Portfolio Selection: An Extreme Value Approach

Francis J. DiTraglia ${ }^{\text {a }}$, Jeffrey R. Gerlach ${ }^{\text {b }}$
${ }^{a}$ Department of Economics, University of Pennsylvania
${ }^{b}$ Senior Financial Economist, Federal Reserve Bank of Richmond

Abstract

We show theoretically that lower tail dependence (χ), a measure of the probability that a portfolio will suffer large losses given that the market does, contains important information for risk-averse investors. We then estimate χ for a sample of DJIA stocks and show that it differs systematically from other risk measures including variance, semi-variance, skewness, kurtosis, beta, and coskewness. In out-of-sample tests, portfolios constructed to have low values of χ outperform the market index, the mean return of the stocks in our sample, and portfolios with high values of χ. Our results indicate that χ is conceptually important for risk-averse investors, differs substantially from other risk measures, and provides useful information for portfolio selection.

Keywords: Portfolio Selection, Extreme Value Theory, Tail Dependence JEL: C58, G11

1. Introduction

In this paper we apply portfolio selection techniques to a sample of large-cap stocks using lower tail dependence (χ) as the measure of risk. The concept of tail dependence comes from Extreme Value Theory (EVT), which allows us to describe the tail behavior of a random variable without specifying its underlying distribution. Specifically, χ describes the dependence in the extreme lower tail of the joint distribution of a given portfolio's returns with those of the market. Let X represent losses (returns multiplied by negative one) for some portfolio and Y losses for the market index. Then, the lower tail dependence between this portfolio and the market is given by:

$$
\begin{equation*}
\chi=\lim _{s \uparrow 1} \mathbb{P}\left\{X>F_{X}^{-1}(s) \mid Y>F_{Y}^{-1}(s)\right\} \tag{1}
\end{equation*}
$$

[^0]where F_{X}^{-1} and F_{Y}^{-1} are the quantile functions of X and Y. Intuitively, χ is a kind of limiting conditional Value at Risk, capturing the probability that a portfolio suffers losses beyond its s th quantile, $F_{X}^{-1}(s)$, given that the market has suffered equivalently large losses. ${ }^{1}$ When $\chi=0, X$ and Y are asymptotically independent; when $\chi=1$, they are perfectly asymptotically dependent. ${ }^{2}$ Unlike correlation, lower tail dependence is an asymmetric measure of dependence, examining only one region of the distribution. And unlike other asymmetric risk measures such as the downside β of Ang et al. (2006a) or the conditional coskewness of Harvey and Siddique (2000), lower tail dependence is not a moment. Consequently it is guaranteed to exist for all distributions, even those with extremely heavy tails.

Intuitively, lower tail dependence is a reasonable measure of risk if, ceteris paribus, investors prefer to hold portfolios that perform relatively well when market returns are extremely poor. ${ }^{3}$ For tail dependence to be relevant for portfolio selection, however, we must assume that investors assign a positive probability to economic disasters: states of the world in which most assets fall sharply in value. Both history and derivatives markets suggest that this assumption is reasonable. Analyzing data from the 20th century, Barro (2006) estimates the probability of economic disasters at 1.5% to 2% per year with declines in per capital GDP of 15% to 64%. In 2012 , the price of a long put option to protect against a 50% fall in the S\&P 500 index over the next 3 years was about 200 basis points. Indeed, there are actively traded markets in options protecting against decreases of more than 90% in the index level.

This paper makes three main contributions. First, we show that χ contains valuable information for portfolio selection using a theoretical model built upon the "rare disaster framework" of Rietz (1988), Barro (2006), and Gabaix (2011). Our model predicts that low- χ assets will show lower returns overall to compensate for the downside protection they provide in extreme bear markets. Second, as far as we know, this is the first paper to estimate the lower tail dependence between individual stocks and

[^1]stock portfolios and the market return. Previous studies using EVT tail dependence, including Longin and Solnik (2001), Poon et al. (2004), and Chollete et al. (2011) use international stock market indexes. Our empirical results show that χ is relatively stable over time and differs systematically from other risk measures including variance, semi-variance, skewness, kurtosis, CAPM β, coskewness, and γ, an EVT measure of univariate tail thickness. Finally, we examine the performance of χ as a portfolio selection tool in a number of out-of-sample tests. Low- χ portfolios exhibit relatively high returns during bear markets, including 2008 when market indexes fell sharply. However, they also provide relatively high returns over the entire ten-year test period, including both bull and bear markets, partially contradicting the implications of our theoretical model. These results suggest that lower tail dependence is not yet fully priced.

The remainder of the paper is organized as follows. Section 2 reviews related work, suggesting why tail dependence may provide a better measure of risk than more commonly used measures, and explaining how our paper fits into the growing literature applying EVT to finance. Section 3 presents our theoretical model, while Section 4 describes the EVT techniques we use to estimate lower tail dependence. Section 5 describes our data and empirical results, and Section 6 concludes.

2. Literature Review

In his path-breaking work on portfolio selection, Markowitz $(1952,1959)$ considers how investors can maximize expected return for a given risk level, or equivalently, minimize risk for a given expected return. In Markowitz's original formulation and many later refinements, including the CAPM of Sharpe (1964), Lintner (1965), Mossin (1966), and Treynor (1961), risk is measured by the variance of returns on an investor's overall portfolio. ${ }^{4}$ In this setting, the mean return vector and covariance matrix of individual asset returns tells us everything we need to know to carry out portfolio selection.

There are effectively two ways to justify the mean-variance approach to portfolio selection. The first is to assume that returns are normally distributed. Under nor-

[^2]mality, the mean vector and covariance matrix of returns fully describe their joint behavior, and all portfolios have marginal normal distributions. In this setting, because variance alone controls the thickness of the tails, any sensible measure of risk over final portfolios will be strictly increasing in the variance. Thus, investors will always find it sufficient to minimize the variance of their holdings when they seek to minimize risk. Normality also justifies the use of the CAPM β as a measure of an asset's systematic risk: under normality, correlation is the only dependence information relevant for diversification. There is considerable evidence, however, that asset returns are not normally distributed. ${ }^{5}$ Real-world returns exhibit heavier tails than a normal distribution (Mandelbrot, 1963; Fama, 1965) as well as gain/loss asymmetry: large losses are more common than equivalently large gains (Cont, 2001; Premaratne and Bera, 2005). ${ }^{6}$

The second way to justify mean-variance analysis is by a quadratic approximation. Under quadratic utility, investors consider only the mean and variance of final portfolios, regardless of the underlying distribution of returns. Yet even if investors' utility takes a more plausible functional form, it may still be the case that the portfolios obtained by explicit utility maximization are similar to those constructed using the much simpler mean-variance analysis (see, e.g. Kroll et al. (1984)). Even this justification, however, faces problems because the quality of the quadratic approximation depends not only on investors' true utility function but on the distribution of returns. If this distribution is sufficiently "tame," nearly always generating realizations in the region where the quadratic approximation is good, the resulting portfolios will be similar. If not, there can be large differences between the optimal portfolio and the portfolio selected by mean-variance analysis. Liu et al. (2003) show that if investors believe there to be even a small chance of a downward jump in asset prices, they will select portfolios that are very different from the optimal portfolios based on mean-variance analysis with no price jumps: the possibility of large losses causes investors to take less risk. This result is similar to Barro (2006) who suggests that the possibility of rare disasters can explain the equity risk premium and Liu et al. (2005) who show that uncertainty aversion to rare events can explain the larger premium for out-of-the-money compared to at-the-money put options.

[^3]Parameter or model uncertainty also presents problems for the mean-variance approach which treats estimated parameters as if they were known constants. Chen and Brown (1983), for example, show that accounting for estimation risk substantially changes optimal portfolio weights. Uppal and Wang (2003) make a similar point in a model with ambiguity about return distributions. In a particularly stark empirical example, DeMiguel et al. (2009) show that a naïve strategy giving equal weight to all available assets consistently outperforms mean-variance analysis and a variety of other portfolio selection techniques due to the noise introduced by estimation error.

One response to the non-normality of asset returns and problematic nature of quadratic approximations to investor preferences has been to explore moments beyond the mean, variance and correlation in portfolio selection. Markowitz (1959) himself noted that while investors fear only losing money, not gaining it, the variance treats unusually large gains the same as unusually large losses: both contribute to an asset's measured risk. This incongruity led him to devote a chapter of his book to an alternative measure of risk, the semi-variance. Whereas the variance is defined as the expected squared deviation from the mean, the semi-variance is the expected squared deviation below the mean. Markowitz concludes that portfolios constructed using semi-variance are preferable because they concentrate on reducing losses, while those based on variance sacrifice too much expected return by minimizing extreme positive returns as well as extreme negative returns. ${ }^{7}$ In a similar vein, Harvey and Siddique (2000) suggest measuring an asset's risk by its coskewness, the component of its (negative) skewness that is related to the skewness of the market portfolio, and find that this measure is associated with a significant risk premium in asset-pricing tests. Harvey et al. (2010) also emphasize the relevance of multivariate skewness for portfolio selection, proposing a Bayesian procedure that incorporates parameter uncertainty into the portfolio-choice problem. In the presence of asymmetric returns, the CAPM β is a potentially misleading measure of dependence. Responding to this concern, Ang et al. (2006a) estimate "downside β," a measure of covariance with the market when asset prices fall. They find that assets with high downside β command a risk premium that is not accounted for by ordinary β, coskewness, size, or momentum effects.

A potential problem with moment-based portfolio selection in the presence of

[^4]heavy-tailed returns, especially methods based on higher moments such as skewness, is that the moments in question may be undefined or infinite. An early approach that is not subject to this critique is the "safety first" idea of Roy (1952) and Arzac and Bawa (1977), who suggest that investors minimize the probability of losing more than a pre-specified amount of money. Safety first is an appealing idea, but in practice it is extremely difficult to estimate the required probabilities using traditional techniques. It is precisely this problem of estimating tail probabilities that has led to the growing popularity of EVT in finance. Danielsson and De Vries (1997), for example, use EVT to improve estimates of large losses in foreign exchange markets. More recently, Jansen et al. (2000), Jansen (2001), Susmel (2001), and Hyung and De Vries (2007) take the same approach to improve the safety-first model of Arzac and Bawa (1977), while McNeil and Frey (2000) incorporate stochastic volatility in an EVT framework to improve estimates of value-at-risk.

Besides its use in estimating tail probabilities, EVT has been applied to study the underlying distribution of asset returns. In an early study, Jansen and De Vries (1991) estimate γ, an EVT measure of univariate tail thickness described in Section 4, for a sample of 10 stocks and two stock market indexes from 1962-1986. Their estimates indicate that return distributions are consistent with the Student- t and ARCH classes, but not stable distributions and mixtures of normal distributions. In related work, Longin (2005) uses EVT to help determine the distribution of the underlying daily returns for the S\&P 500 index, rejecting the normal and stable Paretian distributions, but not the Student- t distribution and ARCH processes. Given its relationship to the tail thickness of returns, and thus the probability of large losses, it seems plausible that γ itself could be relevant for asset pricing. Huang et al. (2012), Chollete and Lu (2011) and Kelly (2011) show there is a positive risk premium associated with the left-tail γ of stock market returns even after controlling for size, momentum, and other factors.

Studies like these have motivated further interest in γ itself. Longin (1996) models extreme returns on an index of NYSE stocks and finds that γ is stable over time and under daily, weekly, and monthly temporal aggregation. Kearns and Pagan (1997) compare a number of methods of estimating γ, concluding the so-called "Hill estimator" works best. In a study of stock market indices for 5 developed and 15 developing countries, Jondeau and Rockinger (2003) find no significant differences between the left and right tail γ of the distribution of asset returns.

Most studies that apply EVT to financial data study lower tail thickness, via γ, for individual series, but recently several have considered the implications of EVT for dependence and diversification. Hyung and De Vries (2005) show that idiosyncratic risk decreases more quickly when assets with fat-tailed return distributions are added to a portfolio, while Ibragimov and Walden (2007) show that diversification may increase value-at-risk for heavy-tailed risky assets when potential losses are large. Their results illustrate how the presence of fat-tailed return distributions can dramatically affect portfolio selection. In a more applied setting, Longin and Solnik (2001) use a bivariate EVT model to study stock market indexes in the U.S., U.K., France, Germany and Japan and reject bivariate normality for the left-tail of the distribution and conclude the correlation across markets increases during bear markets. Poon et al. (2004) use multivariate extreme value theory to model extreme dependence in the same five markets. They find international stock markets tend to be asymptotically independent and conclude EVT models that assume asymptotic dependence will overstate systemic risk. Chollete et al. (2011) use returns from 14 national stock market indexes from 1990-2006 to compare Pearson correlation, Spearman correlation, and tail dependence for bivariate combinations of the 14 countries. They report three main results: (1) the three dependence measures provide different signals about risk; (2) dependence in general has increased over time; and (3) all regions studied show asymmetric dependence.

We use a bivariate EVT model to study the extreme dependence of individual stocks and portfolios with the market index. It is not only the probability of large losses, described by the tail index, that concerns investors, but the timing of these losses. An asset that performs well when the market as a whole is doing poorly provides consumption insurance. For this reason, knowledge of the marginal distribution of asset returns is not enough: dependence on the market matters. This basic idea underlies the traditional CAPM model, which measures dependence by a scaled version of the correlation between a given asset's returns and those of the market: the well-known CAPM β. In a world of normally distributed asset returns, or investors who measure risk by the variance of their wealth or consumption streams, correlation would be the appropriate measure of dependence. In the real world of heavy-tailed returns, and investors who treat losses and gains asymmetrically, however, it can be seriously misleading. In contrast, lower tail dependence directly concerns the probability that a given asset will suffer large losses, given that the market has. For
investors concerned about large losses during bear markets, lower tail dependence describes the risks they face.

This approach is similar in spirit to safety first because it assumes that investors are not concerned with a general notion of variability, but primarily large negative returns. Unlike Arzac and Bawa (1977), however, we do not assume investors only care about preserving wealth once the probability of a large loss exceeds a critical level, or that investors maximize expected wealth when the probability of a large loss is below the critical level. In the following section we present a simple theoretical model illustrating why, under standard assumptions, tail dependence is relevant for portfolio choice.

3. Tail Dependence and Asset Returns: A Theoretical Example

To illustrate the importance of tail dependence for risk averse investors, we consider a theoretical example based on the "rare disaster framework" introduced by Rietz (1988) and later employed by Barro (2006) and Gabaix (2011). Following Gabaix (2011), we assume that the representative agent is endowed with consumption C_{t} and has CRRA utility, yielding the pricing equation

$$
\begin{equation*}
P_{i t}=D_{i t} \sum_{j=1}^{\infty} e^{-\rho j} \mathbb{E}_{t}\left[\left(\frac{C_{t+j}}{C_{t}}\right)^{-\xi}\left(\frac{D_{i t+j}}{D_{i t}}\right)\right] \tag{2}
\end{equation*}
$$

where ξ is the coefficient of relative risk aversion, ρ is the rate of time preference, $P_{i t}$ is the price of stock i in period t and $D_{i t}$ the corresponding dividend. ${ }^{8}$

In each period there is a small probability p of a consumption disaster. Conditional on no disaster, consumption follows a random walk in logs

$$
\begin{equation*}
\text { No Consumption Disaster } \Rightarrow \frac{C_{t+1}}{C_{t}}=e^{\delta}\left(1+\epsilon_{t+1}\right) \tag{3}
\end{equation*}
$$

with expected growth rate δ. The random variable ϵ_{t} represents fluctuations in consumption not caused by a disaster, and is independent and identically distributed across t with mean zero. In a disaster, consumption falls below its expected level by

[^5]a deterministic proportion $0<B<1$
\[

$$
\begin{equation*}
\text { Consumption Disaster } \Rightarrow \frac{C_{t+1}}{C_{t}}=e^{\delta}(1-B) \tag{4}
\end{equation*}
$$

\]

To distinguish consumption disasters from other fluctuations, we assume that $-B<$ ϵ_{t}. That is, a consumption disaster is strictly worse than any other outcome. To induce tail dependence with consumption, we specify dividends as follows: If no consumption disaster occurs in period t, then no dividend disasters occur. In this case the dividends of stock i follow a random walk in logs

$$
\begin{equation*}
\text { No Dividend Disaster } \Rightarrow \frac{D_{i t+1}}{D_{i t}}=e^{\alpha_{i}}\left(1+u_{i t+1}\right) \tag{5}
\end{equation*}
$$

with expected growth rate α_{i}. The random variable $u_{i t}$ represents fluctuations in the dividends of stock i that are not caused by a disaster. We assume that $u_{i t}$ is mean zero, independent and identically distributed over time, but allow correlation with ϵ_{t} and $u_{j t}$ for all j. If a consumption disaster has occurred, stock i experiences a dividend disaster with probability χ_{i}. In such a disaster, the dividends of stock i fall below their expected level by a deterministic proportion $0<F_{i}<1$

$$
\begin{equation*}
\text { Dividend Disaster } \Rightarrow \frac{D_{t+1}}{D_{t}}=e^{\alpha_{i}}\left(1-F_{i}\right) \tag{6}
\end{equation*}
$$

As we did for consumption, to distinguish dividend disasters from other fluctuations we assume that $-F<u_{i t}$. A dividend disaster is strictly worse than any other outcome.

Figure 1 presents a schematic summary of all possible outcomes for consumption and dividends in period $t+1$ conditional on period t information. Our setup has two important features. First, a dividend disaster can only occur in period $t+1$ if a consumption disaster has occurred in this period. ${ }^{9}$ Second, disasters are strictly worse than any other outcomes. Under these conditions, χ_{i} is the tail dependence between C_{t+1} and D_{t+1} conditional on period t information.

Although the processes we specify for consumption and dividends are similar to those used by Gabaix (2011), they differ in three important respects. First, the

[^6]
Figure 1: Outcome tree for consumption and dividends in period $t+1$.
probability of disaster in our model is constant rather than time varying. Second, F_{i} and B are deterministic constants rather than time-varying random variables $F_{i t}$ and B_{t}. Finally, as our interest is in examining the effects of tail dependence, we parameterize our model directly in terms of χ_{i} rather than through $F_{i t}$ and B_{t}.

We now evaluate the pricing relationship given in Equation 2 using the dividend and consumption processes from Figure 1. Since

$$
\begin{equation*}
\mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{-\xi} \frac{D_{i, t+1}}{D_{i t}}\right]=e^{\alpha_{i}-\xi \delta}\left\{(1-p) \mathbb{E}\left[\frac{\left(1+u_{i t}\right)}{\left(1+\epsilon_{t}\right)^{\xi}}\right]+p\left[\frac{1-\chi_{i} F_{i}}{(1-B)^{\xi}}\right]\right\} \tag{7}
\end{equation*}
$$

proceeding recursively by the law of iterated expectations, we have

$$
\begin{aligned}
P_{i t} & =D_{i t} \sum_{j=1}^{\infty} e^{-\rho j} \mathbb{E}_{t}\left[\left(\frac{C_{t+1}}{C_{t}}\right)^{-\xi}\left(\frac{D_{i t+1}}{D_{i t}}\right)\right]^{j} \\
& =D_{i t}\left[\left\{1-e^{\alpha_{i}-\xi \delta-\rho}\left[(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}\right]\right\}^{-1}-1\right]
\end{aligned}
$$

where we define

$$
\begin{equation*}
\mu_{i}(\xi) \equiv \mathbb{E}\left[\frac{\left(1+u_{i t}\right)}{\left(1+\epsilon_{t}\right)^{\xi}}\right] \tag{8}
\end{equation*}
$$

Since $u_{i t}$ and ϵ_{t} are iid over time, $\mu_{i}(\xi)$ does not depend on t. Differentiating with respect to χ_{i},

$$
\begin{equation*}
\frac{\partial P_{i t}}{\partial \chi_{i}}=\frac{-e^{\alpha_{i}-\xi \delta-\rho} p F_{i}(1-B)^{-\xi} D_{i t}}{\left\{1-e^{\alpha_{i}-\xi \delta-\rho}\left[(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}\right]\right\}^{2}}<0 \tag{9}
\end{equation*}
$$

so that an increase in tail dependence lowers an asset's price. Agents are willing to pay a premium for an asset with low tail dependence.

To calculate expected returns, first note that our expression for $P_{i t}$ depends only on i, not t. Hence, in this model,

$$
\begin{equation*}
P_{i t} / D_{i t}=P_{i t+1} / D_{i t+1} \equiv K_{i}(\xi) \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i}(\xi)=\left\{1-e^{\alpha_{i}-\xi \delta-\rho}\left[(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}\right]\right\}^{-1}-1 \tag{11}
\end{equation*}
$$

Using this fact,

$$
\begin{equation*}
R_{i t+1}=\frac{\left(P_{i t+1} / D_{i t+1}\right) D_{i t+1}+D_{i t+1}}{\left(P_{i t} / D_{i t}\right) D_{i t}}=\left(\frac{K_{i}(\xi)+1}{K_{i}(\xi)}\right) \frac{D_{i t+1}}{D_{i t}} \tag{12}
\end{equation*}
$$

and since

$$
\begin{equation*}
\mathbb{E}_{t}\left[\frac{D_{i, t+1}}{D_{i t}}\right]=e^{\alpha_{i}}\left(1-p \chi_{i} F_{i}\right) \tag{13}
\end{equation*}
$$

expected returns are given by

$$
\begin{aligned}
\mathbb{E}_{t}\left[R_{i t+1}\right] & =\left(\frac{K_{i}(\xi)+1}{K_{i}(\xi)}\right) e^{\alpha_{i}}\left(1-p \chi_{i} F_{i}\right) \\
& =e^{\rho+\xi \delta}\left[\frac{1-p \chi_{i} F_{i}}{(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}}\right]
\end{aligned}
$$

Differentiating,

$$
\begin{equation*}
\frac{\partial \mathbb{E}_{t}\left[R_{i t+1}\right]}{\partial \chi_{i}}=e^{\rho+\xi \delta} p(1-p) F_{i}\left\{\frac{(1-B)^{-\xi}-\mu_{i}(\xi)}{\left[(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}\right]^{2}}\right\} \tag{14}
\end{equation*}
$$

so the sign of the relationship between tail dependence and expected returns depends on the relative magnitudes of $\mu_{i}(\xi)$ and $(1-B)^{-\xi}$. When $(1-B)^{-\xi}$ is greater than $\mu_{i}(\xi)$, assets with high tail dependence have higher unconditional expected returns to compensate for their poor performance in a disaster. This condition is easily satisfied in practice as we have defined a consumption disaster to be strictly worse than an ordinary consumption fluctuation. In the calibration discussed below, for example, we calculate $\mu_{i}(\xi)$ to be just over 1 and $(1-B)^{-\xi}$ around 3 or 4 .

Subject to the above condition, high tail dependence assets yield higher unconditional expected returns because they perform poorly in a disaster. Conditional on a consumption disaster in period $t+1$,

$$
\begin{equation*}
\mathbb{E}_{t}\left[D_{i, t+1} / D_{i t} \mid \text { Consumption Disaster at } t+1\right]=e^{\alpha_{i}}\left(1-\chi_{i} F_{i}\right) \tag{15}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
R_{i, t+1}^{D} & \equiv \mathbb{E}_{t}\left[R_{i, t+1} \mid \text { Consumption Disaster at } t+1\right] \\
& =e^{\rho+\xi \delta}\left[\frac{1-\chi_{i} F_{i}}{(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial \chi_{i}} R_{i, t+1}^{D}=\frac{-e^{\rho+\xi \delta} F_{i}(1-p) \mu_{i}(\xi)}{\left[(1-p) \mu_{i}(\xi)+p\left(1-\chi_{i} F_{i}\right)(1-B)^{-\xi}\right]^{2}}<0 \tag{16}
\end{equation*}
$$

since $\mu_{i}(\xi)>0$. Thus, conditional on disaster assets with lower tail dependence experience higher returns. In exchange for this superior performance during a disaster, low tail dependence assets sacrifice unconditional expected returns.

To get a sense of the magnitudes involved, we consider a simple calibration exercise. Following Barro (2006), we take $\xi=3,4$ and $\rho=0.03$. To estimate δ and $\mu_{i}(\xi)$ we use U.S. consumption and dividend data from 1949-1999, yielding $\delta=0.021$, $\mu_{i}(3)=1.001$ and $\mu_{i}(4)=1.002$. Full details of our calibration appear in Appendix A. To calibrate the disaster parameters p, F, and B, we look to the historical data presented in Barro (2006). Empirically, the probability of a consumption disaster, defined as a contraction of at least 15%, is approximately $p=0.017$ while the average size of a disaster is 29%. Adjusting for trend growth gives a value for B of approximately 0.3 . The relevant value from an investor's perspective, however, is not the average size of a disaster because risk aversion means that large disasters matter more than small ones (Barro (2006)). Hence we take $(B, F)=(0.3,0.3),(0.3,0.4),(0.4,0.3),(0.4,0.4)$.

Figure 2 plots lower tail dependence, χ_{i}, against expected returns $\mathbb{E}_{t}\left[R_{i, t+1}\right]$ at the parameter values given above. Depending on ξ, F, and B the value to an investor of eliminating tail dependence, measured in forgone expected returns, ranges from just over 1% to nearly 5%. The more risk averse the investor, and the larger the disaster, the more valuable eliminating tail dependence becomes. The pattern is reversed for expected returns conditional on a consumption disaster, as shown in Figure 3.

Intuitively these results are straightforward. Under risk aversion, marginal utility increases as consumption falls: although consumption disasters are rare, investors weight them heavily when choosing assets. Because they perform well during a disaster, low- χ assets provide highly desirable consumption insurance and hence command a high price. Investors are willing to sacrifice overall returns in exchange for extreme downside protection. Building on the intuition from this simple model, we proceed to estimate lower tail dependence for individual stocks and stock portfolios, using the market index as a proxy for consumption. The following section describes our estimation procedure.

Figure 2: Unconditional expected returns and tail dependence
Figure 2 shows unconditional expected returns versus lower tail dependence for various values of ξ, the coefficient of relative risk aversion, B, the magnitude of a consumption disaster, and F, the magnitude of a dividend disaster. In each panel, the discount rate is $\rho=0.03$, the probability of disaster is $p=0.017$ and the expected growth rate of consumption is $\delta=0.021$.

Figure 3: Expected returns and tail dependence conditional on disaster
Figure 3 graphs expected returns versus lower tail dependence, conditional on a consumption disaster occurring, for various values of ξ, the coefficient of relative risk aversion, B, the magnitude of a consumption disaster, and F, the magnitude of a dividend disaster. In each panel, the discount rate is $\rho=0.03$, the probability of disaster is $p=0.017$ and the expected growth rate of consumption is $\delta=0.021$.

4. Estimating Tail Dependence

There are many approaches to estimating tail dependence. ${ }^{10}$ At one extreme are fully parametric methods. Tail dependence, upper or lower, is a property of the copula joining a pair of random variables. With a parametric model of the marginal distributions and dependence structure, we can estimate χ by maximum likelihood. If the distributional specification is correct, this method is consistent and asymptotically efficient. Unfortunately, there is no consensus on the underlying distribution of returns. If we specify the wrong distribution, our answers could be severely biased. For a particularly stark example, consider the widespread use of the Gaussian copula to model risk in the run-up to the recent financial crisis. As was known well before 2008 (Embrechts et al., 2002), this model rules out the possibility of lower tail dependence.

At the other extreme, we might prefer a fully non-parametric model, using the empirical CDF to transform X and Y to common marginals S and T, and taking a sample analogue of $\lim _{s \rightarrow \infty} \mathbb{P}(S>s \mid T>s)$ based on a sufficiently high threshold s^{*}. The problem with this approach is that tail dependence, by definition, concerns a region of the joint distribution from which we observe very few datapoints. Although the empirical CDF is a uniformly consistent estimator of the true marginal distribution, for any fixed sample size it must necessarily underestimate the thickness of the tails. To put it another way, any finite sample must have a lowest and highest value, but this does not imply that the underlying distribution is bounded. Even ignoring the problem of the marginals, any threshold s^{*} that seems high enough to give a plausible estimate of χ must exclude the vast majority of observations.

This is a classic bias-variance tradeoff. Fully parametric methods make much more efficient use of the information contained in the sample but are sensitive to the assumed distribution. Nonparametric methods, on the other hand, make few assumptions but yield wildly variable estimates as they try to study a region of the empirical distribution that contains practically no observations. We take a different approach. By working with monthly minimum returns, we exploit an important limit result from Extreme Value Theory (EVT) that provides a convenient and flexible estimator for the lower tail dependence between a given portfolio and the market. The approach used here was first described by Coles et al. (1999) in the context of

[^7]meteorological data, and is related in greater length by Coles (2001). Beirlant et al. (2004) and Reiss and Thomas (1997) provide comprehensive treatments of EVT that discuss statistical issues.

The idea behind EVT is to describe the probabilistic behavior of unusually large or small observations. This can be achieved in two different ways: by studying block maxima or threshold exceedances. ${ }^{11}$ The block approach analyzes the distribution of the maximum of a sequence of random variables X_{1}, \ldots, X_{n} as n approaches infinity, while the threshold approach concerns the distribution of $X \mid X>s$ as the threshold s approaches infinity. These alternatives are in fact two ways of looking at the same question: how does the tail of the distribution of X behave? For our purposes, block methods are more appropriate as they are more robust to volatility clustering, a well-documented feature of asset returns (Cont, 2001). ${ }^{12}$

The main advantage of EVT is that it is not necessary to know the underlying distribution of asset returns to describe the distribution of univariate extremes. In much the same way as the Central Limit Theorem establishes the asymptotic normality of sample averages, its EVT analogue, the Extremal Types Theorem, fully characterizes the limiting distribution of univariate sample maxima. Thus, EVT offers a way to study the tails of a distribution based on the observed extremes. Combining this with an assumption about the behavior of joint extremes yields an estimator of lower tail dependence. Another potential advantage of EVT is that it may help investors avoid over-reacting to tail events. In the aftermath of the financial crisis, for example, some investors may have become too sensitive to sharp movements in asset prices. By providing a systematic tool for studying the lower tail of the joint distribution of an asset's returns with those of the market, EVT can help investors avoid the economic cost associated with naïve reactions to extreme events.

The key result from EVT that we use here is the Extremal types theorem.

Theorem 4.1 (Extremal Types Theorem). Let $X_{1}, X_{2}, \ldots, X_{n}$ be weakly dependent, identically distributed, scalar random variables and define $M_{n} \equiv \max \left\{X_{1}, \ldots, X_{n}\right\}$. If there exist sequences of constants $\left\{a_{n}>0\right\},\left\{b_{n}\right\}$ such that $\left(M_{n}-b_{n}\right) / a_{n}$ has a

[^8]proper limit distribution, that distribution is of the form
\[

$$
\begin{equation*}
G(z)=\exp \left\{-\left[1+\gamma\left(\frac{z-\mu}{\sigma}\right)\right]^{-1 / \gamma}\right\} \tag{17}
\end{equation*}
$$

\]

for $1+\gamma(z-\mu) / \sigma>0$, with parameters satisfying $-\infty<\mu<\infty, \sigma>0$ and $-\infty<\gamma<\infty$.

Equation 17 gives the Generalized Extreme Value Distribution, a three-parameter family with centrality parameter μ, scale parameter σ, and shape parameter γ, which describes the tail thickness of the underlying distribution. Positive values of γ yield the Fréchet Distribution, indicating a very thick upper tail (polynomial decay). As γ approaches zero, the GEV reduces to the Gumbel Distribution and the upper tail exhibits exponential decay. Negative values of γ yield the reversed Weibull distribution and indicate a bounded upper tail. When γ is non-negative and the underlying distribution is symmetric, the shape parameter γ shares an important relationship with the tail index, κ, of the underlying distribution, namely $\kappa=1 / \gamma$. For example, if $\gamma=0.5$, the underlying distribution has two finite moments.

Recall that the definition of lower tail dependence assumes common marginal distributions. Although strictly speaking the Extremal Types Theorem is a limit result, it immediately suggests a practical estimation procedure for the margins. Let $x_{1}, x_{2}, \ldots, x_{N}$ denote daily returns for some portfolio and $y_{1}, y_{2}, \ldots, y_{N}$ denote daily returns for the market index. Our strategy is to split the sample into non-overlapping blocks of sufficient length that we can model the maximum loss in each block as GEV and use this to transform the extremes to common marginals without specifying the underlying distribution of returns.

Consider blocks of length k where M denotes the total number of blocks of length k, that is $M=\lfloor N / k\rfloor$. If extra observations remain, simply discard those at the beginning of the series. Now let \underline{x}_{i} denote the minimum return on portfolio x in block i and \searrow_{i} denote the minimum return on the market index in the same block, where $i=1, \ldots, M$. Note that although \underline{x}_{i} and y_{i} come from the same block, they may not correspond to the same day. To convert negative block minimum returns to positive block maximum losses, we multiply through by negative one, yielding $\left\{\left(-\underline{\mathrm{x}}_{i},-\underline{\mathrm{y}}_{i}\right)\right\}_{i=1}^{M}$. Now, if k is sufficiently large, the marginal distribution of block maximum losses should be approximately GEV by the Extremal Types Theorem. Thus, we can model the univariate series $\left\{-\underline{\mathrm{x}}_{i}\right\}_{i=1}^{M}$ and $\left\{-\mathrm{y}_{i}\right\}_{i=1}^{M}$ according to Equation 17 and estimate
parameters $\left(\hat{\mu}_{x}, \hat{\sigma}_{x}, \hat{\gamma}_{x}\right)$ and ($\hat{\mu}_{y}, \hat{\sigma}_{y}, \hat{\gamma}_{y}$) via maximum likelihood. Details appear in Appendix C.1. ${ }^{13}$

Using the maximum likelihood estimates from the univariate models, we can transform the block maximum losses for asset x and the market index y to common marginals. Although the particular distribution to which we transform does does not affect estimated tail dependence, a convenient choice is the unit Fréchet, given by

$$
\begin{equation*}
F(z)=\exp (-1 / z) \tag{18}
\end{equation*}
$$

for $z>0$. Because this is a GEV distribution with $\mu=\sigma=\gamma=1$ (see Equation 17), the transformation is straightforward (see Appendix C.2). Define the block maximum losses after transformation to unit Fréchet by $\left\{-\underline{\underline{x}}_{i}\right\}_{i=1}^{M}$ and $\left\{-\tilde{\mathrm{y}}_{i}\right\}_{i=1}^{M}$.

We can now use the transformed block maximum losses to estimate the tail dependence between asset x and the market y. Just as the shape parameter γ of the limiting distribution of univariate maxima fully characterizes the tail of the underlying distribution of returns, the tail dependence parameter of the limiting distribution of transformed joint maxima $\left\{\left(-\underline{\tilde{x}}_{i},-\tilde{\mathrm{y}}_{i}\right)\right\}_{i=1}^{M}$ corresponds to that between the portfolio returns x and the market index y. Unfortunately, while there is a single limiting distribution for normalized block maxima, the same is not true of joint maxima. Instead, there is a family of limiting distributions characterized by a fairly complicated integral equation. To proceed any further, we need a parametric assumption. For convenience, we work with the simplest possible limit, the bivariate logistic distribution. Two random variables X and Y with unit Frećhet margins are said to follow a bivariate logistic distribution if their joint distribution is given by

$$
\begin{equation*}
G(x, y)=\exp \left\{-\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha}\right\} \tag{19}
\end{equation*}
$$

for $x, y>0$ and $\alpha \in[0,1]$. Because the margins are already specified, this is a one parameter distribution and the single parameter α controls the strength of dependence. When $\alpha=1$ the two margins are asymptotically independent; when $\alpha=0$

[^9]they are perfectly asymptotically dependent. The lower tail dependence parameter χ is related to α according to
\[

$$
\begin{equation*}
\chi=2-2^{\alpha} . \tag{20}
\end{equation*}
$$

\]

When $\alpha=0$ we have $\chi=1$; when $\alpha=1, \chi=0$. Thus, the final step of our estimation procedure is to fit the bivariate logistic model given by Equation 19 to the transformed block maximum losses $\left\{\left(-\underline{\underline{x}}_{i},-\tilde{\mathrm{y}}_{i}\right)\right\}_{i=1}^{M}$ by maximum likelihood. The resulting estimate $\hat{\alpha}$ can be converted to $\hat{\chi}=2-2^{\hat{\alpha}}$ using the invariance property of maximum likelihood estimators. Details appear in Appendix C.3.

In the analysis that follows, we estimate the lower tail dependence between individual portfolios and the market index using the three-step maximum likelihood procedure described above with blocks of 22 trading days. ${ }^{14}$ Although one-step estimation is theoretically more efficient, it is much more difficult to find good starting values for seven parameters at once than for blocks of three, three and one parameter. As we ultimately compute χ for tens of thousands of portfolios, starting values were a major concern. Under relatively weak dependence assumptions our procedure should produce good estimates of lower tail dependence. However, we do not report standard errors, as correcting them for temporal dependence would require much stronger assumptions. Appendix D reports robustness tests for our estimator.

To summarize, our procedure for estimating lower tail dependence is as follows:

1. Partition the daily returns on the market index and the individual stock or portfolio into 22-day blocks and select the minimum return in each block for each series.
2. Estimate the GEV parameters μ, σ, and γ as described in Appendix C. 1 separately for the block minima of the market index and those of the individual stock or portfolio.
3. Use the GEV parameter estimates to transform the block minima for both series to unit Frećhet, as described in Appendix C.2.
4. Estimate α as described in Appendix C. 3 and convert it to χ using Equation 20.
[^10]
5. Empirical Results

We estimate the lower tail dependence between portfolios formed from constituents of the Dow Jones Industrial Average (DJIA) and the market portfolio, proxied by the S\&P 500 index, using the method described in Section 4. We employ blocks of 22 trading days throughout and our data consist of daily returns from the CRSP database for constituents of the DJIA and the S\&P 500 index from October 30, 1986 - December 31, 2008. ${ }^{15}$ When calculating the CAPM β for purposes of comparison, we use daily returns on a three-month U.S. Government T-bill for the risk-free rate.

For χ to have any chance of being useful in portfolio selection, it must satisfy two minimal conditions. First, it must capture different information from more traditional risk measures. Second, it must be relatively stable over time. To address these points, we begin by estimating χ, the extreme value shape parameter γ, and a variety of other risk measures for the individual assets listed in Table 1 over the full October 30, 1986 - December 31st, 2008 sample period. This gives 5,592 trading days, and 254 blocks of 22 trading days each after discarding the first four observations. Table 2 reports descriptive statistics and risk measures for all of the firms in the sample. A graphical presentation of this information appears in Figure 4, along with rankings for each risk measure. Firms are sorted in descending order by their values of χ, ranging from General Electric $(\chi=0.62)$ at the upper right of the first column to Eastman Kodak $(\chi=0.34)$ at the bottom left of the first column.

Figure 5 examines the relationship between χ and the other risk measures from Table 2. The values in each panel of the upper-left portion of the figure give the correlation coefficient between the two risk measures that intersect in that panel. For example, the value of .25 for β and χ is based on estimating β and χ for each stock using the entire sample period, and then calculating the correlation between these estimates. The size of each value is directly proportional to the absolute value of the correlation coefficient. Panels with a shaded background indicate a relationship that is statistically significant at the 10% level. The panels in the lower-right portion of the figure show the corresponding plots for each combination of risk measures after centering and scaling. Thus, the slope of the line gives the correlation between one

[^11]Table 1: Key to DJIA constituents.
Table 1 lists the firms included in this study, their permnos from the CRSP database, and ticker symbols.

	Permno	Ticker
3M	22592	MMM
AIG	66800	AIG
Alcoa	24643	AA
Altria	13901	MO
American Express	59176	AXP
AT\&T Corp	10401	T
AT\&T Inc	66093	T
Boeing	19561	BA
Caterpillar	18542	CAT
Chevron	14541	CVX
Citigroup	70519	C
Coca-Cola	11308	KO
Disney	26403	DIS
Dupont	11703	DD
Exxon Mobil	11850	XOM
GE	12060	GE
GM	12079	GM
Goodyear	16432	GT
Home Depot	66181	HD
Honeywell Intl	10145	HON
HP	27828	HPQ
IBM	12490	IBM
Intel	59328	INTC
International Paper	21573	IP
Johnson \& Johnson	22111	JNJ
JP Morgan Chase	47896	JPM
Kodak	11754	EK
McDonalds	43449	MCD
Merck	22752	MRK
Microsoft	10107	MSFT
Pfizer	21936	PFE
Procter \& Gamble	18163	PG
Sears	14322	S
Union Carbide	15659	UK
United Tech	17830	UTX
Verizon	65875	VZ
Wal Mart	55976	WMT

Table 2: Summary Statistics and Risk Measures
Table 2 presents summary statistics and risk measures for all firms for which a full sample of data is available (October 30, 1986 - December 31, 2008). The first four columns give the mean, standard deviation, skewness, and kurtosis of daily returns. The following four present Markowitz's semivariance, the Sharpe Ratio, CAPM β, and coskewness. The rightmost columns display the extreme value tail index γ and parameter χ. Both extreme value statistics are calculated by maximum likelihood by the method of block minima, using 254 blocks of 22 days each. All other statistics are based on a sample size of 5592 daily returns, except for Altria which has one observation fewer (see Data Notes in Appendix B). The dependence statistics, Coskew, β, and χ use daily returns for the S\&P 500 as the market portfolio. Both Coskew and β use the one month rate on a U.S. Government T-bill as the risk-free rate. Values appear rounded to two significant digits.

	μ	σ	μ_{3}	μ_{4}	S	Sharpe	β	Coskew	γ	χ
EK	$7.6 \mathrm{e}-05$	0.021	-0.450	25.0	$2.3 \mathrm{e}-04$	0.057	0.92	-2.2e-06	0.41	0.34
INTC	$1.0 \mathrm{e}-03$	0.028	-0.096	8.9	$3.9 \mathrm{e}-04$	0.590	1.40	-1.5e-06	0.31	0.34
GM	$1.0 \mathrm{e}-04$	0.026	0.450	27.0	$3.1 \mathrm{e}-04$	0.064	1.20	-1.3e-06	0.34	0.37
HPQ	7.6e-04	0.025	0.120	9.3	$3.1 \mathrm{e}-04$	0.470	1.20	-1.6e-06	0.23	0.37
MO	$7.7 \mathrm{e}-04$	0.019	-0.340	15.0	$1.8 \mathrm{e}-04$	0.660	0.67	-1.3e-06	0.29	0.38
PFE	$6.2 \mathrm{e}-04$	0.019	-0.160	7.4	$1.7 \mathrm{e}-04$	0.530	0.88	-1.4e-06	0.21	0.39
GT	$1.8 \mathrm{e}-04$	0.026	-0.150	12.0	$3.4 \mathrm{e}-04$	0.110	1.20	-2.7e-06	0.33	0.40
MRK	$5.7 \mathrm{e}-04$	0.018	-0.690	16.0	1.7e-04	0.500	0.84	-1.1e-06	0.27	0.40
CAT	$6.9 \mathrm{e}-04$	0.020	-0.160	9.8	2.0e-04	0.540	0.98	-1.7e-06	0.27	0.41
MCD	$6.4 \mathrm{e}-04$	0.017	-0.085	8.3	1.5e-04	0.590	0.75	-1.4e-06	0.24	0.41
IBM	$4.4 \mathrm{e}-04$	0.019	-0.057	13.0	1.7e-04	0.370	0.96	-1.7e-06	0.29	0.42
JNJ	$6.7 \mathrm{e}-04$	0.016	-0.240	12.0	1.2e-04	0.680	0.75	-1.4e-06	0.18	0.42
WMT	$7.4 \mathrm{e}-04$	0.019	0.170	6.4	1.7e-04	0.620	0.96	-6.2e-07	0.17	0.42
HD	$1.0 \mathrm{e}-03$	0.022	-0.380	13.0	$2.5 \mathrm{e}-04$	0.710	1.20	-1.6e-06	0.24	0.43
MSFT	$1.2 \mathrm{e}-03$	0.024	-0.160	13.0	$2.7 \mathrm{e}-04$	0.810	1.20	-2.0e-06	0.18	0.45
MMM	$4.9 \mathrm{e}-04$	0.016	-0.720	21.0	$1.2 \mathrm{e}-04$	0.500	0.81	-2.0e-06	0.25	0.45
AA	$5.2 \mathrm{e}-04$	0.023	0.150	14.0	$2.5 \mathrm{e}-04$	0.360	1.10	-1.9e-06	0.25	0.45
CVX	$6.4 \mathrm{e}-04$	0.016	0.120	15.0	$1.3 \mathrm{e}-04$	0.610	0.79	-1.4e-06	0.22	0.46
BA	$4.9 \mathrm{e}-04$	0.019	-0.058	9.9	$1.9 \mathrm{e}-04$	0.400	0.86	-1.1e-06	0.27	0.46
PG	$6.9 \mathrm{e}-04$	0.016	-1.600	50.0	1.4e-04	0.660	0.74	-2.0e-06	0.25	0.47
VZ	4.6e-04	0.017	0.240	11.0	1.4e-04	0.420	0.82	-1.1e-06	0.23	0.48
T	$5.4 \mathrm{e}-04$	0.018	0.140	14.0	1.6e-04	0.470	0.88	-1.4e-06	0.23	0.48
KO	$6.2 \mathrm{e}-04$	0.017	-0.073	20.0	1.3e-04	0.600	0.79	-1.5e-06	0.24	0.50
UTX	$6.6 \mathrm{e}-04$	0.018	-0.650	19.0	1.6e-04	0.590	0.91	-1.5e-06	0.21	0.51
DIS	$5.7 \mathrm{e}-04$	0.020	-0.230	18.0	2.1e-04	0.440	1.10	-2.0e-06	0.28	0.51
XOM	$6.7 \mathrm{e}-04$	0.016	-0.030	22.0	1.3e-04	0.660	0.84	-1.6e-06	0.21	0.52
HON	$5.4 \mathrm{e}-04$	0.021	0.260	29.0	$2.2 \mathrm{e}-04$	0.400	1.10	-2.4e-06	0.33	0.53
DD	$4.0 \mathrm{e}-04$	0.018	-0.140	8.8	1.6e-04	0.350	0.94	-1.6e-06	0.24	0.53
JPM	$6.1 \mathrm{e}-04$	0.024	0.120	14.0	$2.8 \mathrm{e}-04$	0.400	1.40	-2.4e-06	0.25	0.54
C	$6.7 \mathrm{e}-04$	0.026	1.800	58.0	$3.1 \mathrm{e}-04$	0.400	1.50	-1.9e-06	0.25	0.55
IP	$2.4 \mathrm{e}-04$	0.020	-0.320	16.0	2.0e-04	0.190	0.98	-2.7e-06	0.26	0.56
AIG	$1.9 \mathrm{e}-04$	0.027	-2.400	110.0	$3.9 \mathrm{e}-04$	0.110	1.30	-1.5e-06	0.33	0.58
AXP	$5.0 \mathrm{e}-04$	0.023	-0.210	12.0	$2.6 \mathrm{e}-04$	0.350	1.40	-2.2e-06	0.22	0.59
GE	$5.5 \mathrm{e}-04$	0.018	-0.055	11.0	1.5e-04	0.490	1.20	-1.7e-06	0.30	0.62

Figure 4: Centered and scaled risk measures and rankings
Figure 4 presents normalized risk measures and corresponding rankings for all firms for which a full sample of data is available (October 30, 1986 - December 31, 2008). Each column corresponds to a risk measure and each row to a DJIA constituent. The position of a circle shows how far a firm's risk measure lies from the average of that risk measure over all firms, measured in standard deviations. Risk rankings, from low to high, appear within the circles. Numerical values for the risk measures appear in Table 2.
risk measure and another. We see that χ is not significantly correlated with γ, the Sharpe ratio, β, semi-variance, or variance. Although it is positively correlated with kurtosis and negatively correlated with coskewness, with correlation coefficients of +.35 and -.36 , these values are low enough that χ cannot be said to merely proxy for other risk measures. Similar information can be gleaned from Figure 4. If any two of the risk measures provided similar information about the riskiness of stock market returns, they would have similar patterns in rankings. We see that this is not the case: χ differs substantially from all of the other risk measures.

While Figure 5 uses data from the full sample period to compare risk measures, Figures 6 and 7 use data from only the first half, 1987-1997, and second half, 19982008. In the first half of the sample, χ is significantly negatively correlated with variance and semi-variance but unrelated to other risk measures. In the second half of the sample, χ is significantly positively correlated with the CAPM β, but unrelated to other risk measures. Taken together, Figures 5-7 suggest that there is no robust pattern of correlation between χ and other risk measures. To ensure that our results are robust, however, we adjust for a possible relationship between χ and the CAPM β in the results described below.

Figure 8 addresses the question of whether χ is stable over time by comparing estimates of each risk measure calculated for the first half of the sample period, 1987-1997, to those calculated for the second half of the sample period, 1998-2008. The graphs show χ is about stable as β, variance, and semivariance, and considerably more stable than γ, Sharpe ratio, coskewness, and kurtosis.

Our preliminary results suggest that χ captures different information than other risk measures and is relatively stable over time. The real question, however, is whether it can be used to construct portfolios that will weather severe market downturns. To answer this question, we carry out the following out-of-sample portfolio selection exercise. First, we specify a one-year test period, and form 10,000 randomly selected, equally weighted portfolios from the DJIA constituents the day before the start of the test period. For each portfolio, we then estimate χ using data from a formation period beginning on October 30, 1986 and ending the day before the start of the test period. Using the estimated values, we sort portfolios into three groups on the basis of χ : low- χ (lowest 10\%), middle- χ (middle 80\%), and high- χ (highest 10%). Finally, we calculate the annualized return for each portfolio in the test period, and average the results across each χ-sorted group. This allows us to address the question

0.32	0.35	-0.32	-0,11	0.26	0.39	0.33	Kurtosis
0.4	-0.1	-0.44	-0.29	0.88	0.99		
0.43	${ }^{-0.09}$	-0.45	-0.28	0.85	Semivar		
0.22	0.25	-0.32	-0.36	Beta			
${ }^{-0.33}$	-0.3	0.37	Cosken	\%o. ${ }^{\text {a }}$	\%		
-0.71	-0.09	Sharpe		\%			
-0.15	Chi						
Gamma	Coide oio						${ }^{\circ}$

Figure 5: Correlation between risk measures: full sample.
Figure 5 presents pairwise plots and correlation coefficients between risk measures for all firms for which a full sample of data is available (October 30, 1986 - December 31, 2008). The panels above the diagonal give the numerical value of the correlation between risk measures, with the size of each value proportional to the strength of correlation between the corresponding measures. Shaded panels indicate a correlation that is significantly different from zero at the 10% level. The panels below the diagonal are centered and scaled so that the slope of the least squares fit, given as a solid line, is equal to the correlation between the two risk measures and all plots are on a common scale. Numerical values for the risk measures are given in Table 2.

0.34	0.25	－0．17	－0．61	－02	${ }^{-0.19}$	－0．19	Uurosis
0.13	－0．49	0.17	－0．38	0.79	1	Variance	
0.15	－0．49	0.18	－0．39	0.79	Semivar		
005	－01	0.4	－0．36	Beta	\％	8	
－0．41	0.15	0.19	Coskew		\％88\％		
－0．39	0.26	Sharpe	为	${ }^{800}$	${ }^{\circ}{ }^{\circ}$	${ }^{8} 0^{\circ}$	
－0．23	Chi				䉯。		
Gamma		Cob					

Figure 6：Correlation between risk measures：1987－1997．
Figure 6 presents pairwise plots and correlation coefficients between risk measures for all firms for which a full sample of data is available（October 30， 1986 －December 31，2008）．The panels above the diagonal give the numerical value of the correlation between risk measures，with the size of each value proportional to the strength of correlation between the corresponding measures．Shaded panels indicate a correlation that is significantly different from zero at the 10% level．The panels below the diagonal are centered and scaled so that the slope of the least squares fit，given as a solid line，is equal to the correlation between the two risk measures and all plots are on a common scale． Numerical values for the risk measures are given in Table 2.

0.54	0.27	-0.3	-0.16	0.31	0.52	0.47	Kurtosis
0.36	0.19	-0.6	${ }^{-0.06}$	0.85	0.99	Variance	
0.39	0.17	-0.61	-0.07	0.81	Semiva		
0.21	0.5	-0.43	${ }^{-0.06}$	Beta			
-0.2	-0.27	0.19	Coskew				
-0.52	-0.13	Sharpe					
-0.02	Chi						
Gamma		02888ic					

Figure 7: Correlation between risk measures: 1998-2008.
Figure 7 presents pairwise plots and correlation coefficients between risk measures for all firms for which a full sample of data is available (October 30, 1986 - December 31, 2008). The panels above the diagonal give the numerical value of the correlation between risk measures, with the size of each value proportional to the strength of correlation between the corresponding measures. Shaded panels indicate a correlation that is significantly different from zero at the 10% level. The panels below the diagonal are centered and scaled so that the slope of the least squares fit, given as a solid line, is equal to the correlation between the two risk measures and all plots are on a common scale. Numerical values for the risk measures are given in Table 2.

8002-8661

Figure 8: Stability of risk measures.

of how portfolios with different estimated values of lower tail dependence perform out-of-sample.

We carry out this procedure for ten one-year test periods, 1999-2008, for 10,000 five and ten-stock portfolios. In forming portfolios we exclude firms that were listed on the DJIA fewer than five years before the start of the test period to avoid potential selection problems. ${ }^{16}$ Table 3 shows the annualized mean return for the formation period and the one-year test period for the five-, and ten-stock χ-sorted portfolios from 1999-2008. In general, the low- χ portfolios provide higher returns than the high- χ portfolios. For example, the five-stock, low- χ portfolios have higher annual returns than the five-stock, high- χ portfolios for eight of the ten years in the sample. The cumulative return for the five-stock, low- χ portfolios is 44%, compared to -8% for the five-stock, high- χ portfolios, and $-25 \%,+19 \%$, and $+19 \%$ for the S\&P 500 Index, DJIA, and an equal-weighted index of the stocks in our sample, respectively. From 1999-2008, there are four years in which the annual return on the DJIA and the S\&P 500 was negative, namely 2000-2002, and 2008. For three of the four years, the five-stock, low- χ portfolios have higher mean returns than the indexes, and middle 80% and upper $10 \% \chi$ portfolios. The last row of Table 3 shows the mean cumulative return from an investment strategy of going long the low- χ portfolios and funding the long position with an offsetting short position in the high- χ portfolios. The mean cumulative return is 20% for the five-stock portfolios and 13% for the ten-stock portfolios.

Note that during 2008, when the market indexes fell 38%, the five-stock, and ten-stock low- χ portfolios were down 32% and 33% while the high- χ portfolios fell 46% and 42%. Thus, the mean return on the low- χ portfolios was better than the market index during 2008 while the mean return on the high- χ portfolios was worse than the market index during 2008. The low- χ portfolios generally provide higher returns than the high- χ portfolios when the market returns are low, as hypothesized. However, the low- χ portfolios outperformed the high- χ portfolios during most of the

[^12]Table 3: Choosing Portfolios with χ
Table 3 compares the out-of-sample performance of low- and high- χ portfolios from 1999-2008 for a sample of 10,000 five- and ten-stock portfolios composed of DJIA constituents. Test periods are the years given in the first column of the table, while the formation periods run from October 30, 1986 through the day before the first day of the corresponding test period. The leftmost panel gives annual returns for the DJIA, the S\&P 500, and the subset of the DJIA constituents that were included in the index at least five years prior to the beginning of the test period (Restrict). The three middle panels give summary statistics for portfolios grouped by formation period χ, the extreme value dependence parameter. The final column presents p-values for the two-sided t-test of null hypothesis that there is no difference between the test-period returns of the bottom and top 10% of portfolios ranked by χ. All returns are annualized except for Cumulative and High/Low which are calculated for the entire period from 1999-2008.

sample period. For example, the five-stock, low- χ portfolios had higher mean returns than the high- χ portfolios for five of the six years in which the S\&P 500 and DJIA had positive annual returns.

Table 4 shows the mean value of the CAPM β, return standard deviation, and the Sharpe Ratio for the low- χ, middle- χ, and high- χ portfolios for the formation period and out-of-sample test period for each year from 1999-2008. Since the low- χ portfolios tend to have lower β s than the high- χ portfolios in both the formation period and the test period, it is possible that their superior returns in down markets may simply reflect this fact rather than their lower tail dependence. To rule this out, we recalculated Table 4, using β-adjusted returns instead of raw returns. The results appear in Table 5. Even after adjusting for β, our main conclusions from above continue to hold: low- χ portfolios consistently outperform high- χ portfolios. The cumulative mean return for the ten-year test period for the low- χ, five-stock portfolios is 79% compared to 23% for the high- χ portfolios. The long/short strategy yields a cumulative mean return of 20% for the five-stock portfolios. For the years in which the indexes had negative returns, the low- χ portfolios had returns at least as high as the high- χ portfolios for three of the four years.

Because of its unusually low returns, 2008 is of particular interest for investors concerned about minimizing downside risk. To examine 2008 in more detail, we construct χ-sorted portfolios on a monthly basis for this year. For each month, we estimate χ using all available data prior to the first of the month, sort the portfolios according to χ as above, and calculate the mean return for each group. Table 6 shows that once again low- χ portfolios consistently outperform the high- χ portfolios and the indexes. For the eight months when the DJIA had negative returns, the low- χ portfolios had higher mean returns in seven of the eight. The cumulative mean return for the five-stock, low- χ portfolios is - 30% compared to -44% for the high- χ portfolios, and -38% for the indexes. The long/short strategy for the five-stock portfolios yields a 10% return during 2008 .

The theoretical example in Section 3 suggests that low- χ portfolios should have relatively low returns on average to compensate for the decreased risk of extreme losses when market returns are especially poor. Empirically we find low- χ portfolios outperform high- χ portfolios overall and even when market returns are relatively high. Although puzzling from the perspective of our model, these results for χ sorted portfolios are consistent with empirical research showing that low- β portfolios
Table 4: The CAPM β, σ and the Sharpe Ratio for χ-sorted Portfolios Table 4 presents average values of the CAPM β, the standard deviation of returns, and the Sharpe ratio for portfolios grouped by χ (see Table 3). The Sharpe ratio is based on an arithmetic average of daily returns, annualized by multiplying by 250 . The standard deviation is annualized accordingly and then multiplied by 100 to give a result in percentage points. Test periods are the years from 1999-2008 as specified in the leftmost column of the table, while Formation Periods are the period from October 30, 1986 through the day before the start of the Test Period.

		Bottom 10\%						Middle 80\%						Top 10\%					
		Formation Period			Test Period			Formation Period			Test Period			Formation Period			Test Period		
Year	Size	β	σ	Sharpe															
1999	5	1.00	20	0.93	0.59	22	0.79	1.02	19	1.00	0.66	20	0.82	1.04	19	1.05	0.73	20	1.02
	10	1.01	18	1.02	0.62	18	1.01	1.02	18	1.07	0.66	17	0.97	1.03	18	1.10	0.70	17	1.01
2000	5	0.96	19	0.96	0.63	27	-0.05	1.00	19	1.01	0.63	25	0.14	1.04	20	1.07	0.63	25	0.22
	10	0.98	18	1.07	0.63	23	0.07	1.00	18	1.09	0.63	22	0.15	1.02	18	1.10	0.64	21	0.11
2001	5	0.93	20	0.88	0.92	25	0.08	0.95	20	0.93	0.94	25	-0.18	0.99	20	0.96	0.99	26	-0.27
	10	0.93	18	0.99	0.94	23	-0.10	0.95	18	1.01	0.94	23	-0.19	0.97	18	1.02	0.96	24	-0.18
2002	5	0.91	20	0.81	0.93	28	-0.22	0.95	20	0.84	0.98	29	-0.27	1.00	21	0.85	1.06	30	-0.27
	10	0.93	19	0.90	0.95	27	-0.28	0.95	19	0.91	0.98	27	-0.29	0.98	19	0.91	1.04	29	-0.31
2003	5	0.94	21	0.77	0.97	19	1.53	0.99	21	0.77	1.00	20	1.46	1.04	22	0.80	1.01	19	1.27
	10	0.95	19	0.84	0.97	18	1.60	0.99	20	0.84	1.00	18	1.54	1.02	20	0.84	1.00	18	1.44
2004	5	0.92	21	0.83	0.93	13	0.74	0.99	21	0.81	0.97	13	0.67	1.04	22	0.80	0.96	13	0.63
	10	0.94	19	0.90	0.95	12	0.74	0.99	20	0.88	0.97	12	0.72	1.03	20	0.86	0.97	12	0.66
2005	5	1.03	22	0.94	0.95	13	0.36	1.02	21	0.89	0.96	12	0.19	1.04	21	0.87	0.94	12	0.04
	10	1.01	20	1.00	0.96	11	0.28	1.02	20	0.97	0.95	11	0.21	1.04	20	0.95	0.94	11	0.12
2006	5	1.03	22	0.90	0.97	13	1.51	1.02	21	0.86	0.96	12	1.69	1.04	21	0.85	0.92	11	1.62
	10	1.02	19	0.96	0.96	11	1.80	1.02	19	0.94	0.96	11	1.86	1.04	19	0.93	0.95	11	1.81
2007	5	1.00	21	0.91	0.89	16	0.92	1.02	21	0.88	0.93	17	0.59	1.05	21	0.87	0.96	17	0.36
	10	0.99	19	0.99	0.89	15	0.80	1.02	19	0.96	0.93	16	0.60	1.04	19	0.94	0.95	16	0.52
2008	5	1.01	21	0.91	0.91	41	-0.75	1.01	20	0.87	1.02	46	-0.79	1.04	21	0.85	1.15	52	-0.93
	10	1.00	19	0.98	0.94	40	-0.80	1.01	19	0.94	1.02	44	-0.84	1.04	19	0.93	1.10	47	-0.91

Table 5: Choosing Portfolios with χ
Table 5 presents the same comparisons as Table 3 with CAPM-adjusted returns replacing raw test period returns. Formation period values of β are used for the adjustment.

Table 6: Choosing Portfolios with χ - Monthly Windows 2008
Table 6 compares the out-of-sample performance of low- and high- χ portfolios during each month of 2008 for a sample of 10,000 five- and ten-stock portfolios composed of DJIA constituents. The leftmost panel gives monthly returns for the DJIA and S\&P 500, while the three middle panels give summary statistics for portfolios grouped by formation period χ, the extreme value dependence parameter. The test periods correspond to particular months of 2008, while the formation periods correspond to the period from October 30, 1986 through the day before the beginning of the test period. The final column presents p-values for the two-sided t-test of null hypothesis that there is no difference between the test-period returns of the bottom and top 10% of portfolios ranked by χ. Test period mean returns are cumulative over the test month, while formation period returns are annualized. Both Cumulative and High/Low returns are cumulative over 2008.

$\text { م, } \stackrel{\dot{\sim}}{\dot{i}}$	$\dot{\circ} \dot{\circ} \dot{\circ}$		
	NOMO OO O O O O O O O O O O O O O	$\underset{i}{4} \underset{\sim}{9}$	
		$\underset{i}{\infty}$	\bigcirc
	 0×0 O	${ }_{\sim}^{\circ}$	
O			

generally outperform high- β portfolios. In a sample of U.S. stocks from 1968-2008, Baker et al. (2011) find that portfolios of lower- β stocks outperform those of higher- β stocks by a wide margin. They suggest that a combination of behavioral factors and limits on arbitrage may explain this strange result. Similarly, Frazzini and Pedersen (2010) find portfolios that are long low- β assets and short high- β assets earn significant excess returns across many asset classes and international markets. They attribute the results to limits on leverage that force investors seeking high returns to bid up the price of high-beta assets. Similar institutional and behavioral factors may explain our results that low- χ portfolios outperform high- χ portfolios. In a similar vein, Ang et al. (2006b, 2009) find stocks with high idiosyncratic volatility have lower returns than stocks with low idiosyncratic volatility. Although our analysis focuses on tail dependence between individual stocks and the market so it is not directly analogous to their work on idiosyncratic stock volatility, our results are similar in spirit. In both cases, the results are puzzling because the expected relationship between risk and return does not hold.

Given that most portfolio optimization methods in common use do not consider lower tail dependence, our empirical results are not especially surprising. Until a large number of investors begin using EVT techniques, the benefits of reducing large losses will not be fully priced. The real question, then, is why tail dependence has not been more widely considered in spite of its clear relevance and the availability of techniques to estimate it. One possible explanation comes from the literature on information choice and rational inattention. ${ }^{17}$ Sims (2003), for example, develops models in which constraints on agents' information processing ability cause them to act on forecasts inferior those that could be constructed from all available information. Given the vast array of financial market data and portfolio optimization methods available, investors will necessarily exclude some information. In particular, it is possible rationally inattentive investors would favor well-established methods like mean-variance portfolio optimization over more recently introduced concepts like tail dependence.

[^13]
6. Conclusion

Our main conclusions are as follows. Theoretically, we show that χ contains important information for risk averse investors. In a simple consumption-based model, lower tail dependence generates a considerable risk premium: investors require compensation for holding assets that are likely to collapse in value during an economy-wide disaster. Empirically, we find that χ is relatively stable over time and differs substantially from other risk measures, including variance, semi-variance, skewness, CAPM β, and the univariate EVT scale parameter γ. Although χ is significantly correlated with kurtosis and coskewness, the correlation coefficients of +.35 and -.30 show that χ is not simply a proxy for those two measures. Most importantly, low- χ portfolios outperform the market index, the mean return of the stocks in our sample, and highχ portfolios in out-of-sample tests using data from 1999-2008. These results suggest that lower tail dependence may be an valuable tool in portfolio selection, either used on its own or in concert with more traditional risk measures.

References

Ang, A., Chen, J., Xing, Y., 2006a. Downside risk. The Review of Financial Studies 19 (4), 1191-1239.

Ang, A., Hodrick, R. J., Xing, Y., Zhang, X., 2006b. The cross-section of volatility and expected returns. Journal of Finance 61 (1), 259 - 299.

Ang, A., Hodrick, R. J., Xing, Y., Zhang, X., 2009. High idiosyncratic volatility and low returns: International and further u.s. evidence. Journal of Financial Economics 91, 1 - 23 .

Arzac, E., Bawa, V., 1977. Portfolio choice and equilibrium in capital markets with safety-first investors. Journal of Financial Economics 4 (3), 277-288.

Baker, M., Bradley, B., Wurgler, J., 2011. Benchmarks as limits to arbitrage: understanding the low volatility anomaly. Financial Analysts Journal 67 (1), 40-54.

Barro, R., 2006. Rare disasters and asset markets in the twentieth century. Quarterly Journal of Economics 121 (3), 823-866.

Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J., Waal, D. D., Ferro, C., 2004. Statistics of Extremes: Theory and Applications. Wiley, Hoboken.

Chen, S., Brown, S., 1983. Estimation risk and simple rules for optimal portfolio selection. The Journal of Finance 38 (4), 1087-1093.

Chollete, L., De La Pena, V., Lu, C., 2011. International diversification: An extreme value approach. Journal of Banking \& Finance.

Chollete, L., Lu, C., 2011. The market premium for dynamic tail risk.
Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Springer, London.

Coles, S., Heffernan, J., Tawn, J., 1999. Dependence measures for extreme value analyses. Extremes 2 (4), 339-265.

Cont, R., 2001. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance 1, 223-236.

Danielsson, J., De Vries, C., 1997. Tail index and quantile estimation with very high frequency data. Journal of Empirical Finance 4 (2-3), 241-257.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: How inefficient is the $1 / \mathrm{n}$ portfolio strategy? Review of Financial Studies 22 (5), 1915-1953.

Embrechts, P., McNeil, A., Straumann, D., 2002. Correlation and dependence in risk management: properties and pitfalls. In: Dempster, M. A. H. (Ed.), Risk Management: Value at Risk and Beyond. Cambridge University Press, pp. 176223.

Fama, E., 1965. The behavior of stock-market prices. Journal of Business 38 (1), 34-105.

Frahm, G., Junker, M., Schmidt, R., 2005. Estimating the tail-dependence coefficient: Properties and pitfalls. Insurance: Mathematics and Economics 37, 80-100.

Frazzini, A., Pedersen, L., 2010. Betting against beta.
Gabaix, X., 2011. Variable rare disasters: An exactly solved framework for ten puzzles in macro-finance. Quarterly Journal of Economics 127 (2), 645-700.

Gumbel, E., 1958. Statistics of Extremes. New York: Columbia University Press.
Harvey, C., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal of Finance 55 (3), 1263-1295.

Harvey, C. R., Liechty, J. C., Liechty, M. W., Müller, P., May 2010. Portfolio selection with higher moments. Quantitative Finance 10 (5), 469-485.

Huang, W., Liu, Q., Ghon Rhee, S., Wu, F., 2012. Extreme downside risk and expected stock returns. Journal of Banking \& Finance.

Hyung, N., De Vries, C., 2005. Portfolio diversification effects of downside risk. Journal of Financial Econometrics 3 (1), 107.

Hyung, N., De Vries, C., 2007. Portfolio selection with heavy tails. Journal of Empirical Finance 14 (3), 383-400.

Ibragimov, R., Walden, J., 2007. The limits of diversification when losses may be large. Journal of Banking \& Finance 31 (8), 2551-2569.

Jansen, D., 2001. Limited downside risk in portfolio selection among us and pacific basin equities. International Economic Journal 15 (4), 1-22.

Jansen, D., De Vries, C., 1991. On the frequency of large stock returns: Putting booms and busts into perspective. The Review of Economics and Statistics 73 (1), 18-24.

Jansen, D., Koedijk, K., de Vries, C., 2000. Portfolio selection with limited downside risk. Journal of Empirical Finance 7 (3-4), 247-269.

Jondeau, E., Rockinger, M., 2003. Testing for differences in the tails of stock-market returns. Journal of Empirical Finance 10 (5), 559-581.

Kearney, C., Lynch, M., 2007. Are international equity markets really skewed? Applied Financial Economics 17, 399-411.

Kearns, P., Pagan, A., 1997. Estimating the density tail index for financial time series. Review of Economics and Statistics 79 (2), 171-175.

Kelly, B., 2011. Tail risk and asset prices. Chicago-Booth School of Business Working Paper.

Knight, F., 1921. Risk, Uncertainty and Profit. Boston: Houghton Mifflin Company.
Kroll, Y., Levy, H., Markowitz, H. M., March 1984. Mean-variance versus direct utility maximization. The Journal of Finance 39 (1), 47-61.

Lintner, J., 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 13-37.

Liu, J., Longstaff, F., Pan, J., 2003. Dynamic asset allocation with event risk. The Journal of Finance 58 (1), 231-259.

Liu, J., Pan, J., Wang, T., 2005. An equilibrium model of rare-event premia and its implication for option smirks. Review of Financial Studies 18 (1), 131-164.

Longin, F., 1996. The asymptotic distribution of extreme stock market returns. Journal of Business 69 (3), 383.

Longin, F., 2005. The choice of the distribution of asset returns: How extreme value theory can help? Journal of Banking and Finance 29 (4), 1017-1035.

Longin, F., Solnik, B., 2001. Extreme correlation of international equity markets. The Journal of Finance 56 (2), 649-676.

Mandelbrot, B., 1963. The variation of certain speculative prices. Journal of Business 36 (4), 394.

Markowitz, H., 1952. Portfolio selection. The Journal of Finance 7 (1), 77-91.

Markowitz, H., 1959. Portfolio selection: efficient diversification of investments. Cowles Foundation for Research in Economics at Yale University.

McNeil, A., Frey, R., 2000. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance 7 (34), 271-300.

Mossin, J., 1966. Equilibrium in a capital asset market. Econometrica 34 (4), 768-783.
Peiró, A., 1999. Skewness in financial returns. Journal of Banking and Finance 23 (6), 847-862.

Poon, S., Rockinger, M., Tawn, J., 2004. Extreme value dependence in financial markets: Diagnostics, models, and financial implications. Review of Financial Studies 17 (2), 581.

Premaratne, G., Bera, A., 2005. A test for symmetry with leptokurtic financial data. Journal of Financial Econometrics 3 (2), 169.

Rachev, S. T., Menn, C., Faboozzi, F. J., 2005. Fat-tailed and Skewed Asset Return Distributions: implications for Risk Management, Portfolio Selection and Option Pricing. Wiley, Hoboken.

Reiss, R., Thomas, M., 1997. Statistical analysis of extreme values: from insurance, finance, hydrology, and other fields. Boston: Basel.

Rietz, T., 1988. The equity risk premium a solution. Journal of monetary Economics 22 (1), 117-131.

Roy, A., 1952. Safety first and the holding of assets. Econometrica 20 (3), 431-449.
Sharpe, W., 1964. Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance 19 (3), 425-442.

Sims, C., 2003. Implications of rational inattention. Journal of Monetary Economics 50, 665-690.

Susmel, R., 2001. Extreme observations and diversification in latin american emerging equity markets. Journal of International Money and Finance 20 (7), 971-986.

Treynor, J., 1961. Toward a theory of market value of risky assets. Unpublished manuscript.

Uppal, R., Wang, T., 2003. Model misspecification and underdiversification. The Journal of Finance 58 (6), 2465-2486.

Veldkamp, L., 2011. Information Choice in Macroeconomics and Finance. Princeton: Princeton University Press.

Appendix A. Calibration Details

This section details the calculation of δ and $\mu_{i}(\xi)$ in the calibration from Section 3 using annual U.S. consumption and dividend data from 1949-1999. We use this period because it contains no consumption disasters and hence is appropriate to calibrate ϵ and u, the non-disaster shocks to consumption and dividends. We measure consumption by NIPA Table 2.3.5, Line 1 (Personal Consumption Expenditures in Billions of Dollars) and dividends by NIPA Table 2.1 Line 15 (Personal Dividend Income in Billions of Dollars), each put in per capita terms using historical U.S. census data and deflated by the average annual consumer price index. Taking consecutive ratios leaves us with fifty observations:

$$
\begin{equation*}
\left\{\frac{C_{t+1}}{C_{t}}, \frac{D_{t+1}}{D_{t}}\right\}_{t=1949}^{1998} \tag{A.1}
\end{equation*}
$$

To calibrate δ and α we use the method of moments estimators

$$
\begin{align*}
& \widehat{\delta}=\log \left[\frac{1}{50} \sum_{t=1949}^{1998} \frac{C_{t+1}}{C_{t}}\right]=0.021 \tag{A.2}\\
& \widehat{\alpha}=\log \left[\frac{1}{50} \sum_{t=1949}^{1998} \frac{D_{t+1}}{D_{t}}\right]=0.028 \tag{A.3}
\end{align*}
$$

and approximate the error terms according to

$$
\begin{align*}
& \widehat{\epsilon}_{t+1}=e^{-\widehat{\delta}}\left(\frac{C_{t+1}}{C_{t}}-e^{\widehat{\delta}}\right) \tag{A.4}\\
& \widehat{u}_{t+1}=e^{-\widehat{\alpha}}\left(\frac{D_{t+1}}{D_{t}}-e^{\widehat{\alpha}}\right) \tag{A.5}
\end{align*}
$$

yielding the values in Table A.7. A time series plot of the errors appears in Figure A. 9 while a scatterplot along with summary statistics appears in Figure A.10. To approximate $\mu_{i}(\xi)$ we use the empirical distribution of $\left(\epsilon_{t+1}, u_{t+1}\right)$, so that

$$
\begin{equation*}
\widehat{\mu}(\xi)=\frac{1}{50} \sum_{t=1949}^{1998} \frac{1+\widehat{\epsilon}_{t+1}}{\left(1+\widehat{u}_{t+1}\right)^{\xi}} . \tag{A.6}
\end{equation*}
$$

Table A.7: Calibration Error Terms
Table A. 7 shows the error terms for consumption, ϵ and dividends u from calibration exercise. The calibrated expected growth rate of consumption is $\widehat{\delta}=0.021$ while that of dividends is $\widehat{\alpha}=0.028$.

Year	$\widehat{\epsilon}$	\widehat{u}	Year	$\widehat{\epsilon}$	\widehat{u}
1950	0.021	0.150	1975	-0.015	-0.125
1951	-0.032	-0.134	1976	0.022	0.080
1952	-0.005	-0.062	1977	0.011	0.036
1953	0.015	-0.017	1978	0.006	0.015
1954	-0.016	-0.009	1979	-0.030	-0.022
1955	0.042	0.083	1980	-0.057	-0.053
1956	-0.005	0.013	1981	-0.029	0.004
1957	-0.017	-0.042	1982	-0.022	-0.043
1958	-0.033	-0.078	1983	0.037	0.003
1959	0.026	0.032	1984	0.017	0.006
1960	-0.010	0.001	1985	0.019	0.001
1961	-0.016	-0.017	1986	0.016	0.030
1962	0.014	0.024	1987	0.001	-0.015
1963	0.004	0.022	1988	0.008	0.070
1964	0.025	0.064	1989	-0.007	0.119
1965	0.027	0.049	1990	-0.019	-0.023
1966	0.020	-0.042	1991	-0.035	-0.013
1967	-0.007	-0.030	1992	0.001	-0.028
1968	0.023	0.010	1993	-0.004	0.008
1969	-0.003	-0.059	1994	0.002	0.091
1970	-0.019	-0.087	1995	-0.009	0.010
1971	0.003	-0.053	1996	-0.003	0.095
1972	0.031	-0.000	1997	0.002	0.048
1973	0.010	0.012	1998	0.015	0.007
1974	-0.043	-0.036	1999	0.018	-0.094

Figure A.9: Error terms from the calibration exercise
Figure A. 9 shows time series plot of error terms from the calibration exercise. Shocks to dividend growth, u, are far more volatile than shocks to consumption growth, ϵ.

Figure A.10: Error terms from the calibration exercise.
Figure A. 10 shows a scatterplot and summary statistics for error terms from the calibration exercise. The shocks to dividend growth, u, and consumption growth, ϵ, are positively correlated, but u is far more volatile.

Appendix B. Data Notes

Missing Observation for Altria: The NYSE suspended trading in Altria's (Philip Morris at the time) stock on May 25, 1994 while the company's board of directors met to decide whether to spin-off the company's tobacco business. As trading resumed on May 26, 1994 the CRSP return of -5.81% on this date represents the percentage change in the stock price from May 24 to May 26. This explains the missing observation.

Appendix C. Estimating Tail Dependence - Technical Details

Appendix C.1. Likelihood for the Block Maximum Losses

Consider a series of block maxima $\left\{z_{i}\right\}_{i=1}^{M}$. According to Equation 17, the individual block maxima are approximately GEV if the blocks are sufficiently long. Provided the series is stationary and satisfies a weak dependence condition, estimation based on a likelihood that assumes independence will still produce consistent estimates, although the usual standard errors are invalid. Thus we write the log-likelihood as

$$
\begin{array}{r}
\ell(\mu, \sigma, \gamma)=-M \log \sigma-(1+1 / \gamma) \sum_{n=i}^{M} \log \left[1+\gamma\left(\frac{z_{i}-\mu}{\sigma}\right)\right] \tag{C.1}\\
-\sum_{n=i}^{M}\left[1+\gamma\left(\frac{z_{i}-\mu}{\sigma}\right)\right]^{-1 / \gamma}
\end{array}
$$

defined wherever $1+\gamma\left(z_{n}-\mu\right) / \sigma>0$ for all $i=1, \ldots, M$. This expression follows from Equation 17 by differentiating with respect to z to yield the probability density function, taking the product of this result over all i and using the natural logarithm to convert products into sums. ${ }^{18}$

Appendix C.2. Transforming to Standard Fréchet Marginals

Suppose that a random variable Z follows a generalized extreme value distribution. Then,

$$
\begin{equation*}
\tilde{Z} \equiv f(Z)=\left[1+\gamma\left(\frac{Z-\mu}{\sigma}\right)\right]^{1 / \gamma} \tag{C.2}
\end{equation*}
$$

[^14]is unit Fréchet. To see why this is the case, we use the C.D.F. technique for transforming a random variable. Thus, using Equation 17,
\[

$$
\begin{aligned}
\mathbb{P}(\tilde{Z} \leq z) & =\mathbb{P}\left(Z \leq f^{-1}(z)\right)=G\left(f^{-1}(z)\right) \\
& =\exp \left\{-\left[1+\frac{\gamma}{\sigma}\left(f^{-1}(z)-\mu\right)\right]^{-1 / \gamma}\right\} \\
& =\exp \left\{-\left[1+\frac{\gamma}{\sigma}\left(\left[\left(\frac{\sigma}{\gamma}\right)\left(z^{\gamma}-1\right)+\mu\right]-\mu\right)\right]^{-1 / \gamma}\right\} \\
& =\exp (-1 / z)
\end{aligned}
$$
\]

Appendix C.3. Bivariate Logistic Likelihood

The pdf corresponding to Equation 19 is given by cross partial derivative of G, that is

$$
g(x, y)=\frac{\partial}{\partial x \partial y} G(x, y)
$$

Thus,

$$
\begin{equation*}
g(x, y)=e^{-V}\left(V_{x} V_{y}-V_{x y}\right) \tag{C.3}
\end{equation*}
$$

where

$$
\begin{align*}
V & =\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha} \tag{C.4}\\
V_{x} & =-\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha-1} x^{-(\alpha+1) / \alpha} \tag{C.5}\\
V_{y} & =-\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha-1} y^{-(\alpha+1) / \alpha} \tag{C.6}\\
V_{x y} & =\frac{\alpha-1}{\alpha}\left(x^{-1 / \alpha}+y^{-1 / \alpha}\right)^{\alpha-2}(x y)^{-(\alpha+1) / \alpha} \tag{C.7}
\end{align*}
$$

Under weak conditions we may ignore temporal dependence ${ }^{19}$ and write the likelihood for the entire sample as the product of the likelihoods of each observation:

$$
\begin{equation*}
\ell(\alpha)=\sum_{i=1}^{M} \log g\left(x_{i}, y_{i} ; \alpha\right) \tag{C.8}
\end{equation*}
$$

where g is defined as in Equation C.3, and x, y have been transformed to unit Fréchet as described in Appendix C.2.

[^15]
Appendix D. Robustness Tests

This section examines the robustness of results presented in the body of the paper. First, we explore the effect of controlling for factors beyond the CAPM β on our out-of-sample comparisons of low- and high- χ portfolios. Second, we consider the sensitivity of our estimates of χ to changes in the estimation procedure.

Table D. 8 compares factor-adjusted cumulative returns of high- and low- χ portfolios and the long low- $\chi /$ short high- χ trading strategy over the period 1999-2008. These results extend the comparisons from Table 5 by considering a wider range of factors thought to influence returns: the Fama-French factors, volatility, momentum, and liquidity. For each of nine models, we calculate factor loadings using formationperiod returns and adjust test-period returns according to the estimated factors. All models include a constant term (α). We measure volatility by daily differences of the VXO, and volatility by the Pastor-Stambaugh factor. Because this factor is unavailable at a daily frequency we either fill in the nearest past value, "Lag Liquidity," or the nearest future value, "Lead Liquidity." The conclusion of this exercise is that including additional controls does not change our main result that low- χ portfolios outperform the high- χ portfolios out-of-sample.

To test the robustness of our estimates of χ we examine how the values for individual assets, given in Table 2, change when we alter our estimation procedure. We first consider shifting the block starting dates through time: estimating χ for blocks shifted by one day, then two days, and so on. Because we use blocks of 22 trading days, we repeat this process through 21 days to cover all possible block shifts. We then compare all 22 estimates of χ : one for the original blocks and 21 corresponding to the shifted blocks. Estimates of χ are virtually unchanged for any of the block shifts. In particular, the correlations and rank correlations between our original estimates of χ and those based on shifted blocks are all greater than 0.99.

We then consider the effect of changing block lengths on our estimation procedure, using lengths ranging from 8 to 36 trading days, and then calculating the correlation and rank correlation between the resulting estimates. When the block lengths change by only a few days, the correlation and rank correlation of the estimates of χ across the block lengths are extremely high, generally exceeding 0.95 . Yet even for block lengths that differ considerably, the correlations remain relatively high: the lowest correlation is 0.85 (block lengths of 9 and 33 trading days) and the lowest rank correlation is 0.84 (block lengths of 9 and 34 trading days). Neither the block shifts nor changes in the

Table D.8: Controlling for Fama-French Factors, Volatility, Liquidity, and Momentum Table D. 8 compares the factor-adjusted cumulative returns of high χ portfolios to those of low χ portfolios from 1999-2008 using five and ten-stock portfolios. High/Low refers to a trading strategy of taking a long position in the low- χ portfolio and a short position in high- χ portfolio. For each year, factor loadings are calculated using formation-period data while returns are adjusted using test-period values. All models include a constant term (α). The factors MKTRF, SMB and HML are the Fama-French factors. "Fama-French" indicates a model that includes all three of these. Volatility is measured by daily differences of the VXO, and Liquidity by the Pastor-Stambaugh factor. Because this factor is unavailable at a daily frequency we either fill in the nearest past value, "Lag Liquidity," or the nearest future value, "Lead Liquidity."

	Model 1		Model 2		Model 3	
			MKTRF		MKTRF	
	MKTRF		SMB \& HML			
					Volatility	
	5-Stock	10-Stock	5-Stock	10-Stock	5-Stock	10-Stock
Bottom 10\%	-21	-25	-11	-13	-13	-15
Top 10\%	-46	-39	-30	-25	-30	-25
High/Low	18	10	12	8	10	7
	Model 4		Model 5		Model 6	
	Fama-French		Fama-French		Fama-French	
			Volatility			
	Momentum		-		Momentum	
					Lag Liquidity	
	5-Stock	10-Stock	5-Stock	10-Stock	5-Stock	10-Stock
Bottom 10\%	-6	-10	-13	-15	-12	-15
Top 10\%	-27	-24	-30	-25	-32	-26
High/Low	12	9	10	7	11	7
	Model 7		Model 8		Model 9	
	Fama-French		Fama-French		Fama-French	
	-		Volatility		Volatility	
	Momentum		Momentum		Momentum	
			Lag Liquidity			
	Lead L	quidity			Lead Liquidity	
	5-Stock	10-Stock	5-Stock	10-Stock	5-Stock	10-Stock
Bottom 10\%	7	5	-14	-17	5	2
Top 10\%	-20	-16	-29	-26	-20	-16
High/Low	14	11	8	5	12	9

block lengths substantially change our estimates of χ.
As a final robustness test, we compare our maximum likelihood block method of estimating χ to a non-parametric threshold method used by Poon et al. (2004). We estimate χ for each stock in the sample using ten thresholds, ranging from the lowest 1% of returns to the lowest 10% of returns. Unlike the block shifts and changes to the block length, the nonparametric threshold method often provides estimates of χ that vary substantially from the method described in Section 4. Table D. 9 shows how the resulting estimates of χ depend on the threshold used for the estimation. As the threshold for estimating χ becomes more extreme, moving from the worst 10% of returns to the worst 1% of returns, the variation in the estimates increases. The χ estimates from the 1% threshold have a standard deviation and range more than twice as large as the χ estimates from the 10% threshold. Table D. 10 shows the correlation between the χ estimates from the threshold method and our block maximum likelihood method. The block method produces estimates of χ that are most closely correlated with those from the 1% threshold. The pattern is similar for the rank correlation with the block minima method most closely correlated with the 1% threshold.
Table D.9: Comparing Block Minima and Threshold Methods
Table D. 9 shows estimates of χ using block minima and threshold methods. The percentages in the first row indicate the quantile for determining extreme losses, and the last column shows χ based on the block method used in this paper.

Table D.10: Correlation of χ Estimates from Block Minima and Threshold Methods
Table D. 10 shows the correlation of the χ estimates for the ten thresholds and the block minima method. The correlation between the threshold and block methods increases as the threshold increases.

	10%	9%	8%	7%	6%	5%	4%	3%	2%	1%	Block
10%	1	0.99	0.99	0.98	0.98	0.96	0.94	0.93	0.91	0.77	0.58
9%	0.99	1	0.99	0.99	0.98	0.97	0.95	0.93	0.91	0.78	0.59
8%	0.99	0.99	1	0.99	0.99	0.97	0.95	0.93	0.92	0.8	0.6
7%	0.98	0.99	0.99	1	0.99	0.98	0.95	0.92	0.92	0.8	0.59
6%	0.98	0.98	0.99	0.99	1	0.98	0.97	0.94	0.93	0.82	0.6
5%	0.96	0.97	0.97	0.98	0.98	1	0.97	0.95	0.94	0.82	0.59
4%	0.94	0.95	0.95	0.95	0.97	0.97	1	0.96	0.93	0.78	0.56
3%	0.93	0.93	0.93	0.92	0.94	0.95	0.96	1	0.97	0.85	0.64
2%	0.91	0.91	0.92	0.92	0.93	0.94	0.93	0.97	1	0.9	0.68
1%	0.77	0.78	0.8	0.8	0.82	0.82	0.78	0.85	0.9	1	0.76
Block	0.58	0.59	0.6	0.59	0.6	0.59	0.56	0.64	0.68	0.76	1

[^0]: ${ }^{n}$ The views expressed in this article are solely those of the authors. They do not necessarily reflect the views of the Federal Reserve Bank of Richmond or the Federal Reserve System.

[^1]: ${ }^{1}$ Since χ depends only on the copula between X and Y, not their respective marginal distributions, it is equivalent to define it by $\lim _{s \rightarrow \infty} \mathbb{P}\left(Z_{X}>s \mid Z_{Y}>s\right)$ where Z_{X} and Z_{Y} are versions of X and Y that have been transformed to have the same marginal distribution. We use this alternative definition in Section 4.
 ${ }^{2}$ Here, the term "asymptotically" refers not to an increasing sample size, but an increasing threshold s above which the conditional probability defining χ is calculated.
 ${ }^{3}$ We define risk in the sense of Knight (1921) as "measurable uncertainty." Our focus on tail dependence is analogous to insurance against catastrophic events, which provides protection against rare, but large losses. As noted by Gumbel (1958), the oldest problems involving extreme value theory concern the probability of floods, another type of rare event that can cause large losses.

[^2]: ${ }^{4}$ Although his name is practically synonymous with mean-variance analysis, Markowitz considers several risk measures, settling on variance as a pragmatic compromise (Markowitz, 1959, pp. 193194). As Markowitz knew, the question of which risk measure to use depends both on the preferences of investors and the statistical properties of returns.

[^3]: ${ }^{5}$ For a detailed discussion of the non-normality of asset returns, see Rachev et al. (2005).
 ${ }^{6}$ Asymmetry is somewhat more controversial than heavy tails. Peiró (1999) and Kearney and Lynch (2007), for example, find limited evidence of asymmetry.

[^4]: ${ }^{7}$ As a measure of risk, semi-variance is only superior to variance if the distribution of returns is asymmetric. If the distribution of returns is symmetric, the semi-variance is simply half the variance.

[^5]: ${ }^{8}$ We use CRRA utility for analytical tractability only. The qualitative results of this section should continue to hold so long as marginal utility increases rapidly as consumption becomes very low.

[^6]: ${ }^{9}$ This framework reflects the fact that even during a severe recession, not all firms will experience sharp decreases in their value. For simplicity, we do not allow for idiosyncratic dividend disasters, but these could be added without substantially changing the relationship between χ and returns.

[^7]: ${ }^{10}$ For a detailed discussion of the many possibilities, their advantages and disadvantages, see Frahm et al. (2005).

[^8]: ${ }^{11}$ It is traditional to phrase results in terms of maxima. To study minima we simply need to multiply by negative one to convert negative returns to positive losses.
 ${ }^{12}$ Coles (2001) provides an intuitive discussion of the differing effects of temporal dependence on block versus threshold methods.

[^9]: ${ }^{13}$ It may seem as though we have ignored the normalizing constants from the Extremal Types Theorem when asserting that the un-normalized block maximum losses may be modeled according to Equation 17. This does not present a problem: when we assume that the limit result holds in a finite sample, the normalizing constants can simply be absorbed into the parameters. That is, if $\left(Z-b_{n}\right) / a_{n}$ follows a generalized extreme value distribution, so does Z, only with different parameter values.

[^10]: ${ }^{14}$ Robustness tests described in Appendix D show that our results are not sensitive to the choice of block length.

[^11]: ${ }^{15}$ October 30, 1986 is the first trading day for which we have data for all of the firms in our sample. CitiGroup, formed as a merger of Citicorp and Travelers Group in 1998, has permno 70519 in the CRSP database. Prior to the merger, that permno is associated with Travelers Group, Travelers, Primerica, Commercial Credit Group, and Commercial Credit. The first available observation in the CRSP database for Commercial Credit is October 30, 1986.

[^12]: ${ }^{16}$ The selection criterion that firms were listed on the DJIA for five years prior to inclusion in the sample eliminates Hewlett-Packard, Citigroup, Johnson \& Johnson, and Wal-Mart from 19992002, and Microsoft, Intel, SBC, and Home Depot from 2000 - 2004. As an example of the potential selection problem, the S\&P 500 index had a total return of about 190% in the five years before Microsoft and Intel were added to the DJIA in 1999. Those two firms, though, had total returns over $1,000 \%$ during the same period. The purpose is to estimate the tail dependence of individual firms with the market, and the high growth prior to index inclusion could distort the estimate of tail dependence.

[^13]: ${ }^{17}$ Veldkamp (2011) provides a comprehensive introduction to this literature.

[^14]: ${ }^{18}$ For the case of $\gamma=0$ the likelihood requires a slightly different treatment. However real market data, in our experience, tend to have $\gamma>0$, corresponding to fat tails. In particular, all of our estimates of γ from this study are well above zero.

[^15]: ${ }^{19}$ From the perspective of parameter estimation our limiting results allow us to ignore temporal dependence, but it complicates the calculation of appropriate standard errors. The usual MLE standard errors are too small, but correcting them would require further assumptions.

