selecting

the assets. For each case, the out of sample periods were 1, 10, 20, 50, 100, and 200

trading days following the in sample period. While the optimization method is well

capable of dealing with portfolios that have more assets and longer in sample obser-

vations, such portfolios might have lead to undesired problems: more assets would

demand for more observations (i.e., longer in sample periods in the lack of high
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frequency observations) to avoid linear dependencies in the (by definition) small

number of days where the VaR limit is exceeded; longer observation periods, on the

other hand, are likely to cause additional specification errors as both the parametric

and the empirical distributions exhibit instabilities in the considered time frame.

If not stated otherwise, rVaR is set to −0.005 per day for the VaR models; for the

ETL models, the expected loss on the (α · T ) worst of the T trading days shall be

rETL = −0.005. The safe return, rs, is the 3 month EURIBOR from the day follow-

ing the case’s last in-sample day (i.e., the first day of the out of sample period).11 We

allow a shortfall probability ofα = 0.10; under the normality assumption, the respec-

tive parameters are therefore |uα | = 1.2816 and φ(uα)
/
α = 1.7550, and for empirical

distributions, the “worst” 20 out of the 200 in sample trading days are considered. In

real life problems, α is usually noticeably lower. In particular when empirical distri-

butions are used, this causes additional problems as it demands more observations:

To have τ observations to represent the scenarios with returns at or below the VaR

limit, the in sample data set needs to consist of τ/α observations. Hence, (as in our

case) τ = 20 with a shortfall probability of α = 1% (or 0.5%) would require at least

2 000 (4 000) in sample observations per included asset; for portfolios with more as-

sets than in our case, higher values for τ are necessary for reliable results which again

increases the required overall number of observations per asset. As for the majority

of assets there are not enough real and reliable data available,12 the “real” data are

often complemented with artificially generated scenarios coming from some data

generating process – which, however, demands additional assumptions that might

cause additional problems.

The main computational study includes 250 portfolios generated as described

above. Each of these portfolios was optimized under the different risk constraints

and with the presented version of the MA. To minimize the risk of reporting lo-

cal optima, each problem had repeated and independent runs, the best solutions of

which are used for the following analyses.

11 An alternative would be to use risk premia instead of returns in order to account for changes in the

risk free rate. In preliminary tests, however, this did not improve the results.

12 Note that the data set ought to contain neither too old observations nor too dense data. The former

are not necessarily valid representatives for the immediate VaR horizon. The latter refers in particu-

lar to high frequency data which are observed in time intervals that are significantly smaller than the

VaR horizon. These data often exhibit particular additional properties and are therefore not always

representative either.
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6.2.2 The Bond Market Investor

6.2.2.1 The Optimization Model

Unlike for stocks, bonds are usually traded at lot sizes, and investors might therefore

be more restricted in choosing the portfolio weights. The investor for our problem

has an initial endowment of V0 that can be either invested in bonds or kept as cash;

without loss of generality, the rate of return of the latter is assumed to be zero. Given

that the losses until time τ must not exceed a (fixed) value of δVaR ·V0 with a given

probability of α, and that there are no other risk constraints, a manager of a bond

portfolio will be inclined to find a combination that has maximum expected yield

that does not violate this VaR constraint.

The optimization model can therefore be written as

max
ni

E (rP ) = ∑
i

ni ·Li ·Di,0

V0
· ri

subject to

ni ∈ N
+
0 ∀i

∑
i

ni ·Li ·Di,0 ≤V0

prob
(
Vτ ≤V0 ·

(
1−δVaR

))
=α

where Li and Di,0 are lot size (in monetary units) and current clean price (in per

cent), respectively, of bond i, and ri is its yield to maturity per annum. ni is the

number of lots kept in the portfolio which has to be non-negative; also, the cash

position must be non-negative. Vτ is the value of the portfolio at time τ (i.e., the

value of the bonds including accrued interest from time 0 to τ) plus cash.

For estimating Vτ , we apply the following methods:

• Assuming normal distribution, the VaR constraint can be rewritten as

E (Vτ)− uα ·σVτ ≥V0 ·
(

1−δVaR
)

where uα is the respective quantile of the standard normal distribution. The

expected value for Vτ and its volatility are alternatively estimated from past
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observations either in a standard way (“plain vanilla” or “pv” henceforth) or

with weighted values where more recent observations contribute stronger. The

latter version turned out advantageous for stock portfolios in a similar set-

ting13 with a decay factor of 0.99 which is applied here, too. The weights are

therefore ws = 0.99(S+1)−s

∑
S
t=1 0.99t

where the simulations are ordered chronologically

and s = 1 is the simulation based on the oldest, s = S on the most recent of the

S observations.

• Assuming empirical distribution, the VaR constraint can be rewritten as

S

∑
s=1

bs ≤α with bs =

⎧
⎨
⎩

1
S

if Vs ≤V0 ·
(

1−δVaR
)

0 otherwise

where Vs,τ is one out of S simulations for the wealth at time τ based on his-

toric (in sample) observations. To parallel the weighted version of the normal

distribution, the bs’s can be computed in a way to reflect the “timeliness” of

the observations:

S

∑
s=1

bs ≤α with bs =

⎧
⎨
⎩

ws = 0.99(S+1)−s

∑
S
t=1 0.99t

if Vs ≤ V0 ·
(

1−δVaR
)

0 otherwise

where, again, simulation s = S is based on the most recent, s = 1 on the oldest

observation.

For the main computational study presented in the following sections, the in-

vestor will be endowed with V0 = CHF 1 000 000, and the VaR constraint demands

that the next day’s wealth will not be below 990 000 (i.e., δVaR = 0.01) with a prob-

ability of α = [0.025;0.05;0.1]. In addition, alternative values for these parameters

were employed; as they merely confirmed the qualitative results reported for the

main study, they are omitted in the sense of brevity.

6.2.2.2 The Bond Market Data

The computational study for the bond market investor is based on bonds with fixed

coupon quoted on the Swiss stock exchange in local currency, i.e. CHF. From all

13 See Maringer (2003b) and section 6.4.
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quoted bonds, we chose randomly 42 Swiss and 113 foreign issuers, yet it was sought

that no industry sector or issued volume is over- or under represented. For these

bonds, we have daily (clean) closing prices (when traded) for the period January

1999 through June 2003. In particular for the earlier part of this time series, thin

trading causes many missing data – the respective yields to maturity were eventually

estimated based on the correct time to maturity and by using the previously quoted

price.

From this data set, random selections of bonds were drawn by first choosing a

random date and then selecting N = 10 (20) different bonds. Any of these selections

was accepted only if a minimum number of different quotes within the in sample as

well as the out of sample time frame were observed (in sample frame: chosen date

plus 200 in sample days; out of sample frame: the subsequent 100 trading days). For

both values of N, 250 of such case sets were generated independently.

6.3 A Modified Version of

Memetic Algorithms

6.3.1 Memetic Algorithms and Threshold Accepting

Memetic Algorithms (MA)14 are an evolutionary population based search heuris-

tic where the agents search locally (i.e., modify their current solution), cooperate

with some agents (i.e., produce new solutions by means of a cross-over operator)

and compete with other agents (i.e., challenge their one immediate neighbor and are

challenged by their other immediate neighbor).15 Compared to preceding, “tradi-

tional” evolutionary concepts, the main gist of MA is not only the stronger emphasis

on local search, but also that any decision over whether an individual’s current struc-

ture is replaced with a new structure (be it the modified one, be it the challenger’s)

is based on the same decision function used for the local search part. Compared to

“traditional” local search strategies, the “interaction steps” of the heuristic reduce

the risk of getting stuck in local optima or having a solitaire agent getting lost in

14 See Moscato (1989) and Moscato (1999).

15 See also the presentation in section 2.3.4.
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the solution space. The modifications suggested in this chapter are to use a different

local search principle and to reinforce the current optimum.

In MA, a common method of choice for local search is Simulated Annealing

(SA)16 where the probability for accepting a modification comes from the Metropolis

function

p = min(1,exp(∆F/Ti))

where ∆F is the difference between the current and the new value of the objec-

tive function F of an maximization problem, and Ti is the temperature in the iter-

ation i which is lowered with a cooling factor γ according to Ti = Ti−1 ·γ. With

the Metropolis function, improvements are always accepted and impairments are

rejected randomly (see also Figure 6.1(a)).

Alternatively, the Boltzmann function

p =
1

1+ exp(−∆F/Ti)

can be used. Here, improvements are likely to be accepted (0.5 < p < 1) and im-

pairments are likely to be rejected (0 < p < 0.5), yet in either case the decision is

stochastic (see Figure 6.1(b)).

A variant of Simulated Annealing is Threshold Accepting (TA)17 where improve-

ments are accepted at any rate – and so are impairments given they do not exceed

a certain threshold. If the impairment exceeds the threshold, the change is rejected.

TA therefore has a deterministic acceptance criterion. In the course of iterations, the

threshold is consecutively lowered making the acceptance function less tolerant to

impairments in the objective function (see Figure 6.1(c)).

While the asymptotic convergence results for Threshold Accepting are similar to

those for the Simulated Annealing algorithm,18 the few existing comparative imple-

mentations seem to indicate a slight advantage for Threshold Accepting.19 A possi-

ble disadvantage of TA is the fact that no standard sequence of threshold values is

16 See Kirkpatrick, Gelatt, and Vecchi (1983).

17 See Dueck and Scheuer (1990) and Winker (2001).

18 See Althöfer and Koschnik (1991).

19 See Winker (2001, pp. 109ff).
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(a) Metropolis function (b) Boltzmann function (c) Threshold criterion

Fig. 6.1: Acceptance probabilities for criteria depending on the change in a maximization prob-

lem’s fitness function, ∆F , for different “temperatures” and thresholds

available comparable to the geometric cooling schedule for SA. However, given that

the thresholds have an intuitive interpretation as local differences of the objective

function, a threshold sequence can be constructed from a simulated distribution of

such local differences (see Winker (2001, pp. 145f), for details). This approach is also

followed for the present implementation.

6.3.2 The Elitist Principle

Both SA and TA apply acceptance criteria that allow moving away from the optimum

at the risk of leaving it for good and “not finding back”. This is acceptable or even

advantageous when the optimum is a local one which is to be left, yet baffling when

the agent is already close to the global optimum or when the problem space is rather

smooth. It might therefore be desirable to remember what has been found to be the

optimum so far as this allows determining whether the current solution is obviously

a local one and inferior to already found solutions.

To incorporate a reminder of that past success, we suggest considering not only

the agents that make up the current population, but also one additional individual,

that is neither part of this population nor behaving like all other individuals. This

individual represents the best solution found so far and, in line with the naming

conventions in other methods,20 is denoted elitist. In order to keep the main MA

20 See, e.g., Dorigo, Maniezzo, and Colorni (1996) and section 4.2.2.
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framework unchanged, we allow the elitist to appear only at the competition stage

where she challenges one agent from the population. Whether this agent will or will

not take the elitist’s solution is decided with the same probabilistic principle as for

the “standard” challenges.

By definition, the elitist is at least as good as any of the individuals from the

current population. Under SA’s Metropolis function as well as under TA, being chal-

lenged by the elitist means certain replacement of the challenged individual’s cur-

rent solution. Hence, either approach enforces a hill-climbing strategy as sooner or

later every individual will be set back to the current elitist’s structure. This might

be advantageous and increase the convergence speed if the problem space is rather

smooth without local optima. However, the more local optima there are, the greater

the chances that the elitist represents a local optimum; and reinforcing a local opti-

mum makes it difficult for the individuals to escape it. Remedies for this downside

are a larger population size (which also prevents a meme representing some local

optimum and passing it quickly on to the whole population) or having the elitist

challenge more seldom.21

A central question is how to select the agent that is challenged by the elitist. One

alternative would be to virtually place the elitist on the ring together with the actual

individuals, but where she becomes “visible” only when it is her turn to challenge

and ignored in all other situations. This would imply that the elitist always chal-

lenges the same agent who, whatever the probability function, has a higher proba-

bility of accepting rather than rejecting the elitist’s structure. In the long run this

might reinforce the caveats discussed previously for the acceptance functions. The

alternative would therefore be that the elitist keeps on challenging different agents,

selecting them either according to some deterministic rule or randomly. In our im-

plementation, we went for the perfectly random selection as this performed quite

well in preliminary tests and consumed the least computing time.

21 As indicated, the elitist will impose her structure on the challenged agent under both SA’s Metropolis

function and TA. One way to avoid this sure replacement would be the use of a probability function

where improvements usually have a high, but not a hundred per cent probability to win the conquest

– as is the case with the Boltzmann function. One might expect that this function lowers the peril

of getting stuck in a local optimum as challenged agents with good structure have some chance

to not be imposed with the elitist’s. In preliminary tests, however, we could not find a statistically

significant advantage of one function over the other – and therefore stick to the original Metropolis

function for SA and a negative threshold for TA, respectively.
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FOR m := 1 TO Population size;

xm := ValidRandomStructure;

END;

initialize parameters and variables including acceptance criteria;

FOR i := 1 TO MaxIterations

perform neighborhood search (→ Listing 6.3);

compete (→ Listing 6.4);

perform neighborhood search (→ Listing 6.3);

cooperate (→ Listing 6.5);

adjust Acceptance criterion (SA: Temperature; TA: Threshold);

END;

Listing 6.1: Pseudo-code for the modified Memetic Algorithm

FUNCTION AcceptOver(xnew, xcurrent): Boolean;

determine difference in fitnesses:

∆F = F(xnew)−F(xcurrent);

return TRUE when the following is true (depending on criterion ):

TA: ∆F > Threshold

SA, Metropolis function: rand < exp
(

∆F
/

Ti

)

SA, Boltzmann function: rand <
(

1+ exp
(−∆F

/
Ti

))−1

return FALSE otherwise;

Listing 6.2: Pseudo-code for the acceptance criterion

FOR m := 1 TO Population size;

x′m := xm;

randomly select two assets i and j;

without violating the constraints

lower x′im by random amount;

increase x′jm correspondingly;

IF AcceptOver(x′m, xm) = true (→ Listing (6.2)) THEN

xm := x′m;

END;

END;

Check whether new elitist has been found;

Listing 6.3: Pseudo-code for the neighborhood search procedure in the Modified Memetic Algo-

rithm



6.3. A Modified Version of Memetic Algorithms 157

for later use, remember meme m = 1:

xh := x1;

FOR m := 2 TO Population size;

IF AcceptOver(xm, xm−1) = true (→ Listing (6.2)) THEN

xm−1 := xm;

END;

END;

compare first (before replacement) and last meme :

m := Population size;

IF AcceptOver(xm, xh) = true (→ Listing (6.2)) THEN

xm := xh;

END;

elitist principle, if applicable:

with probability pe

randomly select one meme, m;

IF AcceptOver(xelitist, xm) = true (→ Listing (6.2)) THEN

xm := xelitist;

END;

END;

Listing 6.4: Pseudo-code for the competition procedure in the Modified Memetic Algorithm

Listing 6.1 summarizes the main steps of the algorithm. The algorithm’s com-

putational complexity is merely determined by the risk constraint which has to be

checked for each candidate solution. Under empirical distributions, the S in sam-

ple observations portfolio returns have to be determined (complexity: O(k ·S)) and

sorted (complexity: O(S · ln(S))) to find the worst days. Under the normal distribu-

tion, computing the portfolio’s variance via the assets’ covariance matrix, it demands

O(N2), when determined by first computing the portfolio’s daily in sample returns

and then finding their variance, the complexity is O(S · (k + 4)). Unlike in Genetic

Algorithms, the individuals of a MA need not be ranked, thus the complexity is lin-

ear in the population size and, as usual, linear in the number of iterations.

In a computational study, we tested the SA and TA acceptance functions with and

without the elitist principle. The results are presented in the next section.
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HalfPopSize := Population size / 2

FOR m := 1 TO HalfPopSize;

generate vector with N random (binary/equally distributed) variables bi,

b := [bi]1×N;

mother = m;

father := (m+HalfPopSize);

FOR i := 1 TO N DO

x
daughter
i := bi · xmother

i +(1−bi) · xfather
i ;

xson
i := (1−bi) · xmother

i +bi · xfather
i ;

END;

Ascertain that new weights are valid w.r.t. constraints:

xdaughter := Valid(xdaughter);

xson := Valid(xson);

IF AcceptOver(xdaughter, xmother) = true THEN

xmother := xdaughter; END;

IF AcceptOver(xson, xfather) = true THEN

xfather := xson; END;

END;

check whether new elitist has been found;

Listing 6.5: Pseudo-code for the cooperation procedure in the Modified Memetic Algorithm

6.3.3 Computational Study

For the initial test-bed for the MA, we randomly selected 10 stock portfolios as de-

scribed in section 6.2.1.2. Each of these portfolios had to be optimized under the

VaRemp, ETLemp and the VaRnorm risk constraint. For obvious reasons, the VaR con-

straint for empirically distributed returns has the roughest of the solution surfaces.

ETL has fewer local optima, and the assumption of normally distributed returns

additionally smoothens the solution landscape. Each of the optimization problems

was solved in about 200 independent runs per variant of the algorithm and per risk

constraint. As a version is a priori more desirable when it identifies solutions with

higher values of the objective function, we compared pairs of versions and tested

whether the differences in the reported solutions are statistically significant.22

22 For a general discussion and methodological aspects for the comparison of different heuristics, see,

e.g., Barr, Golden, Kelly, Resende, and Stewart, Jr. (1995).
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specimen portfolio # 2 specimen portfolio # 5

VaRemp

ETLemp

VaRnorm

Fig. 6.2: Cumulated share of reported solutions reaching at least a certain value for the objective

function for different risk constraints for two of the ten specimen portfolios
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constraint SA SA, elitist TA, elitist

VaRemp TA TA (0.01%) TA (0.00%) TA (0.00%)

TA, elitist SA (0.86%) TA, el. (20.42%) —

SA, elitist SA (1.36%) — —

ETLemp TA SA (0.00%) SA, el. (0.00%) TA, el. (0.00%)

TA, elitist SA (0.00%) SA, el. (0.00%) —

SA, elitist SA, el. (10.16%) — —

VaRnorm TA SA (0.00%) SA, el. (0.00%) TA, el. (0.00%)

TA, elitist SA (3.36%) SA, el. (0.00%) —

SA, elitist SA, el. (0.00%) — —

rank

constraint 1 2 3 4

VaRemp TA SA TA, el. SA, el.

ETLemp SA, el. SA TA, el. TA

VaRnorm SA, el. SA TA, el. TA

Tab. 6.1: “Winner” of the pair-wise comparisons of SA and TA without and with elitist strategy,

respectively (brackets: average p values for H0: average fitness is equal for both versions vs. H1:

different means, from a t-test allowing for heteroscedasticity in the samples)

As can be seen from the statistics in Table 6.1 and the specimen cases presented

in Figure 6.2, the computationally most demanding risk constraint, VaRemp, comes

with the broadest bandwidth of reported solutions. Among the four tested versions

for the MA, using the Threshold Accepting principle generally brings the best re-

sult in the sense that on average the reported optima are better than those reported

from the other versions, and that they are rather close together. This implies that

one can expect results produced with the TA version to be at or very close to the

(supposed) global optimum.23 Using SA’s Metropolis function for local search and

the acceptance decisions yields almost equally good results, though with a slightly

higher chance of being off-optimal. For either acceptance criterion, the introduc-

tion of the elitist principle tends to reduce stability. A closer look at these portfo-

lios’ structures confirms that the elitist might increase the chances of getting stuck

23 As we do not have a reference problem with known exact solution, we cannot be sure whether the

best found solution in any of the runs actually is the global optimum or not.
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in a local optimum if this solution has an objective value only slightly below the

(supposed) global optimum yet with a rather different portfolio structure. In this

case, leaving the local optimum and moving towards the global one would demand

a series of accepted impairments. Yet, moving far from any optimum increases the

chances of being replaced with the elitist’s structure when challenged.

ETL has not only more desirable properties from a theoretical point of view,24 it

also has a less demanding problem space than VaR when the empirical distribution

is used. Hence, the bandwidth of the reported solutions narrows as heuristic meth-

ods have a better chance of finding the optimum: whereas for VaRemp, the average

ratio between the optimum and median of the reported solution is 1.105, it is just

1.001 for the ETLemp problems. Comparing the different versions of MA, however,

shows that now TA no longer holds the better acceptance criterion. The main reason

for this might be the fact that TA accepts any change for the worse as long as it is

sufficiently small, whereas in SA such changes might also be rejected. This implies

that under TA, solutions might slowly but persistently drift into the wrong direc-

tion. The introduction of the elitist principle improves the situation by assigning the

challenged agent the best solution found so far. The “standard” version of the MA,

using SA’s Metropolis function, on the other hand reports very stable results with

and without elitists. Though the elitist principle sometimes seemingly freezes the

agents in a local optimum, it also prevents them from being too far from the global

optimum: agents representing local optima that are worse than the elitist’s solutions

will eventually be replaced with the elitist and can then no longer pass their inferior

local solution on to their neighbors. Hence, the versions with elitists report solutions

with higher average objective values than those without for the ETLemp constraint.

The computationally least demanding of the compared risk constraints are those

that assume normally distributed returns. Here, the same effects as for the mod-

els with the ETLemp constraint can be seen, yet with an even smaller bandwidth for

the reported results: the average ratio between the optimum and the median of the

reported solutions is just 1.0001. The TA criterion has a slightly higher chance of

missing the optimum, which can be improved with the elitist principle. More sta-

ble results come from the versions with the Metropolis function: virtually never a

24 ETL satisfies a number of desirable properties of risk measures and therefore is a “coherent risk

measure” as defined by Artzner, Delbaen, Eber, and Heath (1999) whereas VaR isn’t; see, e.g., Pflug

(2000).
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result below the (supposed) global optimum is reported, especially when the elitist

principle is included: the elitist strategy improves the results with a high statistical

significance. However, given the actual magnitude of these improvements as well

as the differences between results from SA and MA, these advantages are rather of

academic interest, but can be more or less neglected in practical application.

Summarizing, the version with TA tends to find solutions that are at or relatively

close to the (supposed) global optimum. This is quite advantageous, when the prob-

lem space is very rough (and the results found with SA tend to be less stable), yet

less favorable when the solution space is rather smooth and the standard version of

MA has hardly any problem of finding the (supposed) global optimum.

As indicated earlier, the elitist strategy tends to amend both local and global

search aspects: at early iterations this principle might well keep agents from moving

too far into the wrong direction, in particular when their neighbors on the ring “got

lost” themselves, too. At later iterations it retrieves agents from what is likely to be

a local optimum that could hardly be escaped otherwise. In preliminary tests, the

elitist strategy turned out to be quite helpful as it appears to make the heuristic

less sensitive towards parameters such as cooling factor and initial temperature (or

finding the threshold sequence) as well as the range of modifications within the local

search. Once all the parameters have undergone the necessary fine tuning and the

(local) search procedures are made more sophisticated, their remaining advantage

(and disadvantage) is merely the higher convergence speed: With the elitist strategy,

the heuristic tends to find the eventually reported solution at an earlier stage than

do the versions without elitists as the “news” of found good solutions is spread faster

– with a small risk of quickly trapping the population at a local optimum.

6.4 Results for Stock Portfolios

6.4.1 Assumed and Resulting Distribution

Working with empirical distributions usually increases the number of local optima

and makes the optimization problem significantly harder than it would be with nor-

mally distributed returns. It therefore appears reasonable to check whether the ad-

ditional efforts are worth the trouble, i.e., whether the actual returns are normally
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distributed or not. As effects due to the optimization process are to be excluded at

this stage, 30 000 portfolios are randomly generated as described above which are

not optimized but assigned random, non-negative asset weights that add up to 1.

Performing a standard Jarque-Bera test, the normality assumption can be rejected

both in sample and out of sample for approximately 75% of the assets and for more

than 67% of the random portfolios.25 The reasons for this large number of rejec-

tions are mainly days with extreme gains or losses, leading to skewness and excess

kurtosis. Hence, in a Kolmogorov-Smirnov test, which is more “tolerant” to outliers,

the rejection rate reduces to about 28% for the assets. Both tests indicate that the

normality assumption for the assets’ returns might lead to specification errors. For

portfolios with random weights, however, the Kolmogorov-Smirnov test rejection

rate for the normality assumption becomes as low as 2%.

For each of these random portfolios (as well as for the included 25 stocks per

portfolio), the VaR was estimated both under empirical (VaRemp) and under normal

distribution (VaRnorm) for a shortfall probability of α = 0.10. Table 6.2 summarizes

how often the estimated VaRemp and VaRnorm, respectively, were actually exceeded

in the consecutive out of sample period. The results indicate that the empirical dis-

tribution appears well apt to estimate the assets’ as well as the portfolios’ VaR: in

particular for shorter out of sample periods, losses beyond the estimated VaR occur

in just slightly more than 10% of all cases which corresponds well with the (accepted

and expected) shortfall probability ofα = 0.10. Under the normal distribution, how-

ever, the risk appears to be overestimated and the actual shortfalls beyond the VaR

limit occur notably less often than the chosen level of α would predict.

When the asset weights are no longer random but actually optimized according

to the introduced selection problem, the resulting portfolios appear to have similar

properties – yet only at first sight. Table 6.3 summarizes the test statistics for the

assets’ and the optimized portfolios’ returns. Based on a Jarque-Bera test, the hy-

pothesis of normal distribution can be rejected for approximately three quarters of

all data series of available individual assets. This ratio is virtually the same for in

sample asset returns as well as out of sample returns (for the next 200 trading days)

and it is not really affected if assets with zero weights are excluded; it therefore cor-

responds well to the results for the random weight portfolios. As this test is based

on the observations’ skewness and kurtosis, this might indicate that none of the risk

25 For all statistical tests, the level of significance is 5%.
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T = length of out assets portfolios with random weights

of sample period VaRemp VaRnorm VaRemp VaRnorm

1 day .1037 .0850 .1002 .0870

10 days .1033 .0847 .1001 .0871

20 days .1036 .0850 .1003 .0873

50 days .1045 .0860 .1014 .0881

100 days .1056 .0871 .1026 .0893

200 days .1080 .0895 .1050 .0916

Tab. 6.2: Frequency of out of sample losses exceeded the estimated VaR (r ≤ rVaR) forα = 0.10

in sample out of sample (200 trading days)

VaRemp ETLemp VaRnorm ETLnorm VaRemp ETLemp VaRnorm ETLnorm

Jarque-Bera test

available assets .741 .741 .741 .741 .755 .755 .755 .755

included assets .744 .747 .738 .738 .754 .754 .757 .757

optimized portfolios .780 .660 .524 .524 .648 .652 .628 .628

Kolmogorov-Smirnov test

available assets .296 .296 .296 .296 .283 .283 .283 .283

included assets .313 .354 .345 .345 .260 .264 .262 .262

optimized portfolios .560 .040 .016 .016 .028 .028 .028 .028

Tab. 6.3: Fraction of assets and optimized portfolios for which the hypothesis of normal distri-

bution can be rejected at the 5% level

constraints leads to a different rate of inclusion or exclusion of assets with certain

characteristics of their higher moments.

A closer look at the resulting portfolios, however, reveals first effects of the dif-

ferent distribution assumptions. Whereas the Jarque-Bera test rejects the normal-

ity assumption for a fraction of 0.7 of the random weight portfolios, assuming the

normal distribution in the risk constraint, VaRnorm, appears to enforce normally

distributed portfolio returns whereas VaRemp has the opposite effect: here, the re-

jection rates are 52.4% and 78%, respectively. With the Kolmogorov-Smirnov test,

these particularities of portfolios optimized under VaRemp become even more evi-

dent. It is just some 29% of the available assets’ data series for which normality can

be rejected (both in and out of sample) and slightly more of the actually included as-

sets that have non-normally distributed in sample returns; these fractions are more
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or less independent of the risk constraint and are also in line with the random weight

portfolios. The resulting portfolios, however, differ massively: Under VaRemp, more

than half of the optimal portfolios are not normally distributed according to the

Kolmogorov-Smirnov test, whereas for all other portfolios the rejection rate is dras-

tically lower: for those under ETLemp, it is 4%, and for the random weight portfolios

as well as those optimized under normality it is just about 2%. This corresponds

with the results for the random weight portfolios.

These results imply that the VaRemp constraint produces portfolios with an in

sample distribution that is far from normal. However, this cannot be attributed to

a hidden preference for assets with fancy distributions: as argued previously, the

included assets do not differ noticeably from the available ones. When looking at

the out of sample distributions, these particularities seem to largely vanish again,

leading to a decreasing number of portfolios for which the normality assumption

can be rejected. For the VaRnorm constrained portfolios, the situation appears to be

the other way round: in sample, more portfolios seem to have normally distributed

returns than out of sample, as the rejection is higher for the out of sample data. This

effect, however, is considerably smaller.

6.4.2 Great Expectations and Broken Promises:

The Resulting Stock Portfolios

It is a well-known problem that under a VaR regime the optimization process does

not really bother about extreme losses and high kurtosis as long as they occur with

a probability of less than α (i.e., do not interfere with the VaR constraint). The mag-

nitude of the excess loss does not count in the risk measure, and if extreme losses

occur relatively seldom, they do not have a strong effect on the expected utility ei-

ther; they might even be preferred when they are paralleled with extreme gains. In

a volatility framework, on the other hand, these extreme losses do show in the risk

measure and are therefore accepted less easily.

This effect can be found in our results for the optimized VaRemp portfolios where

for each portfolio, a higher return is expected than if the same portfolio would have

been optimized under VaRnorm (see Figure 6.3(a)). A closer look at the portfolios’

statistics also shows that VaRemp constrained portfolios have both higher expected
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(a) Expected return (b) Return on first out of sample day

Fig. 6.3: Counter plots for portfolios optimized under different distribution assumptions (gray

solid: 45◦ line; gray dashed: risk constraint rVaR = –0.5 %)

returns as well as higher volatility. Taking into account the large number of these

portfolios that have not normally distributed returns (i.e., mean and volatility are

not sufficient to characterize their distribution), measuring the VaR of these portfo-

lios is likely to depend heavily on the assumed distribution. This problem becomes

apparent when a once optimized portfolio is evaluated with the same risk constraint

yet with a different distribution assumption: whereas for the empirical distribution,

the condition r
emp
VaR = −0.5% is perfectly met by constraint, a VaR estimation for

these portfolios according to rnorm
VaR = E(r)− |uα | ·σ leads to values ranging from

−0.57% to −1.24%. These differences between r
emp
VaR and rnorm

VaR show that evaluating

a VaRemp constrained portfolio with a mean-variance approach leads to a consid-

erable gap between results – a gap that has merely been widened by the use of the

empirical distribution in the optimization process as it is significantly larger than

for portfolios with random weights.

Optimizing under the normality assumption does not lead to such a discrepancy:

If a VaRnorm constrained portfolio is evaluated with the empirical distribution by de-

termining the (α ·T )-th worst of the T observations, the results range from −0.32%

to −0.56%, i.e., are close to and on either side of the accepted value of rVaR =−0.5%

(which, by constraint and assumed distribution, is equal to rnorm
VaR ). Despite its known

specification errors, the normality assumption does not open a similarly large gap
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between the VaR estimates with different distribution assumptions as has been by

using the empirical distribution in the optimization process.

The fact that VaRemp constrained portfolios have non-normal distributions does

not imply that the use of the empirical distribution is necessarily superior to the

models with normal distribution. The downside of VaRemp’s being able to respond

to peculiarities of the in sample data (and actually doing so) becomes evident when

the out of sample performance is analyzed. Figure 6.3(b) illustrates that the returns

on the first out of sample day differ significantly depending on the distribution as-

sumption: When optimized under the empirical distribution, the (extreme) gains

tend to be higher as they are for the same portfolio when optimized under the nor-

mality assumption, yet so are the (extreme) losses.

This mismatch between in sample and out of sample results is not just observ-

able on the first out of sample day, but can also be observed for longer out of sample

periods (see Table 6.4). The original risk constraint demands that in a fraction α of

all trading days the returns must not fall below rVaR = −0.5%; portfolios optimized

under the VaRemp constraint, however, actually generate returns of about −1% or

even less in α · T of the T = 10, 20, 50, 100, and 200 trading days following the in

sample period. The incurred VaR is therefore at least twice the original limit. The

actual VaR is therefore drastically underestimated by the empirical distribution –

yet would have been announced by these portfolios’ volatilities which would have

predicted a significantly higher VaR than the empirical distribution. Given these re-

sults, it is not surprising that VaRemp constrained portfolios also violate the original

limit of rVaR too often: the given risk limit of rVaR = −0.5% is exceeded in 20.7% up

to 23.6% of the out of sample days, which is more than twice the specified value of α

= 0.1.

Out of sample gains and losses of portfolios optimized under the normality as-

sumption are significantly closer to the original limit. Here, the actual return real-

ized in α of the out of sample days is about −0.6%. The estimated rVaR is exceeded

more often than assumed by α and as had been for the random weight portfolios;

yet the deviations between the expected and the actually incurred frequency is sig-

nificantly smaller under the normality assumption than under empirical distrib-

utions. These differences can partially be attributed to the specification errors of

the normal distribution. The results from additional computational studies for this

data set show that more sophisticated parameter estimations (such as estimating the
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T = length of out of return on (α ·T )-th worst day frequency of r ≤ rVaR

of sample period VaRemp VaRnorm VaRemp VaRnorm

1 day — — .2360 .1480

10 days –1.28% –0.83% .2132 .1336

20 days –1.10% –0.69% .2164 .1308

50 days –0.99% –0.64% .2070 .1270

100 days –1.00% –0.64% .2138 .1357

200 days –1.00% –0.64% .2176 .1388

Tab. 6.4: Out of sample results for portfolios optimized under different distribution assumptions

and VaR with rVaR = –0.5% and α = 0.10

volatility with a GARCH model) can improve the reliability and lead to smaller dif-

ferences between the predicted and the actual frequency of shortfalls. The quality of

the predictions can also benefit from the use of alternative parametric distributions,

as suggested, e.g., by Buckley, Comezaña, Djerroud, and Seco (2003) or de Beus,

Bressers, and de Graaf (2003). Also, own experiments with alternative parametric

distributions such as the SU -normal26 indicate that there are better choices than the

standard normal distribution. However, as this study is merely concerned with the

effects of empirical distributions, a more detailed discussion of the results on para-

metric methods would go beyond its scope.

As argued before, VaRemp portfolios have not just higher expected returns than

their VaRnorm counterparts, they also have higher volatilities. VaR does not mea-

sure the magnitude of losses exceeding the rVaR limit, but only their frequency. This

provokes tailor-made solution under the empirical distribution and allows manip-

ulating the weights such that the in sample days with returns close to the critical

value, rVaR, are mostly days where the returns are actually slightly above rVaR and

therefore do not count towards the VaR criterion. Hence, when the VaR limit is ex-

ceeded, the failure tends to be high, but the optimization process ignores that the

higher expected return comes at the expense of higher volatility. Out of sample, this

“trick” of avoiding slight violations of the rVaR constraints will not hold any longer

and days with returns close to rVaR will include days above and below rVaR. As shown

previously, the actual out of sample distribution will be much closer to the normal

26 See Johnson (1949).
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T = length of out of risk constraint random

of sample period VaRemp ETLemp VaRnorm ETLnorm weights

10 days .044 .060 .080 .080 .047

20 days .068 .072 .072 .072 .049

50 days .100 .088 .100 .100 .050

100 days .272 .168 .176 .176 .067

200 days .496 .240 .248 .248 .085

Tab. 6.5: Fraction of portfolios with significantly different in sample and out of sample distrib-

utions at a 5% level of significance based on a Kolmogorov-Smirnov test

distribution as the in sample distribution would suggest. Hence, out of sample the

high volatility will show up in the increased number of days where the original VaR

limit is violated as well as the higher losses in the (α · T ) worst days. The longer

the out of sample period, the more obvious these differences between the in sam-

ple and out of sample distributions become (see Table 6.5). Figures 6.4(a) and 6.4(b)

illustrate this undesired feature for one typical specimen portfolio.

This, however, is also true for the VaRnorm constrained portfolios, though to a

far lesser degree. The differences between in sample and out of sample distributions

are more distinct when compared to portfolios with random weights, hence the op-

timization process under the normality assumption, too, has an effect on the result-

ing distributions’ properties. Compared to the VaRemp constrained portfolios, how-

ever, the differences are by magnitude smaller (see Table 6.5). More important, the

data fitting around the rVaR limit is largely avoided when the optimization process

is based on the parametric distribution (see Figures 6.4(c) and 6.4(d)). As indicated

above, more sophisticated parametric approaches might have additional beneficial

effects.

When ETL is the risk constraint of choice, the differences in the optimized port-

folios due to the assumed distribution are observable, yet not very distinct. Here,

optimizing under the assumption of normally distributed returns leads to out of

sample statistics that are closer to the values originally aimed at, while the use of the

empirical distribution produces slightly better in sample and slightly worse out of

sample results. As the ETL criterion does look at the magnitude of the losses when

rVaR is exceeded, accepting high losses becomes less attractive, and so does avoiding
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(a) VaRemp constrained, in sample (b) VaRemp constrained, out of sample

(c) VaRnorm constrained, in sample (d) VaRnorm constrained, out of sample

Fig. 6.4: Effect of the risk constraint on the return distribution for specimen portfolio No. 87

(gray lines: standard normal distribution based on the respective in sample mean and variance;

straight vertical line at rVaR = –0.5%)

slight violations of the critical value, rVaR. The empirical distribution’s “advantage”

of tailoring the solution is strongly reduced, and the distribution assumption has no

noticeable consequences.

Under the assumption of normally distributed returns, the decision of whether

to use ETL or VaR does not matter any more. As can be seen from the myopic opti-

mization model, the constraints differ only in the weight on the portfolio’s volatility,

namely |uα | and φ(uα)
/
α for VaRnorm and for ETLnorm, respectively. As both weights

are constant, the risk constraint effects the amount, (1− q), invested into the safe

asset rather than the risky portfolio itself. Nonetheless, the fraction of portfolios

with different in sample and out of sample distribution is noticeably higher than

for random weight portfolios, indicating that here, too, some undesired data-fitting

might have taken place. With this study’s focus on empirical distributions and VaR,

however, this issue has to be left to future research.
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In addition to the presented results, additional computational studies have been

performed with alternative numbers of assets included in the portfolios and with

alternative critical values for α and rVaR. The main findings of the presented results,

however, remain unaffected: Under VaRemp the optimized portfolios promise higher

returns and utility, but out of sample violate the risk constraint distinctly more often

than their VaRnorm counterparts, and these differences are reduced under ETL.

6.5 Results for Bond Portfolios

6.5.1 Assumed and Resulting Distribution

The decision of whether to estimate the VaR with the normal (or any other paramet-

ric) rather than the empirical distribution depends on how well the main properties

of the observed data for the assets (or at least, via the CLT, the resulting portfo-

lios) can be captured with the parametric distribution. For the given data set, the

portfolio values appear far from normally distributed: regardless of the method for

VaR estimation, there is hardly any optimized portfolio where the null hypothesis of

normal distributed price changes cannot be rejected at the usual 5% level of signif-

icance both based on a standard Jarque-Bera test (as can be seen in Table 6.6) and

the Kolmogorov-Smirnow test. Looking at the bond prices the null is rejected for

virtually any of the assets in the data set – the details can therefore be omitted in

the sense of brevity. The main reasons for the high rate of rejection are the leptokur-

tic and highly peaked distributions in the portfolios: even when taking into account

that the higher moments do not necessarily exist (and therefore the Jarque-Bera test,

using skewness and kurtosis, might not be appropriate) and calculating the Selector

statistics27 the picture remains more or less unchanged (see Table 6.7).

At first sight, this seems to confirm the view that the normality assumption in the

optimization process might be inadequate and that the use of empirical distributions

might be the better choice: For most of the portfolios (see Table 6.8) and for an even

higher share of the included assets, the hypothesis of same in and out of sample

distributions cannot be rejected, hence using past realizations for estimates of future

outcomes appears legitimate.

27 See Schmid and Trede (2003).
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N = 10, α = ... N = 20, α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

in
sa

m
p

le empirical .984 .988 .988 .984 .984 .996

empirical, weighted .984 .992 .992 .988 .992 .992

normal .984 .988 .988 .984 .984 .988

normal, weighted .984 .988 .984 .988 .988 .988

o
u

t
o

f
sa

m
p

le empirical .904 .896 .912 .900 .908 .916

empirical, weighted .896 .912 .896 .908 .900 .904

normal .900 .900 .908 .884 .896 .912

normal, weighted .912 .908 .900 .908 .908 .908

Tab. 6.6: Fraction of portfolios for which the normality assumption can be rejected (Jarque-Bera

test, 5% significance)

N = 10, α = ... N = 20,α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

in
sa

m
p

le empirical .976 .988 .988 .968 1.000 1.000

empirical, weighted .988 .992 .988 .984 1.000 1.000

normal .988 .988 .988 1.000 1.000 1.000

normal, weighted .988 .988 .988 1.000 .996 1.000

o
u

t
o

f
sa

m
p

le empirical .948 .960 .960 .924 .944 .956

empirical, weighted .940 .956 .964 .940 .936 .936

normal .944 .952 .944 .924 .928 .916

normal, weighted .948 .956 .952 .944 .924 .940

Tab. 6.7: Fraction of portfolios for which normal distribution can be rejected (Selector Statistics

test for leptokurtosis, 5% significance)

N = 10, α = ... N = 20, α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical .200 .236 .204 .288 .324 .304

empirical, weighted .184 .204 .200 .296 .308 .320

normal .204 .220 .220 .300 .296 .300

normal, weighted .204 .204 .220 .288 .292 .312

Tab. 6.8: Fraction of portfolios were the H0: same in sample and out of sample distributions (100

out of sample days) can be rejected at the 5% significance level (Kolmogorov-Smirnov test)
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N = 10, α = ... N = 20, α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical 2.6 % 4.2% 9.1% 3.2% 5.6% 10.2%

empirical, weighted 2.4% 4.1% 8.2% 3.0% 5.4% 9.9%

normal 2.9% 4.1% 6.4% 3.2% 5.3% 8.1%

normal, weighted 2.8% 4.0% 6.2% 3.1% 5.1% 8.0%

Tab. 6.9: Percentage of portfolios with random asset weights exceeding the estimated VaR limit

on the first out of sample day for the two case sets with a confidence level of α

To test whether the distributions are stable and allow reliable estimates of the

VaR, we repeatedly generated random weights for any bundle of assets in the two

case sets where the integer and the budget constraints are the only restrictions. Then,

the share of portfolios with out of sample losses higher than the expected VaR is de-

termined. As can be seen from Table 6.9 for the first out of sample day, the use of the

empirical distributions allows for estimations of the VaR such that the frequency

of larger losses corresponds more or less to the respective confidence level. Under

the normality assumption, higher values for α result in overly cautious estimations

of the VaR – violations of which occur less often than expected. In particular for

higher values of α, the empirical distribution produces more reliable results than

the normal distribution. This relative advantage remains unaffected when longer

out of sample periods are used for evaluation. For smaller values of α, the advan-

tage of the empirical distribution is less apparent; with respect to the number of in

sample observations, the shortfall probability of α = 2.5% refers to the worst 5 ob-

servations, estimates of rVaR are therefore more difficult – and so are comparisons

of the differences between empirical and parametric distributions. In the light of the

above discussion about the need for more observations when α is low, the results for

low α’s will be reported for the sake of completeness, yet the main discussion will

focus on α = 10% where there are more observations for returns at or below the VaR

limit and the presented conclusions are all supported by the usual levels of statistical

significance.
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N = 10, α = ... N = 20, α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

empirical 5.2% 7.6% 16.8% 8.8% 10.8% 16.9%

empirical weighted 6.0% 8.0% 15.2% 8.4% 10.8% 16.1%

normal 3.2% 3.6% 7.2% 4.4% 6.8% 8.4%

normal weighted 3.2% 4.0% 6.0% 3.6% 5.6% 6.8%

Tab. 6.10: Percentage of optimized portfolios exceeding the estimated VaR, V0 ·E
(
δVaR

)
, on the

first out of sample day for the two case sets with a confidence level of α

6.5.2 The Hidden Risks in Optimized Bond Portfolios

Unlike portfolios with random weights, the value of portfolios that are optimized

under the empirical distribution will fall significantly more often belowV0 ·E
(
δVaR

)
,

the expected VaR28, than the chosen confidence level α. On the first out of sample

day (Table 6.10) the actual frequency of excessive shortfalls will be 1.5 to three times

the frequency originally expected (depending on α and case set). When the same

portfolios are optimized under the normal distribution, however, the frequency will

be underestimated only for small α’s, for high confidence levels, on the other hand,

the frequency will be overestimated, i.e., the VaR is estimated too cautiously. The

assumption of the normal distribution leads (for both optimized and random port-

folios) to more cautious estimates of the VaR when α is high. The extreme leptokur-

tosis of the actual distributions cannot be captured by the normal distribution, and

as a result it is hardly possible to get reliable estimates for the VaR limit: For large

confidence levels of α, the VaR limit is estimated too far away from the expected

value, for low confidence levels.29

The smaller α, the more only extreme outliers contribute to the shortfalls – the

estimated frequencies for the first out of sample day are therefore more sensible

to the chosen sample. Table 6.11 therefore takes into account larger out of sample

28 Due to the specification and the chosen assets, the critical VaR, the out of sample data were com-

pared to, is set to E
(
δVaR

)
≤ δVaR, the loss actually expected with the planed probability of α.

29 For small values of α the opposite can be observed: the VaR is underestimated, and the limit is

violated too often. With respect to the data set, however, tests with smaller values of α than the ones

presented were not possible, a more detailed discussion of these effects has therefore be left to future

research.
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N = 10, α = ... N = 20, α = ...

method 2.5% 5.0% 10.0% 2.5% 5.0% 10.0%

T
o
o
s
=

50 empirical 7.3% 9.9% 17.8% 9.8% 13.5% 19.7%

empirical weighted 7.2% 9.8% 16.4% 9.3% 12.9% 18.8%

normal 5.6% 6.8% 8.9% 7.2% 8.9% 11.6%

normal weighted 5.3% 6.4% 8.5% 6.8% 8.4% 11.0%

T
o
o
s
=

10
0 empirical 7.8% 10.6% 18.6% 10.4% 14.0% 20.1%

empirical weighted 7.8% 10.5% 17.2% 10.1% 13.4% 19.2%

normal 6.2% 7.5% 9.6% 8.0% 9.6% 12.1%

normal weighted 6.0% 7.2% 9.3% 7.7% 9.2% 11.6%

Tab. 6.11: Average percentage of the first Toos out of sample days where the loss exceeds the

expected VaR for optimized portfolios

periods, namely the first 50 and 100 out of sample trading days for the N = 10 and the

N = 20 case sets, respectively. The basic conclusion from the first out of sample day

that has been drawn for the “empirically” optimized portfolios, however, remains

unchanged: the actual percentage of cases where the VaR is violated is significantly

higher than the accepted level of α. For the optimization results under the normal

distribution, the frequencies of excessive shortfalls increase; resulting figures closer

to α when α is large, yet exceeding it significantly when α is low. In the light of the

results from the previous’ sections, one can conclude that the specification errors of

the normal distribution become more obvious in these cases.

The advantage of the empirical over the normal distribution that had been iden-

tified for non-optimized portfolios and the statistical properties of the actual dis-

tribution, seems therefore lost and in some cases even reverted into the opposite

when a VaR constraint is used in the optimization process. Despite its specification

errors, the normal distribution seems to cause fewer problems than using empirical

distributions that has been shown to be closer to reality for the single assets and

non-optimized portfolios.

The major reason for this is that VaR is a quantile risk measure and therefore

focuses on the number of shortfalls rather than their magnitude.30 This can and

will be exploited when empirical distributions are used. When optimizing under

30 See also Artzner, Delbaen, Eber, and Heath (1999).
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an empirical distribution, a number of excessive losses beyond the specified VaR

limit will contribute equally to the confidence level α as would the same number of

small losses; the optimization process will therefore “favor” losses that come with

high yields. Since it is usually the high yield bonds that exhibit massive losses in the

past, these bonds will be given high weights. The problems arising from this effect

are reinforced when the high yield of a bond comes from a small number of high

losses rather than several small losses: a loss beyond the specified VaR limit will

be considered a rare event, and the loss limit estimated with the confidence level

α will be distinctly below the accepted limit, i.e., E
(
δVaR

)
≪ δVaR. Out of sample,

this expected limit might turn out to be too optimistic and is therefore violated too

often, hence the observed percentage of days with out of sample losses beyond the

expected VaR is distinctly higher than the originally accepted level of α.

In addition, there is a hidden danger of data fitting for the empirical distribu-

tion: Slight in sample violations of the specified VaR limit of δVaR can (and will)

sometimes be avoided by slight changes in the combination of assets’ weights that

have only a minor effect on the portfolio yield. As a consequence, there might be

more cases close to the specified VaR than the investor is aware of since they are just

slightly above the limit and therefore do not count towards the levelα; out of sample,

however, this hidden risk causes more shortfalls than expected.31

Both effects become more apparent from the scatter plots in Figure 6.5 where

the results for portfolios optimized under empirical distributions are directly com-

pared to the results when optimized under normal distribution. The magnitude of

extreme losses shows up when the risk is measured in terms of volatility: “empirical”

portfolios accept a standard deviation of up to CHF 20 000 and, on rare occasions,

even more. When optimizing under the normality assumption, the definition of VaR

imposes an implicit upper limit on the volatility of σVτ ≤ E(Vτ )−V0·(1−δVaR)
uα

, which,

for α = 0.1, is below CHF 10 000 for any portfolio in the case set. The volatility will

be (approximately) the same regardless of the assumed distribution only if the “nor-

mal” portfolios have low volatility; when the optimal portfolios under normality

actually make use of the specified risk limit (in sample), then their empirical coun-

31 Because of the peakedness of the distributions of bond returns and the discussed effect, that

E
(
δVaR

)
< δVaR for larger values of α, this effect of data fitting does not show as often as for as-

sets with other empirical distributions such as stocks; see Maringer (2003a).
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(a) Standard deviation of next day’s value of the

portfolio

(b) Loss expected with a probability of α

Fig. 6.5: Expected standard deviation and VaR of optimized portfolios for the N = 20 case set

with α = 0.1 (gray: 45◦ line; gray dashed: risk constraint at CHF –10 000)

terparts are very likely to accept large variations in the respective portfolio’s value

(see Figure 6.5(a)).

Figure 6.5(b) illustrates that, at the same time, there is a considerable number

of cases where, when optimized under empirical distributions, the portfolios have

smaller expected loss than one would expect from a corresponding portfolio with

the same assets yet optimized under normal distribution and therefore different as-

set weights. When α is chosen rather large, the peakedness of the empirical distri-

bution results in a VaR limit closer to the portfolio’s expected value than predicted

when the normal distribution is assumed: the rare, yet extreme in sample losses

are perfectly ignored by the empirical distribution. If these extreme losses are rare

enough, it might even happen that given a sufficiently large confidence level the es-

timated VaR limit will be a gain rather than a loss. This can be observed already

for some portfolios in the α = 0.1 case. Under the normal distribution, on the other

hand, they do show up. Under empirical distributions, the investor will therefore be

more inclined to accept extreme (in sample) losses without violating the risk con-

straint in sample; under the normal distribution, the investor will be more reluctant.

This explains why a portfolio optimized under the empirical distribution will have

a higher expected yield than a corresponding portfolio containing the same assets

yet optimized under the normality assumption. Figure 6.6(a) illustrates these dif-

ferences for portfolios with N = 20 bonds. The larger the set of available assets, the

more is the investor able to make use of this fact. Not surprisingly, the deviations

between accepted α and actual percentage of out of sample shortfalls therefore in-
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(a) Expected yield (b) Gains and losses

Fig. 6.6: Expected portfolio yield (per annum) and gains & losses on the first out of sample day

depending on the distribution assumption for the N = 20 case set and α = 0.1 (gray: 45◦ line)

crease, when N is larger, i.e., the investor has a larger set of alternatives to choose

from (see Tables 6.10 and 6.11).

The consequences of these effects are twofold: First, the “empirical” optimizer

underestimates the chances for exceeding the VaR limit since the scenarios where

the limit is narrowly not exceeded in sample have a fair chance of exceeding it out

of sample – hence the percentage of cases or days with losses beyond E
(
δVaR

)
·V0 is

higher than α, i.e., the expected percentage. Second, since the “empirical” optimizer

does accept extreme losses in sample, she has a good chance of facing them out

of sample as well. The “empirical” investor will therefore not only encounter losses

exceeding the estimated VaR limit more frequently than the “normal” investor, the

“empirical” investor’s losses will also be higher, as can be seen from Figure 6.6(b).

To what extent the deficiencies of empirical distributions are exploited in the op-

timization process depends on several aspects where the number of the in sample

observations or simulations certainly is a very crucial one. Long time series, how-

ever, are not always available nor can they be reliably generated.32 In addition the

stability of the distribution becomes a major issue. Including more historic data

might bring only diminishing contributions when weighted values (or alternative

prediction models such as GARCH models) are used. Detailed tests of these aspects,

however, were not possible with the available data and must therefore be left to fu-

ture research.

32 The problem of small sample sizes becomes even more apparent in practical when credit portfolios

or non-publicly traded assets are considered instead of publicly traded assets.
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6.6 Conclusion

The main findings from the empirical studies in this chapter are threefold: (i) for

the used data the assumption of normal distribution can mostly be rejected and the

empirical distribution is superior to the normal distribution; (ii) Value at Risk is a

reliable measure of risk, in particular when used in conjunction with empirical dis-

tributions – and (iii) the opposite of the previous two points becomes true when

Value at Risk under empirical distributions is used as an explicit constraint on port-

folio risk in an optimization setting. Though empirical distributions are superior in

describing the assets return and potential losses, this advantage is destroyed when

included in the optimization process.

The reason for this can be found in the underlying concept: Value at Risk fo-

cuses on a single point of the distribution of returns or prices, namely the loss that

will not be exceeded with a certain probability, but does not directly account for

the magnitude of losses exceeding this limit. When VaR is estimated via empirical

distributions based on historic simulation, as is done in this study, or Monte Carlo

simulations, extreme losses might be ignored and assets, exhibiting these extreme

losses, will readily be included in the portfolio when they have a sufficiently high ex-

pected return. Also, the use of empirical distributions encourages the optimizer to

manipulate the asset weights in a way that losses close to the VaR limit are just small

enough so that this limit is not exceeded and these losses will not count towards the

shortfall probability. Both effects lead to severe under-estimating the actual risk of

the portfolio.

Even when asset returns are not normally distributed, the assumption of this

parametric distribution leads to more reliable risk estimations because extreme

losses enter the optimization process via the volatility. When VaR is considered in

the optimization process, parametric distributions might therefore be superior, de-

spite the fact that their imprecision in measuring risk lead to imprecise estimates.

The results from this study suggest that empirical distributions should be used

very reluctantly in VaR optimization, yet also that more research on the use of para-

metric distributions appears desirable.



Chapter 7

Finding Relevant Risk Factors in

Asset Pricing

7.1 Introduction

Explaining past stock returns and reliably predicting future performance has been

a major issue in the finance literature ever since. Meanwhile, several theoretically

sound and well-founded equilibrium models exist, arguably the most popular of

these being William Sharpe’s single index model, the Capital Asset Pricing Model

(CAPM).1 The CAPM estimates an asset’s risk premium according to its contribution

and relation to the market risk. The main reason for the popularity of the CAPM, its

simplicity, has also given reason for critique, as relying on a single factor, the market

index, might leave too much of an asset’s risk unexplained. Multi-index models such

as Stephen A. Ross’s Arbitrage Pricing Theory (APT),2 on the other hand, usually

follow the intuitively appealing idea that asset prices are mainly driven by several

factor prices that, ideally, have some fundamental and plausible relationship to the

underlying company. In this case, deviations between an asset’s actual return and its

expected return can be largely traced back to shifts in the corresponding factors.

The basic version of the APT, however, does not necessarily demand causal de-

pendencies between factors and asset prices: it derives its indices solely on statistical

1 For a detailed presentation of the original 1964 paper and follow-up literature, see, e.g., Sharpe,

Alexander, and Bailey (2003). A short introduction can be found in section 1.2.2.

2 See, e.g., Ross (1976) and Ross (1977) as well as Roll and Ross (1980). A presentation of relevant

literature can be found in Shukla (1997). See also section 1.2.4.
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grounds from the available asset prices in a complete market. Hence, neither the re-

sulting factors nor their weights for the priced asset have an obvious (economic)

meaning – nor need they have to have one as this approach is not meant to identify

economic fundamentals. Given a complete market where the number of possible

states equals the number of available, linearly independent assets from which fac-

tors can be derived, the APT replicates any asset by finding “portfolios” of indices

(or factors) that generate the same state dependent payoffs as the asset. The asset’s

fair price can therefore be determined via the law of one price as the prices of the

indices are known. When the market is not complete, then the security’s return can

still be expressed with a linear regression model (LRM) though in this case there

remains some residual risk.3

In practice a perfect ex post (let alone, ex ante) replication of payoffs or returns is

hardly possible: deriving the market specific indices needed for the theoretical ver-

sion of the APT is not possible, and readily available factors have to be used instead.

Applying the APT therefore involves finding an acceptable trade-off between model

size and model reliability by selecting a (preferably small) set of factors that captures

as much of the asset’s price changes as possible. The problem of factor selection is

therefore crucial for the successful application of the APT. The literature offers two

basic types of factor selection: The first group chooses factors that are assumed to

have some economically plausible and fundamental relationship to the considered

asset, whereas the second group merely relies on statistical analyses.

The use of fundamental factors demands either detailed knowledge of the firm

and the availability of suitable factors on an industry level (which usually differ be-

tween firms), or the use of general economic factors that are not separately selected

for individual assets but work across firms, industries and markets. The use of such

economically plausible factors aims to find long term relationships and explana-

tions for price movements. Most of the work so far has focused on macroeconomic

factors, most prominent the results in Chen, Roll, and Ross (1986) and Burmeister

and Wall (1986). This is largely in line with, e.g., the recommendations by BIRR®

Portfolio Analysis, Inc., a consulting company founded by finance professors and

APT-theorists, Edwin Burmeister, Roger Ibbotson, Stephen Ross, and Richard Roll,

who apply the APT in their risk models. The focus of their models is on “unexpected

3 Quantitative and econometric aspects of financial time series and different ways of modeling them

are presented, e.g., in Gourieroux and Jasiak (2001).
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changes in long- and short-term interest rates, inflation, the real growth rate of the

economy, and market sentiment.”4

Macroeconomic factors are appealing because they capture the fundamentals of

the general economic situation, they are likely to be stable over time, they are easily

available, and the “standard” selection of factors tends to be suitable for most stocks.

However, macroeconomic factors usually come with two major downsides: (i) much

like the CAPM’s sole use of the market index, they focus on general market aspects

and do not leave much room for industry or firm specifics, and (ii) factors such as

inflation are not available on a short term basis, hence short term effects might be

neglected and the estimation of the factor weights demands data over a long period

of time assuming stationarity.

Other authors therefore use factors that are likely to be firm or industry specific.5

Such tailor-made sets of factors can be expected to outperform a bundle based on

rather general guidelines. As with the selection of macroeconomic factors, the bun-

dles of firm specific factors are generally found in two ways: they are either selected

a priori, based on economic or fundamental considerations, or they are found by

some statistical optimization process. Either alternative has advantages and disad-

vantages: the former ensures quick results, but reliable factors might be excluded

too early; the latter might produce models that allow for better estimations, yet the

intuition behind the found combination might get lost.

Though not desirable from an economists’ point of view, selecting factors solely

on statistical grounds might be reasonable in several circumstances, e.g., when there

is not enough information on the considered firm or data series (or, to be more pre-

cise, the cost of gathering and evaluating this information is too high); when there

are not enough fundamental data to match and find reliable factor weights; when

short term dependencies outweigh long term relationships; or when the number of

equally plausible (or implausible) factors has to be reduced to avoid overfitting. In

addition, statistical factor selection can help to get a first idea of which factors might

or might not have a link to some asset’s prices. However, it does not guarantee to

identify fundamental and economically plausible relationships.

4 See www.birr.com and www.birr.com/sector.cfm.

5 See., e.g., the results in King (1966) (that actually precede the APT) or, more recently, Berry,

Burmeister, and McElroy (1988), Fama and French (1992) and Brennan, Chordia, and Subrah-

manyam (1998).
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Model selection is a computationally demanding task. Not least due to the large

number of alternatives that usually comes with the factor selection problem, sta-

tistical approaches tend to start with a rather small pool of available factors which

has undergone an a priori selection. Pesaran and Timmermann (1995), e.g., restrict

themselves to nine factors from which they can select any combination of regres-

sors and find the optimum by testing all possible solutions. For larger problems,

however, complete enumeration is not possible and alternatives have to be found.

Winker (2001), e.g., shows that optimization heuristics are one way to come to grips

with model selection problems.

Based on Maringer (2004),6 the main goal of this chapter is to present a method

that allows for searching relevant risk factors without a priori knowledge of the firm’s

activities and without a priori reductions of the problem space. Section 7.2 formal-

izes the problem and describes the heuristic optimization approach that will be em-

ployed. The results of a computational study are reported in section 7.3. The chapter

concludes with a critical discussion of the results and offers an outlook on possible

extensions.

7.2 The Selection of Suitable Factors

7.2.1 The Optimization Problem

Let r f t and rat denote the return of factor f and the asset a, respectively, in period t.

Given the validity of the APT and the underlying concepts,7 asset a’s return can be

expressed according to

rat = ba0 + ∑
f∈B

ba f · r f t +uat

6 This chapter is a revised version of Maringer, D. (2004b), “Finding Relevant Risk Factors in As-

set Pricing,” Computational Statistics and Data Analysis, 47(2), 339–352. Elsevier’s permission to

reprint is gratefully acknowledged.

7 Strictly speaking, this process and the assumed validity of a LRM are the underlying concepts in

Ross’s derivation rather than the result. The relationship between a LRM and the APT is discussed

in more in detail, e.g., in Sharpe, Alexander, and Bailey (2003).
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where ba f is the estimated sensitivity of rat to the return of factor f and comes from

a standard OLS multiple regression. ba0 is the estimated intercept, here introduced

mainly for statistical reasons.8 uat is the residual with uat ∼ N
(

0,σ2
ua

)
.

The goal of the optimization problem is to find a bundle B that consists of k

factors and that explains as much of ra as possible. For the computational study,

we used factors some of which have a close to perfect pair-wise correlation. Having

such a couple in the bundle, the regression (if possible) might yield factor weights

that are far from intuitively plausible, and the models lose reliability when out of

sample tests are performed. As a simple measure to avoid these undesired effects of

multi-collinearity, an upper limit, ρ2
max, to the squared correlation between any two

selected factors f and g in the bundle, ρ2
f g, is introduced.

The quality of the model is measured by R2.

The optimization problem for asset a can be stated as follows:

max
B

R2
a = 1− ∑t u2

at

∑t (rat − r̄a)
2

subject to

uat = rat −
(

ba0 + ∑
f∈B

ba f · r f t

)

|B| = k

ba = [ba0 ba1 ... bak]
′ =

(
f ′ f

)−1
f ′a

with f =
[
1 [r f t ] f∈B

]
and a = [rat ]

ρ2
f g ≤ ρ2

max ∀ f ,g ∈ B and f �= g

where r̄a is the arithmetic mean return of asset a. uat is the residual, i.e., the part of

the asset’s return not captured by the regression model. f and a are the matrix and

vector of factor and asset returns, respectively; ba are the factor weights for asset a

subject to the selected factors and coming from a standard linear regression model.

8 In passing, note that given an equilibrium situation, ba0 also captures the risk-free return; see equa-

tions (1.22) and (1.23).
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7.2.2 Memetic Algorithms

Introduced by Pablo Moscato, Memetic Algorithms (MA) are a new meta-heuristic

that combines local search with global search.9 The basic idea is to have a population

of cooperating, competing, and locally searching agents. The original idea is based

on what Richard Dawkins calls memes, units of culture or knowledge that are self-

replicating and changing with a tendency to spread.10

The local search part is based on the Simulated Annealing (SA) principle pre-

sented in Kirkpatrick, Gelatt, and Vecchi (1983). This method starts with some ran-

dom structure and repeatedly suggests slight modifications. Modifications for the

better are always accepted; modifications that lower the fitness of the objective func-

tion are accepted with a decreasing probability (depending on the magnitude of the

impairment and the progress of the algorithm).

Unlike in other evolution based algorithms, MA does not rank its individuals

according to their (relative) fitness, but arranges them in a fixed structure. Global

search then includes competition where immediate neighbors challenge each other.

Based on the same acceptance criterion as in the local search part, the challenger

will impose her solution on the challenged agent. Global search also includes coop-

eration by a standard cross-over operation with mating couples chosen due to their

position within the population’s structure.

Applied to the factor selection problem, each individual of the population starts

off with a feasible bundle of factors. Local search means that one or two of the current

bundle’s factors are exchanged heuristically for other factors (without violating the

constraints).11

As indicated, agents cooperate by mating with some other agent which (unlike

in most evolutionary algorithms) is not chosen according to her fitness but to her

9 See Moscato (1989, 1999) and the presentation in section 2.3.4.

10 See Dawkins (1976).

11 For the case that k is an upper limit rather than a fixed value, the algorithm does not necessar-

ily exchange factors but excludes some and/or includes others such that the constraint |B| ≤ k is

not violated. In this case, an alternative objective function to be maximized would be the adjusted

goodness of fit measure, R2
adj = 1− (1−R2) · (N−1)/(N−|B|) where N is the number of in sample

observations.
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“geographic” position. If the population consists of P agents (with P being an even

number and each agent having a fixed index), the agent i = 1... P
/

2 will mate with

agent j = i + P
/

2. The two children are generated by a cross-over operator12 where

each offspring inherits one part of the mothering and the other of the fathering agent

(given that none of the constraints is violated). Competition resembles the “survival

of the fittest” concept as any agent i is challenged by her neighbor n = i + 1. With

the acceptance criterion from the local search part, i has a chance of withstanding n

(i.e., i will not accept n’s solution) only if n’s fitness is lower than i’s.

The algorithm was implemented using Matlab 6 on a Pentium IV 1.8 GHz. Each

problem was solved repeatedly and independently, the reported results refer to the

best solution of these runs. The computational complexity of the algorithm is given

by the estimation of the model weights for a given selection and therefore quadratic

in k. The CPU time needed for an independent optimization run was about 20 sec-

onds for k = 5.

7.3 Computational Study

7.3.1 Data and Model Settings

In order to apply the methodology to the selection problem as presented in the pre-

vious section, we use daily data of the S&P 100 stocks over the horizon of Novem-

ber 1995 through November 2000. For the main study, these data were split into six

time frames consisting of 200 trading days for the (in sample) regression plus 100

trading days for an (out of sample) test period. Since all the models are estimated

separately, we allow the out of sample period to overlap with the next problem’s in

sample period. The set of candidate factors is made up of 103 Morgan Stanley Capital

International (MSCI) Indices. These factors include 23 country indices, 42 regional

indices,13 and 38 industry or sector indices. The parameters for each period were

selected independently from results for other periods. Due to incomplete data, two

12 See, e.g., Fogel (2001).

13 As indicated earlier, some of the regional indices are rather similar to each other and therefore have

a high correlation.



7.3. Computational Study 187

problems had to be excluded, resulting in 598 problems to be solved. The upper limit

for the pair-wise correlation for any pair of factors included is set to ρ2
max = 0.5.

In their review of the literature Lehmann and Modest (1987) find that the num-

ber of factors has a rather small influence on the model estimates. Increasing the

number of factors included in the model decreases the residual risk of the estimates

and ultimately shifts the model towards the seemingly ideal situation where any

(past) movement in ra can be attributed to some factor (or a set of factors).14 A

high number of included factors reflects the original APT idea of perfect replication

in a complete market; yet it would also call for longer data series15 to avoid the peril

of overspecification: The resulting models might then well describe the past but can-

not necessarily explain or predict equally reliably. From a practical point of view, the

models become less easily applicable the more factors are included. In the main part

of our analysis, we therefore limit the number of included factors to k = 5 which is

also a common choice in the literature.

7.3.2 Main Results for the Selection of Factors

7.3.2.1 The Goodness of Fit

From a statistical point of view, the available factors do have explanatory power for

the securities’ returns. On average, about 48 per cent of past variance in the daily

price changes could be explained with the applied LRM, and for about 80 per cent

of the problems, a model with an R2 of at least 0.3 could be found. Approximately

six per cent of the reported models have an R2 of 0.8 or even more. In more than

90 per cent of all reported models, at least four of the five factor weights are statis-

tically significant,16 with all factor weights significant being the “standard” case. No

model with just one significant factor was reported, and in only five out of the 598

models factor bundles with just two significant factors were found to be optimal.

The constant factor b0i, on the other hand was significant in just 9 cases. Figure 7.1

summarizes the means and the bandwidths for the R2’s for all companies.

14 BARRA, a major risk management company, include 13 risk factors and 55 industry groups in their

second generation U.S. Equity model, known as “E2”. See www.barra.com and Rosenberg (1984).

15 See also Shukla (1997) and the references therein.

16 In this chapter, the level of confidence for statistical significance is 5 per cent.
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Fig. 7.1: Mean and bandwidth of companies’ R2’s with ρ2
max = 0.5
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7.3.2.2 Composition of the Optimal Bundles of Factors

Although the optimization was run separately for each asset and time frame, there

were some general patterns that could be found in many solutions. One of these

results is that sector indices are preferred over regional and country indices. The

typical bundle consists of at least two, usually three sector indices, but just one or

two regional and/or country indices. As industry and sector indices represent just

about a third of the available indices (38 out of 103), the preference for this type of

factors is not only highly significant yet also crucial to the quality of the results: In

virtually all of the results, it is one of the sector indices that contributes most to the

model’s R2. The selected industry factors tend to include at least one that represents

the main area of activity of the considered firm, or one that is related to it, whereas

the other industry factors might or might not have an apparent relationship to the

company’s operations. Figure 7.2 summarizes the frequencies at which the factors

are chosen.

Countries appear slightly preferred over regional indices. However, neither of

them are necessarily obvious choices: it comes rather surprising that “New Zealand”

and “Finland” are the country factors chosen most often, followed by “Canada,”

“Venezuela” and “Brazil.” The same applies for some of the regional indices, though

to a smaller degree. Here, the respective factors for “The Americas,” “North Amer-

ica,” and “Europe ex EMU” are the ones chosen most often and that tend to con-

tribute more than country indices. In this respect, the inclusion of certain countries

might be regarded as a (more or less plausible) correction term (or a proxy for such

a term which may not be included due to the correlation constraint) – which might

also explain the sometimes unexpected signs in the parameters. The factor chosen

least often is “The World Index” (though it is not the factor least correlated with the

stock returns).

Typically, the bundles are not slimply a combination of the factors that would

make the best single regressors: Ranking the factors according to their correlation

with the stock, many a model uses just one or two factors with “top” correlation,

whereas the others are “average” and usually at least one factor from those with

least correlation (the latter usually being a geographical index). This is not neces-

sarily a direct consequence of the constraint on the pair-wise correlation between

included factors as alternative calculations with more or less generous values for

ρ2
max indicate.
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Fig. 7.2: Number of models a sector is included in
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Fig. 7.3: Residual in sample and out of sample risk

7.3.2.3 Stability of the Results

Whether the chosen bundles for a given security remain the same over time does

not necessarily depend on the goodness of fit for previous periods. In addition, the

“plausibility” of bundles does not vary a lot over time. Typically, the dominant fac-

tors remain unchanged or are exchanged for other related sector indices (e.g., “Fi-

nancial Services” might be exchanged for “Banking”). Fluctuation is found mostly

in factors with low contribution to the model and in factors that owe their inclusion

merely to spurious correlation or other statistical reasons. As a consequence, eye-

balling might suggest that bundles change considerably from one period to another.

The effects of these exchanges are notable, yet not as big as expected. Hence, keeping

a bundle based on the in sample selection and performing an out of sample test with

it shows that good explanatory power can be transformed into reasonably good pre-

dictions with low idiosyncratic risk (see Figure 7.3). As presented in section 4.3.1,

the reliability of the results could be further improved by using more sophisticated

estimates for the factor risks and returns; however, as this chapter is mainly con-

cerned with the (in sample) selection problem, a more detailed discussion of these

issues is left out.

Finding causes for stable or unstable R2’s appears to be a rather difficult task.

We could not derive a general rule stating whether the models for a given company

remain equally good over time. There appears to be no general pattern that indicates

whether models with like factors or those with frequent changes in their bundles’

composition show a more persistent R2, nor could we isolate factors whose inclusion
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tends to indicate such a relationship. Though the models for the year 1998 appear to

perform slightly better in some companies than those for other time windows, we

could not find statistically significant evidence for temporal effects.

7.3.2.4 Number of Selected Factors

According to Trzcinka (1986), the number of significant factors increases with in-

creasing sample size, but that the first factor remains dominant. This agrees with

our finding: Typically, this “first” factor is a sector index as described earlier. Mod-

els where the dominant factor is geographical, on the other hand, tend to have less

than average sector factors in their bundles – and to have a below average R2. Also,

some models include groups of indices that as a bundle increase a model’s R2 though

individually show low relation to the security’s return; yet these bundles rarely ex-

plain the lion’s share of the model’s goodness of fit.

The decreasing contribution of additional factors is also supported by further

computational studies for our data: alongside the reported results for k = 5, we also

ran models for any k ≤ 10 and found that the factor that is selected for a single re-

gression model is almost always found in the solutions for larger k as well, whereas

second or third regressors might be replaced with a group of alternative factors

rather than supplemented by simply adding an endorsing index.

Comparing the results for models with different k via the adjusted goodness of

fit, R2
adj = 1− (1−R2) · (N −1)/(N −|B|) where N is the number of in sample trad-

ing days, shows that increasing the number of included factors is always advanta-

geous – yet the marginal contribution of an additional factor is rapidly decreasing.17

The results confirm that k = 5 is a reasonable choice: allowing for more than five fac-

tors brought hardly any substantial increase in R2
adj. Quite often, this is already true

for models with k = 2 or 3; in this case, however, the R2
adj tends to be less stable over

time. One reason might be that in these cases, the models include preferably fac-

tors that have a (more or less) fundamental relation to the asset but cannot capture

temporal effects such as volatility clustering. Including factors with a less apparent

17 An alternative to maximizing the R2
adj would be the optimization of some information criterion

combining residual risk and number of explanatory variables, see, e.g., Akaike (1974) or Schwarz

(1978).
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fundamental relationship (and low correlation with the asset) yet with supplemen-

tary characteristics might account for these aspects. These factors are more likely to

be replaced over time than those with high correlation. Though temporal effects or

their function as a proxy for unavailable factors can be one reason for the inclusion

of these indices, spurious correlation might be another one. An interpretation of the

economic contribution of these factors might therefore be misleading.

7.3.2.5 The Length of the In Sample Period

The results presented so far are for models where the in sample periods consist of

200 trading days. Increasing the period length has a limited effect on the results. As

expected, the goodness of fit declines when the horizon length increases as there is

less opportunity to adjust for temporal particularities (such as volatility clustering

and structural breaks) – which might also be seen as a reduced peril of spurious

correlation. In many cases the reduction in R2 and R2
adj, respectively, is therefore

acceptable.

When the in sample number of days is 1 200, industry factors are still the pre-

ferred choice. Regions, however, are now more frequently chosen than with shorter

time frames, and countries get less often included. In particular regional indices

such as “North America,” “The Americas” and “World Index ex USA” become pop-

ular which appears economically plausible given the considered assets. Although

the optimization process does not (and, according to the problem statement, can-

not) account for “economic plausibility” of the choices, the found solutions typically

contain at least one factor that represents the company’s industry – and one or two

factors that show little correlation to the stock. For models with k ≤ 8, “Finland” is

still the most frequently chosen country index, and there are still models with fac-

tors where there is no apparent relationship or similarity between asset and chosen

index. Yet again, these factors are usually included only when there are already “sen-

sible” factors and they are not the main contributors to the models’ goodness of fit.

Generally, the qualitative results do not differ substantially from those for shorter

time frames.
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7.3.3 Alternative Models

The high correlation between some of the selected (industry) factors and the consid-

ered company might raise the question whether there is some endogeneity problem.

Though no stock’s weight in an index is large enough to cause correlation coeffi-

cients between factor and stock returns to be as high as 0.7 and even more, there are

some companies that are typical representatives of their trade. Hence, they can have

a high direct or indirect effect (via stocks which are highly correlated to them) on

the factors which are then included in a model to explain the stock return.

We extend the original optimization problem and introduce a new constraint

that allows only those factors f to enter a model that have a squared correlation

with the return of stock a, ρ2
f a, of 0.25 or less. As expected, the models with originally

high R2 see a sharp decline in the new model’s goodness of fit: The factor(s) that cor-

relate(s) best with the stock return’s variability is (are) most likely to be excluded.

The resulting models still show a clear preference for industry over geographic fac-

tors, but they lose explanatory power and, above all, plausibility. We therefore omit

a detailed presentation of these results.

According to the initial considerations, the aim of this study is to find the optimal

selection of indices when there is no prior knowledge about economical plausibility

of the factors. The results indicate that the relevant industry factors are likely to be

identified anyhow, but that they tend to come together with less plausible factors;

an economic interpretation of all the results is therefore not always possible. If there

actually is prior knowledge, such results can be avoided by obvious measures such

as reducing the set of candidate factors to choose from or a low value for k as factors

with low plausibility seem to be included as a supplement to plausible factors. An-

other way would be to extend the objective function by adding a punishment term

that reflects the “degree of (im-)plausibility” and therefore accounts for a tradeoff

between maximizing a statistical goodness of fit measure and explanatory power.

7.4 Conclusions

The main results from this chapter are that the factor selection problem associated

with the APT can be approached with heuristic optimization, and that the returns of
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S&P 100 stocks can be partially replicated with a small set of MSCI factors. Although

we assumed that there is no a priori knowledge which factors ought to be included

or are economically plausible, it turned out that the variability in the returns is often

traced back to changes in either the company’s or a related industry sector. Regional

or country indices, on the other hand, have rather low explanatory power: when

there is no suitable sector index and the model has to rely on geographical indices

only, then the model will not perform very well.

As the factors used in the models were selected on statistical grounds only with

the available set of factors differing from “standard” sets of factors used in the APT,

some aspects remain to be discussed. The model used in this chapter is meant to

be flexible enough to work without prior knowledge about the firms’ fundamentals.

Nonetheless, many of the found solutions contain dominant factors that are also eco-

nomically plausible. At the same time, otherwise popular factors such as the World

Index which are considered to be well diversified (and therefore ought to capture

merely systematic risk) show up in fewer models than expected.

When the objective is the identification of fundamental economic factors, a lower

statistical fitness (i.e., a lower R2) might be acceptable when it comes with higher

economic plausibility. For the chosen implementation, this modified optimization

problem could be approached by adding a term to the objective function that “re-

wards” or “punishes” plausible or implausible bundles. “Implausible” factors (if not

eliminated from the set of available factors in the first place) would then be ac-

cepted only when there is strong statistical support. However, this would require

prior knowledge about the companies or considered time series.

Another question arising from our results is whether one can derive some gen-

eral “rule of the thumb” for a good first guess for selecting factors. Though there

seem to be some vague general patterns (such as the inclusion of industry factors),

there is no “one bundle fits all” solution as the literature suggests for the use of

macroeconomic factors (both over time and between companies) – but then, the

individual models achieve higher R2’s than the models presented in the literature.

Tests could therefore investigate whether there exists some “universal” set of MSCI

indices or other factors that works reliable with most of the problems and in due

course would make a better first guess than do the models based on macroeconomic

factors. In particular, the forecasting qualities of the resulting models ought to be

considered; though the results from section 4.3.1 (where the bundles identified in
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this chapter are combined with GARCH predictions for the factor returns) are quite

promising, macroeconomic factors are sometimes claimed to be better predictable

than market indices which might diminish the advantage of the MSCI based models.

For our computational study, the underlying set of factors was meant to cap-

ture either whole economies (regional indices) or the effects within certain indus-

tries (sector indices). These factors should be easily accessible and available at any

point of time. As a consequence, an investor can estimate whether an asset will be

affected by current (or expected) risks in one of these factors – and can therefore

take adequate measures of risk management and for hedging. Nonetheless, the set of

available factors might well be enhanced. With macroeconomic factors being quite

popular in the literature as well as in real life applications, these could bring addi-

tional explanatory power. Different sorts of interest rates and exchange rates might

be such data that are equally available as are the MSCI indices. Prices of goods and

raw materials, on the other hand, might extend the list of factors that help explain

firm specifics. The caveat, of course, is that providing too many factors to choose

from increases the danger of data-fitting and selecting implausible bundles that are

tailor-made for past data, but are unable to predict future returns.

All of these points might lead to further interesting and helpful insights about the

application of the APT. The results in this chapter suggest that the chosen method-

ology might help in answering these questions.
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Concluding Remarks

The main objective of this book is to demonstrate how to use heuristic opti-

mization techniques to approach portfolio optimization problems that could not be

answered with traditional methods. With these new tools, it was possible to investi-

gate the effects of market frictions which are usually ignored or appear in a rather

stylized:

• In chapter 3, it is shown that transaction costs might lead to optimal portfolio

weights that differ substantially from those under perfect market conditions.

This is all the more true when another friction is included and only whole-

numbered quantities of stocks can be purchased and the investors have differ-

ent initial endowments. It is shown that ignoring these frictions might result

in noticeably inferior solutions; the traditional way of first solving the prob-

lem without the frictions and then finding a “similar” solution that satisfies

the constraints can even result in portfolios negative expected returns. On the

other hand, considering these frictions in the optimization process can reduce

the disprofits of transaction costs and limited initial endowment.

• Chapter 4 focuses on the diversification in small portfolios. Both the finance

literature and institutional investors often state that most of the risk diversi-

fication can be done with a rather small number of different assets. Also, em-

pirical findings indicate that investors seem to prefer portfolios with a rather

few different assets. In the lack of suitable methods, however, the literature so

far could offer just rough estimates for the marginal contribution of adding

another asset to the portfolio and how to find the optimal small portfolio. The

findings in this chapter support the view that a portfolio with a small number
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of different assets can be almost as well diversified as large portfolios without

such cardinality constraints – provided the portfolio has undergone a reliable

selection process.

• The computational complexity of portfolio optimization problems might

quickly get out of hand when the “standard” optimization problems are en-

hanced with market frictions or specific constraints. Though general-purpose

meta-heuristics are often able to solve problems that are unapproachable to

traditional optimization techniques, it might be helpful to take the particular-

ities of these optimization problems into account and develop a tailor-made

heuristic search method. Chapter 5 demonstrates how a hybrid search meth-

ods can be designed that is able to solve the given problem highly reliably and

efficiently.

• The finance literature as well as the investment industry often complain of

the deficiencies of the assumption that asset returns are normally distributed.

Furthermore, the reliability of associated “bandwidth” risk measures such as

the volatility has been doubted. During the last decade, the “point” or quan-

tile risk measure Value at Risk (VaR) has become a new standard not only

because of its intuitive appeal, but also because it does not assume a particu-

lar distribution of the assets returns. The results in chapter 6, however, raise

serious doubts whether this measure, in conjunction with empirical distribu-

tions, is a suitable alternative to the volatility concept even when the already

known shortcomings of VaR do not apply: The VaR under empirical distri-

bution can be reliably estimated only when not considered in the portfolio

selection process. Having the VaR as an explicit risk constraint might have a

damaging effect on the reliability of the risk estimations, in particular under

empirical distributions, and the use of the volatility would be superior even

when neither the assets’ nor the resulting portfolios’ returns are normally dis-

tributed.

• The finance literature offers a series of equilibrium and prediction models

among which the Arbitrage Pricing Theory (APT) has gained considerable

popularity in theory as well as practical application. According to the APT, the

return process of an asset can be described as a linear combination of factor

returns. As there is no general rule for how to find the optimal set of factors for

a particular asset, some models use a large number of different factors – which
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is not desirable because of the peril of over-specification or misspecification

due to the inclusion of actually irrelevant factors. Models with a reduced set

of factors are restricted to either choose from a small preselection of potential

candidates (because of the computational complexity of the associated model

selection problem) or using a general bundle of factors. Chapter 7 shows that

the model selection problem, too, can be answered with heuristic optimiza-

tion.

In the main part of this contribution, well-known problems in financial man-

agement are addressed that cannot be answered satisfactorily with traditional ap-

proaches. Therefore, the finance literature so far had to make simplifying assump-

tions in order to keep the resulting optimization problems manageable. In this con-

tribution, however, a different approach was chosen: rather than formulating and

simplifying the models in a way to make them solvable with traditional solution

methods, the models were stated to be as close to reality as possible while adopting

new solution techniques to overcome the limits of traditional approaches.

In all of the empirical studies in this contribution, some of the basic models’

aspects were still chosen to be rather simple in order to be able to isolate the effects

of the considered market frictions. Hence, it was assumed in all portfolio selection

problems, that the investor faces a single period horizon, decides rationally, has a

precise idea of expected returns and risks, and so on. Nonetheless, it could be shown

that even in these rather simple settings traditional approaches are limited in their

reliability since simplifying assumptions on allegedly irrelevant aspects might lead

to converse conclusions and clearly inferior (or even opposing) results.

Introducing new methods rather than simplifying assumptions, the shortcom-

ings of the traditional models could be identified and new aspects could be inves-

tigated. At the same time it could be demonstrated which of the analyzed simpli-

fications in financial optimization models are tolerable and which lead to severely

wrong decisions when transferred into practical applications.

Starting with applications to problems merely from areas such as operations re-

search and econometrics, meta-heuristics and related methods from soft comput-

ing and computational intelligence are attracting increasing attention in the eco-

nomics and business literature which lead to a series of successful applications of
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these methods. In the finance literature, first applications covered aspects such as

estimation and prediction, pricing, and simulation. As many of these computational

approaches have an inherent optimization aspect, they can also be applied to finan-

cial optimization problems (such as the portfolio selection problems presented in

this contribution). In addition, a number of financial (and, in general, economic)

problems can be regarded optimization problems (such as the estimation problem

presented in section 2.4 or the factor selection in chapter 7) and can therefore also

be approached.

The results from the empirical studies presented in this book provided not only

new insights to the discussed problems. They also demonstrate that meta-heuristics

are capable of answering computationally demanding problems reliably and effi-

ciently. Hence, the numerical studies could avoid simplifying assumptions that are

necessary when traditional methods are used at the cost of distorting the result. The

results in this contribution are therefore also promising as the applied methods are

flexible in their application and can therefore easily be adopted for new problems

that are beyond the limits of traditional analysis.
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