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PORTFOLIO OPTIMIZATION IN A LEVY MARKET WITH
INTERTEMPORAL SUBSTITUTION AND TRANSACTION COSTS

FRED ESPEN BENTH, KENNETH HVISTENDAHL KARLSEN, AND KRISTIN REIKVAM

ApsrracT. We investigate an infinite horizon investment-consumption model in which a single
agent consumes and distributes her wealth between a risk-free asset (bank account) and several
risky assets (stocks) whose prices are governed by Lévy (jump-diffusion) processes. We suppose
that transactions between the assets imcur a transaction cost proportional to the size of the
transaction. The problem is to maximize the total utility of consumption under Hindy-Huang-
Kreps intertemporal preferences. This portfolio optimization problem is formulated as a singular
stochastic control problem and is solved using dynamic programming and the theory of viscosity
solutions. The associated dynamic programming equation is a second order degenerate elliptic
integro-differential variational inequality subject to a state constraint boundary condition. The
main result is a characterization of the value function as the unigue constrained viscosity solution
of the dynamic programming equation. Emphasis is put on providing a framework that allows
for a general class of Lévy processes. Owing to the complexity of our investment-consumption
model, it is not possible to derive closed form solutions for the value function. lence the aptimal
policies cannot be obtained in closed form from the first order conditions for the dynamic
programming equation. Therefore we have Lo resort to numerical methods for computing the
value function as well as the associated optimal policies. In view of the viscosity solution theory,
the analysis found in this paper will ensure the convergence of a large class of numerical methods
for the investmeni-consumption model in question.

1. INTRODUCTION

We investigate an infinite horizon investment-consumption model that captures the effects of
intertemporal substitution and possible jumps in the (multi-dimensional) stock market. Moreover,
in the model it is supposed that transactions between the assets incur a transaction fee proportional
to the size of the transaction. In many classical as well as recent studies (see, for example,
Akian, Menaldi, and Sulem (1], Davis and Norman [15], Merton [33], Shreve and Soner [41]
and Zariphopoulou [45, 46, 47]) of investment-consumption models with and without transaction
costs, the investor derives utility directly from the present (rate of) consumption. Hindy, Huang,
and Kreps [25, 23] have shown that such preferences exclude the possibility of intertemporal
substitution, the reason being that the rate of consumption reacts too sensitively to small changes
in the (life time) consumption plan. We recall that intertemporal substitution in continuous time
is the notion that consumption at one time reduces marginal utility at nearby times. To overcome
the deficiencies of the standard choices of preferences, Hindy, Huang, and Kreps [25, 23] replaced
the present rate of consumption with some level of satisfaction, described by an exponentially
weighted average of past consumption. As demonstrated by Hindy and Huang [24], this feature
is the key to representing the notion of intertemporal substitution. With such preferences they
showed that an agent will consume periodically (or in gulps). Thus, the agent regards consumption
at adjacent dates as similar alternatives. Hindy-Huang-Kreps preferences may also be interpreted
as a model for irreversible purchases of a durable good. The satisfaction process mentioned above
is now understood as the agent’s service flow, which is given by the exponentially weighted average
of the total purchase of the good. We remark that in both interpretations, periods of absence in
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consumption or purchases will lead to a decrease in the agent’s level of satisfaction or service flow.
In the latter case, this is due to deterioration in the stock of the good.

In [24], Hindy and Huang used their preference structure in an investment-consumption model
without transaction costs. In particular, they provided explicit consumption and allocation choices
for an investor having HARA (Hyperbolic Absolute Risk Aversion) utility in a geometric Brownian
market. The model studied in [24] was extended to general utility functions by Alvarez [2] and
Hindy, Huang, and Zhu [26], and later by Bank and Riedel [4] and Benth, Karlsen and Reikvam
[8, 9] to stock markets with jumps. Whereas the analysis in [4] relied on a stochastic version of the
Kuhn-Tucker approach, the authors of [2, 8, 9, 26] (see also [24]) used the dynamic programming
approach and the theory of viscosity solutions for nonlinear partial differential equations.

Geometric Brownian motion enjoys popularity in portfolio optimization problems (see, e.g.,
[1, 15, 41, 45, 46, 47]) since it is analytically tractable and has an economically interpretable
dynamical structure. However, and this 1s a major concern in risk management, it predicts nor-
mally distributed logarithmic price increments (also known as logreturns). Empirical studies of
logreturns show that the normal assumption must be rejected, at least for logreturns based on daily
or weekly data, see Eberlein and Keller [18], Rydberg [37], and Prause [35]. To have stock price
models relevant for the market one needs to consider more general price dynamics than generated
by geometric Brownian motion or even continuous-time diffusions. Diffusion models driven by
Lévy processes seem to provide a flexible class of models which capture statistical and economical
properties of market data and yet being mathematically tractable, see Barndorff-Nielsen [7] or
Eberlein and Keller [18]. Recently, several papers have investigated portfolio optimization prob-
lems where stock prices are driven by Lévy processes (see Bank and Riedel [4], Benth, Karlsen,
and Reikvam [8, 9, 10], Framstad, @ksendal, and Sulem [20, 21], and Kallsen [28]).

This paper considers a multi-dimensional geometric jump-diffusion model for the stock price
dynamics that includes a fairly general class of Lévy processes. In fact, we only impose a growth
restriction on the tail of the Lévy measure which is satisfied by many Lévy processes of interest
in finance. We will restrict our attention to a market where borrowing of money or short-selling
of stocks are not allowed. The investor’s consumption and transactions of wealth between the
assets are understood as cumulative processes which may be singular with respect to the Lebesgue
measure. The problem of maximizing the investor’s expected utility over these coutrols is therefore
a singular stochastic control problem. The market assumption of no borrowing of money nor short-
selling of stocks imposes restrictions on the set of admissible consumption and transaction policies.
In particular, it introduces a state space constraint into our control problem.

To investigate the investment-consumption model we use Bellman’s dynamic programming
method (see, e.g., [19]). Provided that the value function is sufficiently regular, it is well known
that the associated Hamilton-Jacobi-Bellman equation can be derived using the dynamic program-
ming principle. However, due to degeneracy and market imperfections such as trading constraints
and transaction costs, it is often difficult to show that the value function in question is sufficiently
smooth so as to solve the dynamic programming equation in the classical sense. The by now
standard approach is to weaken the concept of solution and prove instead that the value function
is a wviscosity solution of the dynamic programming equation. The notion of viscosity solutions
was introduced in the early eighties by Crandall and Lions [14] (see also Crandall, Evans, and
Lions [12]) for first order Hamilton-Jacobi equation and extended by Lions [31] to fully nonlincar
second order partial differential equations. We refer to Crandall, Ishii, and Lions [13] for a general
overview of the theory of viscosity solutions. One of the main merits of this theory lies of course
in the fact that it allows merely continuous functions to be (unique) solutions of fully nonlinear
second order degenerate partial differential equations. The observation that the dynamic pro-
gramming principle is intimately connected to the notion of viscosity solutions goes back to Lions
[31]. After his work it became apparent that the concept of viscosity solutions was well suited
for analysing stochastic control problems. We refer to the book by Fleming and Soner [19] for an
up-to-date account on the applications of viscosity solution theory to stochastic control problems.
For an overview of the use of viscosity solutions in the area of portfolio management and derivative
pricing (with emphasis on transaction costs), we refer to Zariphopoulou [47].
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PORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 3

For our investment-consumption model, the dynamic programiing equation is a second order
degenerate elliptic integro-differential variational inequality. The non-local operator arises because
we model the stock market by diffusion processes which may have jumps in their sample paths. On
the other hand, the fact that we allow the controls (i.e., consumption and transaction policies) to be
singular implies that the dynamic programming equation takes the form of a variational inequality.
Moreover, due to the state space constraint, this variational inequality is augmented with a so-
called stafe constraint boundary condition. Consequently, we need to consider constrained viscosity
solutions. We refer to Section 4 for a discussion of (constrained) viscosity solutions in the context
of integro-differential operators and an overview of the available literature,

The main contribution of this paper is a characterization of the value function as the unique
constrained viscosity solution of the dynamic programming equation associated with our sinpgular
control problem. Roughly speaking, this characterization is obtained in three steps. In the the first
step, we prove that the value function satisfies several monotonicity and growth properties as well
as being uniformly continuous on its unbounded domain. In the second step, we prove that the
value function is a constrained viscosity solution of an integro-differential variational inequality.
Here the situation is complicated by the fact that both the singular controls and the diffusion
processes can make the state process jump out of a small ball for small times. Our investment-
consumption model combines several difficulties such as gradient and state constraints as well as a
highly singular non-local operator. Consequently, a comparison principle that fits our needs cannot
be found (directly!) in the literature. Therefore, as the third and final step in the characterization
of the value function, we prove a comparison principle between unbounded semicontinuous sub- and
supersolutions of the state constraint problem for a class of degenerate elliptic integro-differential
variational inequalities. In particular, this result ensures that the characterization of the value
function as a constrained viscosity solution is unigue. In proving the comparison principle, we
adopt the uniqueness machinery for second order partial differential equations, which relies on the
maximum principle for semicontinuous functions (see, e.g., [13]).

From the point of view of applications, it is of course equally or even more important to
obtain the optimal investment and consumption policies (i.e., the optimal controls) than the value
function itself. Owing to the complexity of our investment-consumption model, it is not possible
to derive closed form solutions for the value function and hence the optimal policies cannot be
obtained in closed form from the first order conditions for the Hamilton-Jacobi-Bellman equation.
Therefore we have to resort to numerical methods for computing the value function as well as
the associated optimal policies. The construction and analysis of numerical methods is, however,
outside the scope of this paper and will instead be the topic of future work. In fact, we will
in future work present a Markov chain approximation method for computing the value function
and the optimal policies. As is well known by now (see, e.g., [1, 13, 16, 19, 45, 46, 48]), the
viscosity solution theory provides a very flexible and powerful framework for proving convergence
of numerical methods. However, to take advantage of this framework, we strongly need the analysis
found in the present paper. In particular, the characterization of the value function as the unique
constrained viscosity solution of an integro-differential variational inequality is of fundamental
importance for the convergence analysis of a large class of (monotone, stable, and consistent)
numerical methods for the investment-consumption model studied herein.

The rest of this paper is organized as follows: In Section 2, we discuss in more detail Lévy pro-
cesses as basic models for stock prices. In Section 3, we give a precise formulation of the stochastic
control problem as well as a statement of the associated dynamic programming equation and the
main result of this paper. In Section 4, we introduce a proper viscosity solution framework for
degenerate elliptic integro-differential variational inequalities. Basic monotonicity, growth, and
continuity properties of the value function are proved in Section 5. A proof of the constrained
viscosity solution property is given in Section 6. In this section we also prove a strong compar-
ison result, which eventually leads to the characterization of the value function as the unique
constrained viscosity solution of the dynamic programming equation.
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4 BENTH, KARLSEN, AND REIKVAM

2. STOCK PRICE MODELS AND LEVY PROCESSES
The standard model for the time dynamics of a stock price is a geometric Brownian motion,
Sf = S{JE?'EH_J L 5

where p 1s the drift coefficient (or mean return rate), o is the volatility, and W; is a Brownian
motion. This model produces logreturns which are normally distributed with mean pAt and vari-
ance o At. Here we have let At denote the chosen time window, which is measured, for instance,
in weeks, days, minutes, etc. However, empirical studies of logreturn data from stock markets
show a large deviation from normality when small time windows are chosen (e.g., daily data). The
tails of the logreturn data are typically fatter (heavier) than what can be captured by the normal
distribution. Other deviations from normality like asymmetry or long-range dependency may also
be detected. Several authors have proposed stochastic models for the stock price dynamics which
take into account these non-normal effects. The canonical extension of the standard geometric
model is to substitute the Brownian motion by a Lévy process. This has been suggested by, e.g.,
Barndorfl-Nielsen [7], Eberlein and Keller [18], Gerber and Shiu [22], and Mandelbrot [32]. From
a statistical point of view, this way of modelling stock prices seems to be the most appealing ap-
proach, since the logreturns are distributed as g + ¢ Ly (choosing a time window of size 1). From
general theory of Lévy processes, the distribution of L; belongs to the class of infinite divisible
distributions. Mandelbrot [32] proposed to use stable Pareto laws as a model for the logreturns.
However, empirical work indicates that this class is not suited for stock price modelling (see discus-
sion and references in [18]). However, the class of generalized hyperbolic distributions introduced
by Barndorff-Niclsen [6] seems to fit logreturn data very well. We refer to Barndorff-Nielsen [7],
Eberlein and Keller [18], and Rydberg [37] for applications and empirical studies of this class of
infinite divisible distributions in the context of finance.

Rather than directly writing up the stock price model as an exponential of some Lévy process,
another possibility is to start out with the stochastic differential of a geometric Brownian motion,

dSr = G-S; dt + USf dI'Vg,:

and use a Lévy process as the driving noise instead. This seems to be the preferred modelling
approach in most works dealing with stochastic control in markets with jumps (see, e.g., the initial
work by Merton [33]). A rather frequently used model is

1 |

dS5, = aS; dt + oSy dW; + 5;_ / z N(dz,dt),

—1
where N is a compensated Poisson random measure. Note that in order to ensure that the stock
price remains positive, one has to consider a Levy process with jumps strictly bigger than —1,
which explains why the Poisson random measure is integrated only from —1. The distribution
of the logreturn data imposed by this model is not so apparent, even though the solution of the
stochastic differential equation can be written up explicitly in terms of the well-known Dooleans-
Dade exponential, see Protter [36].

Both the above models will fit the framework chosen in this paper, since we model the stock

prices as

(2.1) dS; = aSidt + oS, dWy + S / 7(z)N(dz,dt),

Ry{o}
for some (Borel measurable) function n(z) > —1. Under certain conditions on the Lévy measure
associated with Ly, the pricing model

St = S{J{.’HE_‘_L'

can be written on the form (2.1) with n(z) = e — 1. In [8, 9, 10], we used such a stock price model
in a related optimal consumption and portfolio selection problem without transaction costs.

In the present paper, we develop a viscosity solution framework in which it is possible to treat
a rather general class of Lévy processes. Recall that any Lévy process can be decomposed by the
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FPORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 5

Lévy-Khintchine formula as

! ¢
(2.2) Ly =at+ oW -+-/ / zN(dt,dz) +/ / zN(dt,dz),
0 Jlz|<1 0 Jz|z1

where N is a Poisson random measure on the Borel sets of B\ {0} being independent of the Wiener
process W. The compensator of N takes the form dt x n(dz). where n(dz) is a o-finite measure
on the Borel sets of RY{0}. In (2.2}, N denotes the compensated Poisson random measure, and
a,o are given constants. The Lévy-Khintchine representation decomposes any Léyy process into
a Wiener process with drift, a compound Poisson process having jumps of size at least one, and
a pure-jump martingale with jumps strictly less than one (the “small jump” part). The measure
n{dz) is usually called the Lévy measure, and satisfies the integrability condition

f min(1, z*) n(dz) < oo.
Ry {0}

We will assume here that the Lévy measure associated to the Poisson random measure integrates
n*(z) in a neighborhood around zero (usually taken to be the ball with radius one). Outside this
neighborhood. we suppose that the Lévy measure integrates |n(z)|.

If n(z) = O(z) near the origin, we have imposed no extra condition on the Lévy measure, i.e., we
can treat Lévy processes with paths of unbounded variation. If the Lévy measure only integrates
z near zero, we have a Lévy process where the "small jump” part have paths of bounded variation.
Finally, a Lévy process with a measure integrating constants over the origin have a "small jump”
part belonging to the family of compound Poisson processes.

If (z) = ¢* — 1, we see from a Taylor expansion that the condition on the Lévy measure around
zero is trivially fulfilled by the general integrability property of Lévy measures. Thus, all Lévy
processes are included. However, the condition outside a neighborhood of zero does not hold for
a general Lévy process. For instance, the Lévy measure of an a-stable Lévy motion does not
integrate e® — 1 at infinity. The Normal inverse Gaussian process, on the other hand, will for
certain parameters integrate e* — 1 at infinity, see [37] for the Lévy measure associated to this
specific Lévy process.

We refer to Bertoin [11] and Sato [38] for a general treatment of Lévy processes and their
properties.

3. FORMULATION OF THE PROBLEM

Let (Q,F, {Fi}iso0, P) be a filtered complete probability space satistying the usual hypotheses.
We consider a single investor who divides her wealth between one risk-free asset (bank account)
paying a fixed interest rate r > 0 and n > 1 risky assets (stocks). We denote by Xy(¢) the amount
of money the investor has in the bank account and X; the amount of money the investor has in
the ith stock, i = 1,...,n. We assume that the investor holdings have the following dynamics:

r t n

Xo(t) = 70 — C(2) +/U rXo(s)ds — Z [(1 B ANl = (L~ pz-)ﬂf{‘(t)},

i i
(3.1) .\’.;_(ijzziﬂi—/ a.;X.;(s}dS+/ o X:(8) dW,i(s)
0

0

ot i
+ / / ni(2)X;(s=) Ni(ds, dz) + Li(t) — My(t), et

\ 0 JR\{0}

where a;,0; > 0 are constants, C(t) is the cumulative consumption up to time #, L;(t) is the
cumulative value of the shares bought up to time t from the ith stock, M;(t) is the cumulative
value of the shares sold up to time t from the sth stock, and p; € [0,1] and A; > 0 are the
proportional transaction costs of respectively selling and buying shares from the ith stock. We
assume p; + A; > 0 for all . Moreover, W;(s) is a standard Brownian motion and N, is a Poisson
random measure on the Borel sets of R. x K\{0} with intensity dt x n;(dz), where dt is the
Lebesgue measure on the positive real line Ry, n;(dz) is the Lévy measure on B\{0}, and N; is
the compensated Poisson measure given by N;(dt, dz) = Ni(dt, dz) — dt x n;(dz). We assume that
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G BENTH, KARLSEN, AND REIKVAM

{NV;}; and {W;}; are independent processes and that the Lévy process is right-continuous with

left limits. The functions n;(z), ¢ = 1,...,n, are assumed to be Borel measurable on R\{0} with
the property
(3.2) nilz) > =1, i=1,...,n.
In addition, we require the following integrability conditions on the Lévy measure:
(3.3) ] ni(2)% ny(dz) < oo, b=l il
|z]<1
(3.4) / |7:(2)| ni(dz) < oo, 2 [
|ziz1

In the case of 1;(2) = 2z1.-_1, we see that the integrability condition around zero is the usual one
for Lévy measures. Depending on the form of ;(z), Lévy measures which are singular in zero are
included in our sctup.

The following basic assumption on the drift parameters of the stocks is introduced:

R S S

This assumption is very natural since it states that the expected rate of return of each stock is
greater than or equal to the risk-free interest rate of the bank account.
Introduce the process of average past consumption

(3.5) dY (t) = 8dC(t) — Y (t) dt, 3>0.

This process has the explicit solution

V() =ye P+ ;_’ie_‘“/ P8 dC(s).
[0.¢]

The integral is interpreted pathwise in a Lebegue-Stieltjes sense. Note that Y is an exponentially
weighted average of past consumption. Higher values of § imply higher emphasis on the recent
past consumption and less emphasis on the distant past consumption.

The market considered here does not allow short-selling of stocks nor borrowing of money in
the bank. In other words, the amount of money allocated in the bank account and the stocks
must stay nonnegative. Hence the domain for the control problem is

= {af = (B0, 0 e s T U E RY |y, z: >0, 1 =0,...,n}, N:i=n+2

Remark. From now on, we shall use the convention of numbering the coordinates of elements in
D from zero to N — 1 = n + 1; that is, if # € D, then the zeroth coordinate of z is zy, while the
(N = 1)th coordinate is y. For later use, we shall also need the ith (i =0,..., N — 1) unit vector
of RY. We denote this vector by ¢; = (0,...,0,1,0,...,0).

Let L = (Li,...,L,) and M = (M,,....M,). We refer to Il = (C,L, M) as a policy for
investment and consumption if IT belongs to the set A4, of admissible controls. For = € D, we say
that IT € A, if the following conditions hold:

(C.1) The processes C(t), L(t), M (t) are adapted, nondecreasing, and right-continuous with left
limits. Moreover, C'(0—) = M(0—) = L(0—) = 0, i.e, we allow for an initial jump. Finally,
E[C(t)] < oo, E[L(t)] < oo, and E[M (t)] < cc for all £ > 0.

(C.2) The state process X{t)_z (Xo(t), Xi(f),-..,Xn(t),Y(t)) respects the state-space con-
straint X (t) = X"(t) e Dfor all t > 0.
Note that thanks to (C.1),

n

Xo(0) = 20~ C(O) =3 [(1 +2)Li(0) = (1 - ;Li}ﬂ'f,-{[})],

k|

Xi(0) = z; + Li(0) — M;(0), ==
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PORTFOLIO QPTIMIZATION IN A JUMP-DIFFUSION MARKET i

may differ from Xp(0—), X;(0—),i=1,...,n, because of pmslblv consumption/transaction(s) at
time t = 0. Moreover, since 7;(z) > —1, we will have Xf"‘ (t) > 0 for all ¢ > 0 whenever a; > 0.
This implies that 0 € 4, for all z € D.

The objective of the investor is to maximize her expected utility over an infinite investment
horizon. The functional to be optimized is

Tz 1) = E[/w et (YU (1)) dr], €D,

0
where U is the investor's utility function and ¢ > 0 is the discount factor. We introduce the
following assumptions on the utility function:

(U.1) U(z) is a continuous, nondecreasing, and concave function on [0, co) with U(0) = 0.

(U.2) There exist ¥ € (0, 1) and constant K > 0 such that U(z) < K(1 + z)7 for all z € [0, 00).
In addition, we require that

(db) d Sopc— o a;

L<1<n
and

1 B —ma
47 § = ; ) i
(J;] (>;‘7(7) -|:T+2([—ﬁ();( a; ]

Remark. We need condition (3.7) to construct a strict supersolution of our Hamilton-Jacobi-
Bellman equation, and net to prove that the value function of the control problem is finite, When
the stock price processes are geometric Brownlan motions, the optimal portfolio selection and
consumption problem without transaction costs (known as Merton'’s problem) is well-defined under
condition (3.7), see Davis and Norman [15] or Akian, Menaldi, and Sulem [1] for further details.

We define the value function as
(3.8) Viz) = sup J(z; 10}, z € D.

MMeAd,

We are facing a singular stochastic control problem, which will be studied using the dynamic
programming method. Without giving a proof, we will assume throughout this paper that the
following dynamic programming principle holds:
Proposition 3.1 (Dynamic Programming Principle). For any stopping time 7 and t > 0, the
value function satisfies:

LT
(3.9) V(z) = sup ]El[/ e U (Y (s)) ds + e Ay ( X2 A 1))|
MeA-

For z € D, let us define a second order degencrate elliptic integro-differential operator A by

Av(z) :—Sgiu,—l—r:cgvlo—i-z.ﬂ:rm + — Za:rv_, S

+ Z/ v(z 4+ ni(2)zie;) —v(z) — ni(2)ziv,, (I}) ni(dz).
Ry {0}
The dynamic programming (or Hamilton-Jacobi-Bellman) equation associated with our control
problem is a second order degenerate elliptic integro-differential variational inequality of the form
max(U(y) — dv + Auv, Dax [ (L A¢Jue, -+ v ]._ nax [{1 —nn — U J; — Uy _;'31;'._,,.) =1

O<i<in
We denote by D,v the gradlent of v with respect to z, D2v the Hessian of v with respect to z,
C(D,v) = —vy, + oy, and
L(D,v) = IH]_B%X Li(Dyv), Li(Dyv) = = (1 + Xj)vz, + vzys
<isn

M(Dyv) = max M;(D,v), M) = (1 — s}, — Uz

I<i<n

i
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3 BENTI, KARLSEN, AND REIKVAM

Moreover, we introduce the drift vector b(z) = (rzo,@121,...,0,%n, —0By) € RY, the N x N
diffusion matrix o(z) = diag(0, 0171, . ..,0,%5,0), the ith jump vector n;(z, z) = n:(2)wie; € BY
for i =1,...,n, and the non-local operator

Blz,v,Dav) = /
; RY{0}

Finally, we introduce the operator
Flx,v, Dyv, D2v, B(z,v, Dyv))

(b(i: + iz, 2)) —vlz) — iz, 2), va)) ni(dz).

=Uly) — v+ (b(x), Dyv) + %"f‘r(a{:ﬂ)zﬂit‘) + Blw,v, D).

Note that b(z) and o(z) are uniformly Lipschitz continuous and that the operator F is degenerate
elliptic in the sense that

Flarpy A, Blayr,pl) < Fleiz,p, J‘i?B(wir,p)) whenever A < A,

where r € R, z,p e RN, A, A € 8V, and §V denotes the set of N x N symmetric matrices with
the usual partial ordering: that is, 4 < 4 means (A€, €) < (A€, €) for all £ € RY. Here and in
what follows, (-, ) denotes the Euclidean inner product.

Now our Hamilton-Jacobi-Bellman equation can be written more compactly as

(3.10) max(f(m,u,Dmu, D2v, Bz, v, Dyv)), £(Dyv), ,-'\/I(va),C(va)) = 0inD.

To have a well-posed problem, we need to augment our dynamic programming equation (3.10)
with a suitable boundary condition. Condition (C.2) is a state-space constraint which translates
naturally into the following so-called state constraint boundary condition (see Section 4 for details)

(3.11) max (T(a:,v, D.v, D3, B(z,v, Dw)), L{Dv), M [Uzi!),(f(DIv]) < 0 on aD.

Our main results are stated in the following theorem.

Theorem 3.2. The value function V' defined in (3.8) is well defined, concave, nondecreasing, it
satisfies the sublinear growth condition

£ 5 =
0 < V(zx) < Const - (1 + Zz?; + jf;) i e e s WS
i=0

and it is uniformly continuous on D. Moreover, the value function V' is the unique viscosity
solution of (3.10)-(3.11) 4n the class of sublinearly growing solutions.

Theorem 3.2 is a consequence of the results stated and proved in Section 5 and Section 6.
4. VISCOSITY SOLUTIONS

We now introduce a proper notion of constrained viscosity solutions for integro-differential
variational inequalities. Via the dynamic programming method, this notion of weak solutions will
be our main tool for analysing the investment-consumption model described in Section 3. A notion
of viscosity solutions for integro-differential equations was first used by Soner [43, 44] and Sayah
[39, 40] for problems involving a first order local operator. Alvarez and Tourin [3] and Barles,
Buckdahn, and Pardoux [5] later used this notion for integro-differential equations involving a
second order local operator, while Pham [34] used this notion for second order integro-differential
quasi-variational inequalities associated with the optimal stopping time problem for controlled
jump-diffusion processes. All the papers cited so far prove various existence and uniqueness results
for the "whole space” case and hence do not take into account boundary conditions.

As already mentioned several times, for our investment-consumption problem we need the notion
of constrained viscosity solutions since we do not allow for short-selling of stocks nor borrowing
of money in the bank. The notion of constrained viscosity solutions was first introduced by Soner
[42] and later Capuzzo-Dolcetta and Lions [17] for first order partial differential equations, see also
Lasry and Lions [30], Lions and Ishii [27], and Katsoulakis [29] for second order partial differential
equations. In [43], Soner used the notion of constrained viscosity solutions for certain first order
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FPORTFOLICO QPTIMIZATION IN A JUMP-DIFFUSION MARKET 4

integro-differential equations associated with piecewise deterministic processes with jumps. More
recently, Benth, Karlsen, and Reikvam [8, 9, 10] used the notion of constrained viscosity solutions
for first and second order integro-differential variational inequalities.

Let @ ¢ D. In what follows, we let CP(Q) denote the usual space of p > 0 times continuously
differentiable functions on . We shall also need the following spaces of semicontinuous functions
on O:

SO0 = {-e: O — J]?iE

v is upper semicontinuous},

L5C(0) = {U . O R

v 1s lower Semi(:(mtimlous},

For notational convenience, whenever v belongs to C?(Q) and for some v > 0 satisfies

|v(2)]
(4.1) sup
2€0 (1+ X gz +y)

we shall signify this by writing v € CE(O). Similarly, we write v € USC,(O) (LSC.(O)) if v
satisfies (4.1) and belongs to USC(OQ) (LSC(O)).

Although we prove later that the value function is continuous, we will formulate our " viscosity-
related” results and in particular a strong comparison principle (Theorem 6.6) in terms of semi-
continuous viscosity sub- and supersolutions. The main reason for working with semicontinuous
functions is the need for such in the study of numerical methods for our investment-consumption
model, which is the topic of future work. In particular, convergence analysis of numerical methods
for this model relies heavily on the strong comparison principle proved in this paper.

In what follows, it will be useful to distinguish the singularities at zero and infinity. To this
end, we introduce two operators By, B®. For & € (0,1) and v € C*(D), we define

V<Oos

Bz, v, Den) Z / 1, r+nile, z)) —vlz) — (7';,-(;.3,3),}9;,1;)) ni(dz).

lz]<x

Keeping in mind that ni(z, 2) = ni(2)z.e;, we can rewrite B, to obtain

B.(x,v, D.v) —Z/ /b o (1= ) D2v(x + O (z, 2))mi(z, 2), mi (=, z)>n (dz) de

=]

< Const (z, D2v, Z / m:(2)* ni(dz),

=1 IS«

and thus B, is convergent thanks to (3.3). Furthermore, (3.3) implies

(4.2) lim B.(x, v, Dyg)= 0.

r—0+

For € (0,1) and v € C} (D), we define
Bf(z,u, D,v) Z/ viz +n:(m,2)) —o(z) — (Tj,‘(.’L‘,Z),Dm'?J)) ni(dz).
|/h,

The integrand of B is bounded by Const(«x, Dyv, k) (1 + |7:(2)|) and thus (3.4) implies that B~
is convergent for every positive x.
Note that for v € C(D), we can write

(4.3) Bz, v, D.9) = B.(zv, D)+ Bz, v, Dy).

We thus conclude that the dynamic programming equation (3.10) is well defined for all v € (DY
However, in many applications the solution of (3.10) is not C? or even C1, Consequently, the
dynamic programming equation (3.10) should be interpreted in the sense of viscosity solutions.
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10 BENTH, KARLSEN, AND REIKVAM

Definition 4.1. (i) Let O C D. A locally bounded function v € USC(D) (LSC(D)) is a viscosity
subsolution (supersolution) of (3.10) in O if and only if Vo € C7(O) we have:

for each z € O being a global maximizer (minimizer) relative to @ of v — ¢,
4.4 . .
Gl max(}—(:r.-v,Dxfb. Df.q-ﬁ:B(:.c,r:J,D.xqb)),£(Dm¢‘:)..»\/I(Dg,(f)),C(quﬁ)) =0(<0).

(ii) A function v € C(D) is a constrained wiscosity solution of (3.10) if and only if v is a viscosity
supersolution of (3.10) in P and v is a viscosity subsolution of (3.10) in D.

Hereafter we use the terms subsolution and supersolution instead of viscosity subsolution and
viscosity supersolution, respectively. Furthermore, a viscosity solution of (3.10)-(3.11) is of course
the same as a constrained viscosity solution of (3.10).

For & > 0, ¢ € C*(D), and v € USC) (D) or v € LSC; (D), let us introduce the notation

f(z"\T-".:DtéaDz‘?ﬁ?BK{Il(ﬂ’ﬁ:Dm@)TBK(;B!U?DQE(ﬁ})
= Uly) —ov-+{blz), Deu) + %Tr(a{:nsziv) + Bz, @, Do) + Bz, v, D, o).

Note that B (z, ¢, D, ¢) and B*(z, v, D, ¢) are well defined. We now have the following equivalent
formulation of viscosity solutions. '
Lemma 4.1. Let O C D and fiz any > 0. A function v € USC,(D)(LSC, (D)) is a subsolution
(supersolution) of (3.10) in O if and only if Yo € C*(D) we have:
(4.5)
for each © € O being a global mazimizer (minimizer) relative to O of v — ¢,
max(F(z,v, Da, D26, Ba(, 6, Do), B*(,v, Da), L(D), M(D29), C(D)) 2 0(< 0).

Proof. We prove the statement only for the subsolutions, the supersolution case can be proved
similarly. Suppose v satisfies

(4.6) Flz, 0, Dy, B2, 0, Do), B (2,v, D)) >0,
where z € O is a global maximizer relative to O for v — ¢, ¢ € C?(D). Then
u(E) —v(z) < o(2) — o(x)
for all # € O. Consequently, since B*(z,¢, D,¢) > B*(z,v, D, ¢), we can use (4.3) and (4.6) to
conclude that
Flz,v, D¢, Bz, 0, D)) = Fz,v, Db, Bz, 0, Dr), B (2,0, D)) > 0.

From this observation we eventually conclude that v is a subsolution of (3.10) in @ if (4.5) holds.

Conversely, let © € O be a global maximizer relative to O for v — ¢, ¢ € C*(D). With
t = (0,t1,....ty,0). let N(z,t) C RY denote the open hyperellipse centered in = with semiaxis
0,81,...,tn, 0 and let No(z,t) = Nz, )NO. With »(z, k) = (0, ..., %=.0), let x; be a smooth
function satisfying 0 < v, < 1, xx = 1in Np (&, nlx, k)—v(z, k)), and xx = 0in O\No (2, 7(z, k)).
Note that as k — oc, we have v(z, k) — 0 and hence yx — 1 in Np (#,n(z,k)). If we choose a
suitable vy € C2(D) such that v v a.c. as k — oo, then the function

Ve (T) = xx(2)(E) + (1 — xx(T))ve (T)

belongs to C3(D) and z is a global maximizer relative to © of v — 4. Moreover, W — o
in No(z,n(z,k)) as k = oo and 9 = v in O\Np (@,m(z,k)). In fact, we have 9y = ¢ in
No(z,n(z, &) — v(z, k) so that Dye(z) = Dy¢(z). From these propertics and Lebesgue’s dom-
inated convergence theorem, we get

B(z, k) = By(z, v, Do) + B (2,08, D2gp) = By (z, ¢, D2¢) + B (w,v, D, ¢) as k — oa.

Choosing 1. as test function in the definition (4.4) of a subsolution and then sending k — oo, we
see that (4.5) holds if v is a subsolution of (3.10) in @. O
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PORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 11

We remark that Lemma 4.1 is an adaption of a similar lemma in Soner [42], see also Sayah
[39] and [8]. It will be convenient to use Definition 4.1 when proving existence of a constrained
viscosity solution (see Theorem 6.1). On the other hand, a formulation of viscosity solutions based
on the notion of jets is more convenient when proving uniqueness (see Theorem 6.6).

Definition 4.2. Let z € O C D. For a function v € USC(O) (LSC(O)), the second order
superjet (subjet) Jé‘ﬂ_l’v{:r) is the set of (p, A) € RY x §" such that

u(E) < (Zule) +(p2—2) + S(A@ —2),F—z)+o(| —z[*) as O3 F > z.

The closure Tijﬂ_]u(:ﬂ) is the set of (p, A) € R™ xS for which there exists a sequence (p*, A¥) €
._fé’*ﬁ_]'u(:nk} such that (z*,v(z*),p*, 4%) = (z,v(z),p, 4) as k = 0.

In view of Lemma 4.1 and Definition 4.2, we have now the following formulation of viscosity
solutions based on jets, which is similar to the formulation used in Pham [34].
Lemma 4.2. Let @ € D and fizx any & > 0. Let v € USCy (D) (LSCy(D)) be a subsolution

supersolution) of (3.10) in O. Then, for each (p, A) that belongs to 72’+{_}1J(m with = € O,
P £ o
there exists a test function ¢ € C*(D) such that

(4.7) max (}'(:c,'v.p, A B.(z, 9, D_Te‘)),;5'"'(:::,-L'.,p)),ﬁ{;r)),,’vi(p),(;’(p)) > 0(<0).

The test function @ 15 such that v — ¢ has a global mazimum (minimum) at =* relative to O with
¥ 31 ask = 0.

Proof. Let (p, A) € 75" )u(z). Then there exists (¥, A%) € J5T T y(2%) such that (p*, A%) >
(p,4) and (z*,v(z*)) = (z,v(z)) as k — oo. Using standard arguments (sce, e.g., [19]), one can
prove that (p*, 4%) € J5 T 7u(z*) if and only if there exists ¢ € C2(D) such that P(z*) = v(zh),
D, ¢(z*) = p*, D2¢(2*) = A*, and v — ¢ has a global maximum (minimum) relative to @ at «*.
Therefore, (4.7) holds with = = z*, p = p*, 4 = A% The lemma now follows by sending k& — oo
and using continuity of the equation. d

Later we shall prove a comparison principle for (3.10)-(3.11). To this end, we need the following
maximum principle for semicontinuous functions taken from {13]:
Theorem 4.3 (Crandall, Ishii, and Lions [13]). Let O be a locally compact subset of RY . Let
uy, —us € USC(O) and ¢ € C*HO x O). Suppose (z,,8,) € O x O is a local mazimizer of
uy (@) — up(&) — w(z,&). Then for every v > 0 there exist two matrices A, A € SN such that

(Duopley, 8p), A) € T wilay),  (=Dypl(we,3,),A) € T usliy,),
and

1 ) = A 0 9 = ! % y
48 (I z)I< () S Delen s +v(Dhete 2,)"

The norm of a symmetric matriz A is [|A|| = sup{|(_4§._ &) ‘E ERN, g < 1}.

5. PROPERTIES OF THE VALUEL FUNCTION

In this section, we prove that the value function possesses some basic monotonicity, growth,
and continuity properties. The techniques used to prove these properties are by now rather
standard in the literature. In particular, the results stated (and proved) in this section are in-
spired by the corresponding results in Zariphopoulou [45, 46] (see also [47]), who study a related
investment-consumption model with transaction costs in the case of geometric Brownian motion
and a standard time-additive (von Neumann-Morgenstern) utility functional.

Proposition 5.1. The value function V is nonnegative, nondecreasing, and concave on its un-
bounded domain D with V(0) = 0.
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12 BENTII, KARLSEN, AND REIKVAM

Proof. Since U is nonnegative, 17 is obviously nonnegative. Furthermore, it is easily seen that
IT = (0,0,0) is the only admissible control when starting at the origin. From the definition of the
processes Xo(t), Xi(t), i = 1,...,n, and Y(¢), we see that they will remain at the origin if they
start there and thus V'(0) = 0. We next prove the monotonicity of V. Let &; > z; and § > y for
= n, and assume IT € 4,. Then

Y(t) = YOH(1) = g5t 4 ge=0 ] "% dC(s)
[0,
= (@ —yle M LYy > pl),

Consider now Z;(t) = X.l-(t) =X 1 =0,1,....7, where j’?; = Xf""'ﬂ and X, = Xf““, A direct
calculation shows that

! 1
Z{)(ﬁ) — [:f.'g s .'L'U) -+ / TZO(S) OES,

0
which yields Zy(#) = 0. Furthermore,

Zi(t):(::‘cg-—:n,-}+/ a; 7{s}d¢+/ ;. Zi(8) dWy( )+/ / n:(2) Zi(s—) N;(ds, dz).
0 RA\{0}

Hence, Z;(t) is a stochastic (Dooleans-Dade) exponential with initial condition &; — z; > 0. Since
ni(z) > —1, we get Z;(t) > 0 (see, e.g., Protter [34]). Thus, II € A;, and since U is nondecreasing,

[E[/xle_&{f(}’(t))dt] < E[/ e St (Y r))dt] < V().

0

Finally, taking the supremum over the set of A, - controls gives the desired monotonicity of V.
We now prove the concavity of V. For @, 7 € D, consider two arbitrary controls e Az and
€ Az. Let 6 € [0,1] be a fixed number and define the control II to be IT = 611 + (1 — 6)IT. We

now prove that Il € A,, where z = 8% + (1 — #)z. The concavity of V will follow from this and

the assumption that I/ is concave. We calculate
A

0Xo(t) + (1 — 0)Xo(t) = 20 — (6C(8) + (1 - 6)C(2)) + / r(0Xo(s) + (1 — 6)Xo(s)) ds

0
= 2(9(1 + X)Lt + 1 -8 + /\,-)fﬂ-(a))
s

+ 3001 = ) M(t) + (1= 8)(1 — i) Mi(2)

|

=20 — C(t) + /0 r(0Xo(s) + (1 — 8) Xo(s)) ds

—Z(HA —{1—“)M())

Hence, by uniqueness of the paths,
XIt) = 6XI(t) + (1 - )X ).

A similar calculation yields

0Xi(t) + (1 - 0)X:(t) = 24 +/ ai (6X:(s) + (1 — 8)Xi(s)) ds + Ly(t) — Mi(t)
/ / milz ("') SR Q)X—f(-ﬁ‘)) N’}(ds,dz)
R\ {0}

+] 0:(6%(s) + (1 — 0)Xi(s)) dWi(s).
0
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PORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 13

Again by uniqueness of the paths,
X0 = 0X1 (1) + (1 - ) X[ (0).
Finally,

V() =y+8(0CH) + (1-6)C@)) — /D (6Y (s) + (1 — )Y (s)) ds

and thus ) ’
Y@ = oy + (1 — )Y H(p).

In conclusion, IT € A,. We therefore casily see, using the concavity of U,

QEUNe—f"-U{}“’“(mdf} 1—9}E[[0 e Oty (Y )dt}

0
< E[/ Y (B) dt] < V().
Jo
Taking the supremum over e A; and g Az yields the desired concavity of V. (]

We next show that the value function is dominated by the utility function U7,

Propositioen 5.2. Forz = (20,21,...,2,,y) €D and z = oy + Y @i +y/8, we have

V(z) < g{()

Proof. Introduce the process
= Xo(t) + ZY )+ Y(t)/8

with initial condition Z(0) = 2. Using (3.1) and (3.5), a direct calculation yields

71

L
Z(t) =Iy-— C(f) e / T'Xu(s) ds — Z((l e )kaLil:f:l - (l — pg)ﬁi’,‘(ﬁ))
0 i=1
= T\ _'I‘qb Z a; /\ U:S = /f Z i .X-;(b‘) dI’V{ (‘?)

ﬁ /R\{U}Zm 2)X:i(s—) Ni(ds, dz)
-1
4 Z Lt — Z M;(t) +y/8 - / Y(s)ds + C(t)

=1

0
gt
:Z+/ (?"J\rﬂ(-‘?} +Z{1i/\r,:{.5)) dé\+/ Zﬂ', d” ( )
(ds,dz)
] /R\{o}zﬂ( (ds,

T

+ 2(1 — (L + A)Li() = 3 pMi(t) — / Y(s)ds
1 =1 0
sy T

<z+ / aZ(s ds—i—j > o Xi(s) dWi(s
=1
¢
/ / Z??‘ i(5—) N;(ds, dz) —/ Y(s) ds
RA{0} = 0
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where we have used @ := max;a; > r and Y(s) > 0 to derive the inequality from the second
equality. Taking the expectation on both sides, we get
it t
[F:[Z{t)] <z+a / E[Z{s)] ds — / ]E[Y(s}] ds.
A0 0

From Gronwall's inequality it follows that

or, equivalently since Z(t) > 0,
¢
[E][/ &M ¥(s) d.‘;} <z—e"E[Z(t)] < =
0
From the assumption § > @; for all 1 = 1,...,n, we obtain

E[/m e?_&}“{s}cfa'] =2
0

Sinee U7 is concave, we apply Jensen's inequality to get
So'sl 1 a0 i 1
[E[/ e._‘s‘“U(Y(S))ds] < —U([EJ[/ ¥} (ESD < ZU(z),
0 0 0 0
where we have used that U is nondecreasing. This concludes the proof of the proposition. O

From the general bound of the value function in terms of the investor’s utility, we immediately
get a sublinear growth estimate and continuity at the origin.

Corollary 5.3. For all © € D there exists a positive constant K such that

1
3
(5.1) 0< V(@) < I\’(I taogt Y w4 y) :
=]
Proof. This follows from condition (U.2) on the utility function and Proposition 5.2. ]

Corellary 5.4. V' is continuous at the origin.

Proof. Let #* € D be a sequence such that ¥ — 0 as & — oo. Furthermore, let 2% = zk +
> ie1 &) +y* /0 and use Proposition 5.2 to obtain V (z*) < I7(2*) /8. But since zF — 0 as k — 0o
and U is continuous at the origin with U(0) = 0, we get V(x*) — 0. Hence, the corollary follows
since V (0) = 0. O

We now show that the value function is uniformly continuous on the closure of D,

Proposition 5.5. The wvalue function V is uniformly continuous on D.

Proof. Since V is concave, it is continuous on D. It remains to prove that V is continuous on 8D.
Without loss of generality, we will consider only the case of one risky asset (n = 13

Consider a sequence (x,zf,y*) € D such that (zf,2%,4*) - (20,21,0) as k = oo, where
g,y > 0. By the triangle inequality

[V (2§, 25, %) — Vizo,21,0)| < |V(af,25,4*) = V (o, k4"
+ |V (zg, :r;i“.yk) — Vizo, iz, yk)| + |V(zo, 21, yk) — V(zo,z1,0)].

The concavity of the value function implies that V is locally Lipschitz continuous on D, and
therefore the two first terms on the right hand side of the inequality can be controlled as k — oo.
Hence, to show continuity it is sufficient to show that for any given ¢ > 0, there exists a natural
number N such that |V (zg,2;,y") — V(zg,21,0)| < = for & > N.. But since V is increasing this
amounts in showing that for a given £ > 0 there exists a natural number N. such that

V(zo,z1,¥*) < Vize,z1,0) + ¢,
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for k > N.. We show this as follows. Let II* Azg.2, %) be an £ - optimal control and introduce
T§ = ;o + sy¥, dCH(t) = dC*(t) + El;ykr,‘io(f: , where do(t) =0 if ¢ £ 0 and 6p(t) = 1 if t = 0. We
use the notation II* := (C*, L*, M*). A straightforward calculation shows that

¢ sk Tk
X{’fﬂ (r) =Ty + y R = lyk _}_/ rX{:;,_,J'E (s
g Ié] a
) Z((l + MLEE) - (1= m)ME®) = X3 (1)
f=d:

= o Tk s &
by uniqueness of the paths._Therefore, XE:”'H (t) = 0fort > 0. Obviously, X[“"H L= X,“‘n ().
Inserting the definition of II*¥ gives

YO’“ (1) ‘—,31“ a J _I_Jat—ﬁi/ G,ﬁs dC*(s) :Yyk‘]_[k (t):

[0.4]

again by uniqueness of the paths. Hence, Y9I (£) > 0 for all t > 0. We conclude that II* €
Ak 2,.0)- By € - admissibility,

V(zo,21,5") < B ] UV () de] + e
(1]

—IE‘.[/. ey yor (r))d!} +e = V(zf,2,,0) + ¢

Since V' is continuous on D, there exists a N, such that V(zE,2,,0) < V(zg,2,,0) +¢ for k > N..
This is true since & — x5 as £ — oo, In conclusion,
0

(5.2) Vixg,z1,9") < V(zg,21,0) + 2¢
for k > N, and hence V' is continuous at (zg, 21, 0).

Consider now a sequence (;cf}‘,a:‘]“‘,yk) € D such that (zf, ¥, ¢*) - (0,21,y) as k = oo, where
T1,y > 0. By a similar argument as above, it is sufficient to show that

(‘33) I{r(mg!mla?}' S I](U'.\"’!:'J. 3 y) 5 25

for k large enough. L(T I* = (C*, L*, M*) be an ¢ - admissible control for (zf,z1,y). Define
aM*(t) = dM*(t) + —“ —00(t) and =y + —T“— Note that M*(t) is increasing. Introduce the
control T1* == (CF, L"t "»i““) By pathwise unlqucn( 88, We get

= ). L I
X0 (1) = —CH () + f rXg™ (syds — (1= N L (1)
0
J\

+ (1= p)M (t)+ }(1"!0

=z — C*(1) +/0 ng‘ﬁk(s) ds — (1= NI*() + (1 — p)M*(2) = x50 ”km,

which implies Xg‘ﬁk (t) > 0 for all ¢+ > 0. Similarly,

Xf“‘ﬁ'(t) = +1—$_nj+/ u)&ll (.s)da—i—/ ch'fT'ﬂkfs)dW(s)
Jo

k
Ty

-y 1%
= X" @),

o = i
+/ / 22X (s) N(ds, dz) + LE() — M* (@) —
RA\{0}

whu,h gives X| 23y (t) > 0 for every t > 0. Obviously, V¥ (¢) = Y¥T*(¢), and we therefore have
ke A 5 &% y)- Repeating the argument that produced (5.2), we get (5.3) and hence continuity
fm the part of the boundary where zq = 0.
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LG BENTIH, KARLSEN, AND REIKVAM

Finally, consider a sequence (25, 2§, y*) € D such that (zf, 2%, y*) = (20,0, ) as k = oo, where
T,y > 0. Again it is sufficient to show

(5.4) Vizg, a:{'f,y) < Vi(zo,0,y) + &,

for k large enough. As usual, let II* = (C*, LF M*) be an ¢ - admissible control for (zy,zf,y).
Define dL*(t) = dL*(t) + z§do(t) and 5 = xg + (1 + Nz¥. Let IT* := (C*, L¥, M*). Pathwise
uniqueness gives

=&
sl
X5

(t) = o+ (L + Nt — O(t) + / rXIT (5) ds
]
— (L NLEE) - (1 + Nat + (1 — p)ME@) = X207 (1),

=k ik
and hence X[T”"n (t) > 0 for all £ > 0. Similarly,

I 't =k t b
XM = | ax(s)ds + / o XU (s) dW (s)
] JO
i = 5 ke oprk
+/ / n(2) XD (s—) N(ds,dz) + LE(t) + b — M*() = X7 (1)
0 JR\{0}

and hence Xf'“k{t) > 0 for all £ > 0. Obviously, }’y-fl"(t) = Y\‘J.”k(t) and we therefore have
Nhe A¢zk 0,y)- The same argument as before yields (5.4) and thus continuity for the part of the
boundary where z; = 0.

From Corollary 5.4, we know that V is continuous at the origin. Hence, V is continuous on
D and uniformly continuous on every compact subset of D. By the concavity property, we know
that V' is locally Lipschitz continuous on D. Consequently, V' is uniformly continuous on D. [

6. PROOFS OF THE MAIN RESULTS

In this section, we first prove that the value function of our control problem can be characterized
as a constrained viscosity solution of the associated dynamic programming equation, i.e., the
integro-differential variational inequality (3.10). As already mentioned in the introduction, for
singular control problems the classical proof (see Lions [31]) of the viscosity property fails. The
reason being that the state process may jump due to the singular controls and thus it needs not
to stay in a small ball for small ¢£. Our situation is further complicated by the fact that we work
with diffusion processes whose (uncontrolled) sample paths may be discontinuous. The problem
associated with singular controls has usually been circumvented by either relying on the existence
of optimal controls (see, e.g., [16, 26, 46]) or by establishing appropriate estimates for the state
process (see, e.g., [19, 41]). Here we use a more direct argument to show that the value function
possesses the (constrained) viscosity property. Our argument is similar to the one used by Benth,
Karlsen, and Reikvam [8, 9], see also Alvarez [2].

Theorem 6.1. The value function V defined in (3.8) is a constrained viscosity solution of the
dynamic prograrmming equation (3.10).

We divide the proof of this theorem into two propositions.

Proposition 6.2. The value function V is a supersolution of (3.10) in D.

Proof. Let ¢ € Cf(D) and z € D be a global minimizer of V —¢. Without loss of generality we may
assume that (V' — ¢)(z) = 0. Choosing C(0) = 0, M;(0) = 0, Ly(0) = I; > Ofor any I; € (0, z,),
i=1,...,n, and t = 0 in the dynamic programming principle (3.9), we get

d(x) = V(z) > Viz — (1+ Alieo + Lie:) > ¢lx — (1 + X)lieo + Lies),
where we recall that e; denotes the ith unit vector in RN, i =0,...,n + 1. Dividing by I; and
sending [; — 0, we conclude that

(6.1) Li(D)p(@) = ~(1+ Mgy + 62, <0,  i=1,...,n.
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PORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 17
Choosing C(0) = 0, M;(0) = m;, for any m; € (0,%;], L;(0) = 0,5 = 1,...,n, and ¢t = 0 in the
dynamic programming principle (3.9), we get
olx) =Vi(z) > V(s 4+ (1 — pi)mieg — mie;) > oz + (1 — pi)mieg — mie;).
Dividing by m; and sending m; — 0, we conclude that
(6.2) Mi(Dz)o(z) = (1 — pi)dae () — dui(2) <0,  i=1,...,n

Choosing C'(0) = ¢, for any ¢ € (0,x¢], Mi(0) = 0, L;(0) = 0,4 = 1,...,n, and t = 0 in the
dynamic programming principle (3.9}, we get ;

#(x) = V(2) > V(z = ceo + Beents) > p(x — ceo + Beens).
Dividing by ¢ and sending ¢ — 0, we conclude that
(6-3) C(Drd’)(r) = _¢’$u($) i ﬁ¢y(f) < 0.

With I € A, let 7, be the exit time of X (¢) = X"(¢) from the closed ball A/, with radius p
and center at z. By choosing p small enough, A’; C D. Using the dynamic programming principle
(3.9) with A A 7, IT = 0, the inequality V" > ¢, and Dynkin’s formula, we obtain

BT,
0> E[/ e MUY (1)) dt + e P BATH (X (B A T,)))] — ()
0

IV

E[/Unm,, e—‘”{U(Y(U) — (X (2)) + A@{X(t))} dt} ;

| — g—d(hAT,)
S
By the right continuity of the paths, 7, > 0 a.s. Hence, by Lebesgue’s dominated convergence

—&(RhATy)

theorem. limg g E[%} = 4. Dividing the above inequality by h, sending A — 0 and then

[

E inf {U(g) — 60(7) + Ad)(:’t’:)}‘

EEN,

p — 0, we obtain
(6.4) Uly) - 3V (x) + Ad(z) <O.
From (6.1), (6.2), (6.3), and (6.4), we conclude that V is a supersolution. O

To prove the subsolution property, we shall need the following easy result.
Lemma 6.3. If z' € D can be reached from x € D by an investment and consumption policy, i.c.,

2=z~ (e [+ Mk = (1= pyma] Jeo + 3 = moe: + Beenss
=1 (=25

for some nonnegative constants ¢, l;, my, i = 1,...,n, then V(z) > V(z').
Proposition 6.4. The value function V is a subsolution of (3.10) in D.

Proof. Let ¢ € C{(D) and = € D be a global maximizer of V — ¢. Without loss of generality
we may assume (V — ¢)(z) = 0 and that the maximum is strict. Arguing by contradiction, we
suppose that the subsolution inequality (4.4) is violated at z. By continuity, we can find ane > 0
and a nonempty open neighborhood Ap (Np = A N D for some nonempty open ball A” ¢ RY
centered in z) such that V' < ¢ — e on N, and in Np one has the following series of inequalities

T {1 =+ ’\-i)d}:liu o5 QII)'.I:. = 0, i = 15 3 Ty

(I —pe)des — s 0= Loy,

6’?’%} = C.'J):m <0,

Uly) — 6V + Ap < —e6.

With IT = (C. L, M) € A;, let 7% be the exit time of the state process X (t) from Np. We also
introduce 7z, the first time the state process jumps because of the Lévy process, and recall that
71, > 0 as. Define the stopping time 7 = v* A 7z. If necessary, we truncate 7 by a constant to
make it finite. Let 4 := {75, = 0} and note that this is a set of zero probability.
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18 BENTH, KARLSEN, AND REIKVAM

If 7% < 7p we know with positive probability that the control II(t) = (C(t), L(t), M(t)) has
made the state process jump out of No. Let 2’ be the intersection point between dANp and the
line between X (7—) and X (7). Since this line can be written as a linear combination of the vectors

—ep + Sent, —(1+ AjJeg +e;, i=1,...,n, (l—len =g t =1

¢ is nonincreasing along this line in A%, Thanks to Lemma 6.3, we also know that V is nonin-
creasing along this line in D. Hence,

(6.6) VX(T™) s V(&) < ¢(2') —e £ (X (7)) — .

In what follows, we let C*(¢), M“(t), and L(¢) denote the continuous parts of C(t), L{t), and
M(t), respectively. Moreover, we let AC(t) = C(t) - C(t—), AL(t) = L(t) — L(t—), and AM(t) =
M(t) — M(t-). Using (6.5), (6.6), and Itd’s formula for semimartingales, we get

fT e MUY (1) dt + e~ V(X (%))

0

£ /T‘ e MUY () dt +e 7 (X (7" =) —¢€)
JO

T

< @(z) —ee " +] =0t {U(Y(i)) s e Aq-ﬁ(X(t))} dt

(4}

(6.7) #3004 M, + ) LD
e 0

+ Z/ﬁ e (1 = pi) g — ba;) AME(2) + /u e~ (= ¢y + Bey) dCY
(=t ‘

T

+ Y c—“/_\“ﬂ%(aHZ/ / Alg(t) Ni(dt,dz)
o JR\{0}

tefo,r*) i=1

< @la) —ee™ +(1—e7) < glx) — e,
where we have introduced the short-hand notations
Alo(t) = ¢(Xo- +ni(z,2)) — (X¢)

and

T

ALMC gy (,fj(X(n—) X [{_\C-'{t) + 3+ p) AM(E) — (1 + ,\I-JAL,-(t}]] eo

3=1

+ Y [AL(Y) - AM ()] e + _BAC-’(t)e.nH) — (X (t=)).
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On the set {7 > 7,1 N A°, we have T = 7, and calculate as follows
/s,
/ e MUY di + eV (X,
0 Y
< / e~SU(Y) dt + e olx )
0
Tr' 2
< ¢(z) + [ U (0) - oV + Ap(X (1)} at
Jo

£y /0 “e (= (1 4+ Ai)buy + o) ()

6.8 = B o . R .
(6.8) = Z/ € M((l — thi) @ap — Qr):r.') dMi(t) + / e (‘—(;'):mu + 6651") dC
, 0
1t Z SALMC iy Z f ) / Al(t) Ny(dt,dz)
tel0,rr] SR

e R °’L Al(t) N;(dt,dz
#(2) e +Z/ /\{0} o(t) N (dt, dz)

.;)(L)—wrZ/ / Alo(t) Ny (dt, dz).

\{U}

(4N

I,-"\

To derive the third inequality in (6.8) from the second, we have assumed that
(Xt + [ac() + Z (L4 #)AM(r*) = (14 A)AL(r)] Jeo

+ ST[ALi(r*) - AMi(r*)]es + _ﬁAC(T*)enH) e N,

so that ASLMe(t) < 0. In view of Lemma 6.3, we can make such an assumption without loss of
generality. From (6.7) and (6.8), we finally get
E[/ e~ (V) dt + e STV (X, )}
Jo
< E[IT-‘:,,_ (/ O () dt + e‘af‘V(XT‘))}
4]

+ [El[l,_-_?,,,‘{/n“ UV dt + eV (X, }]

- E[L.m {q)(u:} s /UT /R\ {U}quﬁﬁr(dt,dz)}]
+E[1,_.2,,L{¢,(m) —e(l -0 4 Z/ /wm} "6 N;(dt dz)}]
d(z) — el [1 ~1respe —‘*”L +h Z/ /R\{n}_\.”m (dt, dz;}

< ¢(z) — E]E[] - 5_5”].

The proof is now finished after observing that the dynamic programming principle (3.9) gives
V(x) < @(z), which is a contradiction since (V — ¢)(z) = 0. O
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20 BENTH, KARLSEN, AND REIKVAM

Definition 6.1. Let O C D. A locally bounded function v € LSC (D) is a strict supersolution of
(3.10) in O if and only if V¢ € CZ(O) we have:

for each z € O being a global minimizer relative to @ of v — ¢,
1‘11219((.7[3:,'.'.-',qué:,Df,g?),B(z,(Ib,Dx(f)])fﬁ(quf)),.-M[D:GQ‘)},C(DH,Q‘:)) <
for some constant ¥ > 0,
femark. Notice that Lemmas 4.1 and 4.2 still hold for a striet supersolution.

We demonstrate next that it is possible to construct strict supersolutions of (3.10) in any
bounded subset of D.

Lemma 6.5. For v € (0,1) such that § > p(v), let v € LSC,(D) be a supersolution of (3.10) in
D. Then there exists ¥ € (v,1) such that § > p(¥) and, for a suitable constant K > 0,

w=K+xTeCPOINCD), x= (14 =+ L),
=0 ]
is a strict supersolution of (3.10) in any bounded set O C D.
Moreover, for any 6 € (0,1], the function
b = (1-6)v+ 6w e LSC+(D)
is a strict supersolution of (3.10) in any bounded set O C D.

Proof. Throughout this proof, we let O be a fixed (but arbitrary) bounded subset of D. Observe
first that the quantity p(y) in (3.7) is continuously increasing in . Hence, we can find 7 € (7, 1)
such that (3.7) still holds for 7, i.e., § > p(F). We first claim that

(6.9) max (F(m, w, Dyw, D2w, B(z,w, Dyw)), L(Dyw), M(Dyw), C(Dl.w)) < —f,
for some f € C(D) that is strictly positive in (. By direct calculations, we observe first that

. = i =
2 = el " . F—1 e
L(Dyw) = wlrilf}{);)\ X', M{Dw)=-—F lrgag: wix’ 7, C{Dyw) TgX

Consider now Aw. Since w obviously is concave, B(x,w, D,w) < 0. This can be casily seen by
Taylor expanding w(z) up to second order in each argument z; (i = 1,...,n):
/ ("LU(I +milz)zie;) — wlz) — mi(z)zw,, (:I:)) ni(dz)
RA{0}
STE-1X@) [ ) mdz) <0,
R {0}

for some suitable . Hence Aw(x) < Agw(z), where Ay = A — B, i.e., Ay is the second order
differential operator part of A. A direct calculation yields

— dw(x) + Agw(x)

—51&'+x:”(a:){—5—7,y 1 Z“‘ X % ’_l)igf(xﬁ))ﬁ}

x(z)

qsz_.XT(I){fg_ [ +; XUJ = —?)gaf(;{%)z}}:

where we have used that y/x(z) > 0 in the last inequality. Now, define n; = z;/x(z) for j =
0,1,....n. We have by definition of x(z) that m; € [0, 1] for all j. More‘nver

1/

T % T T
Z?TJ-Z Zot iy 2. et
j=0

IU*‘Z:L]Ii‘f‘Q%



lrm-lp-n-

wer m el o ' lll-- |
Rw |1 W3

‘:ﬁ- _l‘i‘.".'n"'r Jlullllllq'.ﬂ-sr’u-l.-- .

R e L s o AT
. __d :rﬂl_'l.H__-n_nl
(T v = ] = -
'I =1 1*“']}'"! WIS e m b by ueph
s} hl.1ﬂ-rhﬂiﬂl1'l{1'.'rr'l1'l-'|_ndﬂm* Uty Aol el ey L
10 B0 peh v Ayl o 0 e l=l-lll‘ alift o <es el Al s ol
TR i l‘l':I L= sl I]j_l“‘ﬂ“l"-

Sl (T IR TR e B L A A T =S o T 2 B
e s el e v d el it ol S ey glmaen aanle TR 4 e ol

U ey e i T b

L

T4 e S o e R A e Sl a P A [ =W = g )
V. — oS N R el P el g T e etRehiiey — T

ﬂhlllllll_l-'_-J"u,._l —|l_'|- -ll,l,l.'l‘l —.'———i_lu_. .'
o reaietela Ly
15k

B T TRt T N e R R T bl e e I e
AR Sk B L | T salee el

et (v
i .i'il‘:-r "Fi :51_ Iﬁ.—p‘qllﬂ. L !I-I"FJ""
[rlrm]".!r'-ﬁﬁf‘- H} W'E[" ::,'l ::_-|i & 5= W= =

% SO B = A e e nl wl i o fugly S cudl ot
wnrur—u“l:i-.-,ut-._-; roamN e 15

’e &I‘ H-H-f!




PORTFOLIO OPTIMIZATION IN A JUMP-DIFFUSION MARKET 21

Define the second order polynomial
n 1 n
(6.10) PTGy - s Tn) = Tp gaim - 5(] —7) Z oim?.

This function has a finite positive maximum and we get for some positive constant c,
—dw(z) + Agw(z) < —0K — ex(z),

provided & > ¥sup p(mo, ..., mu). The sup is taken over all m; € [0,1] such that O s L.
The maximal value of p over the set luj € [0,1], Z e 1} is dominated by the maximum
over {z i 1} Hemnce, by straightforward optimization, we see that p has a maximal value
over the set {m; € [0,1],3_" m; < 1} dominated by p(7)/¥. Therefore, under the assumption
d > p(7), we get

Aow(z) < —cx(z)” and thus Aw(z) € —ex(z)”.
Summing up,

Flx,w, Dyw, D2w, B(x, w, Dyw))
= Uly) — ow(zx) + Aw(z) < U(y) — 0K —cx7(z) < -1

by choosing, e.g., 0K = 1+supp[U(y) — ex7(x)]. Since ¢ is positive and U has sublinear growth
of order v < 7 by assumption, our claim (6.9) holds provided we set

= o 1.
A s e N A R S R
T = mm(l:'} |mg;i1£n AT (o) oy llirl]_lil:ln i ), 5 X (z)),

Next, we claim that v is a strict supersolution in ©. Note that for any ¢ € C}D),z€0is
a 5101’.):.11 minimizer relative to O of v — ¢ if and only if z is a global minimizer relative to @ of

— ¢ with ¢° = (1 — )¢ + fw. Since v is a supersolution and by linearity of the differential
Oerdqu. we get

Li(Dz¢%) = (1 = 6)Li(Dy0) + 0Li(Dyw) < —07Mix" ! < —6f,
Mi(D;¢°) = (1 - O)Mi(Dz¢) + IM;i(Dyw) < —6Fpix T~ < —6f,
C(Dz¢") = (1 = 0)C(D,¢) + C(D,w) < —eﬁéf—l < —4f,
and
F(z,v®,D,¢" , D2¢?, B(z,v", D, ¢°)
=(1-60)F(z,v,D.¢, D3¢, B(x,v,De$)) + 6F (z,w, Dyw, D*w, B(z,w, Dyw)) < —6.
Hence
1'11;13:(.?(.’:‘:.119,DT¢0,ngﬁ"",B(:c,i,lﬁ,quﬁg),E{Dm(,-ﬁﬂ),J"\/[(qu')a),C(Dur_(ﬁg)) < —ff.

This concludes the proof of the lemma.
£3]

Adopting the uniqueness machinery for viscosity solutions of second order partial differential
equations (see, e.g., [13, 19]), we now prove a strong comparison principle for the state constraint
problem for the integro-differential variational inequality (3.10). This comparison result ensures
that the characterization in Theorem 6.1 is unique.

As already mentioned, our investment-consumption model combines several difficulties such as
gradient constraints, a state constraint boundary condition, as well as a highly singular non-local
operator. Consequently, the existing comparison results [43, 44, 3, 5, 34, 8] for problems involving
an integro-differential operator do not apply (directly!) in our context. Having said this, we do
not hesitate to point that the comparison result stated and proved below is nevertheless inspired
by these results and in particular by the one in [8].

Let us be a bit more precise about the proof of the comparison principle. First of all, we
handle the gradient constraint by producing strict supersolutions (Lemma 6. 5) that are rlose to
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the supersolution being compared. This approach is inspired by Ishii and Lions [27] and has
been used in [2, 8, 9, 16, 45, 46] for singular stochastic control problems. To handle the state
constraint boundary condition we follow Soner [42, 43] when building a test function such that the
minimum associated with the supersolution cannot be on the boundary. Finally, let us mention
that when dealing with unbounded domains, it is well known that one has to specify the asymptotic
behaviour of the functions being compared. However, here we can take advantage of our choice
of strict supersolutions and “localize” the comparison proof to a bounded domain. This idea was
also exploited in Alvarez [2] and Benth. Karlsen, and Reikvam [8].

Theorem 6.6. Let v' € (0,1) be such that § > p(y'). Assume v € USC,/ (D) is a subsolution of
(3.10) in D and T € LSC(D) is a supersolution of (3.10) in D. Then
(6.11) v<V <TinD,

where V' 15 the value function (3.8). In particular, the dynamic programming eguation (3.10)
admits at most one constrained viscosity solution in the class of sublinearly growing solutions.

Proof. It is sufficient to prove (6.11) under the assumption that the subsolution v or the superso-
lution ¥ is continuous on D. Such a comparison result imply that v < V for v € USC.. (D) as well
as V < T for T € LSC,(D), and we can immediately conclude that the theorem holds. In what
follows, we assume for definiteness that the supersolution 7 is continuous on D. One can easily
modify the proof below so that it works under the assumption that the subsolution is continuous
instead of the supersolution (see also the remark given after the proof).

By Lemma 6.5, there exist 7 € (7', 1) such that § > p(¥) and a function ¥* € LSC+(D) which
is a strict supersolution of (3.10) in any bounded subset of D. Moreover, #° — T as # — 0+,
Instead of comparing ¢ and @, we will compare ¢ and 7°. Sending 6 — 0+, we obtain the desired
result v < @ in D. Observe that

v(z) —7(2) - —o0 as £ — o0,
which implies that R > 0 can be chosen so large that

(6.12) v <@ in {.’rE@‘xo,ml,...,x“,yZR}.

For later use, let T'se = [0, B)™\(0, R)"¥ denote the state constraint boundary of D restricted
strictly by R. In view of (6.12), we will “localize” our attention to the bounded domain

(6.13) o= {:c e '“5|0 <20,y <R, 0<z; < R+ Rp(R.1),i= 1,...‘-;1}
and prove that v < @ in K, which in turn follows if we can prove that v < @ in [0, R)". To this
end, we assume to the contrary that
(6.14) M := max(e —7%) = (0 — ) (@wax) > 0 for some Zuay € [0, R)Y.
K
The maximum point Ty, exists in view of the compactness of K and the upper semicontinuity of
v — 1", For later use, notice that
(6.13) (v —3)(x) < M for all z € D.

To overcome the lack of regularity of v,7”, we employ the classical “doubling of variables”
device [14, 12, 13] and approximate the maximum in (6.14) by the (penalized) maximum of the
function

®(z, &) = v(z) - %(2) — plz, ), (z,8) e K x K,

where (x, ©) is a properly chosen penalization term. For some constants tg, d > O, let¢: K = RN
be a uniformly continuous map satisfying

(6.16) Nz +#{(z),td) C K for all z € K and ¢ € (0, to).
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Since 9K is piecewise linear, such a map can certainly be found. For our problem, a suitable choice

of penalization term takes the form

(6 17) 1,0(17' j') ™ ](I(:C a -F) i EC(zmuxNz + E‘|:"-" = Iume1 if T € Tse (CEL‘-;E! I);

o i g if Zmax € (0, R)Y (Case II),

where a > 1 and 0 < & < 1 are parameters that eventually will be sent, respectively, to co and 0.
The next step in the classical viscosity solution technique [14, 13] is to look at maxima of the

tfunction ®. Letting

M, = max ®(z, 7).
Kow ko

we have M, > M > 0 for any & > 1 (and sufficiently small ¢ > 0 in Case [). Note that @ is upper
semicontinuous on K x K. The compactness of K implies that there exists (1., %.) € K x K such
that My = ®(4,%a). Here, x, denotes the vector (Za0,%al, .-, Tan,Ya) and similarly for z,.
Moreover, (zq,%,) converges along a subsequence to some (z,) € K x K. In what follows, we
consider Case | and Case 1 separately, starting with Case I
Case I: Exploiting that the supersolution ¥ is assumed to be continuous, it is fairly standard

to show that the penalized maxima (z.,Z,) in Case I satisfy (see, e.g., [13, 19])

(1i) Zo:i T — Tmax A5 & — 00,

(Lil) a(zn — Fo) + el(Zmax) — 0 as a — oc,

(Liii) (v(zs) —7°(Za)) = M as a — oo,

(Liv) M, — M as o — oo,

For the sake of completeness, let us prove (Li)-(Liv). To this end, let {a;} be any sequence of
numbers (greater than one) such that o := a; — oc as j — co. Moreover, assume that z, —
and z, — T as j = co. We next note that the inequality ®(za,%a) > (Tmux, Tmax + gg(;cum))
reads
-~ £ 9
|O£('Jla = z{x) = EC(a"max”Z 7 E|3:n = xmaxr

6.18
( ) < E(:rr:t) gl Eg(fa) =% (1{ = FSII){-'I:max) I ﬁg(wma.x + ‘:;C(-’I:rnnx)) = FIQ(I‘Z:max)-

Since v, are bounded on K, |a(zq — &4)| is bounded uniformly in « and hence z, — $4 — 0 as
j — oco. This gives #, — & = z as j — co and hence lim; o0 (0(za) =77 (34)) < (0 —77)(z) < M.
Sending j — oc in (6.18) and using uniform continuity of @’ on K, we conclude that 2., T, — Tiax
and a2y — fa) +0(Tmax) —+ 0. From this and M, > M | we get

0= lim {|cz(x0 = &q) + EC(Tmax)|* +E|Ta — -:cmax|2}
j—roa
— i {v(:r:n} — 7 (E,) — MQ} < lim (v(zo) — Uﬂ(.’iu)) - M <0.
J—a P

Therefore we get lim;_yo0 (v(za) — ¥ (24)) = M and M, — M as j — oo. Since the sequence
{a;} was arbitrary, we can finally conclude that (Li)-(Liv) hold.
In view of (Lii) and also the uniform continuity of ¢,

B EC(-TH:M) = %O(é) =y e EC(TH) 5 %O(:_t)

and we thus use (6.16) to get &, € K for o large enough. In fact, we must have
Fo € (0, R)N for « large enough as well as z, € [0, R)Y.

Using Theorem 4.3 with the penalization term (z,#) defined in (6.17) (Case I), w; = u,
uz =07, and O = K. we conclude that there exist matrices A, 4 € 8¥ such that
L = , = :
(9, A) € 7 ulza), p=Dsp(0n,Ta) = 20{a(2a — Fo) + U Zmax)] + 26(Te — Bmax)s

(p,A) € j%_ﬁﬁ{:f:u), P=—Dzp(Ts,Ta) = 2afoles — To) + el(Zmax)]:
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Since @ is a strict supersolution in (0; R)™, there exists according to Lemma 4.2 a C? function
1 such that
(6.19) FZay 05y A, By ths D)), B* (20,7, 5)) < 0,

as well as L(p), M(p),C(p) < —9, for some constant ¥ > 0. Assume that L({p) = 0. Since
p—p—0asa— oo, we get the contradiction — > L(p) — L(p) —= 0 as & — oo, thereby proving
that L(p) < 0. We can prove exactly in the same way that M(p),C(p) < 0. Then since v is a
subsolution in [0, R)Y, there exists according to Lemma 4.2 a C? function ¢ such that

(6.20) F(@ar 2,9, A, Be(Tas 6, Dy ), B (X4, 2,p)) > 0.
Using (6.19) and (6.20), we gel
(6.21)
U < Flea, 0.0, A Be(2a, ¢, Dod), B (e, 2,0)) — F(&a, 7,5, A, Be(Za, ¢, Doth), B* (2,7, 7))
= [U(za) = U(2s)] = 0[u(za) = 7°(Fa)] + [((za), D) — (b(Ea), B)]
- %[Tr(a(za)m ~ Tr(o(Za)?A)]
+ [Bilza, ¢, Dagd) — Bulda, 1. D:)] + [B*(za,u,p) — B”‘[:Emﬁ‘g,f))].
Let us now estimate the various terms in (6.21). First, observe that we have
(6.22) Ulwa) = UlFa) 20, (blza)p) — (b(Fa),7) =0,  asa— oo,

Second, an easy calculation reveals that

= oo I -1 &
RO S
Brctas Sl = Oy ( I )-1—25( 0 )

0
0
A A )

Therefore, by (4.8) and (6.23), we have for all £,£ € RN the following estimate
sz A 0 ; = . 5 "
020 (e -E=(( o 5 )(§).(§)) s+ oep+ ko

where K = K(a,¢,£,€) = [Bat|€ - E|2 + 8ae(|€)? - ¢ - £) + 4e2[g)?].
Recall that 0y;(z) = 03z for i = 1,...,n and 0yi(z) = 0 for i = 0,n + 1. Using estimate (6.24)
with & = o(z4)e; and & = o(Z,,)e;, we obtain
Tt (o(za)?A) — Tr(o(#)*4)

(6.25) flafat e ) _
=3 ({46, &) - (48,6)) = Ollalea — 2a)P) + O(E) + K (),
=0

(6.23)

for some K(a,€) > 0. Since v > 0 was arbitrary and a(z, — Fo) = —£((Zmax) 88 & — 00, We can
conclude from (6.25) that the following estimate holds

(6.26) lim lim (Tr{a'(mﬁ)*,q) —Tr(a(:z,-a)ﬁfi)) <0

g0 n—ro0

Finally, let us estimate the more difficult (non-standard) integral terms in (6.21). First, (4.2)
implies that

(6.27) By(za: ¢, De@), Be(Ea,, D)) — 0 as & — 0 (for each fixed a < o0).
Second, we write

(6.28) B0 0:0) = B G0t 0) = h + L,
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where, for A; = {x < |z| <1} and A; = {|z| > 1},

Ti— Z/ Ul ey, 2)) —0 NEa + 1i(Za, z))] - [g(:ru) - Uﬁ(ff:ﬂ)]
(6.29)
— [(ni(za, 2),p) — (n.;(;?:(,,zj,i))]) ni(dz), L=

We consider first the term I, Since a(z, — Z,) remains bounded as & — o0,

| Th Lppy Z p) (’]'1 "":cu ) p)[
(630) < m* ) 'La? L“‘)(zala(frﬂ ‘fai) + ECE(I:ma.x)] o QF'Q'I,,,:(LCQ.,( = zluﬁx‘f))

_0( )|7;r? ZH =,

where we have also taken into account (L.i) and (Lii). Notice that

= |nf-(z)-'ﬂﬁm25(zai - -'»Cmaxi)

(2o +7i(Ta,2)) — (o + 1:(£4:2))| < |Za — 2| + |Tai — Eai| [7:(2)] = 0 35 @ — .

Using (Liv), (Li), continuity of @', (6.30), (3.4), and Lebesgue’s dominated convergence theorem,
we zet

n
IZ S Z/ (}L{ T FQ(IEQ‘ S ??"(3’:0, Z)J e Eﬂfza =12 ni(j_:u-. Z}} T 'ﬂl"-fcr
(6.31) =1+ [z121
- [(m(xmz),p) — (n; (.’Z'c.,z),;ﬁ)]) ni(dz) = 0 as a — oc.
Next we estimate ;. To this end, recall that z,,, 7, € [0, R)N for « large enough. We conclude
that (za + 7i(za,2), %o + 0i(fa,2)) € K x K for z € (—1,1) and thus
(6.32) @(Iu +0(Za 2] En + (T 0, 3)) — Dk T bial

A calculation reveals that the ith integrand of I; equals
@(-Tu + 0i(Tas 2), Ta + ”-i(i'rxaz)) =Bz, 35) + ([ﬂf(mm' = :Em)]z + Eﬂfif)?h'(f)zs

which, thanks to (6.32), is less than or equal to ([a{xm —Fni)]? +e:ci,-)n.l-{z)2. Hence, by summing
over i we get

L < i ([o:(;r:m- —Zai)]® + E:c'ii) / ni(2)%* nildz).

K<]z| <1

Note that the integral on the right hand side is convergent due to assumption (3.3). Recalling
that a(z, — o) = —eC(Tnax) a8 @ — 0o, we conclude that

lim lim I; <0.

e—0 aa—roo

Summing up. we have

= T s o _ RpEis el
(6.33) lim lim [B*(z4,v,p) - B*(Za,7",5)] <0.
Finally, in view of the estimates derived above and (Liii), we can send (in that order) o — oo,
£ — 0, and k — 0in (6.21) to obtain the desired contradiction M < —/d§ < 0.
Case II: Let us now consider the case z.,., € (0, R)Y. First, we note that the inequality
(L, To) + P(Ta, Ta) < 28(1,, Z,) implies

alge — Faol® < v(@a) - v(Fa) +7(z0) — 7 (Fa).
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Similar to Case I, one can easily deduce from this inequality that the penalized maxima (4, %)
satisfy (see, e.g., [13])
(IT3) 3 — & —+ 0 88 v —+ 00,
(ILii) a|zy — Za|* — 0 a8 a — oo,
(ILii) (v(za) — 7 (3a)) = M as a — oo,
(ILiv) M, — M as a — oc.
Thanks to Case I, v < 7 on (‘3{{0, R } and we conclude that any limit point of (z,, ) belongs
to (0, R)™. Hence for « large enough,
(6.34) Porida © (0RIV
Using Theorem 4.3 with the penalization term @(x, ) defined in (6.17) (Case II), u; = v,
uy =37, and @ = K, we conclude that there exist 4, A € 8V such that
(p, A) € Jz v(za), p= D4, 8a) = a(Ta — Za),
(,4) € Tg (@a)s P =—Dip(ta,7a) = ata ~ La).
Continuing as in Case I, we can prove that (6.21) holds with z4,&4,p, 5, 4, 4, ¢, 1) as given in
Case II. First, (ILi) implies that (6.22) holds true also in Case II. Second, notice that

: - I —I : a2 I I
(6.35) D*¢(z4, 5q) =a( g ) (D*¢(ZarEa)) =2a2( 7 )

so that, by (4.8) and (6.35), we have for all £, € € R the estimate

(4€,€) — (AL, 6) = (( j _04 ) ( 2 ) ( '5 )) < a(l + 2va)lg — &%,

Proceeding as in Case I, we obtain from this inequality the estimate
TI'(G'(.’E.'Q-}Z_-d.LJ —Tr ((}'(5:0)3}_1)
(636) n+1 . -
< a(l + 2va) Z |gi(za) — 0:(F:)]* = O(alze — Zu?) + K(a)v,
=0

for some K(a) > 0. Since v > 0 was arbitrary and a|z, — ,|° = 0 as @ — oo, we can conclude
that (6.26) helds also in Case 11.

It remains to estimate the integral terms in (6.21), which is done by following closely the
approach taken in Case 1. First, estimate (6.27) is still true in Case II. Next, we estimate [; and
I, in (6.28), starting with I,. Using (ILii), we get

|(n:(&as2),P) = (1:(Bas 2), B)| = |mil2)a(@ai — Fai)?| = O(i-)lm(Z)l,

for i = 1,...,n. Then, proceeding exactly as in (6.31), we conclude that limg 00 f2 < 0.

Next we estimate [;. Thanks to (6.34), we have 2, +7i(Za, 2), #a+7i(Za, z) € K for 2 € (=1,1)
and thus (6.32) holds also in Case II. Moreover, we observe that the ith integrand of I in Case II
equals

‘1)(1:!1 S 2} B+ ﬂi(fmz)) = (I)i-'fagia) = %(ﬂ?m' = -'Ecri)ani(zf'

Since (3.3) is assumed to hold and o|z, — 7,/ = 0 as @ — oo, we obtain after SUmMmIing over i

I < Z S (e — "Eai):z/ ni(2)* ni(dz) = 0 as a — o0.
=1 w<lz]<l

Finally, sending (in that order) @ —+ co and x — 0 in (6.21), we reach the desired contradiction

M < —4/8. This concludes the proof of the theorem. O

Remark. Note that if we were to carry out the above proof under the assumption that the sub-
solution (instead of the supersolution) was continuous, we had to modify the proof only at (6.18)
and (6.31). We leave the details to the reader.
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