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1. INTRODUCTION

Markowitz (1952a) provides the foundation for the current theory of asset allocation. He

describes the task of asset allocation as having two stages. The first stage “starts with

observation and experience and ends with beliefs about the future performances of available

securities.” The second stage “starts with the relevant beliefs . . . and ends with the selection

of a portfolio.” Although Markowitz only deals with the second stage, he suggests that the

first stage should be based on a “probabilistic” model. However, in the usual implementation

of Markowitz’s second stage, we are assumed to know with certainty the inputs from the

first stage, i.e. the exact means, variances and covariances. This paper introduces a method

for addressing both stages.

In a less well known part of Markowitz (1952a, p.91), he details a condition whereby

mean-variance efficient portfolios will not be optimal – when an investor’s utility is a function

of mean, variance, and skewness. While Markowitz did not work out the optimal portfolio

selection in the presence of skewness and other higher moments, we do. We develop a frame-

work for optimal portfolio selection in the presence of higher order moments and parameter

uncertainty.

Several authors have proposed advances to optimal portfolio selection methods. Some

address the empirical evidence of higher moments; Athayde and Flôres (2003, 2004) and

Adcock (2002) give methods for determining higher dimensional ‘efficient frontiers’, but they

remain in the certainty equivalence framework (assuming exact knowledge of the inputs) for

selecting an optimal portfolio. Like the standard efficient frontier approach, these approaches

have the advantage that for a large class of utility functions, the task of selecting an optimal

portfolio reduces to the task of selecting a point on the high dimensional ‘efficient frontiers’.

Other three moment optimization methods include using negative semi-variance in place

of variance (see Markowitz 1959 and Markowitz, Todd, Xu, and Yamane 1993). A similar

measure of downside risk is incorporated by Feiring, Wong, Poon, and Chan (1994), and

Konno, Shirakawa, and Yamazaki (1993) who use an approximation to the lower semi-third

moment in their Mean-Absolute Deviation-Skewness portfolio model. These methods rest on
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the assumption that an investor’s expected utility is reasonably approximated by inserting

estimates of the moments of an assumed sampling model.

A number of researchers have shown that mean-variance efficient portfolios, based on

estimates and ignoring parameter uncertainty, are highly sensitive to perturbations of these

estimates. Jobson, Korkie and Ratti (1979) and Jobson and Korkie (1980) detail these

problems and suggest the use of shrinkage estimators. This ‘estimation risk’ comes from both

choosing poor probability models and from ignoring parameter uncertainty, maintaining the

assumption that expected utility can be evaluated by substituting point estimates of sampling

moments in the utility function.

Others have ignored higher moments, but address the issue of estimation risk. Frost

and Savarino (1986, 1988) show that constraining portfolio weights, by restricting the action

space during the optimization, reduces estimation error. Jorion (1992) proposes a resam-

pling method aimed at estimation error. Using a Bayesian approach, Britten-Jones (2002)

proposes placing informative prior densities directly on the portfolio weights. Others propose

methods that address both stages of the allocation task and select a portfolio that optimizes

an expected utility function given a probability model. From the Bayesian perspective, Jo-

rion (1986) use a shrinkage approach while Treynor and Black (1973) advocate the use of

investors’ views in combination with historical data. Kandel and Stambaugh (1996) exam-

ine predictability of stock returns when allocating between stocks and cash by a risk-averse

Bayesian investor. (See also Johannes, Polson, and Stroud 2002 who examine the market

timing relationship to performance of optimal portfolios using a model with correlation be-

tween volatility and returns in a Bayesian portfolio selection setting.) Zellner and Chetty

(1965), Klein and Bawa (1976) and Brown (1978) emphasize using a predictive probability

model (highlighting that an investor’s utility should be given in terms of future returns and

not parameters from a sampling distribution). Pástor and Stambaugh (2000) study the im-

plications of different pricing models on optimal portfolios, updating prior beliefs based on

sample evidence. Pástor (2000) and Black and Litterman (1992) propose using asset pricing

models to provide informative prior distributions for future returns. Pástor and Stambaugh

(1999) show that the model used is less important than correctly accounting for parameter

2



uncertainty in pricing assets.

In an attempt to maintain the decision simplicity associated with the efficient frontier

and still accommodate parameter uncertainty, Michaud (1998) proposes a sampling based

method for estimating a ‘resampled efficient frontier’ (see Scherer 2002 for further discus-

sion). While this new frontier may offer some insight, using it to select an optimal portfolio

implicitly assumes that the investor has abandoned the maximum expected utility frame-

work. In addition, Jensen’s inequality dictates that the resampled efficient frontier is in fact

suboptimal. Polson and Tew (2000) argue for the use of posterior predictive moments in-

stead of point estimates for mean and variance of an assumed sampling model. Their setup

comes closest to the framework that we propose in this paper. Using posterior predictive

moments, they accommodate parameter uncertainty. We follow their setup in our discussion

in Section 3.1.1.

Our approach advances previous methods by addressing both higher moments and esti-

mation risk in a coherent Bayesian framework. As part of our “stage one” approach (i.e.,

incorporating observation and experience), we specify a Bayesian probability model for the

joint distribution of the asset returns, and discuss prior distributions. As for “stage two”,

the Bayesian methodology provides a straightforward framework to calculate and maximize

expected utilities based on predicted returns. This leads to optimal portfolio weights in

the second stage which overcome the problems associated with estimation risk. We empir-

ically investigate the impact of simplifying the asset allocation task. For two illustrative

data sets, we demonstrate the difference in expected utility that results from ignoring higher

moments and using a sampling distribution, with point estimates substituted for the un-

know parameter, instead of a predictive distribution. In addition, we demonstrate the loss

in expected utility (explained by Jensen’s inequality) from using the popular approach pro-

posed by Michaud (1998). Markowitz and Usmen (2003) take a similar approach to us for

comparing Bayesian methods to Michaud’s (1998) approach, but they use diffuse priors.

Our paper is organized as follows. In the second section we discuss the importance

of higher moments and provide the setting for portfolio selection and Bayesian statistics

in finance. We discuss suitable probability models for portfolios and detail our proposed
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framework. In the third section, we show how to optimize portfolio selection based on

utility functions in the face of parameter uncertainty using Bayesian methods. Section

four empirically compares different methods and approaches to portfolio selection. Some

concluding remarks are offered in the final section. The appendix contains some additional

results and proofs.

2. HIGHER MOMENTS AND BAYESIAN MODELS

A prerequisite to the use of the Markowitz framework is either that the relevant distribution

of asset returns be normally distributed or that utility is only a function of the first two

moments. But it is well known that many financial returns are not normally distributed.

Studying a single asset at a time, empirical evidence suggests that asset returns typically

have heavier tails than implied by the normal assumption and are often not symmetric, see

Kon (1984), Mills (1995), Peiro (1999) and Premaratne and Bera (2002). Also we argue that

the relevant probability model is the posterior predictive distribution, which in general is

not normal, not even under an assumed normal sampling model.

The approach proposed in our paper is closely related to the use of the Omega func-

tion introduced and discussed in Cascon, Keating and Shadwick (2003). They argue that

point estimates of mean and variance of an assumed sampling distribution are insufficient

summaries of the available information of future returns. Instead they advocate the use of

a summary function, which they call “Omega”, that represents all the relevant information

contained within the observed data. We agree with the premise that a full probabilistic de-

scription of relevant uncertainties of future returns is needed. Instead of the Omega function,

we base our approach on a traditional Bayesian decision theoretic framework which allows us

to formally account for parameter uncertainty. Otherwise the rationale of the two methods

is the same. The formalisms are different.

Our investigation of multiple assets builds on these empirical findings and indicates that

the existence of ‘coskewness’, which can be interpreted as correlated extremes, is often hidden

when assets are considered one at a time. To illustrate, Figure 1 contains the kernel density
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estimate and normal distribution for the marginal daily returns of two stocks (Cisco Systems

and General Electric from April 1996 to March 2002) and Figure 2 contains a bivariate

normal approximation of their joint returns. While the marginal summaries in Figure 1

suggest almost no deviation from the normality assumption, the joint summary appears to

exhibit a degree of coskewness, suggesting that skewness may have a larger impact on the

distribution of a portfolio than previously anticipated.

2.1 Economic Importance

Markowitz’s intuition for maximizing the mean while minimizing the variance of a portfolio

comes from the idea that the investor prefers higher expected returns and lower risk. Extend-

ing this concept further, most agree that ceteris paribus investors prefer a high probability

of an extreme event in the positive direction over a high probability of an extreme event

in the negative direction. From a theoretical perspective, Markowitz (1952b) and Arrow

(1971) argue that desirable utility functions should exhibit decreasing absolute risk aversion,

implying that investors should have preference for positively skewed asset returns. (Also

see the discussion in Roy 1952.) Experimental evidence of preference for positively skewed

returns has been established by Sortino and Price (1994) and Sortino and Forsey (1996)

for example. Levy and Sarnat (1984) find a strong preference for positive skewness in the

study of mutual funds. Harvey and Siddique (2000a,b) introduce an asset pricing model

that incorporates conditional skewness, and show that an investor may be willing to accept

a negative expected return in the presence of high positive skewness.

An aversion towards negatively skewed returns summarizes the basic intuition that many

investors are willing to trade some of their average return for a decreased chance that they

will experience a large reduction in their wealth, which could significantly reduce their level

of consumption. Some researchers have attempted to address aversion to negative returns

in the asset allocation problem by abandoning variance as a measure of risk and defining a

‘downside’ risk that is based only on negative returns. These attempts to separate “good”

and “bad” variance can be formalized in a consistent framework by using utility functions

and probability models that account for higher moments.
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While skewness will be important to a large class of investors and is evident in the histor-

ical returns of the underlying assets and portfolios, the question remains; how influential is

skewness in terms of finding optimal portfolio weights? Cremers, Kritzman, and Page (2004)

argue that only under certain utility is it worthwhile to consider skewness in portfolio selec-

tion. However, it is our experience that any utility function approximated by a third order

Taylor’s expansion can lead to more informatively selected portfolio weights if skewness is

not ignored.

To illustrate, consider the impact of skewness on the empirical distribution of a collection

of two-stock portfolios. For each portfolio, the mean is identical to the linear combination

of the stock means and the variance is less than the combination of the stock variances, see

Figure 3 for an illustration using three, two-stock portfolios. Unlike the variance, there is

no guarantee that the portfolio skewness will be larger or smaller than the linear combi-

nation of the stock skewness, and in practice we observe a wide variety of behavior. This

suggests that the mean-variance optimal criteria will lead to sub-optimal portfolios in the

presence of skewness. To accommodate higher-order moments in the asset allocation task,

we must introduce an appropriate probability model. After providing an overview of possible

approaches, we formally state a model and discuss model choice tools.

2.2 Probability Models for Higher Moments

Though it is a simplification of reality, a model can be informative about complicated sys-

tems. While the multivariate normal distribution has several attractive properties for mod-

eling a portfolio, there is considerable evidence that portfolio returns are non-normal. There

are a number of alternative models that include higher moments. The multivariate Student

t-distribution is good for fat tailed data, but does not allow for asymmetry. The non-central

multivariate t-distribution also has fat tails and, in addition, is skewed. However, the skew-

ness is linked directly to the location parameter and is, therefore, somewhat inflexible. The

log-normal distribution has been used to model asset returns, but its skewness is a function

of the mean and variance, not a separate skewness parameter.

Azzalini and Dalla Valle (1996) propose a multivariate skew normal distribution that
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is based on the product of a multivariate normal probability density function (pdf) and

univariate normal cumulative distribution function (cdf). This is generalized into a class of

multivariate skew elliptical distributions by Branco and Dey (2001), and improved upon by

Sahu, Branco and Dey (2003) by using a multivariate cdf instead of univariate cdf, adding

more flexibility, which often results in better fitting models. Because of the importance of

coskewness in asset returns, we start with the multivariate skew normal probability model

presented in Sahu et al. (2003) and offer a generalization of their model.

The multivariate skew normal can be viewed as a mixture of an unrestricted multivariate

normal density and a truncated, latent multivariate normal density, or

X = µ + ∆Z + ε, (1)

where µ and ∆ are an unknown parameter vector and matrix respectively, ε is a normally

distributed error vector with a zero mean and covariance Σ, and Z is a vector of latent random

variables. Z comes from a multivariate normal with mean 0 and an identity covariance matrix

and is restricted to be non-negative, or

p(Z) ∝ (2/π)�/2 exp (−0.5Z ′Z)

p∏
j=1

I{Zj>0}, (2)

where I{·} is the indicator function and Zj is the jth element of Z. In Sahu et al. (2003),

∆ is restricted to being a diagonal matrix, which accommodates skewness, but does not

allow for coskewness. We generalize the Sahu et al. (2003) model to allow ∆ to be an

unrestricted random matrix resulting in a modified density and moment generating function,

see Appendix A.1 for details.

As with other versions of the skew normal model, this model has the desirable property

that marginal distributions of subsets of skew normal variables are skew normal (see Sahu

et al. 2003 for a proof). Unlike the multivariate normal density, linear combinations of

variables from a multivariate skewed normal density are not skew normal. This does not,

however, restrict us from calculating moments of linear combinations with respect to the

model parameters, see Appendix A.2 for the formula for the first three moments.

Even though they can be written as the sum of a normal and a truncated normal random

variable, neither the skew normal of Azzalini and Dalla Valle (1996) nor Sahu et al. (2003)
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are Lévy stable distributions. The skew normal can be generalized as a stable distribution

(see Appendix A.3).

While the skew normal is similar in concept to a mixture of normal random variables, it is

fundamentally different. A mixture takes on the value of one of the underlying distributions

with some probability and a mixture of normal random variables, results in a Lévy stable

distribution. The skew normal is not a mixture of normal distributions, but it is the sum of

two normal random variables, one of which is truncated, and results in a distribution that is

not Lévy stable. Though it is not stable, the skew normal has several attractive properties.

Not only does it accommodate coskewness and heavy tails, but the marginal distribution

of any subset of assets is also skew normal. This is important in the portfolio selection

setting because it insures consistency in selecting optimal portfolio weights. For example,

with short selling not allowed, if optimal portfolio weights for a set of assets are such that

the weight is zero for one of the assets then removing that asset from the selection process

and re-optimizing will not change the portfolio weights for the remaining assets.

Following the Bayesian approach, we assume conjugate prior densities for the unknown

parameters, i.e. a priori normal for µ and vec (∆), where vec() forms a vector from a matrix

by stacking the columns of the matrix, and a priori Wishart for Σ−1. The resulting full

conditional posterior densities for µ and vec (∆) are normal, the full conditional posterior

density for Σ−1 is Wishart and the full conditional posterior density for the latent Z is

a truncated normal. See Appendix A.4 for a complete specification of the prior densities

and the full conditional posterior densities. Given these full conditional posterior densities,

estimation is done using a Markov chain Monte Carlo (MCMC) algorithm based on the

Gibbs sampler and the slice sampler, see Gilks, Richardson, and Spiegelhalter (1996) for a

general discussion of the MCMC algorithm and the Gibbs sampler and see Appendix A.5

for a discussion of the slice sampler.

2.3 Model Choice

The Bayes Factor (BF) is a well developed and frequently used tool for model selection which

naturally accounts for both the explanatory power and the complexity of competing models
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(see Berger 1985 and O’Hagan 1994 for further discussion of Bayes Factors).

For two competing models (M1 and M2), the Bayes factor is:

BF = posterior odds/prior odds = p(x|M1)/p(x|M2).

We use a sampling based estimator proposed by Newton and Raftery (1994) to calculate the

Bayes factor.

3. OPTIMIZATION

Markowitz defined the set of optimal portfolios as the portfolios that are on the efficient

frontier, based on estimated moments of the sampling distribution. Ignoring uncertainty

inherent in the underlying probability model, the portfolio that maximizes expected utility

for a large class of utility functions is in this set. When parameter uncertainty is explicitly

considered, the efficient frontier, now written in terms of predictive moments, can still only

identify optimal allocations for utility functions that are exactly linear in the moments of

the portfolio. In all other cases, the utility function must be explicitly specified. For general

probability models and arbitrary utility functions, calculating and optimizing the expected

utility must be done numerically, a task that is straightforward to implement using the

Bayesian framework.

3.1 Simplifications Made in Practice

3.1.1 Utility Based on Model Parameters, not Predictive Returns.

The relevant reward for an investor is the realized future return of their portfolio. Thus the

utility function needs to be a function of the future returns, not a function of the model

parameters. This point is emphasized in Zellner and Chetty (1965) and Brown (1978). It is

reasonable to assume that a decision maker chooses an action by maximizing expected utility,

the expectation being with respect to the posterior predictive distribution of the future re-

turns, conditional on all currently available data (DeGroot, 1970; Raiffa and Schlaifer, 1961).

Following this paradigm, Polson and Tew (2000) propose the use of predictive moments for
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future returns to define mean-variance efficient portfolios which we also implement (see also

Kandel and Stambaugh 1996 and Pástor and Stambaugh 2000). In the following discussion,

we highlight the difference of this approach and the traditional approach.

Predictive returns are often ignored and utility is stated in terms of the posterior means

of the model parameters because of computational complexity and the argument that the

moments of the predictive distribution are approximated by the corresponding moments of

the posterior distribution.

To illustrate, let xo represent the history up to the current observation and let x represent

future data. Let X = (x, Vx, Sx) be powers of future returns, where

mp =

∫
x p(x|xo)dx

is the predictive mean given xo, Vx = (x−mp)(x−mp)
′, and Sx = Vx ⊗ (x−mp)

′. Assuming

that utility is a third-order polynomial of future returns, predictive utility is given by

upred(ω,X ) = ω′ x − λ [ω′ (x − mp)]
2 + γ [ω′ (x − mp)]

3 (3)

where λ and γ determine the impact of predictive variance and skewness. Expected utility,

becomes

EUpred(ω) = ω′ E[x|xo]−λ ω′E[Vx|xo] ω+γ ω′E[Sx|xo] ω⊗ω = ω′ mp−λ ω′ Vp ω+γ ω′Sp ω⊗ω,

(4)

where θp = (mp, Vp, Sp) are the predictive moments of x. We refer to utility function (3) as

a linear utility function. Utility is linear in the sense that upred is linear in the predictive

summaries X , and thus EUpred is linear in the predictive moments θp.

Often a function involving sampling moments corresponding to the predictive moments

in (4) is used instead of actual future returns to define utility. Assuming an i.i.d. sampling

xt ∼ pθ(xt) for returns at time t, let θ = (m, V, S) denote the moments of pθ and define a

utility function:

uparam(ω, θ) = ω′ m − λ ω′ V ω + γ ω′ S ω ⊗ ω. (5)

See Appendix A.1 for the formulas under the skew normal model. The expected utility,

becomes

EUparam(ω) = ω′ m̄ − λ ω′ V̄ ω + γ ω′ S̄ ω ⊗ ω, (6)
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where m̄, V̄ and S̄ are the posterior means of θ. Note that the expectation in (6) “plugs

in” the expectation of the parameters, ignoring the contribution of parameter uncertainty

to the expected utility function. (Kan and Zhou (2004) provide a thorough discussion of

the difference of plug-in and Bayes estimator of the optimal decision under the parameter

based utility (5). Their discussion highlights the difference between a proper Bayes rule,

defined as the decision that maximizes expected utility, versus a rule that plugs in the Bayes

estimate for the weights or the parameters in the sampling distribution.) The nature of this

approximation is highlighted by considering the relationship with the predictive moments

in (4). In fact, it is straightforward to show that the predictive mean equals the posterior

mean and that the predictive variance and skewness equal the posterior means of V and S

plus additional terms, or

mp = m̄

Vp = V̄ + V ar(m|xo)

Sp = S̄ + 3E(V ⊗ m|xo) − 3E(V |xo) ⊗ mp − E[(m − mp)
′(m − mp) ⊗ (m − mp)|xo].

Polson and Tew (2000, proposition 1) highlight the implication of the difference between Vp

and V for mean-variance efficient portfolios. Substituting this into (4) gives an alternative

form that is composed of EUparam(ω) plus other terms.

EUpred(ω) = ω′ m̄ − λ ω′ V̄ ω + γ ω′ S̄ ω ⊗ ω

− λ ω′ V ar(m|xo) ω + 3 γ ω E(V ⊗ m|xo) ω ⊗ ω

− 3 γ ω E(V |xo) ⊗ mp ω ⊗ ω − γ ω E[(m − mp)(m − mp)
′ ⊗ (m − mp)

′|xo] ω ⊗ ω.

For linear utility functions, stating utility in terms of the probability model parameters

implicitly assumes that the predictive variance and skewness are approximately equal to the

posterior expectation of m, V , and S, an assumption which often fails in practice. Formally,

using (m̄, V̄ , S̄) in place of the predictive moments ignores the second and third line in

the expression above. Our approach uses the predictive moments, capturing that extra

information when maximizing the expected utility.
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3.1.2 Maximize Something Other Than Expected Utility.

Given that utility functions can be difficult to integrate, various approximations are often

used. The simplest approximation is to use a first-order Taylor’s approximation (see Novshek

1993) about the expected predictive summaries, or assume

EUpred(ω) = E[upred(ω,X )|xo] ≈ upred(ω, E[X |xo]).

For linear utility functions this approximation is exact, as in (3) and (4). The Taylor’s

approximation removes any parameter uncertainty and leads directly to the certainty equiv-

alence optimization framework, substituting predictive moments. It is easy to see that

combining the Taylor’s approximation and the much stronger assumption that the poste-

rior moments approximately equal predictive moments leads to a frequently used ‘two-times

removed’ approximation of the expected utility of future returns, or

EUpred(ω) = E[upred(ω,X )|xo] ≈ upred(ω, E[X |xo]) ≈ uparam(ω, E[θ|xo]).

In an attempt to maintain the flexibility of the efficient frontier optimization framework

but still accommodate parameter uncertainty, Michaud (1998) proposes an optimization

approach that switches the order of integration (averaging) and optimization. The maximum

expected utility framework optimizes the expected utility of future returns; the certainty

equivalence framework optimizes the utility of expected future returns, (i.e., substituting

posterior predictive moments in the utility function). Michaud (1998) proposes creating

a ‘resampled frontier’ by repeatedly maximizing the utility for a draw from a probability

distribution and then averaging the optimal weights that result from each optimization.

While the approach could be viewed in terms of predictive returns, the sampling guidelines

are arbitrary and could significantly impact the results. Given, that the main interest is

to account for parameter uncertainty, we consider a modified algorithm where parameter

draws from a posterior density are used in place of the predictive moment summaries. To be

explicit, assuming a utility of parameters, the essential steps of the algorithm are as follows.

For a family of utility functions (uparam,1, ..., uparam,K), perform the following steps.
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1. For each utility function (e.g. uparam,k), generate n draws from a posterior density

θi,k ∼ p(θ|xo).

2. For each θi,k find weight ωi,k that maximizes uparam,k(ω, θi,k).

3. For each utility function, let ω̄k = 1/n
∑

ωi define the optimal portfolio.

By Jensen’s inequality, if ω∗
k �= ω̄k, then for a large class of utility functions

E[uparam,k(ω
∗
k, θ)|xo] �= E[uparam,k(ω̄k, θ)|xo]. (7)

Further if ω∗
k maximizes E[uparam,k(ω, θ)|xo], then

E[uparam,k(ω
∗
k, θ)|xo] ≥ E[uparam,k(ω

∗∗, θ)|xo]

for all ω∗∗ �= ω∗. From (7), clearly

E[uparam,k(ω
∗
k, θ)|xo] > E[uparam,k(ω̄, θ)|xo],

or ω̄k results in a sub-optimal portfolio in terms of expected utility maximization. Stated in

practical terms, on average, Michaud’s approach ‘leaves money on the table’.

3.1.3 Ignore Skewness.

Although evidence of skewness and other higher moments in financial data are abundant, it

is common for skewness to be ignored entirely in practice. Typically skewness is ignored both

in the sampling models and in the assumed utility functions. In order to illustrate the impact

of ignoring skewness, Figure 4 shows the empirical summary of the distribution of possible

portfolios for four equity securities (Cisco Systems, General Electric, Sun Microsystems,

and Lucent Technologies). The mean-variance summary immediately leads to Markowitz’s

initial insight, but the relationship between mean, variance and skewness demonstrates that

Markowitz’s two-moment approach offers no guidance for making effective trade offs between

mean, variance and skewness. Using the certainty equivalence framework and a linear utility

of the first three empirical moments, or

uempirical = ω′ me − λ ω′ Ve ω + γ ω′ Se ω ⊗ ω,
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where me, Ve, Se are the empirical mean, variance and skewness, Figure 5 contrasts the

optimal portfolios that result from assuming an investor only has an aversion to variance

(λ = 0.5, γ = 0) and has both an aversion to variance and a preference for positive skewness

(λ = 0.5, γ = 0.5).

When skewness is considered, the optimal portfolio is pushed further up the efficient

frontier signifying that for the same level of risk aversion, an investor can get a higher return

if they include skewness in the decision process. In this case, the positive skewness of the

portfolio effectively reduces the portfolio risk.

3.2 Bayesian Optimization Methods

Bayesian methods offer a natural framework for both, the evaluation of expectations and

the optimization of expected utilities for an arbitrary utility function, with respect to an

arbitrarily complicated probability model. Given an appropriate Markov chain Monte Carlo

(MCMC) estimation routine, it is straightforward and computationally trivial to generate

draws from the posterior predictive density, or to draw by computer simulation

xi ∼ p(x|xo)

and then evaluate the predictive summaries Xi. Given a set of n draws, the expected utility

for an arbitrary utility function can be estimated as an ergodic average, or

EU(ω) = E[u(ω,X )|xo] ≈ 1

n

∑
u(ω,Xi).

The approximate expected utility can then be optimized numerically using a number of

different approaches. One attractive algorithm is the Metropolis-Hastings (MH) algorithm.

MH simulation is widely used for posterior simulation. But the same algorithm can be

exploited for expected utility optimization. When used for formal optimization, it is known

as simulated annealing. Stopping short of simulated annealing, we use the MH algorithm

to explore the expected utility function, f(ω) = E[U(ω)], as a function of the weights.

Asymptotic properties of the MH chain lead to portfolio weights ω being generated with

frequencies proportional to EU(ω). That is, promising portfolio weights with high expected
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utility are visited more often, as desired. See, for example, Gilks et al. (1996) and Meyn

and Tweedie (1993) for a discussion of the MH algorithm. Intuitively, this Markov chain

can be viewed as a type of ‘random walk’ with a drift in the direction of larger values of

the target function. When the MH algorithm is used as a tool for performing statistical

inference, the target density is typically a posterior probability density; however, this need

not be the case. As long as the target function is non-negative and integrable, the MH can

be used to numerically explore any target function. Not only has the MH been shown to be

very effective for searching high dimensional spaces, its irreducible property ensures, that if

a global maximum exists the MH algorithm will eventually escape from any local maximum

and visit the global maximum.

In order to use the MH function, we need to ensure that our expected utility is non-

negative and integrable. For the linear utility functions, integrability over the space of

possible portfolios, where the portfolios are restricted to the unit simplex (i.e. we do not

allow short selling), is easily established. We modify the utility function so that it is a

non-negative function by subtracting the minimum expected utility, or the target function

becomes

ẼU(ω) = EU(ω) − min
ω

EU(ω).

4. OPTIMAL PORTFOLIOS IN PRACTICE

In theory, simplifications of the complete asset allocation task will result in a sub-optimal

portfolio selection. In order to assess the impact that results from some of these simplifica-

tions in practice, we consider three different optimization approaches for two data sets using

a family of linear utility functions. In particular, we consider the utility functions given

in (3) and (5), which have expected utilities given in terms of the predictive posterior and

posterior moments respectively, see (4) and (6). We consider a number of potential prob-

ability models and select the best model. Using results from both the multivariate normal

model and the best higher moment model, we numerically determine the optimal portfolio

based on the predictive returns, the parameter values and using Michaud’s (1998) non-utility
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maximization approach. We contrast the performance of each optimal portfolio in terms of

expected predictive utility using the best model.

4.1 Data Description

We consider two sets of returns. The first set comes from four equity securities. The second

set comes from a broad-based portfolio of domestic and international equities and fixed

income.

First we consider daily returns from April 1996 to March 2002 on four equity securities

consisting of General Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems.

These stocks are from the technology sector, and are chosen to illustrate portfolio selection

among closely related assets.

We also try to select securities that match the asset allocation choices facing individuals.

To do so we consider the weekly returns from January 1989 to June 2002 on four equity

portfolios: Russell 1000 (large capitalization stocks), Russell 2000 (smaller capitalization

stocks), Morgan Stanley Capital International (MSCI) EAFE (non-U.S. developed markets),

and MSCI EMF (emerging market equities that are available to international investors). We

consider three fixed income portfolios: government bonds, corporate bonds, and mortgage

backed bonds. Each of these fixed income return series are from Lehman Brothers and form

the three major subcomponents of the popular Lehman aggregate index.

4.2 Model Choice and Select Summary Statistics

To determine which skew normal model best fit the respective data sets, we compute Bayes

factors for the multivariate normal model, the skew normal model proposed by Azzalini

and Dalla Valle (1996) with a diagonal ∆ matrix, and the skew normal model proposed by

Sahu et al. (2003) with both a diagonal and our modified full ∆ matrix. The results for

the technology stocks shows that the skew normal models with a diagonal ∆ outperform

the other models, with the Sahu et al. (2003) model fitting best. The skew normal model

with the full ∆, however, performs better than the others in the case of the benchmark
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indices (see Table 1). The model with the full ∆ accommodates coskewness, which could be

viewed as correlated extremes, better than the model with the diagonal ∆. This suggests

that portfolios of highly related stocks may have less coskewness than portfolios of highly

diversified global summaries.

Insert Table 1 about here.

The posterior parameter estimates for µ, Σ, and ∆, for both the technology stocks and

the global asset allocation benchmark indices are given in Tables 2 and 3. The estimates

for ∆ for the four equity securities suggest that when considered jointly the skewness is

significant, and all but Lucent exhibit positive skewness. For the global asset allocation

benchmark indices, there are many positive and negative elements of ∆ though the largest

elements tend to be negative.

Insert Tables 2 and 3 about here

4.3 Expected Utility for Competing Methods

Optimal weights are calculated for both data sets using the expected predicted utility, the

expected parameter utility, and Michaud’s (1998) method. Each method assumes a normal

(two moment) probability model and the best skew normal (higher moment) probability

model. For the two moment model, we consider two linear utility functions - see (4) and

(6) - one with no risk aversion (λ = 0) and no preference for skewness (γ = 0); another

with a risk aversion of (λ = 0.5) and no preference for skewness (Table 4). For the higher

moment model, we considered linear utilities with no risk aversion and skewness preference

(λ = 0, γ = 0), with risk aversion and no skewness preference (λ = 0.5, γ = 0), with no risk

aversion and skewness preference (λ = 0, γ = 0.5) and with both risk aversion and skewness

preference (λ = 0.5, γ = 0.5) (Table 5). The weights that resulted from each optimization

were then used to calculate the expected predictive utility.

Insert Tables 4 and 5 about here.
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Our first observation is that Michaud’s (1998) optimization approach uniformly selects

a sub-optimal portfolio even when there is no risk aversion or skewness preference. For

example, in the global asset allocation benchmarks indices, the certainty equivalent loss is

(0.001227− 0.001132)× 52 = 0.00494, or roughly 50 basis points per year. The implicit goal

of no risk aversion or skewness preference is to select the securities with the best average

return; for the technology sector data set this is Sun Microsystems and for the benchmark

indices this is the Russell 1000 index. For the expected utility approaches, essentially all

of the weight is placed on these securities. In Michaud’s approach only 58% of the weight

is placed on Sun Microsystems with the rest spread across the remaining stocks, see λ = 0

and γ = 0 from Table 6. It could be argued that the weights from Michaud’s approach

should be preferred as they offer diversification and give some sort of protection against

volatility. While this may be true, the stated utility function for this optimization ignores

volatility (because λ = 0). Clearly if the investor has an aversion to variance risk, then the

appropriate portfolio would be based on a utility function that explicitly accounts for this

aversion. When evaluated in an maximum expected utility framework, Michaud’s approach

distorts the investor’s preference by over diversifying.

Insert Table 6 about here.

Not surprisingly, when there is only preference for skewness, the predictive optimization

approach outperforms the parameter approach, e.g. λ = 0, γ = 0.5 in Table 4. This difference

illustrates the fact that the predictive variance and skewness are only approximated by the

estimates of the variance and skewness based on posterior parameter values, see Section 3.1.

In the case of the technology stocks, with λ = 0 and γ = 0.5, the parameter optimization

approach places almost all of the portfolio weight on Sun Microsystems, but in light of

predictive skewness the predictive approach distributes almost all of the weight on the three

other stocks, see Table 6.

Ignoring the weights from Michaud’s approach, the biggest differences in expected pre-

dicted utilities comes from comparing optimizations using the normal model versus the skew

normal model, see λ = 0.5 and γ = 0.5 in Table 4. For the benchmark indices, the opti-
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mal allocation changes markedly when skewness is estimated and included in the utility, see

Table 7. The most noticeable change is that less weight is placed on the mortgage-backed

securities and EMF and more weight is placed on the remaining securities, especially the US

bonds and EAFE.

Insert Table 7 about here.

5. CONCLUSION

Considering both higher moments and parameter uncertainty is important in portfolio se-

lection. Up to now these issues have been treated separately. The multivariate normal

distribution is an inappropriate probability model for portfolio returns primarily because it

fails to allow for higher moments, in particular skewness and coskewness. We also demon-

strate that the skew normal model of Sahu et al. (2003) is able to capture these higher

moments. It is flexible enough to allow for skewness and coskewness, and at the same time,

accommodates heavy tails. Additional features of the model include straightforward spec-

ification of conjugate prior distributions which allows for efficient simulation and posterior

inference. We use Bayesian methods to incorporate parameter uncertainty into the predictive

distribution of returns, as well as to maximize the expected utility.

We show that predictive utility can be written in terms of posterior parameter based

utility plus additional terms. These additional terms can be very influential in an investor’s

utility. We compare results with Michaud’s (1998) resampling technique for portfolio selec-

tion. In addition to the Jensen’s inequality problem, we show that the resampling approach

is outside the efficient utility maximization framework.

While we believe that we have made progress on two important issues in portfolio selec-

tion, there are at least three limitations to our approach. First, our information is restricted

to past returns. That is, investors make decisions based on past returns and do not use

other conditioning information such as economic variables that tell us about the state of the

economy. Second, our exercise is an ‘in-sample’ portfolio selection. We have not applied

our method to out-of sample portfolio allocation. Finally, the portfolio choice problem we
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examine is a static one. There is a growing literature that considers the more challenging

dynamic asset allocation problem that allows for portfolio weights to change with investment

horizon, labor income and other economic variables.

We believe that it is possible to make progress in future research on the first two lim-

itations. In addition, we are interested in using revealed market preferences to determine

whether ‘the market’ empirically exhibits preference for skewness. As a first step, we plan

to use the observed market weights for a benchmark equity index and use the predictive

utility function (3) to determine the implied market λ and γ. Finally, we intend to con-

sider modifications to (3) that allow for asymmetric preferences over positive and negative

skewness.
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Appendix: Skew normal probability model

A.1 Density and Moment Generating Function

The likelihood function and moment generating function given in Sahu et al. (2003) changes

when we allow ∆ to be a full matrix:

f(y|µ, Σ, ∆) = 2�|Σ + ∆∆′|− 1
2 φ�

[
(Σ + ∆∆′)−

1
2 (y − µ)

]
×

Φ�

[
(I − ∆′(Σ + ∆∆′)−1∆)−

1
2 ∆′(Σ + ∆∆′)−1(y − µ)

]
, (A-1)

where φ� is the �−dimensional multivariate normal density function with mean zero and

identity covariance, and Φ� is multivariate normal cumulative distribution also with mean

zero and identity covariance.

The moment generating function becomes

MY(t) = 2�et′µ+t′(Σ+∆∆′)t/2Φ�(∆t) (A-2)

The first three moments of the distribution (m, V , and S) can be written in terms of µ, Σ

and ∆ as follows,

m = µ + (2/π)1/2∆1, V = Σ + (1 − 2/π)∆∆′, and

S = ∆EZ∆′ ⊗ ∆′ + 3µ′ ⊗ {∆∆′(1 − 2/π) + 2/π∆1(∆1)′}+

3{(2/π)1/2(∆1)′ ⊗ [Σ + µµ′]} + 3µ′ ⊗ Σ

+ µµ′ ⊗ µ′ − 3m′ ⊗ V − m m′ ⊗ m′, (A-3)

where 1 is a column vector of ones, and EZ is the � × �2 super matrix made up of the

moments of a truncated standard normal distribution.

EZ =

⎛
⎜⎜⎜⎝

E[Z1Z1Z1] . . . E[Z1Z1Z�] . . . E[Z�Z1Z1] . . . E[Z�Z1Z�]
...

. . .
... . . .

...
. . .

...

E[Z1Z�Z1] . . . E[Z1Z1Z�] . . . E[Z�Z�Z1] . . . E[Z�Z�Z�]

⎞
⎟⎟⎟⎠
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Where E[Zi] =
√

2/π, E[Z2
i ] = 1, and E[Z3

i ] =
√

8/π. Since the Zi’s are independent,

E[Z2
i Zj] = E[Z2

i ]E[Zj ] =
√

2/π, and E[ZiZjZk] = E[Zi]E[Zj ]E[Zk] = (2/π)3/2 for any i, j,

and k.

A.2 First Three Moments of a Linear Combination

Assume X ∼ SN(µ, Σ, ∆) and a set of constant portfolio weights ω = (ω1, . . . , ω�)
′, the first

three moments of ω′ X are as follows

E(ω′ X) = ω′ m

V ar(ω′ X) = ω′ V ω

Skew(ω′ X) = ω′ S ω ⊗ ω,

where m, V and S are given above.

A.3 Lévy Stable Skew Normal

When there is a Zi for each observation xi, the moment generating function readily shows

that the skew normal distributions of Sahu et al. (2003) and Azzalini and Dalla Valle (1996)

are not Lévy stable. If, however, the latent variables Z are restricted to be time invariant,

i.e. a single Z for all of the observations, then both models are Lévy stable. In addition, the

Azzalini and Dalla Valle (1996) model maintains the property that the distribution of the

portfolio is also skew normal.
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A.4 Model Specification

0.4.1 Likelihood and Priors.

The skew normal density is defined in terms of a latent (unobserved) random variable Z,

which comes from a truncated standard normal density. The likelihood is given by

Xi|Zi, µ, Σ, ∆ ∼ N�(µ + ∆Zi, Σ),

where N� is a multivariate normal density,

Zi ∼ N�(0, I�)I{Zij > 0}, for all j,

and Im is an m dimensional identity matrix. In all cases we used conjugate prior densities,

with hyper-parameters that reflect vague prior information, or a priori we assume

β ∼ N�(�+1)(0, 100I�(�+1))

Σ ∼ Inverse-Wishart(�, �I�),

where β ′ = (µ′, vec(∆)′) and vec(·) forms a vector by stacking the columns of a matrix.

Full Conditionals.

Assuming n independent skew normal observations, the full conditional distributions are as

follows:

Zi|x, µ, Σ, ∆ ∼ N�(A
−1ai, A

−1)I{Zij > 0}, for all j,

β|x, Σ, Z ∼ N�(�+1)(B
−1b, B−1)

Σ|x, µ, ∆, Z ∼ Inverse-Wishart(� + n, C),

where

A = I� + ∆′Σ−1∆ and a =
n∑

i=1

∆′Σ−1(xi − µ),
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B =

n∑
i=1

y′
iΣ

−1yi +
1

100
I�(�+1) and b =

n∑
i=1

yiΣ
−1xi,

C =

n∑
i=1

(xi − (µ + ∆Zi))(xi − (µ + ∆Zi))
′ + �I�,

where yi = (I�, Z
′
i ⊗ I�).

A.5 Estimation Using the Slice Sampler

The slice sampler introduces an auxiliary variable, which we will call u, in such a way that

the draws from both the desired variable and the auxiliary variable can be obtained by

drawing from appropriate uniform densities, for more details see Damien, Wakefield, and

Walker (1999). To illustrate, assume that we want to sample from the following density,

f (x) ∝ exp

{
− 1

2σ2
(x − µ)2

}
I {x ≥ 0} , (A-4)

where I{·} is an indicator function. We proceed by introducing an auxiliary variable u and

form the following joint density,

f (x, u) ∝ I

{
u ≤ exp

{
− 1

2σ2
(x − µ)2

}
I {x ≥ 0}

}
. (A-5)

It is easy to see that based on (A-5), the marginal density of x is given by (A-4) and that

the conditional density of u given x is a uniform density, or

f (u|x) ∝ I

{
u ≤ exp

{
− 1

2σ2
(x − µ)2

}}
.

With a little more work, it is straightforward to see that the conditional density of x given

u is also uniform, or

f (x|u) ∝ I
{

max
(
0, µ −

√
−2σ2log(u)

)
≤ x ≤ µ +

√
−2σ2log(u)

}
.

Samples from x can then be easily obtained by iteratively sampling from u conditional on x

and then from x conditional on u.
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Table 1:
Evaluating the Distributional Representation of Four Equity Securities and
global asset allocation benchmarks
Model choice results for analysis of the daily stock returns of General Electric, Lucent
Technologies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. And
also for weekly benchmark indices from January 1989 to June 2002 (Lehman Brothers
government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE (non-U.S.
developed market equity), MSCI EMF (emerging market free investments), Russell 1000
(large cap), and Russell 2000 (small cap)). The four models that are used are the multivari-
ate normal (MV-Normal), the multivariate skew normal of Azzalini and Dalla Valle (1996)
with a diagonal ∆ matrix (MVS-Normal D-∆), and the multivariate skew normal of Sahu
et al. (2003) with both a diagonal and full ∆ matrix (MVS-Normal F-∆). Maximum log
likelihood values are used to compute Bayes factors between the multivariate normal model
and all of the other models and is reported on the log scale. The model with the highest
Bayes factor best fits the data. Sahu et al. (2003) diagonal ∆ model fits best overall.

a. Four equity securities

Moments Distribution ∆ Log(BF) Max Log Likelihood
MV normal − 0.00 -2833.82
MVS skew normal A diagonal 2225.75 -2561.15
MVS skew normal B diagonal 2368.33 -2418.85
MVS skew normal B full 2192.83 -2595.56

b. Global asset allocation benchmarks

Moments Distribution ∆ Log(BF) Max Log Likelihood
MV normal − 0.00 -2319.00
MVS skew normal diagonal 1946.11 -2096.26
MVS skew normal diagonal 2015.11 -2067.73
MVS skew normal full 2034.22 -2200.30
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Table 2:
Parameter estimates for diagonal ∆ skew normal on four securities
Parameter estimates for the diagonal ∆ model of Sahu et al. (2003) used to fit the daily stock
returns of General Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems from
April 1996 to March 2002. These estimates are the result of a Bayesian Markov Chain Monte
Carlo iterative sampling routine. These parameters combine to give the mean (µ+(2/π)1/2∆1
and multiplied by 100), variance (Σ + (1 − 2/π)∆∆′), and skewness (see Appendix A.1 for
formula).

µ GE Lucent Cisco Sun
-0.203 1.088 -0.839 -1.214

Σ GE Lucent Cisco Sun
GE 4.13 1.478 2.331 2.304
Lucent 1.478 15.02 5.095 4.504
Cisco 2.331 5.095 13.868 10.711
Sun 2.304 4.504 10.711 17.485

∆ GE Lucent Cisco Sun
GE 0.331 0 0 0
Lucent 0 -1.192 0 0
Cisco 0 0 1.069 0
Sun 0 0 0 1.544
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Table 3:
Parameter estimates for full ∆ skew normal on global asset allocation benchmark
Parameter estimates for full ∆ model of Sahu et al. (2003) used to fit the weekly bench-
mark indices Lehman Brothers government bonds, LB corporate bonds, and LB mortgage
bonds, MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging market free
investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to
June 2002. These estimates are the result of a Bayesian Markov Chain Monte Carlo iterative
sampling routine. These parameters combine to give the mean (µ + (2/π)1/2∆1), variance
(Σ + (1 − 2/π)∆∆′), and skewness (see Appendix A.1 for formula).

µ GB CB MBS EAFE EMF R1000 R2000
0.162 0.385 0.541 0.459 0.095 0.499 0.889

Σ GB CB MBS EAFE EMF R1000 R2000
GB 2.897 3.077 2.156 -0.012 -0.249 0.277 0.01
CB 3.077 3.734 2.405 0.25 0.076 0.549 0.383
MBS 2.156 2.404 2.163 0.269 0.021 0.459 0.403
EAFE -0.012 0.25 0.269 5.16 2.89 2.574 2.694
EMF -0.249 0.077 0.021 2.89 6.687 2.382 2.85
R1000 0.277 0.549 0.459 2.574 2.382 4.717 4.359
R2000 0.01 0.383 0.403 2.694 2.85 4.359 6.293

∆ GB CB MBS EAFE EMF R1000 R2000
GB -0.049 0.227 -0.546 -0.119 -0.1 0.424 -0.1
CB 0.049 0.194 -0.583 -0.167 -0.119 0.484 -0.168
MBS -0.138 0.161 -0.607 -0.135 -0.091 0.347 -0.045
EAFE 0.33 -0.238 -0.002 -0.11 -0.286 0.168 -0.34
EMF 0.041 0.336 0.111 0.142 -1.037 0.144 0.186
R1000 0.141 -0.015 0.108 0.122 -0.083 -0.451 -0.125
R2000 0.072 -0.083 -0.047 0.097 -0.021 -0.279 -0.567
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Table 4:
Two and three moment optimization for four equity securities
This table contains predictive utilities for the weights that maximize utility as a linear
function of the two and three moments of the multivariate normal model by three different
methods for daily stock returns of General Electric, Lucent Technologies, Cisco Systems,
and Sun Microsystems from April 1996 to March 2002. The first method is based on
predictive or future values of the portfolio (results in ωi,pred where the i represents the
number of moments in the model), the second is based on the posterior parameter estimates
(ωi,param), and the third is the method proposed by Michaud (ωi,Michaud). The weights that
are found by each method are ranked by the three moment predictive utility they produce
(i.e E[u3,pred(ω)] = ω′ mp − λ ω′ Vp ω + γ ω′ Sp ω ⊗ ω, where the 3 signifies that the utility
function is linear in the first three moments of the skew normal model, and mp, Vp, and Sp

are the predictive mean, variance and skewness) for varying values of λ and γ. The highest
utility obtained signifies the method that is best for portfolio selection according to the
investor’s preferences. For each combination of λ and γ, ωi,pred gives the highest expected
utility.

a. Two moments

λ γ E[u3,pred(ω2,pred)] E[u3,pred(ω2,param)] E[u3,pred(ω2,Michaud)]
0 0 0.123 0.123 0.113
0 0.5 0.098 0.098 0.011

0.5 0 -1.745 -1.758 -1.756
0.5 0.5 -1.733 -1.749 -1.75

b. Three moments

λ γ E[u3,pred(ω3,pred)] E[u3,pred(ω3,param)] E[u3,pred(ω3,Michaud)]
0 0 0.123 0.123 0.112
0 0.5 0.109 0.098 0.075

0.5 0 -1.745 -1.745 -1.802
0.5 0.5 -1.731 -1.732 -1.736
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Table 5:
Two and three moment optimization for global asset allocation benchmark in-
dices
Predictive utilities for the weights that maximize utility as a linear function of the two and
three moments of the multivariate normal model by three different methods for weekly bench-
mark indices Lehman Brothers government bonds, LB corporate bonds, and LB mortgage
bonds, MSCI EAFE (non-U.S. developed market equity), MSCI EMF (emerging market free
investments), Russell 1000 (large cap), and Russell 2000 (small cap) from January 1989 to
June 2002. The first method is based on predictive or future values of the portfolio (results
in ωi,pred where the i represents the number of moments in the model), the second is based
on the posterior parameter estimates (ωi,param), and the third is the method proposed by
Michaud (ωi,Michaud). The weights that are found by each method are ranked by the three
moment predictive utility they produce (i.e E[u3,pred(ω)] = ω′ mp −λ ω′ Vp ω +γ ω′ Sp ω ⊗ ω,
where the 3 signifies that the utility function is linear in the first three moments of the skew
normal, and mp, Vp, and Sp are the predictive mean, variance and skewness) for varying
values of λ and γ. The highest utility obtained signifies the method that is best for portfolio
selection according to the investor’s preferences. For each combination of λ and γ, ωi,pred

gives the highest expected utility.

a. Two moments

λ γ E[u3,pred(ω2,pred)] E[u3,pred(ω2,param)] E[u3,pred(ω2,Michaud)]
0 0 0.254 0.251 0.238
0 0.5 0.224 0.221 0.212

0.5 0 -0.647 -0.662 -0.674
0.5 0.5 -0.649 -0.666 -0.676

b. Three moments

λ γ E[u3,pred(ω3,pred)] E[u3,pred(ω3,param)] E[u3,pred(ω3,Michaud)]
0 0 0.254 0.252 0.24
0 0.5 0.223 0.223 0.211

0.5 0 -0.647 -0.647 -0.651
0.5 0.5 -0.649 -0.649 -0.656
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Table 6:
Portfolio weights: four equity securities
Three moment (skew normal) utility based portfolio weights for daily stock returns of General
Electric, Lucent Technologies, Cisco Systems, and Sun Microsystems from April 1996 to
March 2002. The weights maximize the expected utility function E[u3,pred(ω)] = ω′ mp −
λ ω′ Vp ω + γ ω′ Sp ω ⊗ ω, (where the 3 signifies that the utility function is linear in the first
three moments, and mp, Vp, and Sp are the predictive mean, variance and skewness) for
varying values of λ and γ. Three different methods of maximization are used. The first is
based on predictive or future values of the portfolio (results in ω3,pred where the 3 represents
the number of moments in the model), the second is based on the posterior parameter
estimates (ω3,param), and the third is the method proposed by Michaud (ω3,Michaud).

λ = 0, γ = 0 GE Lucent Cisco Sun
ω3,pred 0.0009 0.0001 0.0005 0.9985
ω3,param 0.0017 0.0006 0.0112 0.986
ω3,Michaud 0.11 0.0764 0.225 0.588

λ = 0, γ = 0.5 GE Lucent Cisco Sun
ω3,pred 0.405 0.409 0.186 0
ω3,param 0.0004 0.0001 0.0006 0.9989
ω3,Michaud 0.0285 0.00297 0.0453 0.923

λ = 0.5, γ = 0 GE Lucent Cisco Sun
ω3,pred 0.784 0.125 0.0535 0.0368
ω3,param 0.785 0.129 0.0557 0.0304
ω3,Michaud 0.677 0.15 0.0901 0.0807

λ = 0.5, γ = 0.5 GE Lucent Cisco Sun
ω3,pred 0.785 0.129 0.0646 0.0214
ω3,param 0.787 0.125 0.0532 0.0356
ω3,Michaud 0.773 0.155 0.0565 0.0165
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Table 7:
Portfolio weights: global asset allocation benchmark indices
Two moment (normal) utility based portfolio weights for weekly benchmark indices Lehman
Brothers government bonds, LB corporate bonds, and LB mortgage bonds, MSCI EAFE
(non-U.S. developed market equity), MSCI EMF (emerging market free investments), Russell
1000 (large cap), and Russell 2000 (small cap), from January 1989 to June 2002. The weights
maximize the expected utility function E[u2,pred(ω)] = ω′ mp−λ ω′ Vp ω, (where the 2 signifies
that the utility function is linear in the two moments of the normal model, and mp and Vp

are the predictive mean and variance) for varying values of λ and γ. Three different methods
of maximization are used. The first is based on predictive or future values of the portfolio
(results in ω2,pred where the 2 represents the number of moments in the model), the second is
based on the posterior parameter estimates (ω2,param), and the third is the method proposed
by Michaud (ω2,Michaud).

λ = 0.5 GB CB MBS EAFE EMF R1000 R2000
ω2,pred 0.12 0 0.497 0.1 0.0984 0.183 0.0006
ω2,param 0.0015 0.0023 0.632 0.1 0.0777 0.111 0.075
ω2,Michaud 0.157 0.0097 0.461 0.116 0.0421 0.0812 0.134

λ = 0.5, γ = 0.5 GB CB MBS EAFE EMF R1000 R2000
ω3,pred 0.157 0.0002 0.439 0.121 0.0874 0.193 0.0027
ω3,param 0.149 0.0002 0.461 0.0967 0.0905 0.18 0.0233
ω3,Michaud 0.225 0.0005 0.407 0.0885 0.0808 0.15 0.0479
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Density Estimate for Cisco
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Figure 1: This figure contains univariate estimates for Cisco Systems and General Electric
daily stock returns from April 1996 to March 2002. The solid lines represents the kernel den-
sity estimate, while the dotted lines are the normal density with sample mean and variance.
In one dimension the normal distribution closely matches the returns for these two stocks.
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Figure 2: This figure contains a bivariate normal estimate for Cisco Systems and General
Electric daily stock returns from April 1996 to March 2002. The plot is a bivariate nor-
mal with sample mean and covariance. The scatter points are the actual data. Unlike
in one dimension, in two dimensions the normal distribution does not closely match these
joint returns. The actual returns exhibit coskewness and much fatter tails than the normal
approximation.
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Figure 3: This figure contains plots of the mean, variance and skewness of portfolios con-
sisting of two assets. Daily returns from April 1996 to March 2002 for General Electric and
Lucent Technologies, Sun Microsystems and Cisco Systems, and General Electric and Cisco
Systems are considered. The top row has the mean of the portfolio (equal to the linear
combination of the asset means) as the weight of the first asset varies from 0 to 1. The
solid line in the plots in the second row represents the linear combination of the variances
of the assets, while the dotted line represents the variance of portfolios (variance of linear
combination). The variance of the portfolio is alway less or equal to the variance of the
linear combination. The solid line in the third row of plots is the linear combination of
the skewness of the two assets in the portfolio, and the dotted line is the skewness of the
portfolio. The skewness of the portfolio does not dominate, nor is dominated by the linear
combination of the skewness. Selecting a portfolio based solely on minimum variance could
lead to a portfolio with minimum skewness as well (see GE vs. Cisco).
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Figure 4: This figure shows the space of possible portfolios based on historical parameter
estimates from the daily returns of General Electric, Lucent Technologies, Cisco Systems,
and Sun Microsystems from April 1996 to March 2002. The top left plot is the mean-
standard deviation space, the top right plot is the mean verses the cubed-root of skewness.
The bottom left plot is the standard deviation verses the cubed-root of skewness, and the
bottom right plot is a three dimensional plot of the mean, standard deviation and cubed-
root of skewness. In all plots that contain the skewness there is a sparse region where the
skewness is zero.

40



Figure 5: This figure shows the mean-variance space of possible portfolios based on his-
torical parameter estimates from the daily returns of General Electric, Lucent Technolo-
gies, Cisco Systems, and Sun Microsystems from April 1996 to March 2002. The port-
folios are shaded according to the utility associated with each. In the left plot the util-
ity function is E[upred(ω)] = ω′ mp − 0.5 ω′ Vp ω, which is a linear function of the first
two moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’. The plot on the right is shaded according the the utility function
E[upred(ω)] = ω′ mp − 0.5 ω′ Vp ω + 0.5 ω′ Sp ω ⊗ ω, which is a linear function of the first
three moments. The maximum utility is obtained by a portfolio on the frontier and is
marked by a ‘+’.
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