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Abstract We study portfolio optimization problems where the drift rate of the stock is

Markov-modulated and the driving factors cannot be observed by the investor. Using

results from filter theory we reduce this problem to one with complete observation. In

the case of logarithmic and power utility we solve the problem explicitly with the help

of stochastic control methods. It turns out that the value function is a classical solution

of the corresponding Hamilton-Jacobi-Bellman equation. As a special case we investigate

the so-called Bayesian case, i.e. the drift rate is unknown but does not change during time.

In this case we prove a number of interesting properties of the optimal portfolio strategy.

In particular, using the likelihood-ratio ordering, we can compare the optimal investment

in the case of observable drift rate to the one in the case of unobservable drift rate. Thus,

we also obtain the sign of the drift risk.
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1 Introduction

This paper investigates the problem of optimal portfolio choice in a financial market

with one bond and one stock. The drift rate of the stock price process is modelled as a



continuous-time Markov chain. The aim is to maximize the expected utility from terminal

wealth. However, we are only able to observe the stock price process and have to base our

decision on this observation. In particular we are not informed about the state of the drift

process. Such a model is also called a Hidden Markov Model. For a general treatment of

such models see e.g. Elliott et al. (1994).

It is well-known that a financial market with constant parameters can only serve for a

relatively short period of time. Thus, there is the need to use stochastically varying

parameters. One possibility is to introduce a continuous-time Markov chain, representing

the general market direction. For simplicity we assume that only the drift rate of the stock

price process depends on this market direction. Furthermore, it seems to be realistic that

we cannot directly observe this market direction since not all the driving factors and their

impact are known. Thus, we can only try to estimate this hidden factor by observing the

stock price.

Portfolio optimization problems with partial observation, in particular with unknown drift

process have been studied extensively over the last decade. Lakner (1995, 1998) and Rishel

(1999) for example have treated the case where the drift rate follows a linear Gaussian

model. Karatzas/Zhao (2001) investigated the Bayesian case, i.e. when the drift rate is

constant but unknown. The papers Sass/Haussmann (2003) and Haussmann/Sass (2003)

discuss a market model which is even more general than ours, e.g. in allowing a stochastic

interest rate and assuming d risky assets. Since it is possible to reduce the problem to one

in a complete financial market, these cited papers use the martingale approach to solve the

portfolio problem. The only exceptions are Rishel (1999) and also Karatzas/Zhao (2001)

who use a stochastic control approach. Portfolio optimization problems with observable

Markov-modulated market data have been treated in Bäuerle/Rieder (2004).

In this paper we use a stochastic control approach for the portfolio optimization problem

with unobservable Markov-modulated drift process. A first contribution of our paper is

that we can show that this approach works very well in the case of logarithmic and power

utility in the sense that we even get a classical solution of the corresponding Hamilton-

Jacobi-Bellman equation. This is of practical interest since it gives an alternative way

of computing the value function and the optimal portfolio strategy. As a special case we

also investigate the so-called Bayesian case, i.e. the drift rate is unknown but does not

change during time. This setting has already been investigated in Karatzas/Zhao (2001),

however we give a self-contained approach to this problem, treating it as a special case
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of the hidden Markov-modulated drift model and derive a more explicit formula for the

optimal investment strategy. We prove a number of interesting properties of the optimal

portfolio strategy, in particular, when compared to the case of observable drift rate. For

example when we have a power utility u(x) = 1
αxα with α ∈ (0, 1), it turns out that we

have to invest more in the stock in the case of an unobservable drift rate, compared to the

case where the drift rate is known and equal to our expectation. If α < 0 the situation is

vice versa. Thus, for α ∈ (0, 1) the drift risk is positive, whereas for α < 0 the drift risk is

negative. This result is obtained by using the likelihood-ratio ordering in an appropriate

way. Some numerical results are also presented.

The paper is organized as follows: in Section 2 we introduce the market model and define

the optimization problem. In Section 3 we use the filtering theory to reduce the problem to

one with complete observation. In the case of a logarithmic utility function, the problem

is solved in Section 4. Section 5 treats the case of a power utility. With the help of a

stochastic control approach we are able to solve the problem. In particular it turns out

in Section 6 that the value function is a classical solution of the corresponding Hamilton-

Jacobi-Bellman (HJB) equation. The special Bayesian case is treated in Section 7 and

properties of the optimal investment strategy are proven in Section 8.

2 The Model

Suppose that (Ω,F ,F = {Ft, 0 ≤ t ≤ T}, P ) is a filtered probability space and T > 0 is

a fixed time horizon. We consider a financial market with one bond and one risky asset.

The bond evolves according to

dBt = rBtdt (1)

with r > 0 being the interest rate. The stock price process S = (St) is given by

dSt = St (µtdt + σdWt) (2)

where µt = µ′Yt, W = (Wt) is a Brownian motion and Y = (Yt) is a continuous-time

Markov chain with state space {e1, . . . , ed}, where ek is the k-th unit vector in IRd and

(Yt) has the generator Q = (qij). All processes are adapted w.r.t. F and (Wt) and (Yt) are

independent. µ = (µ1, . . . , µd) ∈ IRd and σ > 0.

The optimization problem is to find self-financing investment strategies in this market

that maximize the expected utility from terminal wealth. We assume that our investor

is only able to observe the stock price process and that he knows the initial distribution
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of Y0. In particular he is not informed about the current state of the Markov chain. Let

FS = {FS
t , 0 ≤ t ≤ T} be the filtration generated by the stock price process (St). In what

follows we denote by πt ∈ IR the fraction of wealth invested in the stock at time t. 1− πt

is then the fraction of wealth invested in the bond at time t. If πt < 0, then this means

that the stock is sold short and πt > 1 corresponds to a credit. The process π = (πt) is

called portfolio strategy. An admissible portfolio strategy has to be an FS-adapted process.

The wealth process under an admissible portfolio strategy π is given by the solution of the

stochastic differential equation (SDE)

dX̃π
t = X̃π

t [(r + (µt − r)πt)dt + σπtdWt] , (3)

where we assume that X̃π
0 = x0 is the given initial wealth. We denote by

U [t, T ] :=
{
π = (πs)t≤s≤T | πs ∈ IR, π is FS − adapted,

(3) has a unique solution,

∫ T

t
(πsX̃

π
s )2ds < ∞ a.s.

}
the set of admissible portfolio strategies over the time horizon [t, T ]. Let U : IR+ → IR

be an increasing, concave and differentiable utility function. The value functions for our

problem are defined by

Ṽπ(t, x) = Et,x
[
U(X̃π

T )
]

for all π ∈ U [t, T ]

Ṽ (t, x) = sup
π∈U [t,T ]

Ṽπ(t, x)

where Et,x is the conditional expectation, given X̃π
t = x. A portfolio strategy π∗ ∈ U [0, T ]

is optimal if

Ṽ (0, x0) = Ṽπ∗(0, x0).

Note that Ṽ (0, x0) depends on the initial distribution of Y0.

3 The Reduction

We can reduce the control problem with partial observation to one with complete obser-

vation as follows: denote by

pk(t) := P (Yt = ek | FS
t ), k = 1, . . . , d

the Wonham-filter of the Markov chain and define pt = (p1(t), . . . , pd(t)) (cf. Elliott et al.

(1994)). The following statements hold:

Lemma 1: There exists a Brownian motion (Ŵt) w.r.t. FS such that
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a) the filter processes pk(t) satisfy for t ≥ 0

pk(t) = pk(0) +
∫ t

0

∑
j

qjkpj(s)ds +
∫ t

0

1
σ

(µk − µ̂s)pk(s)dŴs

where µ̂t :=
∑d

k=1 µkpk(t) = E[µt | FS
t ].

b) µtdt + σdWt = µ̂tdt + σdŴt.

c) FS
t = σ(Ŵs, s ≤ t).

Note that part b) implies that Ŵt := Wt+ 1
σ

∫ t
0(µs−µ̂s)ds. The control model with complete

observation is now characterized for π ∈ U [0, T ] by the following d + 1-dimensional state

process:

dXπ
t = Xπ

t

[
(r + (µ̂t − r)πt)dt + σπtdŴt

]
(4)

Xπ
0 = x0 (5)

dpk(t) =
∑
j

qjkpj(t)dt +
1
σ

(µk − µ̂t)pk(t)dŴt (6)

pk(0) = P (Y0 = ek), k = 1, . . . , d. (7)

The wealth process is explicitly given by

Xπ
t = x0 exp

{∫ t

0
(r + (µ̂s − r)πs −

1
2
σ2π2

s)ds +
∫ t

0
σπsdŴs

}
.

The value functions in the reduced model are defined by

Vπ(t, x, p) = Et,x,p [U(Xπ
T )] for all π ∈ U [t, T ]

V (t, x, p) = sup
π∈U [t,T ]

Vπ(t, x, p)

where Et,x,p is the conditional expectation, given Xπ
t = x, pt = p. The following result is

often taken for granted, however has to be proved formally

Theorem 2: For all π ∈ U [t, T ] and x > 0 it holds that Vπ(t, x, pt) = Ṽπ(t, x) and

V (t, x, pt) = Ṽ (t, x).

The proof follows directly from Lemma 1. The reduced model is now one with complete

observation. We will solve it with the help of the HJB equation.
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4 Logarithmic Utility

In this section we assume that the utility function is given by U(x) = log(x). For π ∈

U [t, T ] with the additional assumption πs ∈ [−M,M ] for M ∈ IR+ large, we obtain from

the explicit solution for Xπ
t

Vπ(t, x, p) = log(x) + hπ(t, p)

where

hπ(t, p) = Et,p

[∫ T

t
r + (µt − r)πs −

1
2
σ2π2

sds +
∫ T

t
σπsdWs

]

= Et,p

[∫ T

t
r + (µt − r)πs −

1
2
σ2π2

sds

]
.

Note that we need πs ∈ [−M,M ] in order to have E[
∫ T
0 πsdWs] = 0 and that hπ does not

depend on x. By S we denote the probability simplex in IRd. It is now obvious that

Lemma 3:

a) for all t ∈ [0, T ], x > 0, p ∈ S we have

V (t, x, p) = log(x) + h(t, p),

where h(t, p) = supπ∈U [t,T ] hπ(t, p). And

b) if for all t ∈ [0, T ],

π∗t :=
µ̂t − r

σ2
,

then π∗ = (π∗t ) is an optimal portfolio strategy for the given investment problem.

Proof: Part a) follows from the considerations preceding Lemma 3. b) follows directly

from a pathwise maximization and the fact that M → ∞ does not change the optimal

investment strategy.

In the case of complete observation, i.e. when we can observe the drift process µt, then it

is well-known that the optimal investment strategy at time t would be to invest a constant

fraction µt−r
σ2 of the wealth in the stock. 3 b) shows that the so-called certainty equivalence

principle holds, i.e. the unknown appreciation rate µt is replaced by the estimate µ̂t =

E[µt | FS
t ] in the optimal portfolio strategy (cf. Kuwana (1991)).
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5 Power Utility

Suppose that the utility function is given by U(x) = 1
αxα, α < 1, α 6= 0. It is well-known

that in this case the value function can be written in the form V (t, x, p) = 1
αxαg(t, p)1−α.

One of our main contributions in this paper is to show that the corresponding portfolio

optimization problem has a smooth value function, where g can be identified as a classical

solution of a linear parabolic differential equation. This is not the case when the drift

process µt is more general (see Zariphopoulou (2001)). In particular we can circumvent

the use of viscosity solutions. Our theorem is as follows:

Theorem 4:

a) The value function V of our investment problem is for all (t, x, p) ∈ [0, T ]× IR+ ×S

given by

V (t, x, p) =
1
α

xαg(t, p)1−α,

where g ≥ 0 is a classical solution of the following linear parabolic differential equa-

tion

0 = gt +
α

1− α

{
r +

1
2(1− α)

(µ′p− r)2

σ2

}
g

+
∑
k

∑
j

qjkpj +
α

1− α
pk(µk − µ′p)

µ′p− r

σ2

 gpk

+
1

2σ2

∑
k,j

(µk − µ′p)(µj − µ′p)pkpjgpkpj . (8)

with g(T, p) = 1 for all p ∈ S.

b) The optimal portfolio strategy π∗ = (π∗t ) ∈ U [0, T ] is given in feedback form π∗t =

u∗(t, pt), where the function u∗ is given by

u∗(t, p) =
1

1− α
· µ′p− r

σ2
+
∑

k pk(µk − µ′p)gpk
(t, p)

σ2g(t, p)
.

c) The Feynman-Kac formula yields the following stochastic representation of g:

g(t, p) = E

[
exp

(
r

α

1− α
(T − t) +

∫ T

t

α

2(1− α)2
(µ′Zs − r)2

σ2
ds

) ∣∣∣ Zt = p

]

where the stochastic process (Zt) ∈ IRd is a solution of the SDE

dZk
t = ak(Zt)dt +

∑
j

bk,j(Zt)dW j
t

7



with

ak(p) :=
∑
j

qjkpj +
α

1− α
pk(µk − µ′p)

µ′p− r

σ2

bk,j(p) :=
1
σ2

(µk − µ′p)(µj − µ′p)pkpj .

Remark:

a) In the case when the investor is able to observe the driving Markov chain, the optimal

fraction of wealth invested in the stock at time t, when the Markov chain is in state

ek is given by

u∗o(t, ek) =
1

1− α
· µk − r

σ2

(see e.g. Bäuerle/Rieder (2004)). Thus, in the unobservable case, the optimal fraction

invested consists of the same myopic part and an additional term, which we call the

drift risk. This term is sometimes also called market risk or hedging demand, but

since it stems from the unknown drift rate only, we decided to call it drift risk.

b) Note that, since g and gpk
are continuous and [0, T ] × S is compact, the optimal

portfolio strategy (π∗t ) is bounded.

The proof of Theorem 4 is given in Section 6.

6 The HJB Equation and the Proof of Theorem 4

In order to solve the investment problem, a classical approach in stochastic control theory

is to examine the so-called Hamilton-Jacobi-Bellman (HJB) equation. For our problem,

it turns out to be

0 = sup
u∈IR

{
vt + x[r + u(µ′p− r)]vx +

1
2
x2u2σ2vxx +∑

k,j

qjkpjvpk
+
∑
k

xupk(µk − µ′p)vxpk
+

1
2σ2

∑
k,j

(µk − µ′p)(µj − µ′p)pkpjvpkpj

}
(9)

with the boundary condition v(T, x, p) = 1
αxα for all x ∈ IR+, p ∈ S. In what follows we

abbreviate the expression in curly brackets by Av(t, x, p, u). For the proof of Theorem 4
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we proceed as follows:

Theorem 5: The function v(t, x, p) := 1
αxαg(t, p)1−α with g given in (8) is a solution of

the HJB equation (9).

Proof: First note that, the boundary condition v(T, x, p) = 1
αxα is satisfied. Moreover,

since the coefficients of the linear parabolic differential equation for g are polynomials in

p, the function g is sufficiently differentiable (see e.g. Kloeden/Platen (1995) p. 153). We

first compute the derivatives of v:

vt =
1
α

xα(1− α)g−αgt

vx = xα−1g1−α

vxx = (α− 1)xα−2g1−α

vpk
=

1
α

xα(1− α)g−αgpk

vxpk
= xα−1(1− α)g−αgpk

vpkpj =
1
α

xα(1− α)
(
g−αgpkpj − αg−α−1gpjgpk

)
.

Plugging this into the HJB equation gives us after some simple algebra (note that we need

α < 1 here)

0 = sup
u∈IR

1
α

{
gt + [r + u(µ′p− r)]

α

1− α
g − 1

2
αu2σ2g +∑

k,j

qjkpjgpk
+
∑
k

upk(µk − µ′p)αgpk
+

1
2σ2

∑
k,j

(µk − µ′p)(µj − µ′p)pkpj

(
gpkpj − αg−1gpjgpk

)}
Since g ≥ 0 the maximum point is well-defined and given by

1
1− α

· µ′p− r

σ2
+
∑

k pk(µk − µ′p)gpk

σ2g
.

Inserting the maximum point and simplifying the expression, we obtain that g has to

satisfy the partial differential equation (8) which is true due to our assumption.

The power change of variable for the value function has already been used by Zariphopoulou

(2001) and Pham (2002). Here it is shown that this trick also works for a multidimensional

setting. The next theorem provides the verification that v(t, x, p) given in Theorem 5 is
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indeed the value function of our investment problem.

Theorem 6: Suppose v(t, x, p) is given as in Theorem 5. Then

a) V (t, x, p) = v(t, x, p) for all (t, x, p) ∈ [0, T ]× IR+ × S.

b) The optimal portfolio strategy π∗ = (π∗t ) ∈ U [0, T ] is given as in Theorem 4 b).

Proof: We restrict here to the case α ∈ (0, 1). The case α < 0 can be shown similarly. Let

π ∈ U [t, T ] be an arbitrary portfolio strategy and (Xπ
t ) the corresponding wealth process.

We interpret v(t, x, p) as a function on IR+ × IRd+1. Since v is smooth enough we can

apply Ito’s formula and obtain:

v(T,Xπ
T , pT ) = v(t, x, p) +

∫ T

t
Av(s,Xπ

s , ps, πs) ds (10)

+
∫ T

t
vx(s,Xπ

s , ps, πs)Xπ
s πsσdŴs

+
∫ T

t

∑
k

vpk
(s,Xπ

s , ps, πs)
1
σ

pk(s)(µk − µ′ps)dŴs

≤ v(t, x, p) +
∫ T

t

(
Xπ

s

)α
g(s, ps)1−απsσdŴs

+
∫ T

t

∑
k

(
Xπ

s

)α gpk
(s, ps)

g(s, ps)α

(1− α)
ασ

pk(s)(µk − µ′ps)dŴs

where the inequality follows from the HJB equation. Since v ≥ 0, the local martingale

(
∫ T
t . . . dŴs)T≥t is bounded from below by −v(t, x, p) and thus is a supermartingale. Tak-

ing the conditional expectation and using the boundary condition for v we obtain

Et,x,p
[
1
α

(Xπ
T )α

]
≤ v(t, x, p).

Since π was arbitrary, we obtain V (t, x, p) ≤ v(t, x, p). Now suppose that (π∗t ) is as in part

b). Since (π∗t ) is a maximizer of the HJB equation, we obtain equality in equation (10)

under (π∗t ). Note that, since (π∗t ) is bounded and since g, gpk
are continuous and [0, T ]×S

is compact, the local martingales
∫

. . . dŴs are martingales. Taking expectation we obtain

this time

Et,x,p
[
1
α

(Xπ
T )α

]
= v(t, x, p),

and the statement follows.

Thus, part a) and b) of Theorem 4 are shown. The Feynman-Kac formula (Theorem 4 c))

is standard see e.g. Kloeden/Platen (1995) p. 153).
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7 The Bayesian Case

In this section we consider a special case of the previously discussed model, namely the so-

called Bayesian case. Here, the unobserved drift process (µt) is simply a random variable

µt = θ which does not change during time and the investor knows the initial distribution

P (θ = µk) =: pk, k = 1, . . . , d. µ1, . . . , µd are the possible values θ can take. As before,

we assume that θ and (Wt) are independent. This model has already been solved by

Karatzas/Zhao (2001) via the martingale method and by stochastic control. We relate

now their result to our model of Section 2 giving a self-contained proof. Formally we get

the Bayesian case if we set the intensity matrix Q ≡ 0 in the model of Section 2. With

this modification, the results of Sections 3-5 hold for the Bayesian case. However, we will

see that the analysis can be simplified considerably in this setup. This is mainly due to

the fact that instead of looking at the IRd+1-valued state process (Xt, p1(t), . . . , pd(t)) in

the reduced model, we can find a sufficient statistic for the unobserved parameter θ and

can restrict to a 2-dimensional state space. A crucial step for this procedure is to look

at the optimization problem under a change of measure. Since the logarithmic utility is

quite simple, we restrict to the power utility U(x) = 1
αxα, α < 1, α 6= 0 here. In the

sequel we will use the following results. Recall from Section 2 that µ̂t =
∑d

k=1 µkpk(t)

with pk(t) = P (θ = µk | FS
t ), k = 1, . . . , d and Ŵt = Wt + 1

σ

∫ t
0(θ − µ̂s)ds. Let us now

introduce the process

Yt := Ŵt +
1
σ

∫ t

0
(µ̂s − r)ds = Wt +

θ − r

σ
t.

It is convenient to write γk := µk−r
σ and

Lt(µk, y) :=

 exp(γky − 1
2γ2

kt) , t > 0

1 , t = 0

for t ∈ [0, T ], y ∈ IR, and k = 1, . . . , d. It is well-known that (L−1
t (θ, Yt)) is a martingale

density process w.r.t. the filtration Fθ,W which is the filtration generated by θ and (Wt).

Then we can define a new probability measure Q by dQ
dP = L−1

T (θ, YT ). Under Q the

process (WQ
t ) with WQ

t := Yt is a Brownian motion w.r.t. Fθ,W . The process (Lt(θ, Yt)) is

a Q-martingale w.r.t. Fθ,W . Note that it can be shown that θ and (WQ
t ) are independent

under Q. Finally, for t ∈ [0, T ], y ∈ IR we use the abbreviation

F (t, y) :=
d∑

k=1

Lt(µk, y)pk.
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Now we are able to state our first result.

Lemma 7: With the notations introduced in this section it holds that

a) FS = FY , i.e. the filtration generated by (St) is the same as the one generated by

(Yt) = (WQ
t ).

b) pk(t) depends only on Yt. More precisely, it holds for k = 1, . . . , d that

pk(t) = P (θ = µk | FS
t ) =

Lt(µk, Yt)pk

F (t, Yt)
.

Proof:

a) Follows from the definition of the stock price process (St) and (Ŵt).

b) The Bayes formula for conditional expectations reads

E[Z | FS
t ] =

EQ[ZLT (θ, YT ) | FS
t ]

EQ[LT (θ, YT ) | FS
t ]

where Z is a random variable defined on our probability space. Plugging in Z =

1[θ=µk] yields the desired result.

In particular Lemma 7 implies that µ̂t =
∑d

k=1 µkpk(t) is a function of Yt alone. Therefore,

(Yt) can be seen as a sufficient statistic. There is no need to consider the conditional

probabilities pk(t) for all k = 1, . . . , d. More precisely, when we define

µ(t, y) =
∑d

k=1 µkLt(µk, y)pk∑d
k=1 Lt(µk, y)pk

we have µ̂t = µ(t, Yt). It is now convenient to introduce the process γt = γ(t, Yt), where

γ(t, y) := µ(t,y)−r
σ . We can reduce our portfolio problem to a problem with complete

observation and 2-dimensional state space in the following way:

dXπ
t = Xπ

t

[
(r + σγtπt)dt + σπtdŴt

]
, Xπ

0 = x0

dYt = γtdt + dŴt, Y0 = 0.

As in Section 3 we define the value functions Vπ(t, x, y) and V (t, x, y) for (t, x, y) ∈ [0, T ]×

IR+ × IR and obtain as in Theorem 2

Vπ(t, x, Yt) = Ṽπ(t, x)

V (t, x, Yt) = Ṽ (t, x).
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A proof of the following Theorem 8 a) and b) can also be found in Karatzas/Zhao (2001)

Theorem 3.2.

Theorem 8:

a) The value function V of our investment problem with power utility is for all (t, x, y) ∈

[0, T ]× IR+ × IR given by

V (t, x, y) =
1
α

xαg(t, y)1−α,

where g(t, y) ≥ 0 is a classical solution of the following linear parabolic differential

equation

0 = gt +
α

1− α

{
r +

1
2

γ(t, y)2

(1− α)

}
g +

γ(t, y)
1− α

gy +
1
2
gyy (11)

with g(T, y) = 1 for all y ∈ IR.

b) The following representation of g holds:

g(t, y) = E

[(
F (T, YT )BT

F (t, Yt)Bt

) α
1−α

∣∣∣∣∣ Yt = y

]

for t ∈ [0, T ], y ∈ IR.

c) The optimal portfolio strategy π∗ = (π∗t ) ∈ U [0, T ] is given in feedback form π∗t =

u∗(t, Yt), where the function u∗ is given by

u∗(t, y) =
1

1− α
· µ(t, y)− r

σ2
+

gy(t, y)
σg(t, y)

.

Proof: It is straightforward to see that our portfolio problem is equivalent to the following

optimization problem (w.r.t. the equivalent martingale measure Q):

EQ

[
F (T, YT )

1
α

(Xπ
T )α

]
→ max

dXπ
t = Xπ

t (rdt + σπtdWQ
t ), Xπ

0 = x0

dYt = dWQ
t , Y0 = 0.

We denote the value function of this problem by V Q(t, x, y). It follows from the definition

that V (0, x0, 0) = V Q(0, x0, 0).

13



a) Solving the HJB equation for the Q-problem we obtain as in Section 6

V Q(t, x, y) =
1
α

xαgQ(t, y)1−α,

where gQ is a classical solution of the following linear parabolic differential equation

0 = gQ
t +

αr

1− α
gQ +

1
2
gQ
yy

with gQ(T, y) = F (T, y)
1

1−α for all y ∈ IR. Moreover, the Feynman-Kac formula

gives the representation

gQ(t, y) = exp
(

r(T − t)
α

1− α

)
EQ

[
F (T, YT )

1
1−α

∣∣∣ Yt = y
]
.

If we define g(t, y) := F (t, y)
1

α−1 gQ(t, y) then it is easy to see after some calculations

that g is a classical solution of the HJB equation for the problem under P which is

equivalent to (11).

b) Using the representation of gQ in a) and applying the Bayes formula yields the

statement for g(t, y).

c) From the HJB equation we obtain that the optimal portfolio strategy is given by

π∗t = u∗(t, Yt) where the function u∗ is given as stated.

Remark: Note that the optimal portfolio strategy (π∗t ) with π∗t = u∗(t, Yt) can also be

written as

u∗(t, y) =
gQ
y (t, y)

σgQ(t, y)
.

This follows from the equivalent Q-problem formulated in the proof of Theorem 8.

8 Properties of the optimal Investment Strategy in the Bayesian

Case

In this section we investigate the structural properties of the optimal investment fraction

u∗(t, y) given in Theorem 8 c). In particular we will compare the optimal investment

strategy with the one we obtain when the drift rate is known. In the observable case the

problem has been solved by Merton (1971, 1973). Suppose that

dSt = St(µdt + σdWt)

14



is the dynamics of the stock price and µ ∈ IR is observable, then it is well-known that it

is optimal to invest the constant fraction

1
1− α

· µ− r

σ2

of the wealth in the stock. Let us now assume that we are in the Bayesian case and observe

at time t that the state of Yt is y. Then we expect that the drift rate of the stock is µ(t, y).

If we would know for sure that the drift rate is µ(t, y) then we would invest the fraction

u∗o(t, y, α) =
1

1− α
· µ(t, y)− r

σ2
=

1
(1− α)σ

· γ(t, y)

of the wealth in the stock. Recall that u∗(t, y) = gQ
y (t,y)

σgQ(t,y)
and u∗ depends on α. Hence we

will write u∗(t, y) = u∗(t, y, α). We obtain now the following comparisons, where part d)

is non-trivial and of particular interest for practical applications:

Theorem 9:

a) At time T the optimal fraction is equal to the myopic part:

lim
t→T

u∗(t, y, α) = u∗o(T, y, α)

for all y ∈ IR, α < 1.

b) As α → 0, the optimal fraction tends to the myopic part:

lim
α→0

u∗(t, y, α) = u∗o(t, y, 0)

for all y ∈ IR, t ∈ [0, T ].

c) Suppose that µ1 ≤ . . . ≤ µd, then we obtain the following bounds:

1
1− α

· µ1 − r

σ2
≤ u∗(t, y, α) ≤ 1

1− α
· µd − r

σ2

for all y ∈ IR, t ∈ [0, T ].

d) Suppose that r ≤ µ1 ≤ . . . ≤ µd. If α ∈ (0, 1) then

u∗(t, y, α) ≥ u∗o(t, y, α)

and if α < 0 then

u∗(t, y, α) ≤ u∗o(t, y, α)

for all y ∈ IR, t ∈ [0, T ].
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Proof: Let us define γ∗(t, y, α) := (1−α)gQ
y (t,y)

gQ(t,y)
. Then it is sufficient to prove the statements

for γ∗(t, y, α) and γ(t, y). From Section 7 we know that γ∗(t, y, α) = ΓD(t,y,α)
ΓN (t,y,α) with

ΓN (t, y, α) =
∫

IR
F (T, y + x)

1
1−α φT−t(x) dx

ΓD(t, y, α) =∫
IR

F (T, y + x)
α

1−α

(
d∑

k=1

pkγkLT (µk, y + x)

)
φT−t(x) dx,

where φT−t is the density of the normal distribution with expectation 0 and variance T−t.

a) In this case the following representation of ΓD(t, y, α) and ΓN (t, y, α) are useful:

ΓN (t, y, α) = E
[
F (T, y + WT−t)

1
1−α

]
ΓD(t, y, α) = E

[
F (T, y + WT−t)

α
1−α

(
d∑

k=1

pkγkLT (µk, y + WT−t)

)]
.

Since limt→T WT−t = 0 a.s. we obtain due to the continuity of the involved functions

lim
t→T

ΓN (t, y, α) = F (T, y)
1

1−α

lim
t→T

ΓD(t, y, α) = F (T, y)
α

1−α

(
d∑

k=1

pkγkLT (µk, y)

)
.

Altogether this yields

lim
t→T

γ∗(t, y, α) =
∑d

k=1 pkγkLT (µk, y)∑d
k=1 pkLT (µk, y)

= γ(T, y).

b) We obtain

lim
α→0

ΓN (t, y, α) =
d∑

k=1

pk

∫
IR

LT (µk, y + x)φT−t(x) dx

lim
α→0

ΓD(t, y, α) =
d∑

k=1

pkγk

∫
IR

LT (µk, y + x)φT−t(x) dx.

Moreover, it holds that∫
IR

LT (µk, y + x)φT−t(x) dx = Lt(µk, y)

which implies the result.

c) Since LT , pk ≥ 0 we obtain

γ1F (T, y + x) ≤
d∑

k=1

pkγkLT (µk, y + x) ≤ γdF (T, y + x).

Hence we can bound the denominator of γ∗(t, y, α) by

γ1ΓN (t, y, α) ≤ ΓD(t, y, α) ≤ γdΓN (t, y, α)

and the result follows.
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d) Suppose α ∈ (0, 1). We have to show that γ(t, y) ≤ γ∗(t, y, α). Both sides can be

interpreted as expectations in the following way:

γ(t, y) =
d∑

k=1

γkpk(t, y),

where

pk(t, y) =
pkLt(µk, y)

F (t, y)

and

γ∗(t, y, α) =
d∑

k=1

γkqk(t, y, α),

where

qk(t, y, α) =
∫
IR pkLT (µk, y + x)F (T, y + x)

α
1−α φT−t(x) dx

ΓN (t, y, α)
.

We will show now that the densities satisfy

(pk(t, y), k = 1, . . . , d) ≤lr (qk(t, y, α), k = 1, . . . , d)

where ≤lr is the likelihood ratio order, i.e. we show that

qk(t, y, α)
pk(t, y)

is increasing in k for all t ∈ [0, T ] and y ∈ IR. Then it is well-known that the

expectations are ordered as stated. Obviously it holds that

qk(t, y, α)
pk(t, y)

= C ·
∫
IR LT (µk, y + x)F (T, y + x)

α
1−α φT−t(x) dx

Lt(µk, y)

where C > 0 is a constant. Since LT (µk, y + x) = Lt(µk, y)LT−t(µk, x) it follows

that
qk(t, y, α)
pk(t, y)

= C · E
[
F (T, y + Xk)

α
1−α

]
,

where Xk ∼ N (γk(T − t), T − t). Thus, we have to show that

E
[
F (T, y + Xk)

α
1−α

]
≤ E

[
F (T, y + Xk+1)

α
1−α

]
.

This inequality is of the form

E[f(Xk)] ≤ E[f(Xk+1)]

where the function f(x) is increasing in x since α ∈ (0, 1) and γk ≥ 0. Thus, the

statement is true since Xk ≤st Xk+1 where ≤st is the usual stochastic order. If

α ∈ (−∞, 0), then f(x) is decreasing and we obtain the reverse inequality.
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Remark:

1. The optimal fraction u∗o(t, y, 0) of Theorem 9 b) is the optimal fraction we obtain

in the case of a logarithmic utility function (cf. Section 4). Thus, the portfolio

problem with logarithmic utility can be seen as the limiting problem, when α → 0

in the power utility case.

2. Part d) of Theorem 9 tells us, that we have to invest more in the stock in the case

of an unobservable drift rate, compared to the case where we know that µ(t, y) is

the drift rate when α ∈ (0, 1). If α < 0 the situation is vice versa. A heuristic

explanation of this phenomenon is as follows: though in all cases our investor is

risk averse, the degree of risk aversion changes with α. Formally the degree of risk

aversion is defined by the Arrow-Pratt absolute risk aversion coefficient, which is

−U ′′(x)
U ′(x)

= (1− α)
1
x

in case of the power utility U(x) = 1
αxα. Thus, the risk aversion decreases for all

wealth levels with α. In particular if α ∈ (0, 1), the investor is less risk averse than

in the logarithmic utility case (α = 0) and thus invests more in the stock.

3. Theorem 9 c) implies that limα→−∞ u∗(t, y, α) = 0 (see also the preceding remark).

In the following figures we have computed the optimal fractions u∗(t, y, α) and u∗o(t, y, α)

in the case of partial and complete observation for the following data: d = 3, r = 0.04, σ =

0.2, µ2 = 0.1, µ3 = 0.2, t = 0, y = 0 and p1 = 0.2, p2 = 0.4, p3 = 0.4. Figure 1 shows the

optimal fractions that have to be invested in the stock in the observed case u∗o(t, y, α) and

in the unobserved case u∗(t, y, α) as a function of α, when µ1 = 0.04 and T = 1. For α = 0

both fractions coincide according to Theorem 9 b). Our conjecture is that u∗(t, y, α) and

the difference u∗(t, y, α)−u∗o(t, y, α) are increasing in α if µk ≥ r for all k. Figure 2 shows

the same situation with µ1 = −0.2, i.e. the first stock has a negative appreciation rate.

In this case we can see that Theorem 9 d) does not hold anymore. Figure 3 and 4 show

the optimal fractions as functions of the planning horizon T with α = 0.5. As shown in

Theorem 9 a), the fractions coincide for T = t = 0. Figure 3 is computed with µ1 = 0.04

and figure 4 with µ1 = −0.2. In the case α > 0 and µk ≥ r for all k we conjecture that

u∗(t, y, α) is increasing in T and converges against the upper bound 1
1−α ·

µd−r
σ2 . Figure 4

shows that there is no monotonicity w.r.t. T in general.
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fig. 1

fig. 2
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fig. 3

fig. 4
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