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We propose a method for optimal portfolio selection using a Bayesian decision theoretic
framework that addresses two major shortcomings of the traditional Markowitz approach: the
ability to handle higher moments and parameter uncertainty. We employ the skew normal
distribution which has many attractive features for modeling multivariate returns. Our results
suggest that it is important to incorporate higher order moments in portfolio selection.
Further, our comparison to other methods where parameter uncertainty is either ignored or
accommodated in an ad hoc way, shows that our approach leads to higher expected utility
than competing methods, such as the resampling methods that are common in the practice of
finance.

Keywords: Bayesian decision problem; Multivariate skewness; Parameter uncertainty; Optimal
portfolios; Utility function maximization

1. Introduction

Markowitz (1952a) provides the foundation for the

current theory of portfolio choice. He describes the task

of asset allocation as having two stages. The first stage

‘‘starts with observation and experience and ends with

beliefs about the future performances of available secu-

rities.’’ The second stage ‘‘starts with the relevant beliefs

. . . and ends with the selection of a portfolio.’’ Although

Markowitz only deals with the second stage, he suggests

that the first stage should be based on a ‘‘probabilistic’’

model. However, in the usual implementation of

Markowitz’s second stage, it is assumed that we know

with certainty the inputs from the first stage, i.e. the exact

means, variances and correlations. This paper introduces

a method for addressing both stages.
In a less well known part of Markowitz (1952a, p. 91),

he details a condition whereby mean–variance efficient

portfolios will not be optimal—when an investor’s utility

is a function of mean, variance, and skewness. While

Markowitz did not work out the optimal portfolio

selection in the presence of skewness and other higher
moments, we do. We develop a framework for optimal

portfolio selection in the presence of both higher order

moments and parameter uncertainty.
Several authors have proposed advances to optimal

portfolio selection methods. Some address the empirical

evidence of higher moments; Athayde and Flôres (2001)
and Adcock (2009) give methods for determining higher

dimensional ‘efficient frontiers’, but they remain in the

certainty equivalence framework (assuming exact knowl-

edge of the inputs) for selecting an optimal portfolio. Like

the standard efficient frontier approach, these approaches
have the advantage that for a large class of utility

functions, the task of selecting an optimal portfolio

reduces to the task of selecting a point on the high

dimensional ‘efficient frontiers’. Other three moment

optimization methods include using negative
semi-variance in place of variance (Markowitz 1959,

Markowitz et al. 1993). A similar measure of downside

risk is incorporated by Feiring et al. (1994) and Konno

et al. (1993) who use an approximation to the lower*Corresponding author. Email: cam.harvey@duke.edu
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semi-third moment in their Mean-Absolute Deviation-
Skewness portfolio model.y These methods rest on the
assumption that an investor’s expected utility is reason-
ably approximated by inserting estimates of the moments
of an assumed sampling model. Chiu (2008) examines the
relationship between expected utility maximization and
stochastic dominance.

A number of researchers have shown that mean–
variance efficient portfolios, based on estimates and
ignoring parameter uncertainty, are highly sensitive to
perturbations of these estimates. Jobson et al. (1979) and
Jobson and Korkie (1980) detail these problems and
suggest the use of shrinkage estimators. This ‘estimation
risk’ comes from both choosing poor probability models
and from ignoring parameter uncertainty, maintaining the
assumption that expected utility can be evaluated by
substituting point estimates of sampling moments in the
utility function.

Others have ignored higher moments, but address the
issue of estimation risk. Frost and Savarino (1986, 1988)
show that constraining portfolio weights, by restricting
the action space during the optimization, reduces estima-
tion error. Jorion (1992) proposes a resampling method
aimed at estimation error. Using a Bayesian approach,
Britten-Jones (2002) proposes placing informative prior
densities directly on the portfolio weights. Others propose
methods that address both stages of the allocation task
and select a portfolio that optimizes an expected utility
function given a probability model.z

In an attempt to maintain the decision simplicity
associated with the efficient frontier and still accommo-
date parameter uncertainty, Michaud (1998) proposes a
sampling based method for estimating a ‘resampled
efficient frontier’ (see Scherer 2002, 2006 for further
discussion). While this new frontier may offer some
insight, using it to select an optimal portfolio implicitly
assumes that the investor has abandoned the maximum
expected utility framework as Jensen’s inequality dictates
that the resampled efficient frontier is in fact suboptimal.
Polson and Tew (2000) argue for the use of posterior

predictive moments instead of point estimates for mean
and variance of an assumed sampling model. Their setup
comes closest to the framework that we propose in this
paper. Using posterior predictive moments, they accom-
modate parameter uncertainty. We follow their setup in
our discussion in section 3.1.1.

Our approach advances previous methods by address-
ing both higher moments and estimation risk in a
coherent Bayesian framework. As part of our ‘stage
one’ approach (i.e. incorporating observation and expe-
rience), we specify a Bayesian probability model for the
joint distribution of the asset returns, and discuss prior
distributions. As for ‘stage two’, the Bayesian methodol-
ogy provides a straightforward framework to calculate
and maximize expected utilities based on predicted
returns. This leads to optimal portfolio weights in the
second stage which overcome the problems associated
with estimation risk. We empirically investigate the
impact of simplifying the asset allocation task for a
class of utility functions which can be approximated by a
third-order Taylor series expansion (i.e. contributions to
higher order moments are assumed to be negligible for
this class of investors).x For two illustrative data sets, we
demonstrate the difference in expected utility that results
from ignoring higher moments and using a sampling
distribution, with point estimates substituted for the
unknown parameter, instead of a predictive distribution.
In addition, we demonstrate the loss in expected utility
from using the popular resampling approach proposed by
Michaud (1998).

Our paper is organized as follows. In the section 2 we
discuss the importance of higher moments and provide
the setting for portfolio selection and Bayesian statistics
in finance. We discuss suitable probability models for
portfolios and detail our proposed framework. In the
section 3 we show how to optimize portfolio selection
based on utility functions in the face of parameter
uncertainty using Bayesian methods. Section 4 empirically
compares different methods and approaches to portfolio
selection. Some concluding remarks are offered in the

ySeveral other authors have investigated the importance of higher moments in financial applications, including Campbell et al.
(2001), Chen et al. (2001), Dittmar (2002), Athayde and Flores (2004), Burger and Warnock (2004), Goetzman and Kumar (2004),
Jondeau and Rockinger (2004), Levy and Levy (2004), Patton (2004), Adcock (2005), Brunnermeier and Parker (2005), Jurczenko
et al. (2005), Liew and French (2005), Sfiridis (2005), Ang et al. (2006), Bakshi and Madan (2006), Barro (2006), Williams and
Ioannidis (2006), Barberis and Huang (2007), Briec et al. (2007), Brunnermeier et al. (2007), Chiang and Li (2007), Guidolin and
Timmermann (2007), Mitton and Vorkink (2007), Martellini and Ziemann (2007), Chabi-Yo (2008a, b), Cvitanić et al. (2008),
DeMiguel et al. (2009, 2010), Post et al. (2008), Bacmann and Benedetti (2009), Da Silva et al. (2009), Hall et al. (2009), Knight and
Satchell (2009), Mencia and Sentana (2009), Morton and Popova (2009), Wilcox and Fabozzi (2009), Zhou (2009), Bali and Cakici
(2010), Blau and Pinegar (2009), Brandt et al. (2010), Conrad et al. (2010), Fabozzi et al. (2010), Martin (2010), Poti (2010), Jondeau
and Rockinger (2006), Vorkink et al. (2009).
zFrom the Bayesian perspective, Jorion (1986) uses a shrinkage approach while Treynor and Black (1973) advocate the use of
investors’ views are combined with historical data. Kandel and Stambaugh (1996) examine predictability of stock returns when
allocating between stocks and cash by a risk-averse Bayesian investor. Johannes et al. (2002) examine the market timing relationship
to performance of optimal portfolios using a model with correlation between volatility and returns in a Bayesian portfolio selection
setting. Zellner and Chetty (1965), Klein and Bawa (1976) and Brown (1978) emphasize using a predictive probability model
(highlighting that an investor’s utility should be given in terms of future returns and not parameters from a sampling distribution).
Pástor and Stambaugh (2000) study the implications of different pricing models on optimal portfolios, updating prior beliefs based
on sample evidence. Pástor (2000) and Black and Litterman (1992) propose using asset pricing models to provide informative prior
distributions for future returns.
xWe restrict ourselves to third moment approximations and probability models in order to simplify the exposition; clearly these
methods and models can be extended in a straightforward manner to accommodate fourth-order and higher moments.
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final section. The appendix contains some additional
results and proofs.

2. Higher moments and Bayesian models

A prerequisite to the use of the Markowitz framework is
either that the relevant distribution of asset returns be
normally distributed or that utility is only a function of
the first two moments. But it is well known that many
financial returns are not normally distributed. Studying a
single asset at a time, empirical evidence suggests that
asset returns typically have heavier tails than implied by
the normal assumption and are often not symmetric (Kon
1984, Mills 1995, Markowitz and Usmen 1996, Peiro
1999, Premaratne and Tay 2002). Also, we argue that the
relevant probability model is the posterior predictive
distribution, which in general is not normal, even under
an assumed normal sampling model.

Since we are integrating over the predictive distribution
to get the predictive moments, the skew normal distribu-
tion will accommodate higher order moments (skewness,
coskewness and kurtosis) in the predictive density. We use
Bayes factors (see section 2.3) to show that the skew
normal fits better than the normal distribution, but
acknowledge that there are other competing densities
which could be considered such as multivariate versions
of the Pearson Type IV and skew-t distributions. As one
of our main goals is demonstrating the value of incorpo-
rating distributions with higher moments into the port-
folio optimization problem, we have left an exhaustive
comparison of competing distributions for future
research.

The approach proposed in our paper is somewhat
related to Shadwick and Keating (2002) and Cascon et al.
(2003) who argue that point estimates of the mean and
variance of an assumed sampling distribution are insuf-
ficient summaries of the available information of future
returns. Instead they advocate the use of a summary
function, which they call ‘Omega’, that represents all the
relevant information contained within the observed data.
This ‘Omega’ function suggests a decision rule where
investors select a portfolio that maximizes Omega for
each possible level of average return. Given an average
return level, this approach provides a complicated,
nonlinear utility function which can accommodate
higher order moments. While we strongly agree with the
premise that investors have utilities which accommodate
higher order moments of the predictive distribution, we
are restricting our focus to utility functions which can be
approximated by a third-order Taylor series. Future work
could easily extend our approach to consider the Omega
summary and decision rules.y

Our investigation of multiple assets builds on these
empirical findings and indicates that the existence

of ‘coskewness’, which can be interpreted as correlated
extremes, is often hidden when assets are considered one
at a time. To illustrate, figure 1 contains the kernel density
estimate and normal distribution for the marginal daily
returns of Carnival, Starwood Hotels and Resorts, L-3
Communications Holdings, and Raytheon from July 2001
to June 2006, and figure 2 contains bivariate normal
approximations of select pairs of joint returns.

While the marginal summaries in figure 1 suggest only a
slight deviation from the normality assumption, the joint
summaries appear to exhibit a degree of coskewness,
suggesting that skewness may have a larger impact on the
distribution of a portfolio than previously thought.

2.1. Economic importance

Markowitz’s intuition for maximizing the mean while
minimizing the variance of a portfolio comes from the
idea that the investor prefers higher expected returns and
lower risk. Extending this concept further, most agree
that, ceteris paribus, investors prefer a high probability of
an extreme event in the positive direction over a high
probability of an extreme event in the negative direction.
From a theoretical perspective, Markowitz (1952b) and
Arrow (1971) argue that desirable utility functions should
exhibit decreasing absolute risk aversion, implying that
investors should have preference for positively skewed
asset returns. (Also see the discussion in Roy (1952).)
Experimental evidence of preference for positively skewed
returns has been established by, for example, Sortino and
Price (1994) and Sortino and Forsey (1996). Levy and
Sarnat (1984) find a strong preference for positive
skewness in the study of mutual funds. Harvey and
Siddique (2000a,b) introduce an asset pricing model that
incorporates conditional skewness, and show that an
investor may be willing to accept a negative expected
return in the presence of high ex ante positive skewness.

An aversion towards negatively skewed returns sum-
marizes the basic intuition that many investors are willing
to trade some of their average return for a decreased
chance that they will experience a large reduction in their
wealth, which could significantly reduce their level
of consumption. Some researchers have attempted to
address aversion to negative returns in the asset allocation
problem by abandoning variance as a measure of risk and
defining a ‘downside’ risk that is based only on negative
returns. These attempts to separate ‘good’ and ‘bad’
variance can be formalized in a consistent framework by
using utility functions and probability models that
account for higher moments.

While skewness will be important to a large class of
investors and is evident in the historical returns of the
underlying assets and portfolios, the question remains:
how influential is skewness in terms of finding optimal
portfolio weights? Cremers et al. (2004) argue that only

yWhile this approach accommodates higher order moments it does not account for parameter uncertainty. A proper extension of
the Omega function would include the uncertainty about cumulative predictive densities. In addition to extending our proposed
methods to accommodate utility functions, we could also extend our probabilistic models to build upon non-parametric Bayesian
estimates of the predictive densities, inherently modeling the uncertainty in the ‘cumulative CDF’.
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Figure 2. Bivariate normal estimates for pairs of Carnival, Starwood Hotels and Resorts, L-3 Communications Holdings, and
Raytheon from July 2001 to June 2006. The plots are bivariate normal densities with sample mean and covariance. The scatter
points are the actual data. Unlike in one dimension, in two dimensions the normal distribution does not closely match these joint
returns. The actual returns exhibit coskewness and much fatter tails than the normal approximation.
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Figure 1. Univariate density estimates for Carnival, Starwood Hotels and Resorts, L-3 Communications Holdings, and Raytheon
daily stock returns from July 2001 to June 2006. The solid lines represent the kernel density estimate, while the dotted lines are the
normal density with sample mean and variance. In one dimension, the normal distribution is a close match of the returns for these
four stocks.
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under certain utility specifications is it worthwhile to

consider skewness in portfolio selection. However, it is

our experience that any utility function approximated by

a third-order Taylor’s expansion will lead to superior

portfolio weights if skewness is included. To accommo-

date higher-order moments in the asset allocation task, we

must introduce an appropriate probability model. After

providing an overview of possible approaches, we for-

mally state a model and discuss model choice tools.

2.2. Probability models for higher moments

Though it is a simplification of reality, a model can be

informative about complicated systems. While the multi-

variate normal distribution has several attractive proper-

ties for modeling a portfolio, there is considerable

evidence that portfolio returns are non-normal. There

are a number of alternative ways to accommodate higher

moments. The multivariate Student-t distribution is good

for fat-tailed data, but does not allow for asymmetry. The

non-central multivariate t distribution also has fat tails

and, in addition, is skewed. However, the skewness is

linked directly to the location parameter and is, therefore,

somewhat inflexible. The log-normal distribution has

been used to model asset returns, but its skewness is a

function of the mean and variance, not a separate

skewness parameter.
Azzalini and Dalla Valle (1996) propose a multivariate

skew normal distribution that is based on the product of a

multivariate normal probability density function (pdf )

and univariate normal cumulative distribution function

(cdf ). This is generalized into a class of multivariate skew

elliptical distributions by Branco and Dey (2001), and

improved upon by Sahu et al. (2003) by using a

multivariate cdf instead of univariate cdf, adding more

flexibility, which often results in better-fitting models.

Because of the importance of coskewness in asset returns,

we start with the multivariate skew normal probability

model presented by Sahu et al. (2003) and offer a

generalization of their model.
The multivariate skew normal can be viewed as a

mixture of an unrestricted multivariate normal density

and a truncated, latent multivariate normal density, or

X ¼ �þ DZþ �, ð1Þ

where � and D are an unknown parameter vector and

matrix, respectively, � is a normally distributed error

vector with a zero mean and covariance �, and Z is

a vector of latent random variables. Z comes from a

multivariate normal with mean 0 and an identity covari-

ance matrix and is restricted to be non-negative, or

pðZÞ / ð2=pÞ‘=2 expð�0:5Z0ZÞ
Yp
j¼1

IfZj40g, ð2Þ

where I{�} is the indicator function and Zj is the jth

element of Z. Sahu et al. (2003) restrict D to being a
diagonal matrix, which accommodates skewness, but does

not allow for coskewness. We generalize the Sahu et al.

(2003) model to allow D to be an unrestricted random

matrix resulting in a modified density and moment
generating function (see appendix A.1 for details).

As with other versions of the skew normal model, this

model has the desirable property that marginal distribu-

tions of subsets of skew normal variables are skew normal

(see Sahu et al. 2003 for a proof ). Unlike the multivariate
normal density, linear combinations of variables from a

multivariate skewed normal density are not skew normal.

This does not, however, restrict us from calculating

moments of linear combinations with respect to the model
parameters (see appendix A.2 for the formula for the first

three moments).
While the skew normal is similar in concept to a

mixture of normal random variables, it is fundamentally

different. A mixture takes on the value of one of the
underlying distributions with some probability and a

mixture of normal random variables results in a Lévy

stable distribution.y The skew normal is not a mixture of

normal distributions, but it is the sum of two normal

random variables, one of which is truncated, and results
in a distribution that is not Lévy stable. Though it is not

stable, the skew normal has several attractive properties.

Because it is the sum of two distributions, it can

accommodate heavy tails along with coskewness, but
the marginal distribution of any subset of assets is also

skew normal. This is important in the portfolio selection

setting because it insures consistency in selecting optimal

portfolio weights. For example, with short selling not
allowed, if optimal portfolio weights for a set of assets are

such that the weight is zero for one of the assets then

removing that asset from the selection process and

re-optimizing will not change the portfolio weights for

the remaining assets.
Following the Bayesian approach, we assume conjugate

prior densities for the unknown parameters, i.e. a priori

normal for � and vec(D), where vec(�) forms a vector from

a matrix by stacking the columns of the matrix, and a

priori Wishart for ��1. The resulting full conditional

posterior densities for � and vec(D) are normal, the full

conditional posterior density for ��1 is Wishart and the

full conditional posterior density for the latent Z is a

truncated normal. See appendix A.3 for a complete

specification of the prior densities and the full conditional

posterior densities. Given these full conditional posterior

densities, estimation is done using a Markov Chain

Monte Carlo (MCMC) algorithm based on the Gibbs

sampler and the slice sampler (see Gilks et al. (1996) for a

general discussion of the MCMC algorithm and the

Gibbs sampler and see appendix A.4 for a discussion of

the slice sampler).

yA family of distributions X is said to be Lévy stable if for two independent draws of X, say X1 and X2, the sum X1þX2 is also a
member of that family. The only stable distribution with finite variance is the normal distribution. It is easy to see that the sum of
skew normals is not a skew normal by examination of the moment generating function.

Portfolio selection with higher moments 473

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
r
v
e
y
,
 
C
a
m
p
b
e
l
l
 
R
.
]
 
A
t
:
 
2
0
:
1
2
 
2
9
 
A
p
r
i
l
 
2
0
1
0



2.3. Model choice

The Bayes factor (BF) is a well developed and frequently
used tool for model selection which naturally accounts for
both the explanatory power and the complexity of
competing models (see Berger 1985 and O’Hagan 1994
for further discussion of Bayes factors).

For two competing models (M1 and M2), the Bayes
factor is

BF ¼ posterior odds/prior odds ¼ pðx jM1Þ=pðx jM2Þ:

We use a sampling-based estimator proposed by Newton
and Raftery (1994) to calculate the Bayes factor. In
practice, we use the Bayes factor to determine the best
probability model (the model that provides the best
empirical fit for a set of returns data) by calculating the
Bayes factor with respect to the Multivariate normal
probability model, which is used as a baseline probability
model.

3. Optimization

Markowitz defined the set of optimal portfolios as the
portfolios that are on the efficient frontier, based on
estimated moments of the sampling distribution. Ignoring
uncertainty inherent in the underlying probability model,
the portfolio that maximizes expected utility for a large
class of utility functions is in this set. When parameter
uncertainty is explicitly considered, the efficient frontier,
now written in terms of predictive moments, can still only
identify optimal allocations for utility functions that are
exactly linear in the moments of the portfolio. In all other
cases, the utility function must be explicitly specified. For
general probability models and arbitrary utility functions,
calculating and optimizing the expected utility must
be done numerically, a task that is straightforward to
implement using the Bayesian framework.

3.1. Simplifications made in practice

There are several simplifications that are made in practice
with regards to selecting optimal weights in the face of
parameter uncertainty: such as using parameter estimates
instead of predictive returns, maximizing something other
than expected utility or ignoring higher-order moments,
such as skewness. As we will detail, each of these
simplifications can, for different reasons, lead to poor
decisions, in that the investor will select weights that
‘leave expected utility on the table’. We complete this
comparison by illustrating the extent to which these
simplifications can impact portfolio decisions in the
empirical study that is presented in section 4.

3.1.1. Simplification 1: Utility based on model parameters,

not predictive returns. The relevant reward for an
investor is the realized future return of their portfolio.

Thus the utility function needs to be a function of the

future returns, not a function of the model parameters.

This point is emphasized by Zellner and Chetty (1965)

and Brown (1978). It is reasonable to assume that a

decision maker chooses an action by maximizing expected

utility, the expectation being with respect to the posterior

predictive distribution of the future returns, conditional

on all currently available data (DeGroot 1970, Raiffa and

Schlaifer 1961). Following this paradigm, Polson and Tew

(2000) propose the use of predictive moments for future

returns to define mean–variance efficient portfolios which

we also implement (see also Kandel and Stambaugh 1996

and Pástor and Stambaugh 2000, 2002). In the following

discussion, we highlight the difference of this approach

and the traditional approach.
Predictive returns are often ignored and utility is stated

in terms of the posterior means of the model parameters

because of computational complexity and the argument

that the moments of the predictive distribution are

approximated by the corresponding moments of the

posterior distribution.
To illustrate, let xo represent the history up to the

current observation and let x represent future data.

Let X ¼ (x,Vx,Sx) be powers of future returns, where

mp ¼

Z
x pðx j xoÞ dx

is the predictive mean given xo, Vx¼ (x�mp)(x�mp)
0,

and Sx¼Vx� (x�mp)
0. Assuming that utility is a

third-order polynomialy of future returns, predictive

utility is given by

upredð!,XÞ ¼ !
0 x� �½!0ðx�mpÞ�

2
þ �½!0 ðx�mpÞ�

3,

ð3Þ

where � and � determine the impact of predictive variance

and skewness. Expected utility becomes

EUpredð!Þ¼!
0E ½x j xo���!0E ½Vx jx

o�!þ�!0E ½Sx j x
o�!�!

¼!0mp��!
0Vp!þ�!

0Sp!�!, ð4Þ

where �p¼ (mp,Vp,Sp) are the predictive moments of x.

We refer to utility function (3) as a linear utility function.

Utility is linear in the sense that upred is linear in the

predictive summaries X , and thus EUpred is linear in the

predictive moments �p.
Often a function involving sampling moments corre-

sponding to the predictive moments in (4) is used instead

of actual future returns to define utility. Assuming an

i.i.d. sampling xt� p�(xt) for returns at time t, let

�¼ (m,V,S ) denote the moments of p� and define a

utility function

uparamð!, �Þ ¼ !
0m� �!0V!þ �!0S!� !, ð5Þ

where the moments m, V, and S are given in terms

of �, �, and D, assuming a skew normal model

yA third-order Taylor series approximation of utilities are dominated by the first three predictive moments.

474 C. R. Harvey et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
r
v
e
y
,
 
C
a
m
p
b
e
l
l
 
R
.
]
 
A
t
:
 
2
0
:
1
2
 
2
9
 
A
p
r
i
l
 
2
0
1
0



(see appendix A.1 for details). The expected utility

becomes

EUparamð!Þ ¼ !
0 �m� �!0 �V!þ �!0 �S!� !, ð6Þ

where �m, �V and �S are the posterior means of �. Note that

the expectation in (6) is in terms of posterior moments

which is a distribution of the model parameters and are

point estimates or ‘plug in’. The predictive moments in (4)

contain the posterior moments given in (6) and additional

terms.y It is straightforward to show that the predictive

mean equals the posterior mean and that the predictive

variance and skewness equal the posterior means of V and

S plus additional terms, or

mp ¼ �m,

Vp ¼ �Vþ Varðm j xoÞ,

Sp ¼ �Sþ 3EðV�m j xoÞ � 3EðV j xoÞ �mp

� E ½ðm�mpÞ
0
ðm�mpÞ � ðm�mpÞ j x

o�:

Polson and Tew (2000, proposition 1) highlight the

implication of the difference between Vp and V for

mean–variance efficient portfolios. Rewriting (4) then

gives an alternative form that is composed of EUparam(!)
plus other terms:

EUpredð!Þ

¼ !0 �m� �!0 �V!þ �!0 �S!� !� �!0 Varðm j xoÞ!

þ 3�!EðV�m j xoÞ!� !

� 3�!EðV j xoÞ �mp!� !� �!E ½ðm�mpÞ

� ðm�mpÞ
0
� ðm�mpÞ

0
j xo�!� !:

When considering linear utility functions, it is clear that

using the parameter utility will result in a very different

utility when compared with the predictive utility. For

example, the parameter utility ignores the uncertainty

about the first moment, or the variance of the mean, and

as a result the parameter variance is smaller than the

predictive variance, which includes this uncertainty about

the mean. Similar omissions are made for skewness and

other higher-order terms. As a result the parameter utility

function is only an approximation to the predictive utility

function. Clearly when one considers other utility func-

tions, particularly ones which are not linear, the difference

in the parameter and predictive expected utilities will have

marked differences which may make the parameter utility

an even worse approximation to the predictive utility than

in the case of linear utility functions.

3.1.2. Simplification 2: Maximize something other than

expected utility. Given that utility functions can be
difficult to integrate, various approximations are often

used. The simplest approximation is to use a first-order

Taylor’s approximation (Novshek 1993) about the

expected predictive summaries, or assume

EUpredð!Þ ¼ E ½upredð!,XÞ j x
o� � upredð!,E ½X j x

o�Þ:

For linear utility functions this approximation is exact, as

in (3) and (4). The Taylor’s approximation removes any

parameter uncertainty and leads directly to the certainty

equivalence optimization framework, substituting predic-

tive moments. It is easy to see that combining the Taylor’s

approximation and the much stronger assumption that

the posterior moments approximately equal predictive

moments leads to a frequently used ‘two-times removed’

approximation of the expected utility of future returns, or

EUpredð!Þ ¼ E ½upredð!,XÞ j x
o� � upredð!,E ½X j x

o�Þ

� uparamð!,E ½� j x
o�Þ:

In an attempt to maintain the flexibility of the efficient

frontier optimization framework but still accommodate

parameter uncertainty, Michaud (1998) proposes an

optimization approach that switches the order of integra-

tion (averaging) and optimization. The maximum

expected utility framework optimizes the expected utility

of future returns; the certainty equivalence framework

optimizes the utility of expected future returns

(i.e. substituting posterior predictive moments in the

utility function). Michaud (1998) proposes creating a

‘resampled frontier’ by repeatedly maximizing the utility

for a draw from a probability distribution and then

averaging the optimal weights that result from each

optimization. While the approach could be viewed in

terms of predictive returns, the sampling guidelines are

arbitrary and could significantly impact the results.
Given that the main interest is to account for parameter

uncertainty, we consider a modified resampling algorithm

where parameter draws from a posterior density are used

in place of the predictive moment summaries.z To be

explicit, assuming a utility of parameters, the essential

steps of the algorithm are as follows. For a family of

utility functions (uparam,1, . . . , uparam,K), perform the fol-

lowing steps.

(1) For each utility function (e.g. uparam,k), generate n

draws from a posterior density �i,k� p(�|xo).
(2) For each �i,k find weight !i,k that maximizes

uparam,k(!, �i,k).

yKan and Zhou (2007) provide a thorough discussion of the difference of plug-in and Bayes estimator of the optimal decision under
the parameter-based utility (5). Their discussion highlights the difference between a proper Bayes rule, defined as the decision that
maximizes expected utility, versus a rule that plugs in the Bayes estimate for the weights or the parameters in the sampling
distribution.
zIn a related study, Markowitz and Usmen (2003) take a similar approach to ours for comparing Bayesian methods to Michaud’s
(1998) approach. However, in their study, they only consider two moments and use an importance sampling approach for Bayesian
inference, where the number of samples that they use to estimate the expected utility is too small compared to the dimension of the
integral. In related papers, Harvey et al. (2008, 2011) correct this problem by using the standard MCMC method for Bayesian
inference and using a much larger number of samples to estimate the expected utility. The results from the new study are sharply
different from Markowitz and Usmen (2003).
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(3) For each utility function, let �!k ¼ 1=n
P
!i define

the optimal portfolio.

By Jensen’s inequality, if !	k 6¼ �!k, then for a large class of
utility functions

E ½uparam, kð!
	
k, �Þ j x

o� 6¼ E ½uparam, kð �!k, �Þ j x
o�: ð7Þ

Further if !	k maximizes E [uparam,k(!, �) | xo], then

E ½uparam, kð!
	
k, �Þ j x

o� 
 E ½uparam, kð!
		, �Þ j xo�,

for all !		 6¼!	. From (7), clearly

E ½uparam, kð!
	
k, �Þ j x

o�4E ½uparam, kð �!, �Þ j x
o�,

or �!k results in a sub-optimal portfolio in terms of
expected utility maximization.

3.1.3. Simplification 3: Ignore skewness. Although evi-
dence of skewness and other higher moments in financial

data are abundant, it is common for skewness to be
ignored entirely in practice. Typically skewness is ignored
both in the sampling models and in the assumed utility

functions. In order to illustrate the impact of ignoring
skewness, figure 3 shows the empirical summary of the

distribution of possible portfolios for four example
securities (Carnival, Starwood Hotels and Resorts, L-3
Communications Holdings, and Raytheon). Here we have
calculate the portfolio mean, standard deviation, and
cubed-root of skewness on a grid of portfolio weights
between zero and one.

The mean–variance summary immediately leads to
Markowitz’s initial insight, but the relationship between
mean, variance and skewness demonstrates that
Markowitz’s two-moment approach offers no guidance
for making effective trade-offs between mean, variance
and skewness. Using the certainty equivalence framework
and a linear utility of the first three empirical moments, or

uempirical ¼ !
0me � �!

0Ve!þ �!
0Se!� !,

where me, Ve, and Se are the empirical mean, variance and
skewness.

3.2. Bayesian optimization methods

Bayesian methods offer a natural framework for both the
evaluation of expectations and the optimization of
expected utilities for an arbitrary utility function, with
respect to an arbitrarily complicated probability model.
Given an appropriate MCMC estimation routine, it is
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Portfolios consisting of Carnival, Starwood, L-3 Communications, and Raytheon

Figure 3. The space of possible portfolios based on historical parameter estimates from the daily returns of Carnival, Starwood
Hotels and Resorts, L-3 Communications Holdings, and Raytheon from July 2001 to June 2006. The top left plot is the mean–
standard deviation space, the top right plot is the mean versus the cubed-root of skewness. The bottom left plot is the standard
deviation versus the cubed-root of skewness, and the bottom right plot is a three-dimensional plot of the mean, standard deviation
and cubed-root of skewness.
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straightforward to generate draws from the posterior
predictive density, or to draw by computer simulation,

xi � pðx j xoÞ,

and then evaluate the predictive summaries X i. Given a
set of n draws, the expected utility for an arbitrary utility
function can be estimated as an ergodic average, or

EUð!Þ ¼ E ½uð!,X Þ j xo� �
1

n

X
uð!,X iÞ:

The approximate expected utility can then be optimized
numerically using a number of different approaches. One
attractive algorithm is the Metropolis–Hastings (MH)
algorithm. While MH simulation is widely used for
posterior simulation, the same algorithm can be exploited
for expected utility optimization. We use the MH algo-
rithm to explore the expected utility function,
f (!)¼E [U(!)], as a function of the weights. Asymptotic
properties of the MH chain lead to portfolio weights
! being generated with frequencies proportional to
EU(!). That is, promising portfolio weights with
high expected utility are visited more often, as desired.y
One advantage of using the MH algorithm for optimiza-
tion is that it can easily accommodate constraints on the
weights.

Intuitively, this Markov chain can be viewed as a type
of ‘random walk’ with a drift in the direction of larger
values of the target function. When the MH algorithm is
used as a tool for performing statistical inference, the
target density is typically a posterior probability density;
however, this need not be the case. As long as the target
function is non-negative and integrable, the MH can be
used to numerically explore any target function. Not only
has the MH been shown to be very effective for searching
high-dimensional spaces, its irreducible property ensures
that if a global maximum exists the MH algorithm will
eventually escape from any local maximum and visit the
global maximum.

In order to use the MH function, we need to ensure that
our expected utility is non-negative and integrable. For
the linear utility functions, integrability over the space of
possible portfolios, where the portfolios are restricted to
the unit simplex (i.e. we do not allow short selling), is
easily established. We modify the utility function so that it
is a non-negative function by subtracting the minimum
expected utility which is found by tracking the minimum
as the algorithm runs. The target function becomes

~EUð!Þ ¼ EUð!Þ �min
!

EUð!Þ:

4. Optimal portfolios

In theory, simplifications of the complete asset allocation
task will result in a sub-optimal portfolio selection. In
order to assess the impact that results from some of these
simplifications in practice, we consider three different

optimization approaches for two data sets using a family
of linear utility functions. In particular, we consider the
utility functions given in (3) and (5), which have expected
utilities given in terms of the predictive posterior and
posterior moments, respectively (see equations (4)
and (6)). We consider a number of potential probability
models and select the best model. Using results from both
the multivariate normal model and the best higher
moment model, we numerically determine the optimal
portfolio based on the predictive returns, the parameter
values and using Michaud’s (1998) non-utility maximiza-
tion approach. We contrast the performance of each
optimal portfolio in terms of expected predictive utility
using the best model.

4.1. Data description

We consider two sets of returns. The first set comes from
four equity securities. The second set comes from a
broad-based portfolio of domestic and international
equities and fixed income mixed with some important
commodities.

First, we consider daily returns from July 2001 to June
2006 on four equity securities which we considered earlier.
In addition, we select assets that more closely match the
portfolio decision that most investors face. The daily
returns are from January 2002 to June 2006 on four
equity portfolios: Russell 1000 (large capitalization
stocks), Russell 2000 (smaller capitalization stocks),
Morgan Stanley Capital International (MSCI) EAFE
(non-U.S. developed markets), and MSCI EMF (emerg-
ing market equities that are available to international
investors). We also consider crude oil futures, gold, and
the 10-year Treasury bond.

One reason that skewness and in particular coskewness
is overlooked in portfolio choice is that simple summaries
of asset returns, particularly marginal summaries, often
show very little evidence of higher order-moments; see,
for example, table 1 and figure 1 for marginal summaries
for the four stocks in our first data set.

While the marginal summaries may not appear to
support including higher-order moments, as we will
demonstrate in the next subsection, there is overwhelming
statistical evidence that coskewness exists in both sets of
data. As a result, the impact of this coskewness on

Table 1. Marginal summaries for four stocks. This table
contains the maximum likelihood estimates for the first three
moments of Carnival, Starwood Hotels and Resorts, L-3
Communications Holdings, and Raytheon daily from July

2001 to June 2006.

Carnival Starwood L-3 Raytheon

Mean (�1000) 0.519 0.848 0.773 0.653
Std. dev. 0.02 0.021 0.022 0.018
Skewness1/3 �1.42 �1.22 1.62 1.31

ySee, for example, Meyn and Tweedie (1993) and Gilks et al. (1996) for a discussion of the MH algorithm.
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portfolio choice is important if an investor’s utility

function is sensitive to skewness. To illustrate, consider

the mean, standard deviation and cubed root of skewness

for three sub-portfolios, which are based on the maximum

likelihood estimates for pairs of the four stocks in the

initial data set (see figure 4). For each of these two asset

portfolios the mean and standard deviation behave as we

would expect, the linear combination of the mean and the

mean of the linear combination are equal and the linear

combination of the standard deviation is greater than the

standard deviation of the linear combination. The cubed

root of the skewness is a different matter, as the skewness

of the linear combination can be above or below the linear

combination of the skewness.
This suggests that an investor that is interested in

skewness must consider an ‘extended efficient frontier’

which includes the additional dimension of skewness (see

figure 3). Even though there is little evidence of

higher-order moments from a simple empirical investi-

gation of marginal properties of these four stocks, it is

clear that the possible portfolios can vary dramati-

cally with respect to skewness. Empirically there is

strong evidence that skewness matters in portfolio

selection.

4.2. Model choice and select parameter summaries

To formalize our empirical investigation, we calibrate
several competing models to both sets of data and use the
Bayes factors calculation to discriminate between these
competing models. The models that we consider are the
multivariate normal model, the skew normal model
proposed by Azzalini and Dalla Valle (1996) with a
diagonal D matrix, and the skew normal model proposed
by Sahu et al. (2003) with both a diagonal and our
modified full D matrix. The results for both the four
stocks and the benchmark stocks show that the skew
normal models with a diagonal D outperform the other
models, with the Sahu et al. (2003) model fitting best
(see table 2).

The posterior parameter estimates for �, �, and D, for
both the four equity securities and the global portfolio
choice benchmark indices, are given in tables 3 and 4. The
estimates for D for both sets of returns suggest that when
considered jointly the skewness is significant.

4.3. Changes in expected utility

As we anticipated, based on earlier arguments, the more
simplifications that are imposed, the more sub-optimal the

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

07
8

0.
00

08
4

Starwood vs. L-3

M
ea

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

05
5

0.
00

07
0

L-3 vs. Carnival

M
ea

n

0.0 0.2 0.4 0.6 0.8 1.00.
00

05
2

0.
00

06
0

Raytheon vs. L-3

M
ea

n

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

6
0.

01
9

Starwood vs. L-3

V
ar

ia
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

5
0.

01
8

0.
02

1

L-3 vs. Carnival

V
ar

ia
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
01

4
0.

01
8

Raytheon vs. Carnival

V
ar

ia
nc

e

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
0.

0
1.

0

Starwood vs. L-3

S
ke

w
ne

ss

0.0 0.2 0.4 0.6 0.8 1.0−
1.

5
0.

0
1.

0

L-3 vs. Carnival

S
ke

w
ne

ss

0.0 0.2 0.4 0.6 0.8 1.0−
1.

5
−

0.
5

0.
5

Raytheon vs. Carnival

S
ke

w
ne

ss
Figure 4. Mean, variance and skewness of portfolios consisting of two assets. Daily returns from July 2001 to June 2006 for
Carnival, Starwood Hotels and Resorts, L-3 Communications Holdings, and Raytheon are considered. The top row has the mean of
the portfolio (equal to the linear combination of the asset means) as the weight of the first asset varies from 0 to 1. The solid line in
the plots in the second row represents the linear combination of the variances of the assets, while the dotted line represents the
variance of the portfolios (variance of linear combination). The variance of the portfolio is always less or equal to the variance of
the linear combination. The solid line in the third row of plots is the linear combination of the skewness of the two assets in the
portfolio, and the dotted line is the skewness of the portfolio. The skewness of the portfolio does not dominate, nor is it dominated
by the linear combination of the skewness. Selecting a portfolio based solely on sub-optimal variance could lead to a portfolio with
minimum skewness as well.
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decisions. Our first observation, for both sets of data and

for all of the utilities that we investigated, was that the

Michaud’s (1998) method is markedly sub-optimal when

compared with the expected utility based on the predictive

density for the corresponding best probability model (see

table 5). Michaud’s (1998) method gives expected utility

that is between 0.63% and 17.2% lower than the expected

utility found with the predictive density.
Interestingly, the parameter expected utility was very

close and in some cases almost exactly equal to the

predictive expected utility. This suggests that the

Table 2. Evaluating the distributional representation of four
equity securities and global asset allocation benchmarks. Model
choice results for analysis of the daily stock returns of Carnival,
Starwood Hotels and Resorts, L-3 Communications Holdings,
and Raytheon from July 2001 to June 2006, and also for daily
benchmark indices from January 2002 to June 2006 (Russell
1000, Russell 2000, Oil, MSCI EAFE, MSCI EMF, Gold, and
the 10 year T-bond). The four models that are used are the
multivariate normal, the multivariate skew normal of Azzalini
and Dalla Valle (1996) with a diagonal D matrix (skew normal
A), and the multivariate skew normal of Sahu et al. (2003) with
both a diagonal and full D matrix (skew normal B). Bayes
factors are computed between the multivariate normal model
and all of the other models and are reported on the log
scale. The model with the highest Bayes factor best fits the data.

Distribution D Log(BF)

(a) Four stocks
Normal 0.00
Skew normal A Diagonal 2272.83
Skew normal B Diagonal 2384.22
Skew normal B Full 2359.38

(b) Global asset allocation benchmarks
Normal 0.00
Skew normal A Diagonal 3271.25
Skew normal B Diagonal 3618.51
Skew normal B Full 3458.34

Table 3. Parameter estimates for diagonal D skew normal on
four securities. Parameter estimates for the diagonal D model of
Sahu et al. (2003) used to fit the daily stock returns of Carnival,
Starwood Hotels and Resorts, L-3 Communications Holdings,
and Raytheon from July 2001 to June 2006. These estimates are
the result of a Bayesian Markov Chain Monte Carlo iterative
sampling routine. These parameters combine to give the mean
(�þ (2/�)1/2D1), variance (�þ (1� 2/�)DD0), and skewness (see

appendix A.1 for formula).

� Carnival Starwood L-3 Raytheon

�0.295 �0.421 0.365 0.534

� Carnival Starwood L-3 Raytheon

Carnival 3.0839 2.1323 �0.2218 �0.4981
Starwood 2.1323 3.6151 �0.1770 �0.5255
L-3 �0.2218 �0.1770 3.5001 1.2067
Raytheon �0.4981 �0.5255 1.2067 2.7837

D Carnival Starwood L-3 Raytheon

Carnival 0.409 0 0 0
Starwood 0 0.565 0 0
L-3 0 0 �0.391 0
Raytheon 0 0 0 �0.580

Table 4. Parameter estimates for full D skew normal on global
asset allocation benchmark. Parameter estimates for diagonal D
model of Sahu et al. (2003) used to fit the daily benchmark indices
of Russell 1000, Russell 2000, Oil, MSCI EAFE, MSCI EMF,
Gold, and the 10 year T-bond from January 2002 to June 2006.
These estimates are the result of a BayesianMarkovChainMonte
Carlo iterative sampling routine. These parameters combine to
give the mean (�þ (2/�)1/2D1), variance (�þ (1� 2/�)DD0), and

skewness (see appendix A.1 for the formula).

� R1000 R2000 Oil EAFE EMF Gold 10T

�0.033 0.096 �0.175 0.163 0.328 0.441 �0.478

� R1000 R2000 Oil EAFE EMF Gold 10T

R1000 0.792 0.805 �0.077 0.318 0.199 �0.093 0.366
R2000 0.805 1.099 �0.085 0.362 0.318 �0.009 0.309
Oil �0.077 �0.085 3.902 0.017 0.022 0.047 0.140
EAFE 0.318 0.362 0.017 0.679 0.484 0.166 0.120
EMF 0.199 0.318 0.022 0.484 0.794 0.279 �0.041
Gold �0.093 �0.009 0.047 0.166 0.279 0.947 �0.342
10T 0.366 0.309 0.140 0.120 �0.041 �0.342 1.704

D R1000 R2000 Oil EAFE EMF Gold 10T

R1000 0.060 0 0 0 0 0 0
R2000 0 �0.077 0 0 0 0 0
Oil 0 0 0.321 0 0 0 0
EAFE 0 0 0 �0.162 0 0 0
EMF 0 0 0 0 �0.339 0 0
Gold 0 0 0 0 0 �0.506 0
10T 0 0 0 0 0 0 0.597

Table 5. Three moment optimization for four equity securities.
This table contains predictive utilities for the weights that
maximize utility as a linear function of the three moments of the
multivariate normal model by three different methods for daily
stock returns of Carnival Corp., StarwoodHotels & Resorts, L-3
Communications Holdings, and Raytheon Co. from July 2001 to
June 2006. The first method is based on predictive or future
values of the portfolio (results in !3,pred), the second is based on
the posterior parameter estimates (!3,param), and the third is the
method proposed by Michaud (!3,Michaud). The weights that are
found by eachmethod are ranked by the three moment predictive
utility they produce (i.e. E[u3,pred(!)]¼!

0mp� �!
0Vp!þ

�!0Sp!�!, where the 3 signifies that the utility function is
linear in the first three moments of the skew normal model, and
mp, Vp, and Sp are the predictive mean, variance and skewness)
for varying values of � and �, where � represents risk aversion
and � represents skewness preference. The highest utility
obtained signifies the method that is best for portfolio selection
according to the investor’s preferences. For each combination of

� and �, !3,pred gives the highest expected utility.

� � EU(!3,pred) EU(!3,param) EU(!3,Michaud)

0 0 0.099 0.099 0.094
0 0.1 0.100 0.097 0.087
0 0.2 0.101 0.093 0.090
0 0.5 0.104 0.094 0.086
0.1 0 �0.073 �0.073 �0.079
0.1 0.1 �0.073 �0.073 �0.076
0.1 0.2 �0.073 �0.073 �0.075
0.1 0.5 �0.072 �0.072 �0.075
0.25 0 �0.291 �0.291 �0.294
0.25 0.1 �0.291 �0.291 �0.294
0.25 0.2 �0.291 �0.291 �0.293
0.25 0.5 �0.290 �0.290 �0.296
0.5 0 �0.655 �0.655 �0.659
0.5 0.1 �0.655 �0.655 �0.659
0.5 0.2 �0.654 �0.654 �0.663
0.5 0.5 �0.654 �0.654 �0.660
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difference in the posterior and predictive moments is

relatively small for these data sets. In practice, however, if
investors have a nonlinear utility function or larger risk

aversion and skewness preference (as indicated by larger

values of � and �), these differences should become more

pronounced.
In order to explore the improvements that can come

from including skewness, we plotted the predictive

expected utility as a function of the skewness preference

for a range of different risk preferences (see figures 5

and 6). For both sets of data, including the skewness
clearly improves the expected utility (compare expected
utility with no skewness preference to the remaining levels
of skewness preference) and the increasing utility indi-
cates that substantially better portfolios are available for
both sets of data over a wide range of different skewness
preferences.

It is interesting, however, to note that there are sudden
changes in the expected utility as the skewness preference
increases. These sudden changes in expected utility are
due to large changes in the portfolio weights as a function
of the skewness preferences (see figures 7 and 8). For both
sets of data, there appears to be a change point, with
respect to the skewness preference, given that the risk
preference is held constant. Before and after these change
points the portfolio allocations change gradually and at
the change point the allocation switches dramatically,
putting most of the weight on a single asset. The
evolution of the maximum, predictive expected utility is
graphically summarized in the extended efficient frontier
graph for the four stock data set (see figure 9). In this
graph the same large shift in the portfolio allocation is
observed when the optimal portfolio suddenly jumps to
another portion of the extended efficient frontier.

Interestingly this pattern of suddenly switching to a
distinctly different set of portfolio weights repeats itself
for larger and larger values of skewness preference as the
risk preference increases, suggesting that there is an
underlying impact of skewness which leads to a set of
weights which dominate the impact of variance as
skewness preference increases.

5. Conclusion

We provide a framework for portfolio selection that
addresses three major issues: (1) asset returns are not
normal, (2) investors prefer assets with large upside to
those with large downside, and (3) the inputs for the
portfolio optimization are uncertain. We also demon-
strate that our generalization of the skew normal model
of Sahu et al. (2003) is able to capture higher moments. It
is flexible enough to allow for skewness and coskewness
and at the same time accommodates heavy tails.
Additional features of the model include straightforward
specification of conjugate prior distributions which allows
for efficient simulation and posterior inference. We use
Bayesian methods to incorporate parameter uncertainty
into the predictive distribution of returns, as well as to
maximize the expected utility.

We show that predictive utility can be written in terms
of posterior parameter based utility plus additional terms.
These additional terms can be very influential in an
investor’s utility. We compare our results to Michaud’s
(1998) resampling technique for portfolio selection. In
addition to the Jensen’s inequality problem, we show how
the resampling approach is outside the efficient utility
maximization framework.

While we believe that we have made progress on
important issues in portfolio selection, there are at least
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Communications Holdings, and Raytheon change with the
risk aversion � and skewness preference �.

0 50 100 150 200 250
−5

0

5

10

15

20

25

30

35

γ − Skew preference

E
xp

ec
te

d 
ut

ili
ty

Risk aversion 
λ = 0
λ = 0.25
λ = 0.5
λ = 0.75

Expected Utility for Portfolios with different values of λ and γ

Figure 6. How the predictive expected utility for portfolios
consisting of Russell 1000, Russell 2000, Oil, MSCI EAFE,
MSCI EMF, Gold, and the 10 year T-bond change with the risk
aversion � and skewness preference �.

480 C. R. Harvey et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
r
v
e
y
,
 
C
a
m
p
b
e
l
l
 
R
.
]
 
A
t
:
 
2
0
:
1
2
 
2
9
 
A
p
r
i
l
 
2
0
1
0



0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

λ 
=

 0

γ
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.2

5

γ

0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.5

γ
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.7

5

γ

Carnival
Starwood hotels and
resorts

L-3 Communications
holdings

Raytheon

Weights of portfolios consisting of Carnival,
Starwood, L-3 Communications, and Raytheon

Figure 7. How the portfolio weights for portfolios consisting of Carnival, Starwood Hotels and Resorts, L-3 Communications
Holdings, and Raytheon change with the risk aversion � and skewness preference �.

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

λ 
=

 0

γ
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.2

5

γ

0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.5

γ
0 50 100 150 200 250

0

0.2

0.4

0.6

0.8

1

λ 
=

 0
.7

5

γ

Russell 1000
Russell 2000
Oil
MSCI EAFE
MSCI EMF
Gold
10 Year T-Bond

Weights of portfolios consisting of Russell 1000, Russell 2000, Crude Oil,

MSCI EAFE, MSCI EMF, Gold, and the 10 Year T-Bond

Figure 8. How the portfolio weights for portfolios consisting of Russell 1000, Russell 2000, Oil, MSCI EAFE, MSCI EMF, Gold,
and the 10 year T-bond change with the risk aversion � and skewness preference �.

Portfolio selection with higher moments 481

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
a
r
v
e
y
,
 
C
a
m
p
b
e
l
l
 
R
.
]
 
A
t
:
 
2
0
:
1
2
 
2
9
 
A
p
r
i
l
 
2
0
1
0



three limitations to our approach. First, our information
is restricted to past returns. That is, investors make
decisions based on past returns and do not use other
conditioning information such as economic variables that
tell us about the state of the economy. Second, our
exercise is an ‘in-sample’ portfolio selection. We have not
applied our method to out-of-sample portfolio allocation.
Finally, the portfolio choice problem we examine is a
static one. There is a growing literature that considers the
more challenging dynamic asset allocation problem that
allows for portfolio weights to change with investment
horizon, labor income and other economic variables.

We believe that it is possible to make progress in future
research on the first two limitations. In addition, we are
interested in using revealed market preferences to deter-
mine whether ‘the market’ empirically exhibits preference
for skewness. As a first step, we plan to use the observed
market weights for a benchmark equity index and use the
predictive utility function (3) to determine the implied
market � and �. Finally, we intend to consider modifi-
cations to (3) that allow for asymmetric preferences over
positive and negative skewness.
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Appendix A: Skew normal probability model

A.1. Density and moment generating function

The likelihood function and moment generating function

given by Sahu et al. (2003) changes when we allow D to be

a full matrix:

fðy j�,�,DÞ

¼ 2‘ j�þDD0j�1=2�‘½ð�þDD0Þ�1=2ðy��Þ�

��‘½ðI�D0ð�þDD0Þ�1DÞ�1=2D0ð�þDD0Þ�1ðy��Þ�,

ðA1Þ

where �‘ is the ‘-dimensional multivariate normal density

function with mean zero and identity covariance, and �‘

is a multivariate normal cumulative distribution also with

mean zero and identity covariance.
The moment generating function becomes

MYðtÞ ¼ 2‘et
0�þt0ð�þDD0Þt=2�‘ðDtÞ: ðA2Þ

The first three moments of the distribution (m, V, and S)

can be written in terms of �, � and D as follows:

m ¼ �þ ð2=pÞ1=2D1, V ¼ �þ ð1� 2=pÞDD0,
S ¼ DEZD0 � D0 þ 3�0 � fDD0ð1� 2=pÞ þ 2=pD1ðD1Þ0g

þ 3fð2=pÞ1=2ðD1Þ0 � ½�þ ��0�g þ 3�0 ��

þ ��0 � �0 � 3m0 � V�mm0 �m0, ðA3Þ

where 1 is a column vector of ones, and EZ is the ‘� ‘2

super matrix made up of the moments of a truncated

standard normal distribution
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where E ½Zi� ¼
ffiffiffiffiffiffiffiffi
2=p
p

, E ½Z2
i � ¼ 1, and E ½Z3

i � ¼
ffiffiffiffiffiffiffiffi
8=p
p

.
Since the Zi’s are independent, E ½Z2

i Zj � ¼

E ½Z2
i �E ½Zj � ¼

ffiffiffiffiffiffiffiffi
2=p
p

, and E [ZiZjZk]¼E [Zi]E [Zj]E [Zk]
¼ (2/�)3/2 for any i 6¼ j 6¼ k.

A.2. First three moments of a linear combination

Assume X�SN(�, �, D) and a set of constant portfolio
weights !¼ (!1, . . . ,!‘)

0; the first three moments of !0 X
are as follows:

Eð!0X Þ ¼ !0m,

Varð!0X Þ ¼ !0V!,

Skewð!0X Þ ¼ !0S!� !,

where m, V and S are given above.

A.3. Model specification

A.3.1. Likelihood and priors. The skew normal density is
defined in terms of a latent (unobserved) random variable
Z, which comes from a truncated standard normal
density. The likelihood is given by

Xi j Zi,�,�,D � N‘ð�þ DZi,�Þ,

where N‘ is a multivariate normal density,

Zi � N‘ð0, I‘ÞIfZij 4 0g, for all j,

and Im is an m-dimensional identity matrix. In all cases we
used conjugate prior densities, with hyper-parameters that
reflect vague prior information, or a priori we assume

	 � N‘ ð‘þ1Þð0, 100I‘ ð‘þ1ÞÞ,

� � Inverse-Wishartð‘, ‘I‘Þ,

where 	0 ¼ (�0, vec(D)0) and vec(�) forms a vector by
stacking the columns of a matrix.

A.3.2. Full conditionals. Assuming n independent skew
normal observations, the full conditional distributions are
as follows:

Zi j x,�,�,D � N‘ðA
�1ai,A

�1ÞIfZij 4 0g, for all j,

	 j x,�,Z � N‘ð‘þ1ÞðB
�1b,B�1Þ,

� j x,�,D,Z � Inverse-Wishartð‘þ n,C Þ,

where

A ¼ I‘ þ D0��1D, a ¼
Xn
i¼1

D0��1ðxi � �Þ,

B ¼
Xn
i¼1

y0i�
�1yi þ

1

100
I‘ ð‘þ1Þ, b ¼

Xn
i¼1

yi�
�1xi,

C ¼
Xn
i¼1

ðxi � ð�þ DZiÞÞðxi � ð�þ DZiÞÞ
0
þ ‘I‘,

and yi ¼ ðI‘,Z
0
i � I‘Þ.

A.4. Estimation using the slice sampler

The slice sampler introduces an auxiliary variable, which

we will call u, in such a way that the draws from both

the desired variable and the auxiliary variable can be

obtained by drawing from appropriate uniform densities

(for more details, see Damien et al. 1999. Also see Liechty

and Lu 2009, who introduce a multivariate slice sampler

that could be used to extend the complexity of the model

by allowing for correlated latent Z variables). To

illustrate, assume that we want to sample from the

following density:

f ðxÞ / exp �
1

2
2
ðx� �Þ2

� �
Ifx 
 0g, ðA4Þ

where I{�} is an indicator function. We proceed by

introducing an auxiliary variable u and form the following

joint density:

f ðx, uÞ / I u � exp �
1

2
2
ðx� �Þ2

� �
Ifx 
 0g

� �
: ðA5Þ

It is easy to see that based on (A5), the marginal density

of x is given by (A4) and that the conditional density of u

given x is a uniform density, or

f ðu j xÞ / I u � exp �
1

2
2
ðx� �Þ2

� �� �
:

With a little more work, it is straightforward to see that

the conditional density of x given u is also uniform, or

f ðx j uÞ / Ifmaxð0,��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 logðuÞ

p
Þ

� x � �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 logðuÞ

p
g:

Samples from x can then easily be obtained by iteratively

sampling from u conditional on x and then from x

conditional on u.

EZ ¼

E ½Z1Z1Z1� . . . E ½Z1Z1Z‘� . . . E ½Z‘Z1Z1� . . . E ½Z‘Z1Z‘�

..

. . .
. ..

.
. . . ..

. . .
. ..

.

E ½Z1Z‘Z1� . . . E ½Z1Z‘Z‘� . . . E ½Z‘Z‘Z1� . . . E ½Z‘Z‘Z‘�

0
BB@

1
CCA,
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