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Abstract

We show theoretically that lower tail dependence (χ), a measure of the probability

that a portfolio will suffer large losses given that the market does, contains important

information for risk-averse investors. We then estimate χ for a sample of DJIA

stocks and show that it differs systematically from other risk measures including

variance, semi-variance, skewness, kurtosis, beta, and coskewness. In out-of-sample

tests, portfolios constructed to have low values of χ outperform the market index,

the mean return of the stocks in our sample, and portfolios with high values of χ.

Our results indicate that χ is conceptually important for risk-averse investors, differs

substantially from other risk measures, and provides useful information for portfolio

selection.
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1. Introduction

In this paper we apply portfolio selection techniques to a sample of large-cap

stocks using lower tail dependence (χ) as the measure of risk. The concept of tail

dependence comes from Extreme Value Theory (EVT), which allows us to describe

the tail behavior of a random variable without specifying its underlying distribution.

Specifically, χ describes the dependence in the extreme lower tail of the joint distri-

bution of a given portfolio’s returns with those of the market. Let X represent losses

(returns multiplied by negative one) for some portfolio and Y losses for the market

index. Then, the lower tail dependence between this portfolio and the market is given

by:

χ = lim
s↑1

P
{
X > F−1

X (s)|Y > F−1
Y (s)

}
(1)

✩The views expressed in this article are solely those of the authors. They do not necessarily
reflect the views of the Federal Reserve Bank of Richmond or the Federal Reserve System.
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where F−1
X and F−1

Y are the quantile functions of X and Y . Intuitively, χ is a kind of

limiting conditional Value at Risk, capturing the probability that a portfolio suffers

losses beyond its sth quantile, F−1
X (s), given that the market has suffered equiva-

lently large losses.1 When χ = 0, X and Y are asymptotically independent; when

χ = 1, they are perfectly asymptotically dependent.2 Unlike correlation, lower tail

dependence is an asymmetric measure of dependence, examining only one region of

the distribution. And unlike other asymmetric risk measures such as the downside β

of Ang et al. (2006a) or the conditional coskewness of Harvey and Siddique (2000),

lower tail dependence is not a moment. Consequently it is guaranteed to exist for all

distributions, even those with extremely heavy tails.

Intuitively, lower tail dependence is a reasonable measure of risk if, ceteris paribus,

investors prefer to hold portfolios that perform relatively well when market returns are

extremely poor.3 For tail dependence to be relevant for portfolio selection, however,

we must assume that investors assign a positive probability to economic disasters:

states of the world in which most assets fall sharply in value. Both history and

derivatives markets suggest that this assumption is reasonable. Analyzing data from

the 20th century, Barro (2006) estimates the probability of economic disasters at 1.5%

to 2% per year with declines in per capital GDP of 15% to 64%. In 2012, the price

of a long put option to protect against a 50% fall in the S&P 500 index over the

next 3 years was about 200 basis points. Indeed, there are actively traded markets

in options protecting against decreases of more than 90% in the index level.

This paper makes three main contributions. First, we show that χ contains valu-

able information for portfolio selection using a theoretical model built upon the “rare

disaster framework” of Rietz (1988), Barro (2006), and Gabaix (2011). Our model

predicts that low-χ assets will show lower returns overall to compensate for the down-

side protection they provide in extreme bear markets. Second, as far as we know, this

is the first paper to estimate the lower tail dependence between individual stocks and

1Since χ depends only on the copula betweenX and Y , not their respective marginal distributions,
it is equivalent to define it by lims→∞ P(ZX > s|ZY > s) where ZX and ZY are versions of X and
Y that have been transformed to have the same marginal distribution. We use this alternative
definition in Section 4.

2Here, the term “asymptotically” refers not to an increasing sample size, but an increasing
threshold s above which the conditional probability defining χ is calculated.

3We define risk in the sense of Knight (1921) as “measurable uncertainty.” Our focus on tail
dependence is analogous to insurance against catastrophic events, which provides protection against
rare, but large losses. As noted by Gumbel (1958), the oldest problems involving extreme value
theory concern the probability of floods, another type of rare event that can cause large losses.
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stock portfolios and the market return. Previous studies using EVT tail dependence,

including Longin and Solnik (2001), Poon et al. (2004), and Chollete et al. (2011)

use international stock market indexes. Our empirical results show that χ is rela-

tively stable over time and differs systematically from other risk measures including

variance, semi-variance, skewness, kurtosis, CAPM β, coskewness, and γ, an EVT

measure of univariate tail thickness. Finally, we examine the performance of χ as a

portfolio selection tool in a number of out-of-sample tests. Low-χ portfolios exhibit

relatively high returns during bear markets, including 2008 when market indexes fell

sharply. However, they also provide relatively high returns over the entire ten-year

test period, including both bull and bear markets, partially contradicting the impli-

cations of our theoretical model. These results suggest that lower tail dependence is

not yet fully priced.

The remainder of the paper is organized as follows. Section 2 reviews related

work, suggesting why tail dependence may provide a better measure of risk than

more commonly used measures, and explaining how our paper fits into the growing

literature applying EVT to finance. Section 3 presents our theoretical model, while

Section 4 describes the EVT techniques we use to estimate lower tail dependence.

Section 5 describes our data and empirical results, and Section 6 concludes.

2. Literature Review

In his path-breaking work on portfolio selection, Markowitz (1952, 1959) considers

how investors can maximize expected return for a given risk level, or equivalently,

minimize risk for a given expected return. In Markowitz’s original formulation and

many later refinements, including the CAPM of Sharpe (1964), Lintner (1965), Mossin

(1966), and Treynor (1961), risk is measured by the variance of returns on an investor’s

overall portfolio.4 In this setting, the mean return vector and covariance matrix of

individual asset returns tells us everything we need to know to carry out portfolio

selection.

There are effectively two ways to justify the mean-variance approach to portfolio

selection. The first is to assume that returns are normally distributed. Under nor-

4Although his name is practically synonymous with mean-variance analysis, Markowitz considers
several risk measures, settling on variance as a pragmatic compromise (Markowitz, 1959, pp. 193-
194). As Markowitz knew, the question of which risk measure to use depends both on the preferences
of investors and the statistical properties of returns.
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mality, the mean vector and covariance matrix of returns fully describe their joint

behavior, and all portfolios have marginal normal distributions. In this setting, be-

cause variance alone controls the thickness of the tails, any sensible measure of risk

over final portfolios will be strictly increasing in the variance. Thus, investors will

always find it sufficient to minimize the variance of their holdings when they seek to

minimize risk. Normality also justifies the use of the CAPM β as a measure of an

asset’s systematic risk: under normality, correlation is the only dependence informa-

tion relevant for diversification. There is considerable evidence, however, that asset

returns are not normally distributed.5 Real-world returns exhibit heavier tails than a

normal distribution (Mandelbrot, 1963; Fama, 1965) as well as gain/loss asymmetry:

large losses are more common than equivalently large gains (Cont, 2001; Premaratne

and Bera, 2005).6

The second way to justify mean-variance analysis is by a quadratic approxima-

tion. Under quadratic utility, investors consider only the mean and variance of final

portfolios, regardless of the underlying distribution of returns. Yet even if investors’

utility takes a more plausible functional form, it may still be the case that the port-

folios obtained by explicit utility maximization are similar to those constructed using

the much simpler mean-variance analysis (see, e.g. Kroll et al. (1984)). Even this

justification, however, faces problems because the quality of the quadratic approxi-

mation depends not only on investors’ true utility function but on the distribution of

returns. If this distribution is sufficiently “tame,” nearly always generating realiza-

tions in the region where the quadratic approximation is good, the resulting portfolios

will be similar. If not, there can be large differences between the optimal portfolio

and the portfolio selected by mean-variance analysis. Liu et al. (2003) show that if

investors believe there to be even a small chance of a downward jump in asset prices,

they will select portfolios that are very different from the optimal portfolios based

on mean-variance analysis with no price jumps: the possibility of large losses causes

investors to take less risk. This result is similar to Barro (2006) who suggests that the

possibility of rare disasters can explain the equity risk premium and Liu et al. (2005)

who show that uncertainty aversion to rare events can explain the larger premium for

out-of-the-money compared to at-the-money put options.

5For a detailed discussion of the non-normality of asset returns, see Rachev et al. (2005).
6Asymmetry is somewhat more controversial than heavy tails. Peiró (1999) and Kearney and

Lynch (2007), for example, find limited evidence of asymmetry.

4



Parameter or model uncertainty also presents problems for the mean-variance

approach which treats estimated parameters as if they were known constants. Chen

and Brown (1983), for example, show that accounting for estimation risk substantially

changes optimal portfolio weights. Uppal and Wang (2003) make a similar point in

a model with ambiguity about return distributions. In a particularly stark empirical

example, DeMiguel et al. (2009) show that a näıve strategy giving equal weight to

all available assets consistently outperforms mean-variance analysis and a variety of

other portfolio selection techniques due to the noise introduced by estimation error.

One response to the non-normality of asset returns and problematic nature of

quadratic approximations to investor preferences has been to explore moments be-

yond the mean, variance and correlation in portfolio selection. Markowitz (1959)

himself noted that while investors fear only losing money, not gaining it, the variance

treats unusually large gains the same as unusually large losses: both contribute to

an asset’s measured risk. This incongruity led him to devote a chapter of his book

to an alternative measure of risk, the semi-variance. Whereas the variance is defined

as the expected squared deviation from the mean, the semi-variance is the expected

squared deviation below the mean. Markowitz concludes that portfolios constructed

using semi-variance are preferable because they concentrate on reducing losses, while

those based on variance sacrifice too much expected return by minimizing extreme

positive returns as well as extreme negative returns.7 In a similar vein, Harvey and

Siddique (2000) suggest measuring an asset’s risk by its coskewness, the component

of its (negative) skewness that is related to the skewness of the market portfolio, and

find that this measure is associated with a significant risk premium in asset-pricing

tests. Harvey et al. (2010) also emphasize the relevance of multivariate skewness for

portfolio selection, proposing a Bayesian procedure that incorporates parameter un-

certainty into the portfolio-choice problem. In the presence of asymmetric returns,

the CAPM β is a potentially misleading measure of dependence. Responding to this

concern, Ang et al. (2006a) estimate “downside β,” a measure of covariance with the

market when asset prices fall. They find that assets with high downside β command a

risk premium that is not accounted for by ordinary β, coskewness, size, or momentum

effects.

A potential problem with moment-based portfolio selection in the presence of

7As a measure of risk, semi-variance is only superior to variance if the distribution of returns is
asymmetric. If the distribution of returns is symmetric, the semi-variance is simply half the variance.
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heavy-tailed returns, especially methods based on higher moments such as skewness,

is that the moments in question may be undefined or infinite. An early approach that

is not subject to this critique is the “safety first” idea of Roy (1952) and Arzac and

Bawa (1977), who suggest that investors minimize the probability of losing more than

a pre-specified amount of money. Safety first is an appealing idea, but in practice it is

extremely difficult to estimate the required probabilities using traditional techniques.

It is precisely this problem of estimating tail probabilities that has led to the growing

popularity of EVT in finance. Danielsson and De Vries (1997), for example, use

EVT to improve estimates of large losses in foreign exchange markets. More recently,

Jansen et al. (2000), Jansen (2001), Susmel (2001), and Hyung and De Vries (2007)

take the same approach to improve the safety-first model of Arzac and Bawa (1977),

while McNeil and Frey (2000) incorporate stochastic volatility in an EVT framework

to improve estimates of value-at-risk.

Besides its use in estimating tail probabilities, EVT has been applied to study the

underlying distribution of asset returns. In an early study, Jansen and De Vries (1991)

estimate γ, an EVT measure of univariate tail thickness described in Section 4, for a

sample of 10 stocks and two stock market indexes from 1962–1986. Their estimates

indicate that return distributions are consistent with the Student-t and ARCH classes,

but not stable distributions and mixtures of normal distributions. In related work,

Longin (2005) uses EVT to help determine the distribution of the underlying daily

returns for the S&P 500 index, rejecting the normal and stable Paretian distributions,

but not the Student-t distribution and ARCH processes. Given its relationship to the

tail thickness of returns, and thus the probability of large losses, it seems plausible

that γ itself could be relevant for asset pricing. Huang et al. (2012), Chollete and

Lu (2011) and Kelly (2011) show there is a positive risk premium associated with

the left-tail γ of stock market returns even after controlling for size, momentum, and

other factors.

Studies like these have motivated further interest in γ itself. Longin (1996) models

extreme returns on an index of NYSE stocks and finds that γ is stable over time

and under daily, weekly, and monthly temporal aggregation. Kearns and Pagan

(1997) compare a number of methods of estimating γ, concluding the so-called “Hill

estimator” works best. In a study of stock market indices for 5 developed and 15

developing countries, Jondeau and Rockinger (2003) find no significant differences

between the left and right tail γ of the distribution of asset returns.
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Most studies that apply EVT to financial data study lower tail thickness, via γ,

for individual series, but recently several have considered the implications of EVT for

dependence and diversification. Hyung and De Vries (2005) show that idiosyncratic

risk decreases more quickly when assets with fat-tailed return distributions are added

to a portfolio, while Ibragimov and Walden (2007) show that diversification may in-

crease value-at-risk for heavy-tailed risky assets when potential losses are large. Their

results illustrate how the presence of fat-tailed return distributions can dramatically

affect portfolio selection. In a more applied setting, Longin and Solnik (2001) use a

bivariate EVT model to study stock market indexes in the U.S., U.K., France, Ger-

many and Japan and reject bivariate normality for the left-tail of the distribution and

conclude the correlation across markets increases during bear markets. Poon et al.

(2004) use multivariate extreme value theory to model extreme dependence in the

same five markets. They find international stock markets tend to be asymptotically

independent and conclude EVT models that assume asymptotic dependence will over-

state systemic risk. Chollete et al. (2011) use returns from 14 national stock market

indexes from 1990 – 2006 to compare Pearson correlation, Spearman correlation, and

tail dependence for bivariate combinations of the 14 countries. They report three

main results: (1) the three dependence measures provide different signals about risk;

(2) dependence in general has increased over time; and (3) all regions studied show

asymmetric dependence.

We use a bivariate EVT model to study the extreme dependence of individual

stocks and portfolios with the market index. It is not only the probability of large

losses, described by the tail index, that concerns investors, but the timing of these

losses. An asset that performs well when the market as a whole is doing poorly pro-

vides consumption insurance. For this reason, knowledge of the marginal distribution

of asset returns is not enough: dependence on the market matters. This basic idea

underlies the traditional CAPM model, which measures dependence by a scaled ver-

sion of the correlation between a given asset’s returns and those of the market: the

well-known CAPM β. In a world of normally distributed asset returns, or investors

who measure risk by the variance of their wealth or consumption streams, correlation

would be the appropriate measure of dependence. In the real world of heavy-tailed

returns, and investors who treat losses and gains asymmetrically, however, it can be

seriously misleading. In contrast, lower tail dependence directly concerns the prob-

ability that a given asset will suffer large losses, given that the market has. For
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investors concerned about large losses during bear markets, lower tail dependence

describes the risks they face.

This approach is similar in spirit to safety first because it assumes that investors

are not concerned with a general notion of variability, but primarily large negative

returns. Unlike Arzac and Bawa (1977), however, we do not assume investors only

care about preserving wealth once the probability of a large loss exceeds a critical

level, or that investors maximize expected wealth when the probability of a large loss

is below the critical level. In the following section we present a simple theoretical

model illustrating why, under standard assumptions, tail dependence is relevant for

portfolio choice.

3. Tail Dependence and Asset Returns: A Theoretical Example

To illustrate the importance of tail dependence for risk averse investors, we con-

sider a theoretical example based on the “rare disaster framework” introduced by Ri-

etz (1988) and later employed by Barro (2006) and Gabaix (2011). Following Gabaix

(2011), we assume that the representative agent is endowed with consumption Ct and

has CRRA utility, yielding the pricing equation

Pit = Dit

∞∑

j=1

e−ρj
Et

[(
Ct+j

Ct

)−ξ (
Dit+j

Dit

)]
(2)

where ξ is the coefficient of relative risk aversion, ρ is the rate of time preference, Pit

is the price of stock i in period t and Dit the corresponding dividend.8

In each period there is a small probability p of a consumption disaster. Conditional

on no disaster, consumption follows a random walk in logs

No Consumption Disaster ⇒
Ct+1

Ct

= eδ(1 + ǫt+1) (3)

with expected growth rate δ. The random variable ǫt represents fluctuations in con-

sumption not caused by a disaster, and is independent and identically distributed

across t with mean zero. In a disaster, consumption falls below its expected level by

8We use CRRA utility for analytical tractability only. The qualitative results of this section
should continue to hold so long as marginal utility increases rapidly as consumption becomes very
low.
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a deterministic proportion 0 < B < 1

Consumption Disaster ⇒
Ct+1

Ct

= eδ(1− B). (4)

To distinguish consumption disasters from other fluctuations, we assume that −B <

ǫt. That is, a consumption disaster is strictly worse than any other outcome. To

induce tail dependence with consumption, we specify dividends as follows: If no

consumption disaster occurs in period t, then no dividend disasters occur. In this

case the dividends of stock i follow a random walk in logs

No Dividend Disaster ⇒
Dit+1

Dit

= eαi(1 + uit+1) (5)

with expected growth rate αi. The random variable uit represents fluctuations in the

dividends of stock i that are not caused by a disaster. We assume that uit is mean

zero, independent and identically distributed over time, but allow correlation with

ǫt and ujt for all j. If a consumption disaster has occurred, stock i experiences a

dividend disaster with probability χi. In such a disaster, the dividends of stock i fall

below their expected level by a deterministic proportion 0 < Fi < 1

Dividend Disaster ⇒
Dt+1

Dt

= eαi(1− Fi). (6)

As we did for consumption, to distinguish dividend disasters from other fluctuations

we assume that −F < uit. A dividend disaster is strictly worse than any other

outcome.

Figure 1 presents a schematic summary of all possible outcomes for consumption

and dividends in period t + 1 conditional on period t information. Our setup has

two important features. First, a dividend disaster can only occur in period t + 1 if

a consumption disaster has occurred in this period.9 Second, disasters are strictly

worse than any other outcomes. Under these conditions, χi is the tail dependence

between Ct+1 and Dt+1 conditional on period t information.

Although the processes we specify for consumption and dividends are similar to

those used by Gabaix (2011), they differ in three important respects. First, the

9This framework reflects the fact that even during a severe recession, not all firms will experience
sharp decreases in their value. For simplicity, we do not allow for idiosyncratic dividend disasters,
but these could be added without substantially changing the relationship between χ and returns.
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probability of disaster in our model is constant rather than time varying. Second,

Fi and B are deterministic constants rather than time-varying random variables Fit

and Bt. Finally, as our interest is in examining the effects of tail dependence, we

parameterize our model directly in terms of χi rather than through Fit and Bt.

We now evaluate the pricing relationship given in Equation 2 using the dividend

and consumption processes from Figure 1. Since

Et

[(
Ct+1

Ct

)−ξ
Di,t+1

Dit

]
= eαi−ξδ

{
(1− p)E

[
(1 + uit)

(1 + ǫt)ξ

]
+ p

[
1− χiFi

(1− B)ξ

]}
, (7)

proceeding recursively by the law of iterated expectations, we have

Pit = Dit

∞∑

j=1

e−ρj
Et

[(
Ct+1

Ct

)−ξ (
Dit+1

Dit

)]j

= Dit

[{
1− eαi−ξδ−ρ

[
(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ

]}−1
− 1

]

where we define

µi(ξ) ≡ E

[
(1 + uit)

(1 + ǫt)ξ

]
. (8)

Since uit and ǫt are iid over time, µi(ξ) does not depend on t. Differentiating with

respect to χi,

∂Pit

∂χi

=
−eαi−ξδ−ρpFi(1− B)−ξDit

{1− eαi−ξδ−ρ [(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ]}2
< 0 (9)

so that an increase in tail dependence lowers an asset’s price. Agents are willing to

pay a premium for an asset with low tail dependence.

To calculate expected returns, first note that our expression for Pit depends only

on i, not t. Hence, in this model,

Pit/Dit = Pit+1/Dit+1 ≡ Ki(ξ) (10)

where

Ki(ξ) =
{
1− eαi−ξδ−ρ

[
(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ

]}−1
− 1. (11)
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Using this fact,

Rit+1 =
(Pit+1/Dit+1)Dit+1 +Dit+1

(Pit/Dit)Dit

=

(
Ki(ξ) + 1

Ki(ξ)

)
Dit+1

Dit

(12)

and since

Et

[
Di,t+1

Dit

]
= eαi (1− pχiFi) , (13)

expected returns are given by

Et[Rit+1] =

(
Ki(ξ) + 1

Ki(ξ)

)
eαi (1− pχiFi)

= eρ+ξδ

[
1− pχiFi

(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ

]
.

Differentiating,

∂Et[Rit+1]

∂χi

= eρ+ξδp(1− p)Fi

{
(1− B)−ξ − µi(ξ)

[(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ]2

}
(14)

so the sign of the relationship between tail dependence and expected returns depends

on the relative magnitudes of µi(ξ) and (1 − B)−ξ. When (1 − B)−ξ is greater than

µi(ξ), assets with high tail dependence have higher unconditional expected returns to

compensate for their poor performance in a disaster. This condition is easily satisfied

in practice as we have defined a consumption disaster to be strictly worse than an

ordinary consumption fluctuation. In the calibration discussed below, for example,

we calculate µi(ξ) to be just over 1 and (1− B)−ξ around 3 or 4.

Subject to the above condition, high tail dependence assets yield higher uncondi-

tional expected returns because they perform poorly in a disaster. Conditional on a

consumption disaster in period t+ 1,

Et [Di,t+1/Dit |Consumption Disaster at t+ 1] = eαi (1− χiFi) . (15)

Hence,

RD
i,t+1 ≡ Et [Ri,t+1 |Consumption Disaster at t+ 1]

= eρ+ξδ

[
1− χiFi

(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ

]
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and
∂

∂χi

RD
i,t+1 =

−eρ+ξδFi(1− p)µi(ξ)

[(1− p)µi(ξ) + p(1− χiFi)(1− B)−ξ]2
< 0 (16)

since µi(ξ) > 0. Thus, conditional on disaster assets with lower tail dependence

experience higher returns. In exchange for this superior performance during a disaster,

low tail dependence assets sacrifice unconditional expected returns.

To get a sense of the magnitudes involved, we consider a simple calibration ex-

ercise. Following Barro (2006), we take ξ = 3, 4 and ρ = 0.03. To estimate δ and

µi(ξ) we use U.S. consumption and dividend data from 1949–1999, yielding δ = 0.021,

µi(3) = 1.001 and µi(4) = 1.002. Full details of our calibration appear in Appendix

A. To calibrate the disaster parameters p, F, and B, we look to the historical data pre-

sented in Barro (2006). Empirically, the probability of a consumption disaster, defined

as a contraction of at least 15%, is approximately p = 0.017 while the average size of a

disaster is 29%. Adjusting for trend growth gives a value for B of approximately 0.3.

The relevant value from an investor’s perspective, however, is not the average size of

a disaster because risk aversion means that large disasters matter more than small

ones (Barro (2006)). Hence we take (B,F ) = (0.3, 0.3), (0.3, 0.4), (0.4, 0.3), (0.4, 0.4).

Figure 2 plots lower tail dependence, χi, against expected returns Et[Ri,t+1] at the

parameter values given above. Depending on ξ, F , and B the value to an investor of

eliminating tail dependence, measured in forgone expected returns, ranges from just

over 1% to nearly 5%. The more risk averse the investor, and the larger the disaster,

the more valuable eliminating tail dependence becomes. The pattern is reversed for

expected returns conditional on a consumption disaster, as shown in Figure 3.

Intuitively these results are straightforward. Under risk aversion, marginal utility

increases as consumption falls: although consumption disasters are rare, investors

weight them heavily when choosing assets. Because they perform well during a disas-

ter, low-χ assets provide highly desirable consumption insurance and hence command

a high price. Investors are willing to sacrifice overall returns in exchange for extreme

downside protection. Building on the intuition from this simple model, we proceed

to estimate lower tail dependence for individual stocks and stock portfolios, using

the market index as a proxy for consumption. The following section describes our

estimation procedure.
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Figure 2: Unconditional expected returns and tail dependence
Figure 2 shows unconditional expected returns versus lower tail dependence for various values of
ξ, the coefficient of relative risk aversion, B, the magnitude of a consumption disaster, and F , the
magnitude of a dividend disaster. In each panel, the discount rate is ρ = 0.03, the probability of
disaster is p = 0.017 and the expected growth rate of consumption is δ = 0.021.
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Figure 3: Expected returns and tail dependence conditional on disaster
Figure 3 graphs expected returns versus lower tail dependence, conditional on a consumption disaster
occurring, for various values of ξ, the coefficient of relative risk aversion, B, the magnitude of a
consumption disaster, and F , the magnitude of a dividend disaster. In each panel, the discount rate
is ρ = 0.03, the probability of disaster is p = 0.017 and the expected growth rate of consumption is
δ = 0.021.
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4. Estimating Tail Dependence

There are many approaches to estimating tail dependence.10 At one extreme are

fully parametric methods. Tail dependence, upper or lower, is a property of the cop-

ula joining a pair of random variables. With a parametric model of the marginal

distributions and dependence structure, we can estimate χ by maximum likelihood.

If the distributional specification is correct, this method is consistent and asymptot-

ically efficient. Unfortunately, there is no consensus on the underlying distribution

of returns. If we specify the wrong distribution, our answers could be severely bi-

ased. For a particularly stark example, consider the widespread use of the Gaussian

copula to model risk in the run-up to the recent financial crisis. As was known well

before 2008 (Embrechts et al., 2002), this model rules out the possibility of lower tail

dependence.

At the other extreme, we might prefer a fully non-parametric model, using the

empirical CDF to transform X and Y to common marginals S and T , and taking

a sample analogue of lims→∞ P(S > s|T > s) based on a sufficiently high threshold

s∗. The problem with this approach is that tail dependence, by definition, concerns a

region of the joint distribution from which we observe very few datapoints. Although

the empirical CDF is a uniformly consistent estimator of the true marginal distribu-

tion, for any fixed sample size it must necessarily underestimate the thickness of the

tails. To put it another way, any finite sample must have a lowest and highest value,

but this does not imply that the underlying distribution is bounded. Even ignoring

the problem of the marginals, any threshold s∗ that seems high enough to give a

plausible estimate of χ must exclude the vast majority of observations.

This is a classic bias-variance tradeoff. Fully parametric methods make much

more efficient use of the information contained in the sample but are sensitive to

the assumed distribution. Nonparametric methods, on the other hand, make few

assumptions but yield wildly variable estimates as they try to study a region of the

empirical distribution that contains practically no observations. We take a different

approach. By working with monthly minimum returns, we exploit an important limit

result from Extreme Value Theory (EVT) that provides a convenient and flexible

estimator for the lower tail dependence between a given portfolio and the market.

The approach used here was first described by Coles et al. (1999) in the context of

10For a detailed discussion of the many possibilities, their advantages and disadvantages, see
Frahm et al. (2005).

16



meteorological data, and is related in greater length by Coles (2001). Beirlant et al.

(2004) and Reiss and Thomas (1997) provide comprehensive treatments of EVT that

discuss statistical issues.

The idea behind EVT is to describe the probabilistic behavior of unusually large

or small observations. This can be achieved in two different ways: by studying block

maxima or threshold exceedances.11 The block approach analyzes the distribution of

the maximum of a sequence of random variables X1, . . . , Xn as n approaches infinity,

while the threshold approach concerns the distribution of X|X > s as the threshold

s approaches infinity. These alternatives are in fact two ways of looking at the same

question: how does the tail of the distribution of X behave? For our purposes, block

methods are more appropriate as they are more robust to volatility clustering, a

well-documented feature of asset returns (Cont, 2001).12

The main advantage of EVT is that it is not necessary to know the underlying dis-

tribution of asset returns to describe the distribution of univariate extremes. In much

the same way as the Central Limit Theorem establishes the asymptotic normality of

sample averages, its EVT analogue, the Extremal Types Theorem, fully characterizes

the limiting distribution of univariate sample maxima. Thus, EVT offers a way to

study the tails of a distribution based on the observed extremes. Combining this

with an assumption about the behavior of joint extremes yields an estimator of lower

tail dependence. Another potential advantage of EVT is that it may help investors

avoid over-reacting to tail events. In the aftermath of the financial crisis, for example,

some investors may have become too sensitive to sharp movements in asset prices. By

providing a systematic tool for studying the lower tail of the joint distribution of an

asset’s returns with those of the market, EVT can help investors avoid the economic

cost associated with näıve reactions to extreme events.

The key result from EVT that we use here is the Extremal types theorem.

Theorem 4.1 (Extremal Types Theorem). Let X1, X2, . . . , Xn be weakly dependent,

identically distributed, scalar random variables and define Mn ≡ max{X1, . . . , Xn}.

If there exist sequences of constants {an > 0}, {bn} such that (Mn − bn)/an has a

11It is traditional to phrase results in terms of maxima. To study minima we simply need to
multiply by negative one to convert negative returns to positive losses.

12Coles (2001) provides an intuitive discussion of the differing effects of temporal dependence on
block versus threshold methods.
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proper limit distribution, that distribution is of the form

G(z) = exp

{
−

[
1 + γ

(
z − µ

σ

)]−1/γ
}

(17)

for 1 + γ(z − µ)/σ > 0, with parameters satisfying −∞ < µ < ∞, σ > 0 and

−∞ < γ < ∞.

Equation 17 gives the Generalized Extreme Value Distribution, a three-parameter

family with centrality parameter µ, scale parameter σ, and shape parameter γ, which

describes the tail thickness of the underlying distribution. Positive values of γ yield

the Fréchet Distribution, indicating a very thick upper tail (polynomial decay). As

γ approaches zero, the GEV reduces to the Gumbel Distribution and the upper tail

exhibits exponential decay. Negative values of γ yield the reversed Weibull distribu-

tion and indicate a bounded upper tail. When γ is non-negative and the underlying

distribution is symmetric, the shape parameter γ shares an important relationship

with the tail index, κ, of the underlying distribution, namely κ = 1/γ. For example,

if γ = 0.5, the underlying distribution has two finite moments.

Recall that the definition of lower tail dependence assumes common marginal

distributions. Although strictly speaking the Extremal Types Theorem is a limit

result, it immediately suggests a practical estimation procedure for the margins. Let

x1, x2, . . . , xN denote daily returns for some portfolio and y1, y2, . . . , yN denote daily

returns for the market index. Our strategy is to split the sample into non-overlapping

blocks of sufficient length that we can model the maximum loss in each block as GEV

and use this to transform the extremes to common marginals without specifying the

underlying distribution of returns.

Consider blocks of length k where M denotes the total number of blocks of length

k, that is M = ⌊N/k⌋. If extra observations remain, simply discard those at the

beginning of the series. Now let xi denote the minimum return on portfolio x in block

i and yi denote the minimum return on the market index in the same block, where

i = 1, . . . ,M . Note that although xi and yi come from the same block, they may not

correspond to the same day. To convert negative block minimum returns to positive

block maximum losses, we multiply through by negative one, yielding {(−xi,−yi)}
M
i=1.

Now, if k is sufficiently large, the marginal distribution of block maximum losses

should be approximately GEV by the Extremal Types Theorem. Thus, we can model

the univariate series {−xi}
M
i=1 and {−yi}

M
i=1 according to Equation 17 and estimate
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parameters (µ̂x, σ̂x, γ̂x) and (µ̂y, σ̂y, γ̂y) via maximum likelihood. Details appear in

Appendix C.1.13

Using the maximum likelihood estimates from the univariate models, we can trans-

form the block maximum losses for asset x and the market index y to common

marginals. Although the particular distribution to which we transform does does

not affect estimated tail dependence, a convenient choice is the unit Fréchet, given

by

F (z) = exp(−1/z) (18)

for z > 0. Because this is a GEV distribution with µ = σ = γ = 1 (see Equation

17), the transformation is straightforward (see Appendix C.2). Define the block

maximum losses after transformation to unit Fréchet by {−x̃i}
M
i=1 and {−ỹi}

M
i=1.

We can now use the transformed block maximum losses to estimate the tail de-

pendence between asset x and the market y. Just as the shape parameter γ of the

limiting distribution of univariate maxima fully characterizes the tail of the underly-

ing distribution of returns, the tail dependence parameter of the limiting distribution

of transformed joint maxima {(−x̃i,−ỹi)}
M
i=1 corresponds to that between the port-

folio returns x and the market index y. Unfortunately, while there is a single limiting

distribution for normalized block maxima, the same is not true of joint maxima. In-

stead, there is a family of limiting distributions characterized by a fairly complicated

integral equation. To proceed any further, we need a parametric assumption. For

convenience, we work with the simplest possible limit, the bivariate logistic distribu-

tion. Two random variables X and Y with unit Frećhet margins are said to follow a

bivariate logistic distribution if their joint distribution is given by

G(x, y) = exp
{
−
(
x−1/α + y−1/α

)α}
(19)

for x, y > 0 and α ∈ [0, 1]. Because the margins are already specified, this is a one

parameter distribution and the single parameter α controls the strength of depen-

dence. When α = 1 the two margins are asymptotically independent; when α = 0

13It may seem as though we have ignored the normalizing constants from the Extremal Types
Theorem when asserting that the un-normalized block maximum losses may be modeled according
to Equation 17. This does not present a problem: when we assume that the limit result holds in
a finite sample, the normalizing constants can simply be absorbed into the parameters. That is, if
(Z−bn)/an follows a generalized extreme value distribution, so does Z, only with different parameter
values.
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they are perfectly asymptotically dependent. The lower tail dependence parameter χ

is related to α according to

χ = 2− 2α. (20)

When α = 0 we have χ = 1; when α = 1, χ = 0. Thus, the final step of our

estimation procedure is to fit the bivariate logistic model given by Equation 19 to

the transformed block maximum losses {(−x̃i,−ỹi)}
M
i=1 by maximum likelihood. The

resulting estimate α̂ can be converted to χ̂ = 2− 2α̂ using the invariance property of

maximum likelihood estimators. Details appear in Appendix C.3.

In the analysis that follows, we estimate the lower tail dependence between in-

dividual portfolios and the market index using the three-step maximum likelihood

procedure described above with blocks of 22 trading days.14 Although one-step esti-

mation is theoretically more efficient, it is much more difficult to find good starting

values for seven parameters at once than for blocks of three, three and one parameter.

As we ultimately compute χ for tens of thousands of portfolios, starting values were a

major concern. Under relatively weak dependence assumptions our procedure should

produce good estimates of lower tail dependence. However, we do not report stan-

dard errors, as correcting them for temporal dependence would require much stronger

assumptions. Appendix D reports robustness tests for our estimator.

To summarize, our procedure for estimating lower tail dependence is as follows:

1. Partition the daily returns on the market index and the individual stock or

portfolio into 22-day blocks and select the minimum return in each block for

each series.

2. Estimate the GEV parameters µ, σ, and γ as described in Appendix C.1

separately for the block minima of the market index and those of the individual

stock or portfolio.

3. Use the GEV parameter estimates to transform the block minima for both series

to unit Frećhet, as described in Appendix C.2.

4. Estimate α as described in Appendix C.3 and convert it to χ using Equation

20.

14Robustness tests described in Appendix D show that our results are not sensitive to the choice
of block length.
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5. Empirical Results

We estimate the lower tail dependence between portfolios formed from constituents

of the Dow Jones Industrial Average (DJIA) and the market portfolio, proxied by the

S&P 500 index, using the method described in Section 4. We employ blocks of

22 trading days throughout and our data consist of daily returns from the CRSP

database for constituents of the DJIA and the S&P 500 index from October 30, 1986

– December 31, 2008.15 When calculating the CAPM β for purposes of comparison,

we use daily returns on a three-month U.S. Government T-bill for the risk-free rate.

For χ to have any chance of being useful in portfolio selection, it must satisfy two

minimal conditions. First, it must capture different information from more traditional

risk measures. Second, it must be relatively stable over time. To address these points,

we begin by estimating χ, the extreme value shape parameter γ, and a variety of other

risk measures for the individual assets listed in Table 1 over the full October 30, 1986

– December 31st, 2008 sample period. This gives 5,592 trading days, and 254 blocks

of 22 trading days each after discarding the first four observations. Table 2 reports

descriptive statistics and risk measures for all of the firms in the sample. A graphical

presentation of this information appears in Figure 4, along with rankings for each

risk measure. Firms are sorted in descending order by their values of χ, ranging from

General Electric (χ = 0.62) at the upper right of the first column to Eastman Kodak

(χ = 0.34) at the bottom left of the first column.

Figure 5 examines the relationship between χ and the other risk measures from

Table 2. The values in each panel of the upper-left portion of the figure give the

correlation coefficient between the two risk measures that intersect in that panel. For

example, the value of .25 for β and χ is based on estimating β and χ for each stock

using the entire sample period, and then calculating the correlation between these

estimates. The size of each value is directly proportional to the absolute value of the

correlation coefficient. Panels with a shaded background indicate a relationship that

is statistically significant at the 10% level. The panels in the lower-right portion of

the figure show the corresponding plots for each combination of risk measures after

centering and scaling. Thus, the slope of the line gives the correlation between one

15October 30, 1986 is the first trading day for which we have data for all of the firms in our sample.
CitiGroup, formed as a merger of Citicorp and Travelers Group in 1998, has permno 70519 in the
CRSP database. Prior to the merger, that permno is associated with Travelers Group, Travelers,
Primerica, Commercial Credit Group, and Commercial Credit. The first available observation in
the CRSP database for Commercial Credit is October 30, 1986.
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Table 1: Key to DJIA constituents.
Table 1 lists the firms included in this study, their permnos from the CRSP database, and ticker
symbols.

Permno Ticker
3M 22592 MMM
AIG 66800 AIG
Alcoa 24643 AA
Altria 13901 MO
American Express 59176 AXP
AT&T Corp 10401 T
AT&T Inc 66093 T
Boeing 19561 BA
Caterpillar 18542 CAT
Chevron 14541 CVX
Citigroup 70519 C
Coca-Cola 11308 KO
Disney 26403 DIS
Dupont 11703 DD
Exxon Mobil 11850 XOM
GE 12060 GE
GM 12079 GM
Goodyear 16432 GT
Home Depot 66181 HD
Honeywell Intl 10145 HON
HP 27828 HPQ
IBM 12490 IBM
Intel 59328 INTC
International Paper 21573 IP
Johnson & Johnson 22111 JNJ
JP Morgan Chase 47896 JPM
Kodak 11754 EK
McDonalds 43449 MCD
Merck 22752 MRK
Microsoft 10107 MSFT
Pfizer 21936 PFE
Procter & Gamble 18163 PG
Sears 14322 S
Union Carbide 15659 UK
United Tech 17830 UTX
Verizon 65875 VZ
Wal Mart 55976 WMT
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Table 2: Summary Statistics and Risk Measures
Table 2 presents summary statistics and risk measures for all firms for which a full sample of data is
available (October 30, 1986 – December 31, 2008). The first four columns give the mean, standard
deviation, skewness, and kurtosis of daily returns. The following four present Markowitz’s semi-
variance, the Sharpe Ratio, CAPM β, and coskewness. The rightmost columns display the extreme
value tail index γ and parameter χ. Both extreme value statistics are calculated by maximum
likelihood by the method of block minima, using 254 blocks of 22 days each. All other statistics are
based on a sample size of 5592 daily returns, except for Altria which has one observation fewer (see
Data Notes in Appendix B). The dependence statistics, Coskew, β, and χ use daily returns for the
S&P 500 as the market portfolio. Both Coskew and β use the one month rate on a U.S. Government
T-bill as the risk-free rate. Values appear rounded to two significant digits.

µ σ µ3 µ4 S Sharpe β Coskew γ χ
EK 7.6e-05 0.021 -0.450 25.0 2.3e-04 0.057 0.92 -2.2e-06 0.41 0.34
INTC 1.0e-03 0.028 -0.096 8.9 3.9e-04 0.590 1.40 -1.5e-06 0.31 0.34
GM 1.0e-04 0.026 0.450 27.0 3.1e-04 0.064 1.20 -1.3e-06 0.34 0.37
HPQ 7.6e-04 0.025 0.120 9.3 3.1e-04 0.470 1.20 -1.6e-06 0.23 0.37
MO 7.7e-04 0.019 -0.340 15.0 1.8e-04 0.660 0.67 -1.3e-06 0.29 0.38
PFE 6.2e-04 0.019 -0.160 7.4 1.7e-04 0.530 0.88 -1.4e-06 0.21 0.39
GT 1.8e-04 0.026 -0.150 12.0 3.4e-04 0.110 1.20 -2.7e-06 0.33 0.40
MRK 5.7e-04 0.018 -0.690 16.0 1.7e-04 0.500 0.84 -1.1e-06 0.27 0.40
CAT 6.9e-04 0.020 -0.160 9.8 2.0e-04 0.540 0.98 -1.7e-06 0.27 0.41
MCD 6.4e-04 0.017 -0.085 8.3 1.5e-04 0.590 0.75 -1.4e-06 0.24 0.41
IBM 4.4e-04 0.019 -0.057 13.0 1.7e-04 0.370 0.96 -1.7e-06 0.29 0.42
JNJ 6.7e-04 0.016 -0.240 12.0 1.2e-04 0.680 0.75 -1.4e-06 0.18 0.42
WMT 7.4e-04 0.019 0.170 6.4 1.7e-04 0.620 0.96 -6.2e-07 0.17 0.42
HD 1.0e-03 0.022 -0.380 13.0 2.5e-04 0.710 1.20 -1.6e-06 0.24 0.43
MSFT 1.2e-03 0.024 -0.160 13.0 2.7e-04 0.810 1.20 -2.0e-06 0.18 0.45
MMM 4.9e-04 0.016 -0.720 21.0 1.2e-04 0.500 0.81 -2.0e-06 0.25 0.45
AA 5.2e-04 0.023 0.150 14.0 2.5e-04 0.360 1.10 -1.9e-06 0.25 0.45
CVX 6.4e-04 0.016 0.120 15.0 1.3e-04 0.610 0.79 -1.4e-06 0.22 0.46
BA 4.9e-04 0.019 -0.058 9.9 1.9e-04 0.400 0.86 -1.1e-06 0.27 0.46
PG 6.9e-04 0.016 -1.600 50.0 1.4e-04 0.660 0.74 -2.0e-06 0.25 0.47
VZ 4.6e-04 0.017 0.240 11.0 1.4e-04 0.420 0.82 -1.1e-06 0.23 0.48
T 5.4e-04 0.018 0.140 14.0 1.6e-04 0.470 0.88 -1.4e-06 0.23 0.48
KO 6.2e-04 0.017 -0.073 20.0 1.3e-04 0.600 0.79 -1.5e-06 0.24 0.50
UTX 6.6e-04 0.018 -0.650 19.0 1.6e-04 0.590 0.91 -1.5e-06 0.21 0.51
DIS 5.7e-04 0.020 -0.230 18.0 2.1e-04 0.440 1.10 -2.0e-06 0.28 0.51
XOM 6.7e-04 0.016 -0.030 22.0 1.3e-04 0.660 0.84 -1.6e-06 0.21 0.52
HON 5.4e-04 0.021 0.260 29.0 2.2e-04 0.400 1.10 -2.4e-06 0.33 0.53
DD 4.0e-04 0.018 -0.140 8.8 1.6e-04 0.350 0.94 -1.6e-06 0.24 0.53
JPM 6.1e-04 0.024 0.120 14.0 2.8e-04 0.400 1.40 -2.4e-06 0.25 0.54
C 6.7e-04 0.026 1.800 58.0 3.1e-04 0.400 1.50 -1.9e-06 0.25 0.55
IP 2.4e-04 0.020 -0.320 16.0 2.0e-04 0.190 0.98 -2.7e-06 0.26 0.56
AIG 1.9e-04 0.027 -2.400 110.0 3.9e-04 0.110 1.30 -1.5e-06 0.33 0.58
AXP 5.0e-04 0.023 -0.210 12.0 2.6e-04 0.350 1.40 -2.2e-06 0.22 0.59
GE 5.5e-04 0.018 -0.055 11.0 1.5e-04 0.490 1.20 -1.7e-06 0.30 0.62
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Figure 4: Centered and scaled risk measures and rankings
Figure 4 presents normalized risk measures and corresponding rankings for all firms for which a full
sample of data is available (October 30, 1986 – December 31, 2008). Each column corresponds to a
risk measure and each row to a DJIA constituent. The position of a circle shows how far a firm’s risk
measure lies from the average of that risk measure over all firms, measured in standard deviations.
Risk rankings, from low to high, appear within the circles. Numerical values for the risk measures
appear in Table 2.
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risk measure and another. We see that χ is not significantly correlated with γ, the

Sharpe ratio, β, semi-variance, or variance. Although it is positively correlated with

kurtosis and negatively correlated with coskewness, with correlation coefficients of

+.35 and -.36, these values are low enough that χ cannot be said to merely proxy for

other risk measures. Similar information can be gleaned from Figure 4. If any two

of the risk measures provided similar information about the riskiness of stock market

returns, they would have similar patterns in rankings. We see that this is not the

case: χ differs substantially from all of the other risk measures.

While Figure 5 uses data from the full sample period to compare risk measures,

Figures 6 and 7 use data from only the first half, 1987–1997, and second half, 1998-

2008. In the first half of the sample, χ is significantly negatively correlated with

variance and semi-variance but unrelated to other risk measures. In the second half

of the sample, χ is significantly positively correlated with the CAPM β, but unrelated

to other risk measures. Taken together, Figures 5–7 suggest that there is no robust

pattern of correlation between χ and other risk measures. To ensure that our results

are robust, however, we adjust for a possible relationship between χ and the CAPM

β in the results described below.

Figure 8 addresses the question of whether χ is stable over time by comparing

estimates of each risk measure calculated for the first half of the sample period,

1987–1997, to those calculated for the second half of the sample period, 1998–2008.

The graphs show χ is about stable as β, variance, and semivariance, and considerably

more stable than γ, Sharpe ratio, coskewness, and kurtosis.

Our preliminary results suggest that χ captures different information than other

risk measures and is relatively stable over time. The real question, however, is whether

it can be used to construct portfolios that will weather severe market downturns. To

answer this question, we carry out the following out-of-sample portfolio selection

exercise. First, we specify a one-year test period, and form 10,000 randomly selected,

equally weighted portfolios from the DJIA constituents the day before the start of

the test period. For each portfolio, we then estimate χ using data from a formation

period beginning on October 30, 1986 and ending the day before the start of the

test period. Using the estimated values, we sort portfolios into three groups on the

basis of χ: low-χ (lowest 10%), middle-χ (middle 80%), and high-χ (highest 10%).

Finally, we calculate the annualized return for each portfolio in the test period, and

average the results across each χ-sorted group. This allows us to address the question
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Figure 5: Correlation between risk measures: full sample.
Figure 5 presents pairwise plots and correlation coefficients between risk measures for all firms for
which a full sample of data is available (October 30, 1986 – December 31, 2008). The panels above
the diagonal give the numerical value of the correlation between risk measures, with the size of
each value proportional to the strength of correlation between the corresponding measures. Shaded
panels indicate a correlation that is significantly different from zero at the 10% level. The panels
below the diagonal are centered and scaled so that the slope of the least squares fit, given as a solid
line, is equal to the correlation between the two risk measures and all plots are on a common scale.
Numerical values for the risk measures are given in Table 2.
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Figure 6: Correlation between risk measures: 1987–1997.
Figure 6 presents pairwise plots and correlation coefficients between risk measures for all firms for
which a full sample of data is available (October 30, 1986 – December 31, 2008). The panels above
the diagonal give the numerical value of the correlation between risk measures, with the size of
each value proportional to the strength of correlation between the corresponding measures. Shaded
panels indicate a correlation that is significantly different from zero at the 10% level. The panels
below the diagonal are centered and scaled so that the slope of the least squares fit, given as a solid
line, is equal to the correlation between the two risk measures and all plots are on a common scale.
Numerical values for the risk measures are given in Table 2.
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Figure 7: Correlation between risk measures: 1998–2008.
Figure 7 presents pairwise plots and correlation coefficients between risk measures for all firms for
which a full sample of data is available (October 30, 1986 – December 31, 2008). The panels above
the diagonal give the numerical value of the correlation between risk measures, with the size of
each value proportional to the strength of correlation between the corresponding measures. Shaded
panels indicate a correlation that is significantly different from zero at the 10% level. The panels
below the diagonal are centered and scaled so that the slope of the least squares fit, given as a solid
line, is equal to the correlation between the two risk measures and all plots are on a common scale.
Numerical values for the risk measures are given in Table 2.
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of how portfolios with different estimated values of lower tail dependence perform

out-of-sample.

We carry out this procedure for ten one-year test periods, 1999–2008, for 10,000

five and ten-stock portfolios. In forming portfolios we exclude firms that were listed

on the DJIA fewer than five years before the start of the test period to avoid potential

selection problems.16 Table 3 shows the annualized mean return for the formation

period and the one-year test period for the five-, and ten-stock χ-sorted portfolios

from 1999–2008. In general, the low-χ portfolios provide higher returns than the

high-χ portfolios. For example, the five-stock, low-χ portfolios have higher annual

returns than the five-stock, high-χ portfolios for eight of the ten years in the sample.

The cumulative return for the five-stock, low-χ portfolios is 44%, compared to -8%

for the five-stock, high-χ portfolios, and -25%, +19%, and +19% for the S&P 500

Index, DJIA, and an equal-weighted index of the stocks in our sample, respectively.

From 1999–2008, there are four years in which the annual return on the DJIA and the

S&P 500 was negative, namely 2000–2002, and 2008. For three of the four years, the

five-stock, low-χ portfolios have higher mean returns than the indexes, and middle

80% and upper 10% χ portfolios. The last row of Table 3 shows the mean cumulative

return from an investment strategy of going long the low-χ portfolios and funding

the long position with an offsetting short position in the high-χ portfolios. The

mean cumulative return is 20% for the five-stock portfolios and 13% for the ten-stock

portfolios.

Note that during 2008, when the market indexes fell 38%, the five-stock, and

ten-stock low-χ portfolios were down 32% and 33% while the high-χ portfolios fell

46% and 42%. Thus, the mean return on the low-χ portfolios was better than the

market index during 2008 while the mean return on the high-χ portfolios was worse

than the market index during 2008. The low-χ portfolios generally provide higher

returns than the high-χ portfolios when the market returns are low, as hypothesized.

However, the low-χ portfolios outperformed the high-χ portfolios during most of the

16The selection criterion that firms were listed on the DJIA for five years prior to inclusion in
the sample eliminates Hewlett-Packard, Citigroup, Johnson & Johnson, and Wal-Mart from 1999 -
2002, and Microsoft, Intel, SBC, and Home Depot from 2000 – 2004. As an example of the potential
selection problem, the S&P 500 index had a total return of about 190% in the five years before
Microsoft and Intel were added to the DJIA in 1999. Those two firms, though, had total returns
over 1,000% during the same period. The purpose is to estimate the tail dependence of individual
firms with the market, and the high growth prior to index inclusion could distort the estimate of
tail dependence.
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sample period. For example, the five-stock, low-χ portfolios had higher mean returns

than the high-χ portfolios for five of the six years in which the S&P 500 and DJIA

had positive annual returns.

Table 4 shows the mean value of the CAPM β, return standard deviation, and

the Sharpe Ratio for the low-χ, middle-χ, and high-χ portfolios for the formation

period and out-of-sample test period for each year from 1999–2008. Since the low-χ

portfolios tend to have lower βs than the high-χ portfolios in both the formation

period and the test period, it is possible that their superior returns in down markets

may simply reflect this fact rather than their lower tail dependence. To rule this

out, we recalculated Table 4, using β-adjusted returns instead of raw returns. The

results appear in Table 5. Even after adjusting for β, our main conclusions from

above continue to hold: low-χ portfolios consistently outperform high-χ portfolios.

The cumulative mean return for the ten-year test period for the low-χ, five-stock

portfolios is 79% compared to 23% for the high-χ portfolios. The long/short strategy

yields a cumulative mean return of 20% for the five-stock portfolios. For the years in

which the indexes had negative returns, the low-χ portfolios had returns at least as

high as the high-χ portfolios for three of the four years.

Because of its unusually low returns, 2008 is of particular interest for investors

concerned about minimizing downside risk. To examine 2008 in more detail, we

construct χ-sorted portfolios on a monthly basis for this year. For each month, we

estimate χ using all available data prior to the first of the month, sort the portfolios

according to χ as above, and calculate the mean return for each group. Table 6

shows that once again low-χ portfolios consistently outperform the high-χ portfolios

and the indexes. For the eight months when the DJIA had negative returns, the low-χ

portfolios had higher mean returns in seven of the eight. The cumulative mean return

for the five-stock, low-χ portfolios is -30% compared to -44% for the high-χ portfolios,

and -38% for the indexes. The long/short strategy for the five-stock portfolios yields

a 10% return during 2008.

The theoretical example in Section 3 suggests that low-χ portfolios should have

relatively low returns on average to compensate for the decreased risk of extreme

losses when market returns are especially poor. Empirically we find low-χ portfolios

outperform high-χ portfolios overall and even when market returns are relatively

high. Although puzzling from the perspective of our model, these results for χ-

sorted portfolios are consistent with empirical research showing that low-β portfolios
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generally outperform high-β portfolios. In a sample of U.S. stocks from 1968–2008,

Baker et al. (2011) find that portfolios of lower-β stocks outperform those of higher-β

stocks by a wide margin. They suggest that a combination of behavioral factors and

limits on arbitrage may explain this strange result. Similarly, Frazzini and Pedersen

(2010) find portfolios that are long low-β assets and short high-β assets earn significant

excess returns across many asset classes and international markets. They attribute

the results to limits on leverage that force investors seeking high returns to bid up

the price of high-beta assets. Similar institutional and behavioral factors may explain

our results that low-χ portfolios outperform high-χ portfolios. In a similar vein, Ang

et al. (2006b, 2009) find stocks with high idiosyncratic volatility have lower returns

than stocks with low idiosyncratic volatility. Although our analysis focuses on tail

dependence between individual stocks and the market so it is not directly analogous

to their work on idiosyncratic stock volatility, our results are similar in spirit. In

both cases, the results are puzzling because the expected relationship between risk

and return does not hold.

Given that most portfolio optimization methods in common use do not consider

lower tail dependence, our empirical results are not especially surprising. Until a

large number of investors begin using EVT techniques, the benefits of reducing large

losses will not be fully priced. The real question, then, is why tail dependence has

not been more widely considered in spite of its clear relevance and the availability

of techniques to estimate it. One possible explanation comes from the literature on

information choice and rational inattention.17 Sims (2003), for example, develops

models in which constraints on agents’ information processing ability cause them to

act on forecasts inferior those that could be constructed from all available information.

Given the vast array of financial market data and portfolio optimization methods

available, investors will necessarily exclude some information. In particular, it is

possible rationally inattentive investors would favor well-established methods like

mean-variance portfolio optimization over more recently introduced concepts like tail

dependence.

17Veldkamp (2011) provides a comprehensive introduction to this literature.
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6. Conclusion

Our main conclusions are as follows. Theoretically, we show that χ contains im-

portant information for risk averse investors. In a simple consumption-based model,

lower tail dependence generates a considerable risk premium: investors require com-

pensation for holding assets that are likely to collapse in value during an economy-wide

disaster. Empirically, we find that χ is relatively stable over time and differs substan-

tially from other risk measures, including variance, semi-variance, skewness, CAPM

β, and the univariate EVT scale parameter γ. Although χ is significantly correlated

with kurtosis and coskewness, the correlation coefficients of +.35 and -.30 show that

χ is not simply a proxy for those two measures. Most importantly, low-χ portfolios

outperform the market index, the mean return of the stocks in our sample, and high-

χ portfolios in out-of-sample tests using data from 1999-2008. These results suggest

that lower tail dependence may be an valuable tool in portfolio selection, either used

on its own or in concert with more traditional risk measures.
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Appendix A. Calibration Details

This section details the calculation of δ and µi(ξ) in the calibration from Section

3 using annual U.S. consumption and dividend data from 1949–1999. We use this

period because it contains no consumption disasters and hence is appropriate to

calibrate ǫ and u, the non-disaster shocks to consumption and dividends. We measure

consumption by NIPA Table 2.3.5, Line 1 (Personal Consumption Expenditures in

Billions of Dollars) and dividends by NIPA Table 2.1 Line 15 (Personal Dividend

Income in Billions of Dollars), each put in per capita terms using historical U.S. census

data and deflated by the average annual consumer price index. Taking consecutive

ratios leaves us with fifty observations:

{
Ct+1

Ct

,
Dt+1

Dt

}1998

t=1949

(A.1)

To calibrate δ and α we use the method of moments estimators

δ̂ = log

[
1

50

1998∑

t=1949

Ct+1

Ct

]
= 0.021 (A.2)

α̂ = log

[
1

50

1998∑

t=1949

Dt+1

Dt

]
= 0.028 (A.3)

and approximate the error terms according to

ǫ̂t+1 = e−δ̂

(
Ct+1

Ct

− eδ̂
)

(A.4)

ût+1 = e−α̂

(
Dt+1

Dt

− eα̂
)

(A.5)

yielding the values in Table A.7. A time series plot of the errors appears in Figure

A.9 while a scatterplot along with summary statistics appears in Figure A.10. To

approximate µi(ξ) we use the empirical distribution of (ǫt+1, ut+1), so that

µ̂(ξ) =
1

50

1998∑

t=1949

1 + ǫ̂t+1

(1 + ût+1)
ξ
. (A.6)
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Table A.7: Calibration Error Terms
Table A.7 shows the error terms for consumption, ǫ and dividends u from calibration exercise. The
calibrated expected growth rate of consumption is δ̂ = 0.021 while that of dividends is α̂ = 0.028.

Year ǫ̂ û Year ǫ̂ û
1950 0.021 0.150 1975 -0.015 -0.125
1951 -0.032 -0.134 1976 0.022 0.080
1952 -0.005 -0.062 1977 0.011 0.036
1953 0.015 -0.017 1978 0.006 0.015
1954 -0.016 -0.009 1979 -0.030 -0.022
1955 0.042 0.083 1980 -0.057 -0.053
1956 -0.005 0.013 1981 -0.029 0.004
1957 -0.017 -0.042 1982 -0.022 -0.043
1958 -0.033 -0.078 1983 0.037 0.003
1959 0.026 0.032 1984 0.017 0.006
1960 -0.010 0.001 1985 0.019 0.001
1961 -0.016 -0.017 1986 0.016 0.030
1962 0.014 0.024 1987 0.001 -0.015
1963 0.004 0.022 1988 0.008 0.070
1964 0.025 0.064 1989 -0.007 0.119
1965 0.027 0.049 1990 -0.019 -0.023
1966 0.020 -0.042 1991 -0.035 -0.013
1967 -0.007 -0.030 1992 0.001 -0.028
1968 0.023 0.010 1993 -0.004 0.008
1969 -0.003 -0.059 1994 0.002 0.091
1970 -0.019 -0.087 1995 -0.009 0.010
1971 0.003 -0.053 1996 -0.003 0.095
1972 0.031 -0.000 1997 0.002 0.048
1973 0.010 0.012 1998 0.015 0.007
1974 -0.043 -0.036 1999 0.018 -0.094
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Figure A.9: Error terms from the calibration exercise
Figure A.9 shows time series plot of error terms from the calibration exercise. Shocks to dividend
growth, u, are far more volatile than shocks to consumption growth, ǫ.
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Figure A.10: Error terms from the calibration exercise.
Figure A.10 shows a scatterplot and summary statistics for error terms from the calibration exercise.
The shocks to dividend growth, u, and consumption growth, ǫ, are positively correlated, but u is far
more volatile.
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Appendix B. Data Notes

Missing Observation for Altria:. The NYSE suspended trading in Altria’s (Philip

Morris at the time) stock on May 25, 1994 while the company’s board of directors met

to decide whether to spin-off the company’s tobacco business. As trading resumed on

May 26, 1994 the CRSP return of -5.81% on this date represents the percentage change

in the stock price from May 24 to May 26. This explains the missing observation.

Appendix C. Estimating Tail Dependence – Technical Details

Appendix C.1. Likelihood for the Block Maximum Losses

Consider a series of block maxima {zi}
M
i=1. According to Equation 17, the individ-

ual block maxima are approximately GEV if the blocks are sufficiently long. Provided

the series is stationary and satisfies a weak dependence condition, estimation based

on a likelihood that assumes independence will still produce consistent estimates,

although the usual standard errors are invalid. Thus we write the log-likelihood as

ℓ(µ, σ, γ) = −M log σ − (1 + 1/γ)
M∑

n=i

log

[
1 + γ

(
zi − µ

σ

)]

−

M∑

n=i

[
1 + γ

(
zi − µ

σ

)]−1/γ
(C.1)

defined wherever 1 + γ(zn − µ)/σ > 0 for all i = 1, . . . ,M . This expression follows

from Equation 17 by differentiating with respect to z to yield the probability density

function, taking the product of this result over all i and using the natural logarithm

to convert products into sums.18

Appendix C.2. Transforming to Standard Fréchet Marginals

Suppose that a random variable Z follows a generalized extreme value distribution.

Then,

Z̃ ≡ f(Z) =

[
1 + γ

(
Z − µ

σ

)]1/γ
(C.2)

18For the case of γ = 0 the likelihood requires a slightly different treatment. However real market
data, in our experience, tend to have γ > 0, corresponding to fat tails. In particular, all of our
estimates of γ from this study are well above zero.
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is unit Fréchet. To see why this is the case, we use the C.D.F. technique for trans-

forming a random variable. Thus, using Equation 17,

P(Z̃ ≤ z) = P
(
Z ≤ f−1(z)

)
= G

(
f−1(z)

)

= exp

{
−
[
1 +

γ

σ

(
f−1(z)− µ

)]−1/γ
}

= exp

{
−

[
1 +

γ

σ

([(
σ

γ

)
(zγ − 1) + µ

]
− µ

)]−1/γ
}

= exp(−1/z)

Appendix C.3. Bivariate Logistic Likelihood

The pdf corresponding to Equation 19 is given by cross partial derivative of G,

that is

g(x, y) =
∂

∂x∂y
G(x, y)

Thus,

g(x, y) = e−V (VxVy − Vxy) (C.3)

where

V =
(
x−1/α + y−1/α

)α
(C.4)

Vx = −
(
x−1/α + y−1/α

)α−1
x−(α+1)/α (C.5)

Vy = −(x−1/α + y−1/α)α−1y−(α+1)/α (C.6)

Vxy =
α− 1

α

(
x−1/α + y−1/α

)α−2
(xy)−(α+1)/α (C.7)

Under weak conditions we may ignore temporal dependence19 and write the likelihood

for the entire sample as the product of the likelihoods of each observation:

ℓ(α) =
M∑

i=1

log g(xi, yi;α) (C.8)

where g is defined as in Equation C.3, and x, y have been transformed to unit Fréchet

as described in Appendix C.2.

19From the perspective of parameter estimation our limiting results allow us to ignore temporal
dependence, but it complicates the calculation of appropriate standard errors. The usual MLE
standard errors are too small, but correcting them would require further assumptions.
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Appendix D. Robustness Tests

This section examines the robustness of results presented in the body of the paper.

First, we explore the effect of controlling for factors beyond the CAPM β on our

out-of-sample comparisons of low- and high-χ portfolios. Second, we consider the

sensitivity of our estimates of χ to changes in the estimation procedure.

Table D.8 compares factor-adjusted cumulative returns of high- and low-χ port-

folios and the long low-χ/short high-χ trading strategy over the period 1999-2008.

These results extend the comparisons from Table 5 by considering a wider range of

factors thought to influence returns: the Fama-French factors, volatility, momentum,

and liquidity. For each of nine models, we calculate factor loadings using formation-

period returns and adjust test-period returns according to the estimated factors. All

models include a constant term (α). We measure volatility by daily differences of the

VXO, and volatility by the Pastor-Stambaugh factor. Because this factor is unavail-

able at a daily frequency we either fill in the nearest past value, “Lag Liquidity,” or

the nearest future value, “Lead Liquidity.” The conclusion of this exercise is that

including additional controls does not change our main result that low-χ portfolios

outperform the high-χ portfolios out-of-sample.

To test the robustness of our estimates of χ we examine how the values for indi-

vidual assets, given in Table 2, change when we alter our estimation procedure. We

first consider shifting the block starting dates through time: estimating χ for blocks

shifted by one day, then two days, and so on. Because we use blocks of 22 trading

days, we repeat this process through 21 days to cover all possible block shifts. We

then compare all 22 estimates of χ: one for the original blocks and 21 corresponding to

the shifted blocks. Estimates of χ are virtually unchanged for any of the block shifts.

In particular, the correlations and rank correlations between our original estimates of

χ and those based on shifted blocks are all greater than 0.99.

We then consider the effect of changing block lengths on our estimation procedure,

using lengths ranging from 8 to 36 trading days, and then calculating the correlation

and rank correlation between the resulting estimates. When the block lengths change

by only a few days, the correlation and rank correlation of the estimates of χ across the

block lengths are extremely high, generally exceeding 0.95. Yet even for block lengths

that differ considerably, the correlations remain relatively high: the lowest correlation

is 0.85 (block lengths of 9 and 33 trading days) and the lowest rank correlation is 0.84

(block lengths of 9 and 34 trading days). Neither the block shifts nor changes in the
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Table D.8: Controlling for Fama-French Factors, Volatility, Liquidity, and Momentum
Table D.8 compares the factor-adjusted cumulative returns of high χ portfolios to those of low χ
portfolios from 1999-2008 using five and ten-stock portfolios. High/Low refers to a trading strategy
of taking a long position in the low-χ portfolio and a short position in high-χ portfolio. For each
year, factor loadings are calculated using formation-period data while returns are adjusted using
test-period values. All models include a constant term (α). The factors MKTRF, SMB and HML
are the Fama-French factors. “Fama-French” indicates a model that includes all three of these.
Volatility is measured by daily differences of the VXO, and Liquidity by the Pastor-Stambaugh
factor. Because this factor is unavailable at a daily frequency we either fill in the nearest past value,
“Lag Liquidity,” or the nearest future value, “Lead Liquidity.”

Model 1 Model 2 Model 3

MKTRF MKTRF MKTRF
– SMB & HML –
– – Volatility

5-Stock 10-Stock 5-Stock 10-Stock 5-Stock 10-Stock
Bottom 10% -21 -25 -11 -13 -13 -15

Top 10% -46 -39 -30 -25 -30 -25
High/Low 18 10 12 8 10 7

Model 4 Model 5 Model 6

Fama-French Fama-French Fama-French
– Volatility –

Momentum – Momentum
– – Lag Liquidity

5-Stock 10-Stock 5-Stock 10-Stock 5-Stock 10-Stock
Bottom 10% -6 -10 -13 -15 -12 -15

Top 10% -27 -24 -30 -25 -32 -26
High/Low 12 9 10 7 11 7

Model 7 Model 8 Model 9

Fama-French Fama-French Fama-French
– Volatility Volatility

Momentum Momentum Momentum
– Lag Liquidity –

Lead Liquidity – Lead Liquidity
5-Stock 10-Stock 5-Stock 10-Stock 5-Stock 10-Stock

Bottom 10% 7 5 -14 -17 5 2
Top 10% -20 -16 -29 -26 -20 -16

High/Low 14 11 8 5 12 9
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block lengths substantially change our estimates of χ.

As a final robustness test, we compare our maximum likelihood block method of

estimating χ to a non-parametric threshold method used by Poon et al. (2004). We

estimate χ for each stock in the sample using ten thresholds, ranging from the lowest

1% of returns to the lowest 10% of returns. Unlike the block shifts and changes to

the block length, the nonparametric threshold method often provides estimates of χ

that vary substantially from the method described in Section 4. Table D.9 shows

how the resulting estimates of χ depend on the threshold used for the estimation.

As the threshold for estimating χ becomes more extreme, moving from the worst

10% of returns to the worst 1% of returns, the variation in the estimates increases.

The χ estimates from the 1% threshold have a standard deviation and range more

than twice as large as the χ estimates from the 10% threshold. Table D.10 shows

the correlation between the χ estimates from the threshold method and our block

maximum likelihood method. The block method produces estimates of χ that are

most closely correlated with those from the 1% threshold. The pattern is similar for

the rank correlation with the block minima method most closely correlated with the

1% threshold.
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Table D.10: Correlation of χ Estimates from Block Minima and Threshold Methods
Table D.10 shows the correlation of the χ estimates for the ten thresholds and the block minima
method. The correlation between the threshold and block methods increases as the threshold in-
creases.

10% 9% 8% 7% 6% 5% 4% 3% 2% 1% Block
10% 1 0.99 0.99 0.98 0.98 0.96 0.94 0.93 0.91 0.77 0.58
9% 0.99 1 0.99 0.99 0.98 0.97 0.95 0.93 0.91 0.78 0.59
8% 0.99 0.99 1 0.99 0.99 0.97 0.95 0.93 0.92 0.8 0.6
7% 0.98 0.99 0.99 1 0.99 0.98 0.95 0.92 0.92 0.8 0.59
6% 0.98 0.98 0.99 0.99 1 0.98 0.97 0.94 0.93 0.82 0.6
5% 0.96 0.97 0.97 0.98 0.98 1 0.97 0.95 0.94 0.82 0.59
4% 0.94 0.95 0.95 0.95 0.97 0.97 1 0.96 0.93 0.78 0.56
3% 0.93 0.93 0.93 0.92 0.94 0.95 0.96 1 0.97 0.85 0.64
2% 0.91 0.91 0.92 0.92 0.93 0.94 0.93 0.97 1 0.9 0.68
1% 0.77 0.78 0.8 0.8 0.82 0.82 0.78 0.85 0.9 1 0.76

Block 0.58 0.59 0.6 0.59 0.6 0.59 0.56 0.64 0.68 0.76 1
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