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ABSTRACT The problem of designing an effective future defense force is quite complex and challenging.

One methodology that is often employed in this domain is portfolio optimization, whereby the objective is

to select a diverse set of assets that maximize the return on investment. In the defense context, the return

on investment is often measured in terms of the capabilities that the investments will provide. While the

field of portfolio optimization is well established, applications in the defense sector pose unique challenges

not seen in other application domains. However, the literature regarding portfolio optimization for defense

applications is rather sparse. To this end, this paper provides a structured review of recent applications and

identifies a number of areas that warrant further investigation.

INDEX TERMS Future force design, portfolio optimization, defense planning, project selection, project

prioritization, uncertainty, robustness.

I. INTRODUCTION

Future Force Design (FFD) is an important planning task

undertaken by defense organizations to assist in making crit-

ical investment decisions pertaining to the development of

a future defense force. Among many other difficulties asso-

ciated with FFD, defense organizations face the problem of

selecting an optimal portfolio of investments that provide the

most appropriate balance of capabilities. The investments that

constitute the portfolios are often quite varied and can include

components such as research, training procedures, and equip-

ment procurement, upgrade, or maintenance. The selection

of an optimal portfolio of investments is certainly not a new

problem and has attracted a large amount of research effort

since the development of the portfolio optimization theory in

the 1950s [1]. Applications of portfolio optimization arise in

a number of different contexts, most commonly in financial

markets [1]–[4] and R&D contexts [5]–[9], but can be found

even in areas such as quantum computing [10].

While each application domain of portfolio optimization

comes with its own unique challenges and nuances, the appli-

cations of portfolio optimization in the defense sector face a

number of distinctive characteristics [11]. Firstly, in contrast

to traditional financial applications, defense applications are
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often faced with the task of optimizing many different objec-

tives. These objectives generally cannot be reduced to a single

quantifiable value and are often in conflict. Common objec-

tives include, but are not limited to, defending the nation and

its citizens, defending allies, defending against cyber-security

threats, maintaining and fostering political allies, and provid-

ing humanitarian aid in disaster areas. Each of these situations

involves many specific mission needs and uncertain aspects.

This uncertainty poses a second unique challenge associ-

ated with defense applications of portfolio optimization. Not

only is the future global landscape uncertain, but also there

are many uncertain aspects associated with simply selecting

projects in the defense sector. The most common, and most

easily addressed, forms of uncertainty arise in aspects such

as the cost, available budget, and threat scenarios. However,

as stated by Gray [12], defense is often tasked with pro-

viding answers to questions that have not even been posed

yet. Technical, governmental, and geopolitical changes can

all have a dramatic impact on FFD. Despite their impacts,

it is impossible to foresee these changes and their effects.

Nonetheless, strategies to hedge against these potential events

must be considered during the planning phase.

Planning in the defense sector is also characterized

by complex inter-dependencies among the capability

alternatives. Furthermore, these complex inter-dependencies

and capability synergies may not be fully understood and
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may arise as a byproduct of the environment in which they

are realized. Constraints also pose an important challenge

for defense planning. Often, there will be many constraining

factors, such as budgetary limitations, different ‘‘colors of

money’’ [13], scheduling and manufacturing requirements,

and available personnel. Defense planning process also often

considers long-planning horizons whereby decisions can

have long-lasting implications on both a national and global

scale.

Due to these challenges and nuances, defense planning

should not be considered strictly an optimization process.

Rather, it should be considered as an administrative tool with

political repercussions [14]. Despite these known challenges

and the importance of FFD, it is often reported that the

literature regarding portfolio optimization for defense appli-

cations is rather scant [15]–[19]. This is especially true for

applications that consider capability-oriented approaches.

Therefore, in this paper, recent applications of portfolio

optimization applied to defense-oriented planning are sur-

veyed. The review is presented in two broad sections. The first

section considers the application areas and describes themod-

eling and problem formulations. The second section discusses

the main challenges associated with portfolio optimization in

the defense sector and explores how these challenges have

been addressed in the literature.

The remainder of this paper is structured as fol-

lows. Section II provides relevant background information.

Section III presents the methodology used to conduct this

review. Sections IV and V provide the main body of the

review, discussing the applications of portfolio optimization

in the defense sector and the major challenges associated

with this domain, respectively. Section VI provides a dis-

cussion of the current state as well as some avenues for

future research. Finally, concluding remarks are given in

Section VII.

II. BACKGROUND

This section provides background information on portfolio

optimization, the knapsack problem formulation, and the

methodology known as Capability-Based Planning (CBP).

A. PORTFOLIO OPTIMIZATION

Portfolio optimization, in the general sense, is a process by

which an optimal portfolio (i.e., distribution of assets) is

selected according to some objectivemeasure, with the caveat

that the associated risk should also be minimized [1]. In the

traditional, financial formulation, portfolio optimization is

concerned with maximizing the expected return of a set

of investments while also minimizing the associated risks,

such as stock-market volatility. Markowitz [1] argued that

the characteristics of a particular asset should not be viewed

independently. Rather, one should consider how an asset

affects the risk and return of the entire portfolio. Based on

this theory of portfolio optimization, it is possible to formu-

late amulti-objective problem that simultaneouslymaximizes

the return and minimizes risk [20]. Using multi-objective

optimization, a set of non-dominated solutions, which rep-

resent optimal trade-offs between the return and risk,

is attained. The decision maker can select the portfolio that

suits their level of risk aversion and expectation of returns.

By the late 1950’s, project selection was recognized as an

important problem in the field of operations research [21].

Project selection problems were formulated by the need to

determine the combinations of project proposals that an orga-

nization should fund to maximize the attainment of their

objectives. Clearly, these problems had a high degree of sim-

ilarity to the financial applications considered by Markowitz

and, therefore, the underlying theories have been applied to

more broad application areas than the financial markets for

which they were developed. The next section discusses the

classic mean-variance model proposed by Markowitz.

1) THE MEAN-VARIANCE MODEL

The main contribution of Markowitz [1] was the view that

including risk as a secondary objective was a necessary

component in portfolio optimization. This led to the devel-

opment of modern portfolio analysis and is referred to as

the mean-variance model. In such a model, the objective

is to maximize the expected return (i.e., the mean), while

minimizing the volatility of the investment (i.e., the variance).

To illustrate this concept, assume that there exist N assets,

whose rates of return are given by the random variables

r1, r2, . . . , rN , and that the proportions of an investment allo-

cated to each asset are given by w1,w2, . . . ,wN , such that
∑N

i=1 wi = 1. The return for a portfolio P can then be

calculated as

RP =

N
∑

i=1

wiri. (1)

The expected value of the return, and hence the investment

portfolio, can then be calculated as the first moment of RP,

µP = E[RP] =

N
∑

i=1

E[wiri] =

N
∑

i=1

wiµi (2)

where µi = ri is the average return for asset i.

Classical portfolio optimization focused solely on maxi-

mization of (2). The work of Markowitz [1] revolutionized

the field of portfolio theory by adding the minimization of

risk as an additional objective. The risk, in this context, can

be calculated as the second moment of RP (i.e., the variance),

given by

σ
2
P = Var[RP] =

N
∑

i=1

N
∑

j=1

wiwj cov(ri, rj) (3)

In this model, it is typically assumed thatµi and σij are known

quantities.

While the variance provides a measure of risk, one crit-

ical issue is that it degrades when the distribution of pos-

sible returns is asymmetric. Specifically, this calculation of

variance would place equal weight on both the upward and
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FIGURE 1. Example demonstrating two distributions with the same mean
but different levels of upside and downside risk.

downward risks. For example, consider the two distributions

given in Fig. 1, which each have a mean value of 0. Despite

having the same mean, and thus expected value, the two

distributions have significantly different risk portfolios. Note

that, D1 has a variance of ≈ 0.39 while D2 has a variance

of 1 and that D2 is symmetric about the mean while D1 is

not. Thus, a measure of variance for D1 will be influenced

to a greater degree by values above the mean given their

larger spread. However, financial investors are typically only

concerned with the downside risk and thus a measure of risk

that can be skewed by the upside risk may be misleading. Fur-

thermore, the traditional mean-variance model of Markowitz

is known to overestimate the true return [22], [23]. Thus,

it was necessary to devise an alternative measure of risk that

was only influenced by the region of interest.

It should be noted that the subsequent discussion of alter-

native risk measures is not meant to cover the state-of-the-art.

Rather, these measures are discussed only because they have

arisen in the course of this review. For a more comprehensive

review of risk measures in portfolio optimization, the reader

is referred to [24] and [25].

2) DOWNSIDE RISK

In his early work, Markowitz recognized the inefficiencies

associated with asymmetrical distributions when considering

the mean-variance model and thus suggested an alternative

measure of risk, known as Downside Risk (DSR) [26]. DSR

is a measure of downward volatility, specifically the variance

among returns that fall below some threshold τ , as given by:

DSRP = E[(RP − τ )2Iτ ], (4)

where Iτ is an indicator function that returns 1 when RP ≤ τ ,

and 0 otherwise. Note that, when τ = µP = E[Rp], this

measure is known as the semi-variance. It is straightforward

to see that when a distribution is symmetric, theDSR and vari-

ance are equivalent. However, in the case of an asymmetric

distribution, the DSR value provides a more relevant measure

of risk given that an investor is typically only concerned with

minimizing the downward volatility.

3) CONDITIONAL VALUE-AT-RISK

A more recent measure of risk is known as the value-at-

risk, which represents the predicted maximum loss with a

specified probability level over a known time horizon. A fur-

ther evolution of this measure is known as the Conditional

Variance-at-Risk (CVaR) and represents a weighted average

between the value-at-risk and the losses that exceed the value

of the value-at-risk measure. It is noted that protecting against

the value-at-risk does not limit exposure to worst-case scenar-

ios – CVaR addresses this limitation.

The CVaR assumes that each asset has an associated linear

loss function. The linear optimization problem can then be

formulated as

min
x,y,γ

[

γ +
1

(1 − α)S

S
∑

s=1

zs

]

(5a)

subject to : zs ≥
∑

i

(bi − yis)
′xi − γ (5b)

∑

i

µixi ≥ R (5c)

where γ is the value-at-risk term, α is the specified prob-

ability level, bi is the expected return, yis is the stochastic

simulated return scenario(s) for asset i, S is the number of

stochastic scenarios to be generated using a Monte Carlo

approach, and R is the expected minimum rate of return.

Optimizing this model will provide a frontier depicting the

best tradeoff between expected return and CVaR.

4) ROBUSTNESS

The primary objective of all portfolio optimization appli-

cations is to maximize some form of value while mini-

mizing some form of cost or risk. In an ideal situation

where all variables and external factors are known, select-

ing the best portfolio (or set of equivalent portfolios) is

relatively straightforward. However, when faced with uncer-

tainty, decision-making becomes significantly more difficult

as one cannot necessarily assign a strict value to an asset nor

the associated risk. For example, consider a financial invest-

ment context where the profit associated with one particular

asset is given by the range [-50%, 50%] – the value of this

asset drastically changes if the actual, realized return is -50%

versus 50%. To make an informed decision, a decision-maker

should then have information about what a plausible future

might look like. Moreover, selecting a portfolio that is only

minimally affected by such future uncertainties would be

ideal.

One strategy to deal with future uncertainty is to make

assumptions about how the future will unfold. However,

decisions made under one set of assumptions may not hold

under different assumptions. Thus, it would be beneficial

to examine a wide variety of plausible future states and

quantify how well a particular portfolio performs under the

various possibilities. The robustness of a solution can then

be defined as the degree to which a particular solution is

stable under a set of plausible futures [27]. The simplest
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strategy for measuring robustness of an asset is to vary the

uncertain values (within a reasonable range), then count the

frequency that this asset appears in the optimal solution.

Intuitively, an asset that appears in the optimal portfolio

under a wide variety of scenarios is preferable to one that

only appears under specific conditions. While robustness is

certainly a useful metric, accurately calculating the value can

be problematic. Specifically, the reliability of a robustness

measure is inherently tied to how accurate the future states

are represented.

B. THE KNAPSACK PROBLEM

A well-known problem in combinatorial optimization is the

knapsack problem, which is the process of selecting a set

of items, each with a given weight and value, that maxi-

mizes the total value while adhering to the specified weight

limit of the knapsack. It is clear to see how this problem is

related to portfolio optimization and FFD, as one can view the

investment options as the ‘‘items’’ and the available budget as

the ‘‘weight limit.’’ Therefore, the knapsack problem can be

analogously formulated as maximizing the benefit associated

with implementing projects that adhere to a set budget.

The most common formulation of the knapsack prob-

lem is the 0-1 (or binary) knapsack problem, which is

formulated as

max

n
∑

i=1

vixi (6a)

subject to

n
∑

i=1

wixi ≤ W and xi ∈ {0, 1}

∀i ∈ 1, . . . , n (6b)

where vi is the value of item i, xi is the quantity, and wi is the

weight. The constraints given by (6b) stipulate that the total

weight of the itemsmust be less than the total capacityW , and

that the quantity of item xi is exactly zero or one, i.e., there

is exactly one of each item that can be either included or

excluded.

The knapsack problem is known to be NP-hard and,

as such, there is currently no polynomial-time algorithm that

can solve an arbitrary instance of the knapsack problem.

However, an approximate solution with a bounded error term

(ǫ) can be generated in polynomial time – a provably rare

occurrence – by limiting the number of significant bits in the

value terms [28].

Alternative formulations of the knapsack problem also

exist where xi can be any non-negative integer (i.e., xi ∈ Z
+),

or xi is a bounded non-negative integer (i.e., xi ∈ [0..c]).

Furthermore, one can consider formulations where xi is

a real-valued variable such that fractional portions of an

item can be included, in both bounded and unbounded

formulations.

Other notable formulations of the knapsack problem

include the multi-objective knapsack problem, whereby one

wishes to optimize more than just the total value of the items,

and the multi-dimensional knapsack problem, whereby the

items’ weights and knapsack capacity are given by vectors

such that the capacity constraint in all dimensions must be

satisfied. Similarly, one can impose additional constraints on

the solutions such that all constraints must be satisfied for a

solution to be feasible.

C. CAPABILITY-BASED PLANNING

CBP provides an analytical paradigm that addresses the prob-

lem of planning under uncertainty, where the underlying goal

is to provide capabilities that are suitable for a wide variety

of challenges while operating within the confines of an eco-

nomic framework that necessitates choice [29]. CBP arose

as a successor to ‘‘threat-based planning’’ or ‘‘point-scenario

planning,’’ whereby planning would revolve around meeting

the requirements of countering specific threats [30]. In con-

trast, CBP encourages the adoption of solutions that address

a wide variety of plausible future scenarios by focusing on

the development of capabilities rather than direct counter-

measures [31]. A capability, in this context, refers to the

ability to achieve an operational effect and includes integral

components such as doctrine, training, and leadership [31].

In a sense, CBP adopts a ‘‘building-block’’ methodology,

such that a robust set of (generic) lower-level capabilities

(such as battalions, resources, infrastructure, equipment, etc.)

are developed in a manner whereby they can be composed

to meet the requirements of the foreseeable future. Thus,

the overall goal of CBP is to derive a capability development

plan that is able to meet the overall strategic objectives of an

organization.

The CBP paradigm consists of a few major compo-

nents. Firstly, there must be a set of high-level objectives

that are desired. For example, the 2016 Defence White

Paper (DWP) [32], published by the Australian Depart-

ment of Defence (DoD), lists three, equally-weighted strate-

gic defence objectives: 1) deter, deny, and defeat threats

against Australia or its national interests, 2) make effective

military contributions to support the security of maritime

South East Asia, and 3) contribute military capabilities to

coalition operations that support Australia’s global interests.

These high-level objectives can then be further decomposed

into sub-objectives. Consider objective 1) above, which can

then be decomposed into numerous sub-capabilities, such as

defence of the territory from attack, protection of offshore

infrastructure, performing domestic counter-terrorism opera-

tions, defeating cyber attacks, etc.

Secondly, there must be an analytical framework that

assesses such capabilities, with respect to both their benefits

and risks, at an operational level. Essentially, there must be

a mechanism whereby a quantitative score is assigned to

each capability with respect to each objective. However, this

poses a significant challenge as it is often difficult to quantify

the benefits or risks associated with defence-related projects.

It is often necessary to incorporate knowledge from Subject

Matter Experts (SMEs) in the assessment phase. Consider,

again, the strategic objective of the Australian Defence Force

(ADF) to defer or defeat threats to Australia and suppose that
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an upgrade to an aircraft is programmed – to what degree

does this address the strategic objective? Does it address

the objective to a higher degree than a similar upgrade to a

naval ship? The usefulness of CBP depends heavily on how

adequately questions of this sort can be answered.

Finally, there is an inherent deep uncertainty associated

with CBP. In the context of national defence, many uncertain

factors arise such as changes in government or national secu-

rity policies, local and global threat scenarios, technological

advances, and budget availability. Decision makers thus need

to account for these various uncertainties while making their

planning decisions. Specifically, a plan that is robust to the

volatility of all of these factors is far more valuable than a plan

that would be a catastrophic failure if, for example, the avail-

able budget decreases in the next year. However, choosing

the most robust plan does not necessarily provide the greatest

benefit – how likely is it that a major change in all of these

factors will be observed in the foreseeable future? Is a plan

that provides a greater average value better than a plan that

provides greater value in all but the most unlikely scenarios?

Take, for example, the results from Fisher et al. [33], where

it was found that withholding budget from one year was

preferable to ‘‘frivolously’’ spending all available funds to

minimize lapsed funding. While this seems illogical, the jus-

tification was that by withholding a portion of the budget to

carry forward (i.e., ‘‘slippage’’), there was greater planning

space available for when a high-value project materializes; by

maximizing the immediate benefit, the capacity for long-term

benefit was diminished. However, it should be noted that

slippage can lead to unexpected consequences in the future.

Thus, there is an inherent complexity that deep uncertainty

adds to this problem.

III. REVIEW METHODOLOGY

To identify relevant articles for this review, a search was con-

ducted using Scopus1 on 21/10/2019 for articles published

within the last 20 years (i.e., after the year 1999) with either

of the following patterns in the title or abstract:
• (defence OR military OR air force OR navy OR army

OR armed forces OR weapon?) AND (portfolio opti-

mization OR portfolio selection OR portfolio investment

OR portfolio prioritization OR portfolio planning OR

project optimization OR project selection OR project

investment OR project prioritization OR project plan-

ning OR balance of investment OR cost?benefit analysis

OR cost-efficiency analysis OR fleet-optimization OR

capability planning OR acquisition decisions OR funds

allocation OR allocation of funds)

• (weapon selection OR weapon planning OR weapon

project) AND optimization
Note that, the ‘?’ character permits the replacement of a

single character. Hence, ‘‘cost?efficiency’’ would match with

‘‘cost efficiency,’’ ‘‘cost-efficiency,’’ or any other variation

that had a single character between the terms ‘‘cost’’ and

1Available at: https://www.scopus.com/search/form.uri

FIGURE 2. Country of author affiliations. Countries are counted only once
per publication, regardless of the number of authors affiliated with the
country.

‘‘efficiency.’’ The search automatically accounted for British

and American spelling variations such as ‘‘optimization’’

versus ‘‘optimisation.’’ This preliminary search resulted

in 212 articles. Given the relatively small number of papers

returned, articles were manually filtered for relevance. Fur-

thermore, additional articles found via the references con-

tained in these articles were also included in this review.

In total, 54 application-based articles were identified as

relevant and included in Section IV. To the best of the

authors’ knowledge, articles from predatory journals were not

included in this review.

Regarding the 54 application-oriented papers, Fig. 2

presents the countries of affiliation associated with each

paper. Note that, a country was only counted once per publi-

cation, regardless of the number of authors affiliated with a

particular country. It is evident that a majority of the work on

defence applications comes from either the United States or

China, with Australia at a distant third. Interestingly, from a

pool of only 54 papers there were 13 countries represented,

which indicates that portfolio optimization for defence appli-

cations is attracting global attention.

FIGURE 3. Number of publications by year.

Fig. 3 visualizes the year of publication for the pool

of 54 papers used in the applications section of this review.

Evidently, this application area is generally attracting more

attention in recent years. Nonetheless, the number of publi-

cations has been relatively stable over the entire examined

period.
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TABLE 1. Summary of literature regarding portfolio optimization for defence applications. Legend: MC – multi-criteria, MO – multi-objective, MOO –
multi-objective optimization, IP – integer programming, LP – linear programming, MILP – mixed-integer linear programming, NIP – nonlinear integer
programming, MIQP – mixed-integer quadratic programming.

The review is presented in two main components, appli-

cations and challenges. In the first component, an overview

of the problem formulations and proposed models are given.

The second component of this review discusses the main dif-

ficulties associated with portfolio optimization in the defence

sector and examines how the relevant literature has addressed

these difficulties.

IV. APPLICATIONS OF PORTFOLIO OPTIMIZATION

IN THE DEFENCE SECTOR

Table 1 provides a brief summary of the overall application

areas and methodological aspects of the studies considered

in this review, with further details about the specific contri-

butions from each paper given below. Studies are presented

in chronological order.
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Baker et al. [34] employed value-focused thinking to pro-

vide an analytical framework that assisted in decision-making

for US Air Force laboratory equipment purchasing. A hierar-

chical model was formulated to ensure that the educational

outcomes were the foremost concern in the decision-making

process. This model was subsequently used to assign weights

to the various identified attributes via a survey completed

by SMEs. Projects that attained a minimum valuation were

funded immediately whereas the remaining projects had to

compete for funding.

Jones et al. [6] examined the prioritization of research and

development (R&D) for nuclear weapon complex cleanup for

the US Department of Energy. The prioritization was done

using three independent goals. Specifically, the objectives

considered were the minimization of the overall risk at the

end of a ten-year planning period, minimization of the risk

in each year during the planning period, and maximization

of the cost-effectiveness. Despite having multiple goals, this

study did not employ multi-objective optimization principles.

Rather, a hypothetical analysis was conducted for each goal,

reflecting on what the outcome may be if this goal were

implemented. No optimization was performed to provide

empirical evidence to support the hypothetical outcomes.

Hamill et al. [35] considered value-focused thinking to

mitigate the risks associated with cyber attacks on the US

Department of Defense. Various threats were assigned an

overall risk score according to their effects on the network

if successful, such as the number of affected users and dura-

tion as well as their respective probabilities of being used.

Multiple criteria were combined using a simple additive

value function. Linear programming was employed to opti-

mize the allocation of resources towards minimizing the risk.

No experimental results were reported.

Brown et al. [36] considered long-term (24 years) space

system investments for the US Air Force Space Command.

The problem was considered in five sub-steps, namely

mission area assessment, mission needs analysis, mission

solution analysis, portfolio optimization, and portfolio refine-

ment. The first two phases were primarily oriented towards

the formalization of the strategic goals and requirements. The

solution analysis phase provided a valuation and cost analysis

for each project. The optimization phase used mixed-integer

linear programming to select a portfolio according to the

system constraints and budget. Finally, the refinement phase

allowed the decision-maker to account for various prefer-

ences and constraints that could not be stated mathematically.

A case study using 200 candidate systems for adoption during

the 2002-2025 planning horizon was considered, with 74 sys-

tems being considered components of the best portfolio.

The study of Crawford et al. [37] focused on the descrip-

tion of a software package for addressing the generic prob-

lem of project selection over multiple years. To provide a

worst-case analysis, it was assumed that every project could

immediately begin and could last the entire duration of the

planning period. A software package, referred to as Crystal

Ball,2 was employed to carry out uncertainty analysis by

facilitating the input of multiple possible values for a partic-

ular variable. A Monte Carlo method was then used to indi-

cate the likelihood of specific outcomes. Another software

package, referred to as OptQuest,3 was employed to perform

optimization. No experimental results were provided in this

study.

Greiner et al. [38] proposed a hybrid decision support

methodology for screening weapon system development

projects for the US Air Force using a 0-1 integer portfo-

lio optimization model (i.e., a knapsack problem). Decision

making was done in two main phases. First, an Analytic

Hierarchy Process (AHP) [81] component was used to for-

mulate a hierarchical criteria structure that would assist in

the derivation of a relative weighting scheme. In the exper-

imental section, 15 projects were considered and the optimal

portfolio was found using the integer programming facilities

in Microsoft Excel. Further experiments considered a partial

allocation of funds and categorical budget constraints. In all

experiments, the optimized results provided significantly

higher valuation scores than the Air Force’s recommended

portfolio.

Walmsley and Hearn [39] aimed to balance an investment

regarding armoured support vehicles using mixed-integer

programming. Specifically, the objective was to minimize

the production and supply costs while satisfying budget,

resource, and minimum supply constraints. The study consid-

ered 7 vehicle types and formulated three distinct optimiza-

tion problems:
1) Minimize the cost for a 100% compliant fleet.

2) Maximize the number of compliant roles with respect

to a given budget.

3) Maximize the number of compliant vehicles with

respect to a given budget.
Note that, a compliant fleet was defined as a fleet where there

existed no shortfall in any compliance category, a compli-

ant role was defined as a role in which a fully compliant

vehicle was allocated, and a fully compliant vehicle was

defined as a vehicle that fully satisfied the requirements of

the roles to which it had been allocated. A linear program-

ming implementation (XpressMP4) was used for optimiza-

tion. A sensitivity analysis was conducted by repeating the

optimization process again using under- and over-estimates

of the capabilities/requirements. Results of the sensitivity

analysis indicated various areas where significant costs sav-

ings could be achieved for only minimal reductions in the

compliance constraints, which led to a re-evaluation of the

requirements. Conversely, increasing the requirement esti-

mates by up to 15% led to no significant increase in cost.

2While not explicitly stated, this is assumed to be Oracle Crystal Ball,
available at https://www.oracle.com/applications/crystalball/

3Again, this software was not explicitly referenced but is assumed
to be the package provided by OptTek Systems, Inc., available at
https://www.opttek.com/products/optquest/

4FICO R©Xpress Optimization, available at: https://www.fico.com/en/
products/fico-xpress-optimization
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A subsequent study by the same authors [40] provided no

notable methodological changes.

Parnell et al. [41] described a system developed by the US

Air Force Research Laboratory to assist in the selection of

science and technology projects that best met future warfight-

ing capabilities for their prospective clients. This system was

reported to be an alternative to the technique proposed by

Brown et al. [36], and was specifically designed to lower

the level of detail as the yearly cost analysis found in [36]

was not needed for this use-case. The proposed methodol-

ogy consisted of ten steps that considered the entire plan-

ning life cycle from the compilation of research documents

through to project initiation. Their proposed model used

a non-linear, aggregated weighting scheme to combine the

16 evaluation criteria and optimization was performed using

FrontlineSolver R©5 via Microsoft Excel. Uncertainty in the

valuationwas addressed via triangular distribution ranges that

were sampled using a Monte Carlo approach. Experiments

were then repeated using increasingly restrictive budget con-

straints. No further details regarding the data were provided.

Buckshaw et al. [42] described a value-focused risk and

design analysis methodology used by the US Department of

Defense to determine optimal resource allocation for infor-

mation systems operating in a hostile environment. Their

proposed methodology employed a linear additive model to

aggregate the value of multiple measures. Modeling of the

adversary was done using their attack preferences, rather than

using direct probabilities of events occurring. In other words,

the study did not consider the probability of an adversary

employing a specific attack, rather it was assumed that the

adversary would perform attacks that had a maximal effect

according to four objectives. In this context, the objective

of the study was to maximally mitigate the effect of the

adversary attacks. No specifics on data were provided. How-

ever, a brief summary of seven previous applications of their

methodology was provided. The largest application consid-

ered had 200 projects.

Chan et al. [43] examined a goal-setting model to address

a time-dependent variant of the project selection problem in

the context of a vehicle modernization process for the US

Army. In their study, a bi-objective formulation was devel-

oped to maximize support for two different assault missions,

thereby providing a direct trade-off situation over a four-year

time period. The optimization was subject to a number of

constraints, namely budgetary, capability, production, and

technology-needs constraints. Using an exact solver software,

ADBASE,6 two optimal portfolios were identified and were

reported to represent different weightings of the mission

types, respectively. The analysis showed that the second and

third funding cycles (i.e., the middle phase) were critical

to the success of the planning, irrespective of the weights

and vehicle types. A small amount of effort was applied to

5Available at https://www.solver.com/
6The authors were unable to locate this software package and is thus

assumed to be defunct.

produce a non-linear implementation of the model, but was

unsuccessful [43].

Haynes et al. [44] examined the problem of allocating US

Marine Corps anti-terrorism resources using a utility score

derived as a function of the cost, benefit, various utility

factors, and facility prioritization weights. The optimization

component was a straightforward 0-1 knapsack formulation

whereby the objective was to maximize the utility score

subject to budgetary constraints. Much of this study focused

on the implementation of their model using a web-service

framework with no empirical data nor details regarding the

optimizer being given.

Tsaganea [45] examined the allocation of funds towards

missile defence capabilities over a fixed planning horizon.

This study took a substantially different approach than the

others considered in this study. Specifically, the problem

was modeled as a dynamical system such that offensive and

defensive systems were considered as mathematical vari-

ables. The performance metric was calculated as the number

of incoming missiles that could not be destroyed by the

defence systems, which was to be minimized. The resulting

model was then solved analytically using dynamic systems

theory rather than an optimization technique. Two hypo-

thetical case studies that had different initial states, which

were arbitrarily-designed but assumed to be plausible, were

considered and a 10-year plan was derived for each. It was

concluded that different funding policies were required when

different scenarios were considered.

Preiss et al. [46] considered a strategic investment model

for the US Air Force Research Laboratory and argued that

a value-model approach goes beyond that of a typical capa-

bility model by assisting in identifying the potential payoff

of technology investments. It should be noted that this study

was effectively a continuation of the study in [41]. In the

proposed model, technology scoring was implemented via

a criteria-based evaluation carried out by SMEs, such that

performance was scored according to engineering estimates

that described the current capability, minimum expected per-

formance, and the best expected performance. To address

uncertainties, the SMEs were encouraged to provide both

best- and worst-case estimates that would be taken into

account during the portfolio risk analysis phase. A case

study was conducted using 70 projects from 8 different

groups. However, no optimization was performed and only a

high-level summary of the aggregate score across all projects

was provided. Nonetheless, it was concluded that the scoring

method was more conservative, accurate, and efficient than

the method used in [41].

Dodd et al. [47] considered the generalized application of

non-linear multi-attribute utility theory to conflict scenar-

ios in order to facilitate a wider set of subjective attributes

that could be specified by the decision-maker. Specifically,

this work proposed a framework for representing com-

mand and control decision-making scenarios characterized

by threats, uncertainty, and conflicting objectives. The model

employed two utility functions, which considered the local
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and global effects of the strategic decisions but was proposed

in a generalized manner such that additional utility func-

tions could be included. Local effects included the poten-

tial for escalation of threat, loss of civilian life, theft of

assets, taking of hostages, etc. whereas the global effects

included higher-level considerations such as regional ten-

sion. An uncertainty vector was also used to quantify the

amount of uncertainty a decision-maker had in the situa-

tion. Criteria weights were used to reflect the importance of

achieving specific attribute-related goals. The objective for

the decision-maker was then to choose the course of action

that maximized the expected value of the aggregated utility

functions.

Fu [48] considered project selection in military produc-

tion plants using fuzzy goal programming. Piece-wise linear

membership functions were given for each of three objective

types, referred to as ‘‘around,’’ ‘‘at most,’’ and ‘‘at least.’’

These three objective formulations facilitated the imposi-

tion of fuzzy constraints using (approximate) equality, less-

than, and greater-than relationships. The objective of this

formulation was to maximize the total degree of the fuzzy

membership functions subject to a number of constraints.

In the experimental section, the task was to optimize the

schedule for a production plan that had 16 projects across

four categories. Each project had an associated cost, income

(i.e., value), number of working hours, and required comple-

tion date (specified as a particular month). An exact solver,

LINGO,7 was used to design the schedule for an entire year,

usingmonths as the time steps. Four case studies were consid-

ered using various fuzzy objective/constraint formulations.

An optimal schedule according to each of these scenarios was

given, with no subsequent analysis or discussion.

Baker et al. [49] examined the problem of optimizing vehi-

cle fleet mixes in the context of military deployments. The

problem had three objectives, namely to minimize the cost

of the vehicles, minimize the variance among the number of

vehicles of each type, and minimize the space that the vehi-

cles occupied in strategic transport vessels. It was assumed

that additional quantities of vehicles could be purchased ad

hoc. AMulti-objective Evolutionary Algorithm (MOEA)was

compared against two (integer) linear programming models

that used a branch-and-bound technique. A case study con-

sisting of three different vehicle types was used to exemplify

the proposed MOEA. Different acceptance rates, defined as

the probability that a decision made by an agent would be

accepted, and population sizes8 were examined for sensitivity

purposes. It was observed that varying the cost function led

to a noticeable impact on the spread and variety of optimal

solutions that were attained whereas the population size had

only a moderate impact on the variations attained in the final

population.

7Lindo Systems Inc., available at https://www.lindo.com/index.php/
products/lingo-and-optimization-modeling

8It was remarked that the population size was not fixed. Rather, the popu-
lation size referred to the number of solutions that were initially generated.

Bizkevelci and Çakmak [50] proposed a technology man-

agement model for a general defence system consisting of

three main phases in the integrated life-cycle, namely the

formalization, development, and utilization phases. A case

study was considered using two scenarios, peace-keeping

and wartime operations, and the evaluation of both user and

technological requirements. To determine critical technolo-

gies for each scenario, the mission needs and technologies

were prioritized on a scale of 0 (inessential) to 5 (essential),

with a weighted prioritization calculated by multiplying the

two scores. An average value across each type of technol-

ogy was calculated and was subsequently used to determine

the technologies that were most effective in each scenario.

No optimization was performed in this study.

Abbass et al. [51] proposed a scenario-based planning

methodology referred to as computational scenario-based

capability planning. The proposed computational planning

model involved three stages, as follows:

1) Scenario Generation: identify deep uncertainties and

design a database of future scenarios

2) Resource Planning under Time Constraints (RPTC)

Sampling: parameterize the scenarios and employ a

simulation methodology to generate tasks for the sce-

nario. Formulate the overall problem, perform an opti-

mization process to generate non-dominated solutions,

then group and evaluate solutions over all scenarios

3) Recommendation: Use k-centroid clustering to cluster

the list of non-dominated solutions

In the experimental section, a resource planning task with

time constraints was considered over a 25-year planning

horizon. This problem was a bi-objective problem with mini-

mization of cost and maximization of robustness as the (con-

flicting) objectives. The robustness objective was simplified

to the task of creating a balanced fleet and therefore was

replaced with minimization of the variance among differ-

ent forces. This process was applied to a hypothetical land

mobility capability planning process to demonstrate how

the scenario templates could be used to generate thousands

of scenario instantiations. Six different vehicles and seven

resource types were considered such that each vehicle could

deliver various quantities of each resource. It was assumed

that a wargaming simulation environment was available to

provide the resource requirement values, each vehicle could

work on a single task at a time, and that there were costs asso-

ciated with not fulfilling the resource requirements of a task.

A multi-objective optimization algorithm, Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [82], was used

to generate non-dominated solutions, which were analyzed

using clustering techniques.

Whitacre et al. [52] considered a scenario-based compu-

tational approach to resource planning problems using a

steady-state MOEA. The study outlined three criteria that

a solution to such problems should have, namely that it

should have good (expected) performance on a wide variety

of plausible future scenarios, have low-cost modifications

that can be made to adapt to changes (adaptiveness), and be
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able to adequately address unforeseen problem conditions

(robustness). The primary objective in the problem formu-

lation was to satisfy all capability requirements. The uncer-

tainty of future capability requirements was addressed via

random sampling from normal distributions. In the exper-

imental section, the number of time steps was set to 10,

the number of asset types was set to 5, and the number of

capability types was 4.

Vander Schaaf et al. [53] considered the selection of

humanitarian infrastructure projects to be conducted by US

military organizations in various countries. This study high-

lighted the importance of decision-support systems given that

the success and impact of the selected projects would have

significant geo-political implications for the US. The goal

of this model was to maximize the cost-effectiveness while

also meeting broad foreign policy objectives. Short-term

objectives were to improve the lives of local civilians and

to support and stabilize the local government. The overall,

long-term objective was to reduce terrorism through the sta-

bilization of a region and strengthening relationships between

the US and the host nation. It was stated that the study

aimed to test the hypothesis that a greedy multi-objective

strategy could be employed to improve the selection pro-

cess. An optimization problem was then formulated with

four objectives, namely maximization of the value to the

US, maximization of the local support, maximization of the

training value, and minimization of the hazard to soldiers.

A number of problem-specific constraints were also enforced.

Optimization was performed by way of linear programming

where the objective functions were converted into constraints.

A form of goal programming was employed such that the

optimization objective was to minimize the weighted dif-

ference among all objectives. This study was rather com-

prehensive in its experimental analysis and considered the

sensitivity to two different budgets. However, the constraints

imposed were very context-specific and therefore, the model

proposed in this study can not be easily generalized to other

contexts. Furthermore, while formulated as a multi-objective

problem, a true multi-objective optimization process was not

performed. Rather, a weighting scheme was employed to

facilitate different trade-offs among the objectives.

Hurley [54] examined the problem of fixed-budget alloca-

tion for miscellaneous-requirement projects in the Canadian

Air Force. Traditionally, an SMEwould allocate the available

budget by selecting projects in order of priority, without

regard for their cost. This study was premised on improving

that particular approach. To this end, a mapping function

was devised to define a relationship between project rank

and project value. This allowed the conversion from (ordinal)

project rankings to (cardinal) values that could be used for

optimization. A standard knapsack approach, solved exactly

with an unspecified commercial integer programming soft-

ware, was used to find the optimal set of projects to imple-

ment from a set of 142 projects. Using a greedy priority-based

selection as a baseline, 84 projects were selected. Using their

proposed optimization approach, 134 projects were selected

to be implemented. The optimized portfolio had 50 additional

projects and led to approximately 25% more value for an

increase of only $76 (relative to the $20 million budget).

A further experiment examined the value that could be added

for a small increase in budget and ultimately concluded that

a small increase in budget would not lead to a substantial

increase in value.

Lee et al. [55] considered the problem of selecting optimal

weapon systems for the Armed Forces in the Republic of

Korea. A hybrid composed of AHP and Principal Compo-

nent Analysis (PCA) [83], [84] was used to determine the

weights for each sub-criteria used in the decision-making pro-

cess. The overall objective was then formulated using a goal

programming approach. A case study was performed using

six candidate missile systems that were evaluated against

three main criteria and 19 sub-criteria. Five SMEs were con-

sulted during the AHP phase and 5 principle components,

accounting for 95% of the variability, were selected using

PCA. A synthesized weight, calculated using both the AHP

and PCA scores, was used to determine the objective score

for each candidate missile system. Various constraints were

implemented but no description nor justification was pro-

vided regarding the constraints. Note that, this study did not

consider portfolio optimization per se, rather it considered the

usage of decision-making techniques to assist in the selection

of a single missile system according to multiple criteria.

Xin et al. [56] proposed a rule-based constructive heuristic

to optimize the dynamic assignment of weapons to targets in

a defensive context. The optimization objective in this study

was to maximize the expected value of the surviving assets

whereby the defender would adopt an optimal policy to assign

their countermeasures to the weapons of their adversaries.

This problem was iterated over a fixed planning horizon

and included a dynamic component whereby future states of

the environment would be dependent on the decisions made

in previous iterations. Constraints were enforced such that

weapons could fire only at a single target at a time, there

was a limited amount of ammunition available, and there

was time-dependent feasibility for certain weapon systems.

A knowledge-based heuristic was proposed to solve the prob-

lem formulation. Specifically, the heuristic was aware that a

higher priority should be assigned to targets that can cause

higher damage, a higher priority should be assigned to targets

that can be most effectively mitigated at a particular time

step, and that assigning a weapon to a target will reduce

its threat level. Furthermore, an explicit constraint handling

mechanism was implemented to ensure that only feasible

solutions were produced. To provide empirical evidence in

support of the proposed heuristic, 13 randomized test cases

were generated and their proposed heuristic was compared

against a pure Monte Carlo approach. It was reported that the

heuristic approach outperformed the Monte Carlo approach

in all cases, especially in cases where the ratio of available

weapons to targets was relatively low.

Yang et al. [57] proposed a semi-variance portfolio selec-

tion model that was applied to military investment assets
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over a 16 year planning period. This study claimed to be

the first usage of a semi-variance measure to quantify risk

in the military portfolio selection domain. The study consid-

ered 10 investment asset options using 12 years of historical

budget data from the Taiwan Ministry of National Defence.

The remaining four years of budget data were approximated

by the Holt-Winters forecasting method [85]. For each asset

option, a formula was derived to provide a corresponding

measure of effectiveness, which was used to determine the

return on investment. It was assumed that at each time step,

assets would be purchased and the optimization objective

was minimization of the semi-variance associated with the

return on investment that would have been attained had the

assets been purchased earlier. Cardinality and proportional

constraints were also enforced. The experimental section

employed a Genetic Algorithm (GA) and Tabu Search to opti-

mize the risk-return trade-off for 12 investment assets, with

no significant difference in performance observed between

the two algorithms. However, the study did note that the

experimental results and corresponding analysis were rather

limited in depth.

Teague et al. [58] proposed an agent-based simulation

to assess the regional stability attained from infrastructure

project development by the US Army Corps of Engineers and

the International Security Assistance Force in Afghanistan.

The key objective in this model was to maximize the benefits

associatedwith developing health-related infrastructure in the

Jalalabad region in Afghanistan. Potential projects included

infrastructure components such as the design of one or more

water wells, building some number of hospitals, and the

training of soldiers. Agent-based modeling was employed to

assess the impact of the infrastructure decisions. The agents’

behavior in the model was directly influenced by the status

of their health. Portfolios were evaluated in terms of the

resulting number of outpatient hospital visits, the total num-

ber of intensive care visits, and the total number of deaths.

Latin hypercube sampling was used to sample 16 potential

portfolios that had varying levels of well coverage, hospital

coverage, and security profiles. Three portfolios were deter-

mined to be non-dominated with respect to both the health

metrics and cost and a further analysis led to an ultimate

decision on which portfolio was best to select.

Golany et al. [59] considered a countermeasure prioriti-

zation problem such that the objective was to optimize the

development of countermeasures under limited resources.

In this model, the defender was assumed to be aware of

the attackers capabilities, intentions, and activities. The pri-

mary objective was then to develop countermeasures to max-

imally mitigate the effect of the attacker’s weapons under

temporal budgetary constraints. This model also included a

scheduling component whereby the decision-maker had to

decide when to start development of the countermeasures.

Feasible development schedules were modeled using a net-

work structure that was constructed in such a manner that

the problem of selecting the optimal policy was reduced

to finding the shortest path through the network that also

adhered to the budgetary constraints. The construction of this

network structurewas exemplified under various assumptions

regarding the number of countermeasures and their effective-

ness scores. Numerical simulations were conducted using ten

enemy weapons, ten possible countermeasures, three levels

of intensity, and four time periods. This formulation leads

to integer programs with approximately 38,000 variables and

73,000 constraints. Despite the size, solutions took an average

of 15 minutes, though times ranging from a few seconds to

about four hours were reported. Furthermore, multiple simu-

lations were conducted to assess the robustness of solutions

to small perturbations in the development times. Dynamic

scenarios were explicitly mentioned as being left for future

work.

Kangaspunta et al. [60] developed a portfolio methodol-

ogy with a specific focus on addressing cost-efficient analysis

across entire portfolios. In their work, being cost-efficient

was simply defined as being a non-dominated portfolio.

While not present in their work, it was noted that compat-

ibility constraints could be added to ensure that, for exam-

ple, mutually exclusive project constraints were respected,

or to assert that certain systems must be deployed together.

An important aspect of this study was the incorporation

of project synergies, which permitted the introduction of

non-linear costs associated with various sets of projects if

they were implemented together. A pairwise comparison

algorithm was devised to generate sets of non-dominated

portfolios. The proposed approach was compared against

three other approaches to generate the list of non-dominated

solutions. Only one of the other approaches considered

required fewer comparisons. However, it was noted that,

despite requiring fewer comparisons, this competitor was

only applicable when all solutions had unequal values with

respect to one criterion, such that they can be sorted into a

strictly decreasing order. Kangaspunta et al. also listed the

recursive definition of this approach as a weakness given that

some programming languages may not support recursion, but

this argument seems largely unsubstantiated given that an

overwhelming majority of programming languages support

recursion. An experimental case study that had 290 portfolios

was examined, 95 of which were identified as being non-

dominated. One limitation that was explicitly mentioned was

that cost should be treated as uncertain in subsequent studies.

Furthermore, it was highlighted that the cost aspect should

incorporate more than just monetary costs, such as loss of

life, which would add an additional level of complexity to the

problem.

Xiong et al. [15] proposed a multi-objective approach to

address capability planning problems. Specifically, the prob-

lem was modeled as a multi-mode resource investment

project scheduling problem. This formulation had two min-

imization objectives, the makespan (i.e., total schedule dura-

tion) and the cost. Two constraints were implemented to

ensure that a predecessor task was always completed before

any of its successors could be started and that the resource

constraints were met at each timestep. Additionally, activities
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could be executed in different modes, which represented

alternative resource requirements and durations for the same

task. To optimize the proposed multi-objective problem,

a preference-based variant of the NSGA-II algorithm was

used. A synthetic test case with 16 tasks and 4 resource

types was created to empirically validate the proposed

approach. Each project had a maximum of four operating

modes, that each had an independent probability of being

selected. Various costs and precedence relations (with a max-

imum depth of 7) were synthesized to create a challenging

optimization environment. A two-stage optimization process

was conducted. The first phase was used to identify an

approximate Pareto front. At this point, a decision-maker

would intervene and select a region of interest such that

the second phase of the search would then focus only on

the sub-region of interest. The proposed, preference-based

NSGA-II variant was shown to outperform the standard

NSGA-II algorithm when the attained Pareto fronts were

compared.

Yu et al. [61] proposed a differential evolution algorithm

to optimize the selection of weapon system portfolios in

the context of a system-of-systems (SoS) architecture [86].

Evaluation of candidate solution was done using Technique

for Order of Preference by Similarity to Ideal Solution

(TOPSIS) [87] and was calculated using the cost and a mea-

sure referred to as the synthetic satisfactory degree of capa-

bility requirements. Various constraints were implemented

to account for minimal allowable capability requirements,

the budget, scheduling requirements, and the level of risk.

A case study was conducted using seven potential weapon

systems to examine the effects of different algorithmic con-

figurations. Details regarding the specifics of this study were

scarce and very little analysis of results was performed.

Bjorkman et al. [62] examined the optimization of

resource allocation in the context of designing equipment

tests for the US Department of Defense. This study was

particularly interesting as the primary objective was to reduce

the uncertainty associated with the testing process rather than

strictly improving some measure of value. Specifically, this

study quantified the value of a particular test as the estimated

amount of uncertainty reduction that the test was expected to

provide. This uncertainty reduction value was then used to

formulate a traditional knapsack problem. This methodology

was applied to five particular tests, with one example given

in full detail – upgrading the brakes of an airplane to facili-

tate shorter stop distances. The primary objective of testing

was to determine the stop distance. Sub-objectives of the

problem were to determine the best braking technique and to

determine the maximum landing distance with a confidence

level of 0.99. Various uncertain aspects, such as the braking

coefficients and accuracy of the testing instrumentation,

were present. The optimization objective was to select an

optimal set of tests such that the uncertainty in the resulting

measurements was minimized. Monte Carlo methods were

used to evaluate four proposed test options. As a baseline

comparison, actual tests described in the literature were

assumed to be tests that SMEs were likely to use. It was

concluded that the optimized portfolios had a value of 4.3%

to 8.4% higher than the portfolios selected by SMEs, for the

same cost. Furthermore, it was highlighted that the largest

difference was obtained with the lowest-valued portfolio,

which could indicate that the optimization process was most

effective for resource-constrained environments [62].

Fleischer Fauske et al. [63] proposed an optimization

model for the Norwegian Defence Research Establishment

to provide quantitative analysis for long-term defence plan-

ning. The single, primary objective of this model was to

optimize the expected capabilities of the force structure by

considering uncertainty in the future budget over a 20-year

planning horizon using cost as a proxy for value. To account

for uncertainty in the future budget, the budget was assumed

to either increase by a specific percentage or not increase at

all in each year. A scenario would then be constructed by

selecting one of these options at each year. The probability

of each event was assumed to be equal but could be specified

as a parameter. A balanced sampling technique was used

such that complementary scenarios (e.g., ‘‘increase, increase,

no increase’’ and ‘‘no increase, no increase, increase’’) would

always be selected in pairs. To prevent unnecessary delays

in project initiation, the value of a project was adjusted

according to the year in which the material was acquired,

thereby penalizing delays in project initiation once the mate-

rial was available. A number of realistic constraints were also

taken into account by this study, such as constrained start

dates, prerequisite projects, and mutually-exclusive projects.

In their experimental results, the number of sampled budget

scenarios was set to either 16, 32, or 64. However, due to the

confidential nature of the data, very little additional detail was

given about the experimental procedure and results.

Hurley et al. [64] proposed two risk-analytic approaches

to allocate operating funds for the Canadian Department of

National Defence. The primary motivation was to reduce the

amount of overspending and ‘‘slippage,’’ which is the amount

of allocated funding that was unused in a given year. Note

that, slippage doesn’t necessarily imply that a project was left

unfinished. Rather, it can be introduced when the maximum

cost was overestimated, leading to funds that were allocated

but unspent at the completion of a project. Therefore, this

formulation was derived under the hypothesis that over-

programming, while assuming that some activities will create

slippage, could better optimize the budget. An analytic pro-

cess was used to derive the probability of overspending if the

first n activities, when sorted by priority, were programmed.

Considering a set of 60 projects, the level of risk associ-

ated with implementing a varying number of projects was

provided. Moreover, the experimentation was repeated using

different levels of correlation between the project priorities

and slippage probability. A further experiment formulated

the problem as a knapsack problem, whereby the objective

was to maximize the value of the portfolio while adhering
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to a given probability of overspending. This problem was

solved using the CPLEX commercial solver.9 Assuming that

the probability of overspending should be no more than 10%,

it was observed that the knapsack approachwould often select

lower-valued, lower-cost projects that were not considered

using a greedy priority selection method.

Bakirli et al. [65] examined the use of a fuzzy multi-

objective multiple-knapsack problem for the selection of

defence projects. This study made use of fuzzy goal program-

ming whereby an achievement function was used to quantify

the weighted deviation from the target in multiple objectives.

Despite the multi-objective formulation, this study did not

employ multi-objective optimization. Rather, an objective

weighting scheme was employed. The experimental section

considered a hypothetical case study examining the tech-

nology needs of a defence organization. This case study

consisted of 13 capabilities, eight scenarios, and 16 potential

projects. Each project had an associated cost, benefit, risk,

and environmental impact. The optimization objectives were

to maximize benefit, minimize risk, and minimize the envi-

ronmental impact while adhering to the total budget. Four

different weight value profiles for the goal programming

aspect were examined. Furthermore, these weight profiles

were applied to each of the six different orderings of the

objectives, thereby producing 24 possible weight schemes

for the objective function. To determine the sensitivity to the

budget, experiments were run using the entire budget, 2/3 of

the budget, 1/2 of the budget, and 1/3 of the budget.

Xiong et al. [16] proposed a knowledge-based MOEA for

stochastic extended-resource investment project scheduling

problems, which are characterized by having flexible project

start times and resource usages. In this formulation, project

completion times were defined as a function of the allo-

cated resources, such that increasing the amount of allocated

resources could decrease the completion time. Moreover,

there was a stochastic component to address various avenues

of uncertainty, such as the duration, resource breakdown,

and alteration of preferences. A multi-objective problem was

formulated with three objectives, namely minimization of the

makespan, minimization of the cost, and maximization of the

robustness. Solutions were subject to both precedence and

resource constraints. Scenarios were used to account for the

aforementioned uncertainties.

To optimize the project schedule, Xiong et al. used a

variant of NSGA-II with an additional knowledge mecha-

nism. Two variants of the proposed approach were examined

and compared against a standard NSGA-II, an MOEA with

neighborhood restarting inspired by [88], and a bi-objective

Tabu Search [89] referred to as MOTS. A synthetic test

case was formulated in a military context and consisted

of 16 activities to be scheduled, each with various prece-

dence relationships, along with four types of resources. Three

experiments examined the results with varying levels of

9CPLEX Optimizer, available at: https://www.ibm.com/analytics/cplex-
optimizer

uncertainty; experiment 1 addressed only the duration pertur-

bation, experiment 2 examined duration perturbation along-

side resource breakdown, whereas experiment 3 included all

three types of uncertainty. A robust schedule was defined as

one that is expected to perform well in a stochastic envi-

ronment characterized by uncertainties. For the robustness

measure, 50 scenario samples were taken. Various parameter

settings were also investigated for sensitivity analysis. It was

noted that the robustness measure decreased when the uncer-

tainty increased, as can be expected. Regarding the algorith-

mic comparison, it was reported that MOTS performed worst

whereas the proposed NSGA-II variants performed best.

Zhou et al. [66] considered the problem of optimizing

defence project portfolios using goal programming. The port-

folios were optimized using a modified variant of differential

evolution. The simulation results indicated that the proposed

approach outperformed both a standard genetic algorithm and

particle swarm optimization. However, there was no men-

tion of the data used nor the experimental design and thus,

the scale of the problem considered is unknown. Moreover,

the manuscript lacked many critical details needed to fully

understand the proposed model.

Davendralingam and DeLaurentis [67] considered opti-

mization of the CVaR associated with a naval warfare case

study using agent-based simulation in a SoS context. The

objective was minimization of the CVaR (as described in

Section II-A3) subject to a number of SoS network-related

constraints. In the experimental section, 16 projects were

considered and various values for the minimum level of

performance required were examined. Evidently, as the mini-

mum level of performance required was increased, the CVaR

also increased. No other analysis or conclusions were formed

based on the experimental results.

Fisher et al. [33] proposed a defence project selection

heuristic based on approximate dynamic programming. This

study considered a year-over-year planning scenario such that

projects could be added intermittently, but decisions had to be

made in near real-time. Their approach was inspired by the

need to minimize under-spending, which traditionally led to

frivolous selection of low- tomid-valued projects at the end of

the year to ensure the entirety of the annual budget was allo-

cated. However, due to the multi-year cost associated with the

projects, selection of these low-valued projects often meant

that there was no remaining budget to initiate high-valued

projects if they were to be originated in the near future. As a

means to penalize the delay of initiating a project, the value

of a project deteriorated over time. The delay meant that

simply ‘‘waiting’’ for the available budget was a sub-optimal

decision and thus immediate selection of high-valued projects

was of utmost importance.

The optimization model of Fisher et al. was subject to two

primary constraints, namely that a project could be initi-

ated only once and that the budget had to be respected at

all time steps. To address the aforementioned problem of

frivolous year-end spending, the study examined whether

lapsing (i.e., not using) a fixed portion of the available budget,
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in the anticipation of a high-valued project being originated,

would lead to better project selection over a multi-year plan-

ning period. The model first reduced the available budget, Bt ,

according to a parameter α, such that the updated (available)

budget at time t was given by B′
t = (1 − α)Bt . At each time

step in the planning period, a knapsack approach was used to

find the optimal selection of projects using B′
t as the available

budget. However, if there existed a high-valued project that

had previously been delayed, the value of α was instead taken

as the smallest value such that the high-valued project could

be implemented immediately.

To select the best value for α, Fisher et al. used a

Monte Carlo approach. Randomly generated projects were

created according to probability distributions built from

historical data to represent the set of projects that would

be originated over a 25 year period. Various values of

α were compared based on how well they performed

relative to an offline version of the problem, where

one plausible future was assumed to be completely cer-

tain. From the relatively small set of α values examined

({0.00, 0.30, 0.35, 0.40, 0.45, 0.50}), α = 0.40 attained the

best score but it was noted that the results were not highly

sensitive to the choice of α. Note that, α = 0.40 corresponds

to lapsing (i.e., saving) 40% of the available budget each year,

except when a high-valued project was originated. Therefore,

it was concluded that not spending the entire budget each year

was preferable. However, this study assumed that the lapsing

and preservation of funds was permitted, which may not be a

realistic assumption in many cases. Moreover, even if lapsing

were permitted, 40% would likely be considered rather high.

Interestingly, this study took an opposite approach to the

study of Hurley et al., which explicitly attempted to minimize

slippage.

Dou et al. [69] proposed a multi-objective integer pro-

gramming approach to selecting weapon system portfo-

lios. Notably, this study explicitly used Pareto analysis to

find non-dominated solutions. The valuation was done from

two different perspectives, namely the technology push and

requirement pull. The technology pushing aspect incorpo-

rated five aspects of readiness: technology and integration,

function, system, capability, and portfolio. The requirement

pull valuation included two measures that indicated the over-

all satisfaction level of the system at the individual system and

portfolio levels, respectively. These satisfaction levels were

considered uncertain and, as such, were supplied as proba-

bilistic intervals based on SME consultation. A case study

was conducted using 10 candidate weapon systems, which

encompassed 20 technologies and 21 integrations. Some of

the technologies and integrations were considered together

as higher-level constructs, referred to as functions. Solutions

were required to adhere to manufacturing and capability

requirement constraints. Much of the analysis focused on

what functions were provided by the various weapon systems

and what functions were required to support each capabil-

ity requirement. Of the 1022 feasible portfolios, 55 were

identified as being non-dominated and thus warranted further

inspection by the decision-maker.

Rempel and Young [70] developed a decision support sys-

tem to assist decision-makers at the Canadian Department of

National Defence with project portfolio selection. The system

combined optimization, visualization, and manual revision

features to assist decision-makers in their choices. Note that,

this was the only study that explicitly mentioned an a pos-

teriori manual refinement stage; this study was inherently

focused on the usability of the system in a real-world con-

text rather than as an academic endeavor. The system was

designed to construct template plans that contained a viable

20-year schedule of major projects and planned expenditures

as well as realistic plans for the introduction, maintenance,

or divestment of capabilities. Moreover, a number of visual-

izations provided additional insight to the decision-makers.

Rempel and Young’s optimization model was formu-

lated as a multi-dimensional knapsack problem that rep-

resented two distinct funding sources. This problem was

solved using the GNULinear Programming Kit.10 To account

for the long-term funding implications of projects, bud-

getary constraints were examined for 40 years (i.e., 20 years

longer than the planning horizon). Additional constraints that

were enforced were an annual organizational capacity con-

straint and various dependency constraints. However, the sys-

tem explicitly facilitated the implementation of arbitrary

user-defined constraints. Interestingly, this model contained a

time-limited solver whereby the user could supply a time limit

and have the best, but possibly sub-optimal, solution returned

after the specified amount of time had lapsed. Additionally,

seven interactive visualization techniques were implemented

to provide further insight into the provided solutions. It is

noted that this study described a relatively comprehensive

software solution with a number of interesting ideas, but

offered no empirical results.

Davendralingam and DeLaurentis [71] proposed a model-

ing scheme formilitary capabilities using an SoS architecture.

The study was premised on optimizing a portfolio using the

classic mean-variance approach via mixed-integer quadratic

programming. The optimization objectives were to maximize

the overall capability while minimizing the risk in develop-

ment time. Uncertainty in the expected returns was addressed

via interval data, thereby producing linear margins in the

calculated capabilities. Note that, this model definition was

similar to, and presumed to be a continuation of, a previous

study by the same authors [67].

Davendralingam and DeLaurentis then used a syn-

thetic test case with 22 systems to exemplify the pro-

posed approach. Various mutual exclusion constraints were

enforced. For example, a requirement that the selected com-

munications package system could interact with a maxi-

mum of four other systems was enforced as a constraint.

Values for the risk aversion parameter were taken between

10GLPK, available at http://www.gnu.org/software/glpk/
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0 and 1, in increments of 0.1, and represented various

penalties associated with taking risks. They purported that

the major benefit to their system was that it presented the

decision-maker with portfolios that were relatively robust to

the prescribed levels of uncertainty.

Konur et al. [72] proposed a military mission planning

problem in the context of an SoS architecture using both

multi-objective mixed-integer optimization and an evolu-

tionary algorithm. A decomposition approach was proposed

to alleviate the computational burden associated with solv-

ing this problem formulation. The decomposition approach

would decompose the overall problem into multiple sub-

problems, such that the true Pareto front was included in the

union of the Pareto fronts for the sub-problems. The over-

all objectives of their model were specified as maximizing

the total performance and minimizing the completion time.

To demonstrate the proposed approach, a search and rescue

mission planning scenario, consisting of eight capabilities

and six systems, was considered. This study also considered

both inflexible and flexible systems, where a flexible system

was one that permitted online engineering design changes

that could incorporate additional capabilities in the finished

project. A number of empirical analyses were conducted and

indicated that the proposed decomposition approach was able

to decrease the running time for the exact solver. Regarding

the evolutionary algorithm, the decomposition approach was

reported to both reduce computational time and improve per-

formance. The results also indicated that increased flexibility

in the constituent systems led to overall better solutions.

Yang et al. [73] considered the problem of weapon system

portfolio optimization where the objective was to determine

an optimal assignment of weapon units to maximize the

expected damage to hostile targets. This study considered

a dynamic, target-based weapon system portfolio problem

whereby the defender would detect a fixed number of hostile

targets and their attack mechanisms at each time step. The

goal was to then to maximize the defensive capabilities to

mitigate these attacks. Constraints were used to ensure that

the number of assigned units was not greater than the num-

ber of available units, each target was assigned at least one

weapon from each system, the assignments were feasible, and

the decision variables were positive integers. A case study

consisting of five offensive units and four defensive units

was considered in the experimental section using an adaptive

immune genetic algorithm. Additionally, a random test-case

generator was used to examine the scalability of the proposed

methodology.

Zhang et al. [74] considered a portfolio selection problem

with incomplete information, addressed via scenario gen-

eration, that contained both project dependencies and syn-

ergies. Project dependencies and synergies were addressed

through the use of constraints, which could alter the cost

and/or benefit, define that certain projects must be selected

together, or prevent certain projects from being selected as

part of the same portfolio. Regarding the optimization aspect,

two objectives were defined, namely maximization of the

return value and minimization of the risk. The return value

was defined as the expected return among different scenarios

whereas the risk was defined as the variance of the returns

over some fixed time period. This problem was then solved

as a binary linear program with multiple objectives. A set

of non-dominated portfolios was generated exhaustively by

examining all feasible portfolios and keeping only those

that were non-dominated with respect to the other feasible

portfolios. An illustrative example consisting of 20 projects

was used to demonstrate their approach. 27 candidate port-

folios were identified, with very little subsequent analysis

conducted.

Cheng et al. [75] examined the optimization of a weapon

system portfolio via combat network modeling in an SoS

framework. In this study, the system was represented by a

network such that the nodes denoted various weapon systems

whereas the edges represented functions, missions, or tasks

and denoted either the flow of reconnaissance, communi-

cation, or influence. The experimental section considered a

hypothetical case with 10 projects across three categories

with two enemy targets. Note that, there was no mention of

the optimization approach that was used in this study, though

it is assumed to have been an exhaustive approach. The results

indicated that 129 feasible portfolios were found. Further

analysis examined the cost-effectiveness ratio and total com-

bat capability, and ultimately resulted in two recommended

portfolios.

Shafi et al. [17] proposed a scenario-based, multi-period

optimization technique for CBP in the context of the ADF

using an evolutionary algorithm. Given the uncertainty of

future scenarios, a Monte Carlo approach using reinforce-

ment learning was employed to provide a measure of robust-

ness against uncertain future states.

Firstly, Shafi et al. formulated a single-period, multi-

objective optimization problem as minimization of the cost

while also minimizing the strategic risk (or, equivalently,

maximizing the effectiveness) across K planning scenarios.

Thus, the problemwas formulated as havingK+1 objectives.

The single-period formulation was extended to address a

multi-year planning period, which was taken as 10 years,

whereby different instances of the same problem (arising due

to changes in scenarios) were to be solved at each instance of

time.

To address the issue of deep uncertainty, Shafi et al.

employed a Monte Carlo approach using reinforcement

learning. At each iteration, the non-dominated set was

first attained by solving the multi-objective, single-period

optimization problem using the Multi-objective Evolution-

ary Algorithm Based on Decomposition (MOEA/D) [90].

Q-learning [91] was then used to assign a score to the selected

portfolio according to how well it performed in the current

scenario. Specifically, one action (i.e., portfolio) was selected

from the non-dominated set, either randomly or using the

highest Q-value score as determined by the probability

parameter. A future state was then generated based on the

selected action. The non-dominated set for the single-period
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optimization problem corresponding to this generated future

state was determined and a reward was calculated for the

selected portfolio based on the performance in the generated

state. This process was continued for each time period, then

repeated in its entirety for the specified number of simula-

tion runs. The empirical results of this approach were com-

pared against two heuristic techniques, random selection and

greedy selection. It was observed that the proposed technique

outperformed the heuristic approaches over the 10-year plan-

ning window. Furthermore, to justify the usage of Q-learning,

the proposed approach was compared with a variant that did

not use Q-learning. Results indicated that using Q-learning

consistently improved the results. It is noted that the study of

Shafi et al. [17] was very comprehensive when compared to

the majority of the other studies considered in this review.

Xiong et al. [18] examined the problem of weapon selec-

tion and planning in dynamic environments. The effective-

ness of a weapon was considered as a combination of both

the quantity and operational time of a weapon. Furthermore,

a synergistic effect could occur between various weapon sys-

tems. The synergy effect would be realized when all weapons

within a given set were operational and had quantities within

specific proportions. The primary objectives of the model

were defined as maximization of the net present value and an

overall effectiveness score. As an additional complexity, both

the effectiveness and synergistic effects were modified after

the completion of an enemy countermeasure, which occurred

at predefined time steps, and was meant to model a decrease

in effectiveness resulting from an enemy countermeasure.

This element added a form of dynamism to the problem and

would force the decision-maker to either continue with their

current solution or determine an appropriate adaption.

In the experimental section, Xiong et al. used NSGA-II to

optimize a hypothetical scenario that consisted of 20 weapon

types and a planning horizon of 10 years (i.e., 120 months).

A time-discount rate of 0.01 per month (selected arbitrar-

ily) was used to modify values over time. The experimental

section was largely used as a proof-of-concept to depict var-

ious aspects of the algorithmic performance.

Wang et al. [76] considered the problem of future weapon

planning under uncertain capacity demands. This approach

broke the overall planning cycle into several, shorter planning

cycles and employed a multi-stage stochastic programming

model to maximize the long-term benefit using budget, devel-

opment times, and short-term benefits as constraints. This

approach considered a long-term benefit but used short-term

constraints. A genetic algorithm was designed and employed

to optimize the selection process. In the empirical analysis,

a planning cycle of 15 years was broken into three shorter

periods, each 5 years, with 15 different equipment types,

five capability categories, and a budget of 60 units. A single

optimal solution was provided, with no subsequent analysis

or discussion of the experimental results.

Li et al. [19] proposed a portfolio optimization approach

based on an SoS architecture. Solutions were evaluated with

respect to both qualitative measures of effectiveness and

quantitative measures of performance, variations of which

were accounted for through the usage of scenarios. The

objectives were defined as maximization of the measures

of effectiveness and performance and minimization of the

cost. Completeness and connectivity constraints regarding

the SoS architecture were enforced. In the experimental

phase, NSGA-II, ǫNSGA-II, and ǫMOEA were compared.

An experimental case study was conducted using ran-

domly generated data with 30 weapon systems, 30 mea-

sures of effectiveness, and ten measures of performance.

Solutions were analyzed in terms of their flexibility, sur-

vivability, resilience, and robustness. It was concluded that

ǫNSGA-II exhibited the best performance of the examined

algorithms.

Li et al. [77] proposed a capability-oriented approach for

the selection of high-end weapon equipment portfolios.

A novel measure of effectiveness, referred to as the opera-

tional capability evaluation index, was proposed and maxi-

mization of this metric was taken as the optimization objec-

tive. The proposed measure was a weighted sum of the oper-

ational capabilities for each weapon in the portfolio – an

extension of a measure proposed in earlier work by the same

authors [80]. A custom algorithm was proposed to address

this problem formulation. This algorithm was reported to

have a high computational cost. A case study, which included

10 potential weapon systems, three capability requirements,

and a budget constraint was considered. 15 candidate portfo-

lios were considered and analyzed using the proposed capa-

bility evaluation index on four different combat scenarios.

The same portfolio was identified as being the best choice in

all four scenarios. An additional experiment was constructed

using 50 randomly generated weapon systems. The proposed

approach was compared against, and found to outperform,

two baseline heuristics that selected the lowest cost and max-

imum sum of capabilities, respectively.

Moallemi et al. [78] considered a resource-constrained

submarine acquisition planning problem. The objectives of

the proposed model were to maximize the availability of sub-

marines while minimizing the waiting time associated with

licensing and maintenance over time, assuming an uncertain

future. A solution to this problem had to account for the

initial quantities of the submarines and their crews as well as

the quantities and schedules for new acquisitions. This study

claimed to be the first instance that combined portfolio opti-

mization and fleet mixing for both short-term and long-term

planning. In the experimental case study, a planning hori-

zon of nine years, with weekly time steps, was considered.

This was further broken into three epochs, each consisting

of 156weeks (i.e., 3 years). A time-dependent scenario gener-

ation technique was employed to address uncertainties using

transition logic rather than a range of values. The usage of

transition logic allowed the uncertainty to be dependent upon

other factors, such as the length of the planning horizon.

NSGA-II was used as the optimizer and was executed on

9000 experiments to examine the robustness of the Pareto

optimal solutions.
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Xia et al. [79] considered the problem of weapon project

planning under uncertainty. Each of the weapons were cate-

gorized into one of four categories as follows: 1) candidates

in the development list, 2) weapons that can be produced,

3) weapons in service, and 4) retiredweapons.Weapons could

transition from one category to the next as appropriate. For

example, a weapon that was in the development list could be

transitioned to one that can be produced if it was selected

for development. The primary objective was to decide both

the start and end time of development, along with quantities,

in each time frame. Four constraints were enforced such that

1) Projects in the development stage cannot be

manufactured.

2) The retirement time must be later than the start time.

3) The acquisition amount must be 0 for all time periods

after retirement.

4) The cost cannot exceed the budget.

This study used interval data to account for uncertainties

in the required capabilities. A set of plausible future states

were then selected using orthogonal design to create a repre-

sentative set of scenarios. Note that, further details were not

provided as Xia et al. did not consider the scenario design to

be central to the study. Two minimization objectives, referred

to as the total capability gap, whichmeasured the gap between

the capabilities and their corresponding requirements, and the

total capability dispersion, which measured the variance in

capability, were used in this study. These two objectives were

claimed to be largely influenced by the mean-variance model

of Markowitz, as described in Section II-A1.

To exemplify the proposed model, Xia et al. constructed a

20-year planning task. Each time period lasted five years and

it was assumed that all information was known in advance.

The study consisted of 24 capability requirements, 32weapon

projects (14 in service, 18 candidates), with 132 scenarios and

a fixed budget in each period. NSGA-II was used as the opti-

mizer and various analyses were conducted on the resulting

Pareto optimal solutions. However, like many other studies

considered in this review, there was only limited subsequent

analysis.

V. ADDRESSING THE DIFFICULTIES ASSOCIATED

WITH THE DEFENCE SECTOR

Defence applications have their own set of challenges that

are different from those in other application domains. Specif-

ically, applications in the defence sector face hostile and

adaptive adversaries, which adds an element of game the-

ory to the problem, various levels of approval and oversight

during the decision making process, and complexity [92].

Furthermore, defence-related portfolio optimization tasks are

characterized by a number of key difficulties, namely uncer-

tainty, valuation, multiple conflicting criteria and/or objec-

tives, and dynamism. Moreover, often there are a number of

constraints, such as a budget or scheduling requirements, that

are imposed on candidate solutions. These challenges, and

some associated solutions that were identified in this review,

are summarized in Fig. 4. In this section, the manner in which

studies have addressed these concerns is discussed.

A. UNCERTAINTY

One important aspect that must be considered in portfolio

optimization in the defence sector is uncertainty [93]. Many

things about the future are unknown, such as the budget,

the political landscape, the capability requirements, etc. Note

that, uncertainty and risk are different aspects in that risk

can generally be assigned a probability, while uncertainty

cannot [31]. Therefore, planning and decision making should

be done with robustness to a number of plausible futures in

mind. However, it was found that accounting for uncertainty

is surprisingly rare in a defence context [92].

Burk and Parnell [92] listed three broad techniques to

address uncertainty, namely Monte Carlo approaches (useful

when there are a large number of independent uncertainties),

scenarios (useful when the uncertainties span the planning

space), and decision trees (useful when there are only a few

dependent uncertainties). Scenario-based approaches have

become more prevalent in recent years, thereby forcing plan-

ners to account for uncertainties [31], [94]. Specifically, sce-

narios are commonly used for robustness calculations rather

than as a direct valuation technique.

In support of Monte Carlo analysis, Mun and Housel [95]

stated that using a point-estimate, akin to examining only

a single scenario, is ineffective as it specifies only a sin-

gle event that will occur with near-zero probability. Hence,

Monte Carlo approaches should be employed to examine a

wide variety of plausible future scenarios. Similarly, Maier

et al. [94] noted that traditional, distribution-centric models

of ‘‘best-guess’’ uncertainty are unlikely to be appropriate

in a changing society. Rather, a model of plausible futures,

i.e., scenarios, is required and should be used to assess the

robustness. In the remainder of this section, the mechanisms

used to address uncertainty are examined in chronological

order. It should be noted that nearly all studies that considered

uncertainty employed the usage of scenarios.

Crawford et al. [37] generated random trees to synthesize

plausible technology roadmaps, which were used during the

testing phase of their project selection software package.

However, the generated trees were not used in the evaluation

of candidates.

Parnell et al. [41] used Monte Carlo sampling to account

for the uncertainty of risk associated with projects. The val-

ues were sampled from triangular distributions and used to

estimate the distribution of values at the project and portfolio

levels.

Barlow et al. [96] proposed a temporal risk assessment

framework for future force design that contained three main

components. Firstly, a simulation system that quantified the

risk associated with a particular force structure. The second

component was a set of constraints that governed the possi-

ble transformations regarding the force composition. Finally,

a graph structure where edges represented possible transitions

from one force to another with respect to time and resource
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FIGURE 4. Summary of the main challenges associated with portfolio optimization for defence applications.

constraints. The graph is then traversed in such a manner

that the risk is minimized, thereby providing insight regard-

ing the best possible force transformations with respect to

risk.

Abbass et al. [51] first argued that planning problems

do not fall directly under the scope of dynamic or uncer-

tain optimization problems. Rather, scenario planning differs

from traditional prediction problems by the way in which

uncertainty is handled. In optimization and/or traditional

approaches, uncertainty is typically handled by associating

events with probability distributions. It was argued that this

approach has severe limitations: 1) that a massive amount of

data is required to build and maintain accurate distributions,

2) there is inability to account for complex human behavior,

3) the inability to accurately account for sudden ‘‘shocks’’ or

‘‘surprises,’’ and 4) the underlying assumption of the conti-

nuity of past trends.

Based on these limitations, Abbass et al. [51] argued that

examining a planning problem as a pure optimization prob-

lem in a dynamic or uncertain environment can bemisleading.

To address this issue, SMEs were consulted to identify and

assign a prevalence level to the factors underpinning future

operations. As a result, three scenarios were identified. These

scenarios were further parameterized using an agent-based

simulation model to generate, for example, different sets of

tasks and their associated durations.

Bizkevelci and Çakmak [50] examined two scenarios,

namely peace keeping and wartime operations, in the context

of prioritizing military technologies.

Whitacre et al. [52] employed scenarios to examine the

robustness of their scheduling approach under uncertain capa-

bility requirements.

Xin et al. [56] considered four scenarios in the context of

assigning weapons to targets in a dynamic environment. The

scenarios accounted for whether a weapon could be used

only once, used a prescribed number of times, used during

all stages, and a hybrid case. Furthermore, Monte Carlo sam-

pling was used to determine whether a particular attack would

destroy its target.

Malmi et al. [97] employed a wargaming simulation to

simulate the outcome of military battles. Their simulations

made use of one or more scenarios that were derived from

threat models and various assumptions on how the enemy

will use their forces. It was noted that the combat calculations

in their chosen modeling tool were performed using Markov

chains rather than Monte Carlo sampling.

Bjorkman et al. [62] used Monte Carlo sampling to esti-

mate the baseline uncertainty in the prediction of airplane

landing roll distances under various test conditions.

Fleischer Fauske et al. [63] constructed a binary tree to

generate plausible future budget decisions, then performed a

balanced sampling to generate scenarios for evaluation. Note

that, this was the only example of the decision tree uncertainty

technique that was identified in this review.

Xiong et al. [16] employed randomly-generated scenarios

to account for three types of uncertainties, namely the dura-

tion, resource breakdown, and precedence relations, which

were subsequently used to assess the robustness of the gener-

ated schedules.

Zhang et al. [68] considered three future mission types

as scenarios in the context of evaluating weapon systems,

namely tactical assault, defence and protection, and occupy

and control. The attributes associated with each scenario,

as well as their ideal values, were assigned by SMEs.
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Davendralingam and DeLaurentis [67] used Monte Carlo

sampling to generate values for capability coefficients and

covariances as well as to generate random portfolios for

comparison.

Bakirli et al. [65] used scenarios to encompass the aspects

of whether a coalition exists (true or false), the type of warfare

(regular or irregular), and the type of threat (material or

information). All eight combinations of these aspects were

considered in their study. Furthermore, positive and negative

market trends were considered as distinct scenarios when

assessing risk factors and environmental policies were con-

sidered in both tighter and more relaxed scenarios.

Konur et al. [72] used three scenarios representing the

level of flexibility in an SoS architecture design problem

where flexibility was defined as the ability of individual sys-

tems to permit engineering design changes. Hence, inflexible

systems had a fixed set of capabilities associated with them

whereas a flexible system was one where the capabilities

can be decoupled, thereby providing only a subset of its

capabilities at a reduced cost and time commitment.

Zhang et al. [74] considered two types of scenarios, those

with complete information and those with incomplete infor-

mation, in the context of army engineering andmanufacturing

project selection. The main distinguishing factor was that

scenarios with complete information had associated probabil-

ity distributions whereas only interval data was available for

those with incomplete information. The experimental results

considered scenarios with incomplete information to address

uncertainty in the return value of different projects.

Shafi et al. [17] employedMonte Carlo sampling to gener-

ate different operating scenarios, which consisted of assign-

ing effectiveness scores to each project. The list of projects

and their associated costs were also generated randomly

according to distributions extracted from the 2012 Australian

Defence Capability Plan (DCP) [98].

Moallemi et al. [78] employed randomly generated scenar-

ios to account for the uncertainty associated with their acqui-

sition strategy model. The scenarios were used to evaluate the

robustness of solutions.

Xia et al. [79] employed the use of scenarios to examine

the robustness of weapon planning solutions. However, little

detail about the scenario generation process was given as

it was not considered to be the main focus of the paper.

Furthermore, Xia et al. made the claim that future scenarios

should be provided by SMEs, which can then be used to

describe uncertainties.

Despite their argument that scenario-based modeling may

be inadequate for cyber warfare applications, Rowe et al. [99]

employedMonte Carlo sampling to estimate the proportion of

different types of attacks that were expected to be successful.

While it is clear that scenario-based modeling is prevalent

in the field of portfolio optimization for defence applications,

there are some valid criticisms that should be highlighted.

Watson and Kasprzyk [100] argues that by specifying scenar-

ios a priori, the ability to determine the relative importance

of each scenario is limited; scenarios should be adaptive

and change according to the online results of the simulation.

Gray [12] argued that predicting the future is inherently

biased as the future is predicted given the current scenario,

which limits perspective and leads to an ‘‘undesired element

of prophecy.’’ Moreover, Gray [12] argued that the chal-

lenges associated with uncertainty are often overstated and

proposed using trend-spotting as an alternative. Filinkov and

Dortmans [101] stated that scenario-based analyses tend to

focus on generic conflicts that may arise, but would likely

be better focused on identifying and mitigating the condi-

tions that give rise to these conflicts. Rowe et al. [99] argued

that scenario-based modeling isn’t well suited to address

cyber warfare problems and proposed risk-based analysis as a

suitable alternative. Despite these criticisms, scenario-based

approaches are by far the most common approach to address

uncertainty.

The only other notable examples of uncertainty were in the

form of potential project failures, whereby it is stated that

over-programming can hedge against potential project fail-

ures [17], [64], [70]. Additionally, Teague et al. [58] used an

agent-based simulation to anticipate the long-term effects of

implementing different infrastructure projects, such as water

wells and hospitals, in post-conflict Afghanistan.

B. QUANTIFICATION OF VALUE

It is well known that defining a mechanism to valuate poten-

tial assets is one of the most challenging aspects associated

with portfolio optimization in the defence sector and, fur-

thermore, that many traditional measures are senseless in this

context [31], [41], [42], [93], [101], [102]. In fact, the usage of

misguided valuation schemes can be problematic. For exam-

ple, Angstrom [103] argued that the US has often focused

primarily on death and destruction, which directly influences

how their future planning is conducted. This focus on damage

output is further reinforced through the ease in attaining fund-

ing for weapons in contrast to the difficulty in justifying the

allocation of assets towards developing adaptive and anticipa-

tory forces. Moreover, it was argued that a narrowly-focused

view of project valuation causes a biased view of the future,

thereby limiting the capacity to balance short-term and

long-term planning objectives [14], [103]. Given the com-

plexity of assigning quantitative values to defence projects

and/or assets, this section discusses the valuation schemes

found in the literature.

In a general sense, the value of an asset is typically defined

in relation to its cost or return on investment while the utility

of an asset is a measure of its overall usefulness. In some

cases, measures of utility and value can be conflicting. It was

found in a 2011 review that most defence-oriented appli-

cations used a value metric, specifically an additive value

model, rather than a utility metric [92]. Thus, many early

studies were not focused on the utility of the selected assets,

but rather attention was focused on the direct value the assets

could provide. This is problematic given that measures such

as investment costs and military equipment numbers offer

little insight into the true value of defence capabilities such
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as peace, protection, conflict deterrence, and stability [93].

Similarly, Wall et al. [102] noted that traditional monetary

valuation schemes are senseless in a defence context. Rather,

there must be a notion of effectiveness, which is not straight-

forward and there exists many different views on how to mea-

sure effectiveness. As a result, many studies have struggled to

provide a measure that fully captures effectiveness.

In contrast to simple valuation schemes, capability-based

analysis can assist in addressing questions of whether the

defence force provides an adequate level of capability [93].

However, simply defining and valuing capabilities in broad

environment-based categories, such as air, land, and marine

leads to a number of dysfunctional consequences such as

duplication and gaps [31]. Rather, it was claimed that func-

tional partitioning of capabilities into categories such as

mobility and partnership building is a promising future

direction [31].

As another alternative, Filinkov and Dortmans [101]

argued that CBP approaches have an inherent inadequacy

when applied to defence planning as they primarily focus

on developing an investment strategy. Rather, this study

argued that an insurance-based approach, referred to as

hedging-based planning, better reflects the totality of a

defence system by capturing both force structure (capability

development and acquisition) and force generation (transfor-

mation of latent capability into operational capability over

time). Essentially, this study claimed that hedging-based

planning can account for two types of investments, namely

those that relate to acquisition of physical assets (Type I) and

those that integrate assets into usable capabilities (Type II).

A measure of risk can then be defined based on whether or

not a desired capability portfolio is met according to various

constraints. The primary objective of an optimization process

would then be to find the optimal way to invest in both Type I

and Type II assets to achieve a force design that is able to

defend against various scenarios over a given time frame.

Note that, this study was purely focused on the proposal

of a new methodology and was not experimental in nature.

Nonetheless, it proposed an alternative viewpoint on how to

address the problem of portfolio optimization in the defence

sector.

Regarding the valuation schemes employed in the surveyed

articles, arguably the simplest valuation scheme was that

of [63], where the value of a project was defined to be the

sum of its costs over its life-cycle. The most common form of

valuation was quantification of effectiveness in one or more

scenarios, arising in nearly every study that was considered –

this is unsurprising given that the primary objective is always

to maximize the return on investment and the most logical

form of ‘‘return’’ is the effectiveness that implementing a

project will provide. Quite often this measure of effectiveness

was formulated in consultation with SMEs.

While cost was typically considered in the form of one or

more budgetary constraints, a few studies explicitly added

the minimization of cost as an optimization objective [6],

[15]–[18], [40], [43], [49], [51], [52], [74]. Another relatively

common approach to valuation was to consider the balance,

or variance, associated with the project selection as an objec-

tive [16], [19], [49], [51], [57], [74]. Balance/variance can

also be considered a measure of robustness. Alternatively,

balance could be imposed as a constraint, as seen in [70].

In contrast, Davendralingam and DeLaurentis [67] argued

that the concept of variance, which is typically assumed to

follow a normal distribution, does not easily extend to the

risk associated with defence applications where the complex

inter-dependencies result in complicated joint distributions

among the interacting agents.

Considering cost and risk, [95] argued that an optimiza-

tion objective should not be simply to reduce cost as a

means to reduce risk, especially in the case of multiple

mutually-exclusive projects with different cost-benefit-risk

profiles. Furthermore, it was argued that any measure of

the return on investment should explicitly account for the

associated risks rather than this being an afterthought.

A few other notable valuation schemes were present in the

literature. In two studies that also considered a scheduling

component, themakespanwas used as an objective [15], [16].

Hurley et al. [64] provided a mapping from an ordinal

priority-based rank to a cardinal value for each project.

The mapping was defined using a monotonically decreas-

ing function for projects of successively lower priority.

Dodd et al. [47] used probability distributions to specify

the likelihood of specific outcomes with respect to a spe-

cific goal to formulate parametric, marginal utility functions,

which were combined to formulate the objective function

with respect to both short-term and long-term considera-

tions. Bizkevelci and Çakmak [50] derived a prioritization

scheme based on the needs of a particular mission and

the areas of technology that were required. The study of

Bjorkman et al. [62] considered the entropy associated with

testing measurements as a measure of value. While an inter-

esting approach, this technique is not widely applicable to

portfolio optimization. While not considered in their study,

Li et al. [19] noted that survivability and resilience should be

included as objectives.

To further complicate matters regarding project valuation,

there was typically more than one primary objective in the

examined articles such that many of the approaches dealt with

multiple conflicting criteria or objectives. Therefore, a single

valuation scheme would hardly be effective in these cases.

The next section thus examines how multiple criteria and/or

objectives were addressed in various studies.

C. MULTIPLE CRITERIA AND MULTIPLE OBJECTIVES

Multi-Criteria Decision Making (MCDM) is a general

methodology for addressing complex decision-making prob-

lems that involve multiple, often conflicting, criteria against

which the alternatives are evaluated. MCDM methods eval-

uate the performance of various alternatives with respect

to different criteria and (subjective) opinions regarding the

relative importance of each criterion. One particular tool used

in MCDM is Multi-objective Optimization (MOO), which is
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concerned with finding a diverse set of alternatives that do not

impose a relative weighting on each objective. Such solutions

are referred to as non-dominated or Pareto optimal. However,

the two terms are often used interchangeably in the literature,

despite being subtly different in their methodology and goals.

1) MULTI-CRITERIA DECISION MAKING VERSUS

MULTI-OBJECTIVE OPTIMIZATION

To illustrate the difference between MCDM and MOO, con-

sider the example data provided in Table 2. In this example,

there are three vehicle options (A, B, and C) that are to be

evaluated against three criteria, namely speed, safety, and

fuel consumption. This is an example of a problem that can

be addressed via MCDM. In this context, one wishes to

select the best vehicle according to these criteria. One tech-

nique to facilitate this decision-making is to assign a rating

between 1 (lowest) and 10 (highest) for each vehicle against

each constraint. A (subjective) weight can then be assigned

to each criterion based on the preferences of the decision-

maker(s). Both the rating and weighting steps often involve

the consultation of SMEs. Using the assignedweights, a score

can be calculated for each vehicle and criterion such that the

total score is given by the summation of the scores for each

criterion.

TABLE 2. Example multi-criteria decision problem for cars. Each criterion
is assigned a score between 1 (lowest) and 10 (highest), then weighted,
and a score assigned.

In Table 2, the decision-maker(s) prioritized the safety of

the vehicle, followed by the speed, and then the fuel con-

sumption by assigning weights of 6, 8, and 4 to the speed,

safety, and fuel consumption criteria, respectively. Therefore,

according to their preferences, vehicle C is determined to

be the best choice. However, if the decision-maker decided

to prioritize speed by assigning weights of 8, 4, and 3,

respectively, then vehicle B would be assigned the highest

total score. Note that, the choice of aggregating function is

arbitrary and many alternatives exist.

If this problem were viewed in the context of MOO, each

of the vehicle options would be considered equivalent as

each are non-dominated with respect to the others,11 i.e., no

vehicle is objectively worse with respect to all of the crite-

ria/objectives. The decision-maker would then consider each

of the alternatives in more detail, ultimately making their

decision using the set of non-dominated alternatives. In sum-

mary, the critical difference between MCDM and MOO is

thatMCDM is concernedwithmaking a decision with respect

11Note that, it is not typical for all alternatives to be non-dominated with
respect to each other – this is simply a result of having only a few alternatives
in this example.

to multiple criteria, whereas MOO is concerned with finding

a diverse set of optimal, and hence equivalent, options with

respect to multiple criteria, thereby deferring the decision

making process.

2) WEIGHTING AND SCORING METHODS

One of the simplest strategies to address MOO is to reduce

the problem to a single-objective problem. The most straight-

forward approach is to weight each objective according to

the decision maker’s preferences, then sum across all objec-

tives. This is known as the weighted-sum approach. However,

it should be noted that this approach is incapable of specifying

complex preference information and can limit the ability to

find all Pareto-optimal points [104]. Despite this limitation,

if all the assigned weights are positive and greater than 0,

then the weighted-sum approach is guaranteed to provide a

Pareto-optimal solution [104]. Then, by varying the weight

vector, multiple non-dominated solutions can be attained.

There were a number of studies that employed a

weighted-sum approach. In [35], 15 weights were assigned

to different severity and impact criteria to ascertain a risk

valuation for cyber attacks. In [36], weights were assigned

to tasks to indicate priority and the score of a candidate was

then taken as the weighted sum of its contribution for each

measure. [47] employed criteria weights to reflect the impor-

tance of achieving various operational goals. Reference [105]

used a weighted sum of ten measured values to quantify the

effectiveness of counter IED initiatives. [70] used an addi-

tive measure function to compute the overall value of each

project according to three criteria, namely the alignment with

national policy, the alignment with institutional capability

needs, and the relative importance placed on the project by

its sponsor.

While the weighted-sum approach is certainly the most

straightforward approach, alternative weighting schemes

are also possible. Parnell et al. [41] used a non-linear,

multi-attribute function using relative weights assigned by

SMEs. No further specifics were given apart from the fact

that it was not simply an additive function. The follow-up

study [46] does not explicitly state the objective function

used and is thus assumed to have also used the non-linear

functionmentioned in [41]. Bizkevelci and Çakmak [50] used

a multiplicative weight of priorities assigned to the overall

mission needs and technological needs, respectively, to define

a weighted priority.

Another prominent scoring technique that was found in the

literature was AHP. AHP is an MCDM technique whereby

the problem is decomposed into a hierarchical structure based

on the factors used to influence the decision-making process.

In AHP, these factors are selected and arranged hierarchi-

cally according to increasing levels of granularity such that

the lowest level represents the decision-making environment.

Pairwise comparisons are then used to derive relative priority

weightings for each of the alternatives at the lowest level,

rather than arbitrarily assigning these weights. These weights
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can then be used to score and rank individuals in an optimiza-

tion context.

Greiner et al. [38] employed AHP to decompose the port-

folio selection problem into seven main criteria, namely

external factors, industrial base, capability, user needs, risk,

standards, and funding. Each of these main criteria was then

further decomposed into 22 sub-criteria, which were each

assigned a weight via AHP. AHP was then used to derive

priority weights for each criteria, which were subsequently

used to select projects to fund.

Lee et al. [55] combined AHP and PCA [83], [84] to

determine prioritization weights. The weights were combined

according to

ws =
wAiwPi

∑m
i=1 wAiwPi

, (7)

where wAi and wPi are the weights assigned to criterion i via

AHP and PCA, respectively.

Bakirli et al. [65] employed AHP as amechanism to assign

usage probabilities of capability areas in various scenarios by

surveying SMEs.

Another notable MCDM technique is known as goal pro-

gramming [106], [107], which is a sub-branch of MOO

whereby each objective is assigned a goal value that should

be achieved. Objective fitness scores are then assigned based

on deviations from these goal values, which may be weighted

according to the priority levels of the objectives. The weight-

ing can also facilitate direct comparison or summation of

objectives that are otherwise not comparable. Goal program-

ming thus facilitates the specification of a minimum level of

capability in various objectives without resorting to the use

of constraints. A number of studies in this review were found

to employ goal programming [43], [48], [55], [65].

In a similar fashion to goal programming, TOPSIS is a

MCDM method that stipulates that the best alternative is the

one that has the shortest geometric distance from an ideal

solution as well as the furthest geometric distance from the

worst solution [87]. Two studies that used TOPSIS to assign

values to candidate solutions were identified, namely [61]

and [68].

3) EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION

Evolutionary Multi-Objective Optimization (EMO) [108]

refers to a class of evolution-inspired computational intelli-

gence techniques that aim to simultaneously optimize multi-

ple conflicting objectives. Typically, EMO paradigms strive

to find a diverse approximation of the true set of Pareto opti-

mal solutions. It should be noted that EMO approaches, while

relatively efficient computationally, are heuristic methodolo-

gies that are not guaranteed to find optimal solutions. Given

the complexity and scale of many defence-related portfolio

optimization problems, exact approaches are often infeasible

and thus there has been a significant amount of research

that employed EMO for defence-related portfolio optimiza-

tion [15]–[19], [49], [51], [52], [72], [78], [79].

By far, the most common EMO methodology used in

the defence literature is NSGA-II, which was used in the

following studies: [15], [16], [18], [19], [51], [78], [79].

NSGA-II employs non-dominated sorting to hierarchically

arrange the population based on an ordering imposed by

Pareto dominance. Furthermore, NSGA-II uses a crowding

metric during selection to promote diversity.

Regarding other EMO methodologies, [49], [52], and [72]

made use of MOEA, which is a generic multi-objective

algorithm based on evolutionary principles, whereas [17]

employed MOEA/D, which is premised on decomposing the

multi-objective problem into multiple single-objective prob-

lems solved simultaneously.

D. MULTI-PERIOD AND DYNAMIC ASPECTS

Despite the portfolio optimization problem being inherently

dynamic, very few studies actually considered a model for-

mulation where the problem changes over time. Rather, most

studies that considered a multi-period planning horizon con-

sidered only a static context [15], [37], [43], [52], [59].

Crawford et al. [37] acknowledged that after each year,

a project was either completed or one year closer to

completion, thus concluding that the problem was inher-

ently dynamic. Despite this acknowledgment, no mecha-

nism to address the dynamism was present in their study.

Chan et al. [43] considered planning over multiple periods,

referred to as cohort years, such that initial and subsequent

acquisition decisions can be differentiated and treated dif-

ferently. Whitacre et al. [52] considered a 10-year, static

planning period for resource allocation. Golany et al. [59]

considered a multi-period approach for resource allocation in

developing military countermeasures. Xionget al. [15], [18]

considered scheduling problems, which were inherently

multi-period. Rempel and Young [70] considered a 20-year

planning horizon along with an additional 20 years for the

budget. Wang et al. [76] considered a 15-year planning hori-

zon, broken into three 5-year cycles. Moallemi et al. [78]

considered a 3-year planning horizon, in weekly periods,

for submarine acquisition and crew decisions. Xia et al. [79]

considered a multi-stage weapon planning problem, such that

the time component imposed additional constraints regarding

the transition of projects between different states (such as

development and retirement).

While each of the aforementioned studies considered

a multi-period approach, the problem remained static

over time. In more comprehensive studies, a dynamic or

time-variant aspect was added such that the problem would

change over time. Brown et al. [13] considered that pairwise

interactions could occur during one or more time periods in

the future. Tsaganea [45] modeled a missile defence prob-

lem using dynamic systems theory. Specified as a dynamical

system, the state of the system was directly dependent upon

the previous state. Baker et al. [49] considered a dynamic

multi-agent simulation to evaluate candidate fleet schedul-

ing solutions. Xin et al. [56] incoporated a dynamic aspect

in the form of enemy attacks. Given that it was unknown
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whether an attack will be successful or not, their approach

to the weapon-target assignment problem directly addressed

this form of dynamism. In some studies, the cost or value

associatedwith a project would depend on the time [33], [63].

In a similar fashion, Zhang et al. [74] incorporated syner-

gistic effects between projects by discounting their cost if

they were implemented together. Xiong et al. [18] considered

the budget available at each period according to a discount

factor that was dependent upon the number ofmonths that had

passed. In the work of Shafi et al. [17], the list of available

projects, the budget, and the effectiveness scores would vary

in each period.

VI. DISCUSSION AND FUTURE DIRECTIONS

In the previous sections, a number of interesting application

areas and approaches to overcome the associated challenges

have been identified. However, most of these studies consid-

ered only one specific application, often in a manner that

was specific to only the formulation they proposed, thus

the work is typically not generalizable. Moreover, there are

other aspects that have largely been ignored or not adequately

addressed in the literature. This section discusses a number of

open research areas that were identified through this review.

A. DEVELOPMENT OF BENCHMARK INSTANCES

From this review, it is evident that the applications of

portfolio optimization in the defence sector are often too

context-specific. Each application was developed indepen-

dently, which left no coherent ‘‘best-choice’’ solution readily

available. Furthermore, this makes the comparison of differ-

ent studies nearly impossible. Therefore, one critical avenue

of future research must be regarding the standardization of

this research domain.

One specific task that should be carried out is the develop-

ment of benchmark project instances that are readily available

to the public. Such instances should account for, at minimum,

various different characteristics pertaining to the difficulties

described in Section V. These benchmark cases can pro-

vide a common ground for future studies to examine the

effect of different portfolio optimization strategies.Moreover,

a proper set of benchmark problems will help alleviate the

issue of data confidentiality, which has often led to either ad

hoc synthetic data generation or omitting a detailed descrip-

tion of the data altogether. Nonetheless, future studies should

continue to examine real-world problem instances alongside

the benchmark instances as it is acknowledged that bench-

mark instances cannot reasonably account for the nuances of

all possible real-world instances.

B. TIME-DISCOUNTING

One important aspect that is not considered adequately in the

literature is time-discounting. In most studies, value is con-

sidered only with respect to the present, not the future [109].

Specifically, costs incurred in the present tend to be weighted

more heavily than those in the future given that costs are

not time-discounted. Consider, for example, having $100 in

cash. If this cash is spent today, it has a value of $100.

Instead, if the cash is placed into a savings account that

earns interest at an annual rate of r , it will be worth

$100(1 + r)n after n years. Consider also that if one is set

to receive $100 in n years, the present value of that sum is

worth $100
(1+r)n .

This same principle can be applied to non-financial deci-

sions. In such applications, r is more commonly referred

to as the discount rate as it is unlikely to coincide with

any particular interest rate. This adds an additional, impor-

tant dimension to the portfolio optimization problem as it

incorporates the depreciation of value over time. However,

determining an appropriate and realistic value for r , even for

currency, isn’t straightforward and no general consensus was

found via a survey of 2160 economists [110]. In this survey,

the most common response was a rate of 2%, while the mean

response was 4% with a standard deviation of 3% [110].

To further complicate matters, Weitzman [110] concluded

that for long-term planning, a decreasing discount rate is

appropriate. In contrast, it was argued in a more recent study

that for long-term planning, an increasing discount rate that

tends towards the largest possible value as the horizon tends

to infinity is more appropriate [111].

Regardless of the discount rate, if one is applied, the value

that an asset has to a defence organization is not strictly mon-

etary and will depend on capability gaps and the rate at which

adversaries can adapt to new capabilities [11]. This adds

additional difficulty to the problem. However, despite the

uncertainty associated with selecting an appropriate value for

the discount rate, this is an aspect of the portfolio optimization

problem that should be considered in future research, espe-

cially in the context of the long planning horizons seen in the

defence sector.

C. PROBLEM INSTANCE SIZE

Despite the exponential complexity, many of the consid-

ered studies examined only a small number of projects, thus

allowing exact solution techniques, such as linear program-

ming, to be a feasible choice. Linear integer programming,

where both the objective function and constraints are linear,

is known to be NP-hard and thus there is currently no known

polynomial-time algorithm to solve such problems in the

general case [112]. Deriving exact solutions becomes even

more challenging when the objective function and constraints

are no longer linear. Moreover, real-world applications in the

defence sector are likely to contain a large number of projects

to consider, thereby rendering exact solvers infeasible. For

example, the Canadian Navy Level 1 business planner has

over 1200 projects [64].

While a significant number of the studies examined the

usage of heuristic methods, which are far more scalable

than exact approaches, most studies considered only a small

number of assets, typically less than 25. The largest number

of projects considered by a study in this review was around

200while only a few others consideredmore than 100. There-

fore, an avenue that must be explored further is the scalability
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of portfolio optimization approaches when the number of

assets is large.

D. MEASURING DEFENCE OUTPUT

While there is no debate that meeting strategic objectives

should be a primary objective of defence planning, there

are other aspects that can, and likely should, be considered

when measuring the value of a defence project [93], [96].

Perhaps there should be a consideration of the economic and

political implications, among others, regarding the selection

of particular projects. For example, implementation of certain

projects can impact the local and global economies and,

in this regard, projects that benefit the national economy are

likelymore valuable than those that do not. Similarly, projects

that foster the development of foreign policy and political

allies should be considered more favourably than projects

that may be viewed negatively by the global community.

However, with such considerations comes ethical questions

that must be addressed. For example, is a project that defends

a nationmore valuable than one that benefits an ongoing con-

flict? How can combat effectiveness, economic impact, and

political impact be compared? Should the immediate safety

of citizens be prioritized over long-term regional stability?

Questions like these, and others, must be taken into account

when making long-term decisions that afford the capacity for

major global implications. Therefore, analyzing exactly what

considerations are made when examining alternatives, and

how such trade-offs are evaluated, is certainly a topic that

should be given careful consideration in the future.

E. SELECTING HIGH-COST PROJECTS

The studies of both Rempel and Young [70] as well as

Greiner et al. [38] observed that high-cost projects were often

not selected by portfolio optimization techniques. This begs

the question of whether the valuation models being used are

inadequate or whether these high-cost projects were sim-

ply not worth the investment. One suggested approach to

overcome this issue is to enforce a cardinality constraint,

such that the number of projects is limited, thus preventing

a large number of low-valued projects from being selected

in place of fewer high-cost projects. While the selection of

only low-valued projects may seem like an issue, Rempel

and Young [70] also highlighted the fact that some of the

benefit to automated approaches is that they would select

portfolios that would otherwise be ignored. Hence it was

explicitly decided not to address this concern in their solution.

Nonetheless, further investigation should be made into the

reasoning behind why these high-cost projects are not being

selected.

In a sense, this concern is directly related to the trans-

parency of the optimization process. Often, not only is the

solution of importance, but also the rationale behind why

this particular portfolio was selected is useful. Therefore,

future research should also examine how to increase the trans-

parency of the decisions made by automated approaches. For

example, facilitating the direct comparison of two projects,

in the context of an entire portfolio, would allow a deci-

sion maker to directly see the implications associated with

choosing one project versus the other. Additionally, this trans-

parency would also serve to confirm whether the mathemat-

ical formulation of the problem and its objective(s) does,

in fact, align with the intended behavior of the system.

F. USER-FRIENDLINESS OF IMPLEMENTATIONS

Rempel and Young [70] highlighted a case where a sophisti-

cated optimization approach was developed, yet largely aban-

doned in favor of more labour-intensive approaches, such as

a ranked list, with greater familiarity. Thus, it is of utmost

importance that portfolio optimization techniques used in the

defence sector are mindful of end-users; a complex portfolio

optimization framework that is not understandable by the

decision makers will not be employed. Moreover, the cur-

rent approaches do not facilitate the adjustment of portfolios

once they have been selected. Authors of future studies are

thus reminded that an non-intuitive system is unlikely to

be adopted in the defence sector and that usability of the

developed systems is paramount.

VII. CONCLUSION

In this manuscript, recent applications of portfolio optimiza-

tion applied to the defence sector were reviewed. The review

revealed a relatively small number of publications in the

domain. Despite this, the application areas were broad and

covered a plethora of unique scenarios. It was found that this

particular application domain is rife with challenges, largely

created by the unique environment in which defence orga-

nizations must make decisions. For example, the long-term

investments and the lengthy operational time of projects is a

feature not seen in most other applications of portfolio opti-

mization. Moreover, the quantification of value, addressing

uncertainty, handling multiple criteria and/or objectives, and

dynamic environments were identified as the key challenges

associated with selecting a robust portfolio of projects. Mech-

anisms to address each of these challenges were discussed.

Finally, this paper identified and discussed a number of areas

that warrant further investigation.
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