
Portfolio Theory of Information Retrieval

Jun Wang and Jianhan Zhu
Department of Computer Science, University College London

Malet Place, London WC1E 6BT, UK
jun_wang@acm.org, jianhan.zhu@ucl.ac.uk

ABSTRACT
This paper studies document ranking under uncertainty.

It is tackled in a general situation where the relevance predic-
tions of individual documents have uncertainty, and are de-
pendent between each other. Inspired by the Modern Port-
folio Theory, an economic theory dealing with investment in
financial markets, we argue that ranking under uncertainty
is not just about picking individual relevant documents, but
about choosing the right combination of relevant documents.
This motivates us to quantify a ranked list of documents on
the basis of its expected overall relevance (mean) and its
variance; the latter serves as a measure of risk, which was
rarely studied for document ranking in the past. Through
the analysis of the mean and variance, we show that an opti-
mal rank order is the one that balancing the overall relevance
(mean) of the ranked list against its risk level (variance).
Based on this principle, we then derive an efficient document
ranking algorithm. It generalizes the well-known probability
ranking principle (PRP) by considering both the uncertainty
of relevance predictions and correlations between retrieved
documents. Moreover, the benefit of diversification is math-
ematically quantified; we show that diversifying documents
is an effective way to reduce the risk of document ranking.
Experimental results in text retrieval confirm the theoretical
insights with improved retrieval performance.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval

models, Search process, and Selection process

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Modern portfolio theory, Mean-variance analysis, Proba-

bility ranking principle, Ranking under uncertainty

1 Introduction
Information retrieval (IR) concerns how to retrieve docu-

ments for a user information need. The process of retrieving
documents may be divided into two stages. In the first stage,
the relevance between the given user information need and
each of the documents in a collection is calculated. Proba-
bilistic retrieval models that have been proposed and tested
over decades are primarily focusing on this task, aiming at
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producing a “best guess” at a document’s relevance. Exam-
ples include the RSJ model [15] (a further development of
that model led to the BM25 term weighting function [16]),
and the language modelling approaches [23]. The second
stage focuses on how to present (normally rank) documents
to the user. The probability ranking principle (PRP) [6]
forms the basis in this stage, stating that the system should
rank documents in order of decreasing probability of rele-
vance; it has been shown that, following the principle, the
overall effectiveness of an IR system, such as expected Pre-
cision, is maximized [13].

If we make an analogy with the field of finance, our rank-
ing task resembles the investment problem in financial mar-
kets; for example, suppose that an investor needs to select a
set (portfolio) of n stocks that will provide the best distri-
bution of future return, given his or her investment budget
– an analogy with IR is that we invest ranking positions in
documents. The PRP of IR might suggest that, for optimal
selection, one should first rank stocks in order of decreasing
future returns and then choose the top-n most “profitable”
stocks to construct the portfolio. Such a principle that es-
sentially maximizes the expected future return was, how-
ever, rejected by an economist Harry Markowitz in his Nobel
Prize winning work, the Modern Portfolio Theory (MPT) of
finance, in 1952 [11]. As one of the most influential economic
theories dealing with finance and investment, the MPT was
motivated on the basis of the following two observations [11].
1) The future return of a stock is unknown and cannot be
calculated with absolute certainty. Investors have different
preferences of the risk associated with uncertainty. There-
fore, it is highly desirable to have a method of quantifying
this uncertainty or risk, and reflect them and incorporate
users’ risk preferences when selecting stocks. 2) Since in
practice the future returns of stocks are correlated, assum-
ing independence between the returns and selecting them
independently to construct a portfolio is not preferable.

Realizing the two fundamental issues, the MPT empha-
sizes that risk (uncertainty) is an inherent part of future
return, and quantifies it by using the variance (or the stan-
dard deviation) of the return. The theory suggests that, for
a risk-averse decision, an investor should both maximize the
return as a desirable thing and minimize the variance of the
return as an undesirable thing. Under such a formulation,
the MPT mathematically shows that diversification, known
as “not putting all of your eggs in one basket”, is an effective
way to reduce the risk of the portfolio.

Going back to our IR problem, we have two similar criti-
cal issues: 1) during retrieval, the relevance of documents is
unknown and cannot be estimated with absolute certainty
from IR models. There are many sources of uncertainty
such as ambiguity in the query, specific user preferences,



and deviations between the scoring function and the “true”
probability of relevance. 2) The relevance estimates of in-
dividual documents are also correlated, either positively or
negatively [8]. Thus it is of great interest to see how we can
follow the school of thinking in the field of finance to address
the ranking problem in IR.

In this paper, we focus on the theoretical development of
the portfolio theory of document ranking. We formulate the
ranking problem as a portfolio selection problem. That is,
in response to a user information need, a top-n ranked list
(portfolio) of documents is selected as a whole, rather than
ranking documents independently. To characterize a ranked
list, we employ two summary statistics, mean and variance.
The mean represents a best “guess” of the overall relevance
of the list, while the variance summarizes the uncertainty or
risk associated with the guess. Our analysis provides new
insights into the way we rank documents, and demonstrates
that a better and more general ranking principle is to select
top-n documents and their order by balancing the overall
relevance of the list against its risk (variance). An efficient
ranking algorithm is then introduced to trade off between
efficiency and accuracy, and leads to a generalization of the
PRP, where both the uncertainty of the probability estima-
tion and diversity of ranked documents are modelled in a
principled manner. The new ranking approach has been ap-
plied to the ad hoc text retrieval and sub-topic retrieval.
The experiments demonstrate that our approach can adapt
to different risk preferences of evaluation metrics, and as a
result significant performance gains have been achieved.

The remainder of the paper is organized as follows. We
will discuss the related work in Section 2, present our theo-
retical development in Section 3, give our empirical investi-
gation in Section 4, and conclude in Section 5.

2 Related Work
Gordon and Lenk have discussed the two underlying as-

sumptions of the PRP: independent assessment of relevance
by the user and certainty about the estimated probabilities
of relevance [8]. To deal with the assumption of the indepen-
dence, Chen and Karger in [4] argued that the PRP, which
ranks documents in descending order of probability of rele-
vance, is not always optimal for different user information
needs (or risk preferences we may say). In some scenarios
users would be satisfied with a limited number of relevant
documents, rather than requiring all relevant documents.
The authors therefore proposed to maximize the probabil-
ity of finding a relevant document among the top n under
the assumption of binary relevance. By treating the previ-
ously retrieved documents as non-relevant ones, their algo-
rithms naturally introduced diversification into the proba-
bilistic ranking.

Unlike in [4] that concerns only the dependence of doc-
uments’ relevance, our proposed mean-variance paradigm
considers that the two assumptions of the PRP are highly
connected and address them together in a more general set-
ting. One of the theoretical contributions of our paradigm
is that we mathematically demonstrate that diversifying the
top-n documents is a way to reduce the variance and there-
fore risk of the ranked list. The greedy algorithm proposed in
[4], which considers only the correlation between two neigh-
boring documents, is in fact a special case in our proposed
ranking method. Our paradigm is a general one, indepen-
dent of the retrieval model that is being used, and has the
advantage of tuning the risk via a single parameter.

Previous studies on integrating diversity has been focused
on document re-ranking. Heuristically, Carbonell and Gold-
stein [3] proposed the Maximal Marginal Relevance (MMR)

criterion to reduce redundancy by re-ranking retrieved doc-
uments under the Vector Space setup. Lafferty and Zhai in
[10] presented a risk minimization framework. In the frame-
work, documents are ranked based on an ascending order of
the expected risk of a document. The MMR criterion has
also been employed in the risk framework in resolving the
subtopic retrieval problem [24], by modelling not only rel-
evance but also redundancy, novelty, and subtopics. But,
nonetheless, when coming to the practical algorithm, the
studies [10, 24] still resolve to take point estimation, and use
mode of the posterior as opposed to integrating out model
parameters. Therefore, the uncertainty of the estimation
is still not properly addressed. This is different from our
mean-variance paradigm where the document ranking relies
on both the mean and variance of the probability estimation
of document relevance.

Our preliminary study on collaborative filtering has demon-
strated that ranking derived from the analysis of mean and
variance improves recommendation performance significantly
[20]. We now provide a comprehensive treatment, looking at
a more general application: text retrieval. Our formulations
in this paper are flexible for both users’ risk-averse and risk-
loving behaviors, whereas our previous work focused only on
risk-averse behaviors in collaborative filtering.

3 Mean-Variance Ranking
3.1 Relevance Return of a Ranked List

The task of an IR system is to predict, in response to a
user information need, which documents are relevant. Sup-
pose, given the information need, the IR system returns a
ranked list consisting of n documents from rank 1 to n – in
an extreme case, all the documents need to be ordered when
n equals the number of documents in the collection. Let ri

be the estimated relevance score of a document in the list
during retrieval, where i = {1, ..., n}, for each of the rank po-
sitions. We intentionally keep the discussion general, while
bearing in mind that the exact definition of the relevance
score, either degree of relevance or probability of relevance
[14], relies on the system’s assumption of the relevance and
adopted retrieval model.

Our objective is to find an optimal ranking that has the
maximum effectiveness in response to the given user infor-
mation need. There are many ways of defining the effective-
ness of a ranked list. A straightforward way is to consider
the weighted average of the relevance scores in the list as:

Rn ≡
n

X

i=1

wiri, (1)

where Rn denotes the overall relevance of a ranked list. We
assign a variable wi, where

Pn

i=1 wi = 1, to each of the
rank positions for differentiating the importance of rank po-
sitions. This is similar to the discount factors that have been
applied to IR evaluation in order to penalize late-retrieved
relevant documents [9]. It can be easily shown that when
w1 > w2... > wn, the maximum value of Rn gives the rank-
ing order r1 > r2... > rn. This follows immediately that
maximizing Rn, by which the document with the highest
relevance measure is retrieved first, the document with the
next highest is retrieved second, and so on, is equivalent to
the PRP. By contrast, in finance, Rn is the overall future
return of a portfolio having n stocks; ri is the return of in-
dividual stock i, while wi is the percentage of the budget
invested in the stock i.

However, the overall relevance Rn cannot be calculated
with certainty. It relies on the estimations of relevance scores
ri of documents from retrieval models. As we discussed,
uncertainty can arise through the estimations. To address



such uncertainty, we make a probability statement about
the relevance scores, assuming the relevance scores are ran-
dom variables and have their own probability distributions.
Their joint distribution is summarized by using the means
and (co)variances. Mathematically, let E[ri], i = {1, ..., n}
be the means (the expected relevance scores), and let Cn

be the covariance matrix. The non-diagonal element ci,j in
the matrix indicates the covariance of the relevance scores
between the document at position i and the document at
position j; the diagonal element ci,i is the variance of the in-
dividual relevance score, which indicates the dispersion from
the mean E[ri]. The calculations of the mean and variance
in text retrieval are discussed in Section 4.1.

Introducing E[ri] and ci,j gives the expected overall rele-
vance of a ranked list and its variance as follows:

E[Rn] =

n
X

i=1

wiE[ri] (2)

V ar(Rn) =

n
X

i=1

n
X

j=1

wiwjci,j , (3)

where V ar(Rn) denotes the variance of the ranked list. For
the derivation of Eq. (3), we refer to [11]. By contrast, in
finance, E[Rn] is regarded as the expected overall return of
a portfolio containing n stocks; V ar(Rn) is the variance of
the overall return of the portfolio, a measure of the volatility
(or risk) associated with the portfolio [7]. Notice that we
adopt variance for mathematical convenience, while it is also
possible to measure the risk by the standard deviation.
3.2 Expected Relevance vs. its Variance

The mean and variance summarize our belief about the
effectiveness of a ranked list from the following two aspects.
The mean measures the overall relevance returned from the
ranked documents as a whole, and for optimal retrieval it
seems intuitively obvious to maximize the mean. This is es-
sentially what the PRP has suggested. But, on the other
hand, the variance measures the likelihood that we have
under- or over-estimated the expected relevance. That is
it represents the level of a risky prospect if we produce an
optimal rank order by maximizing the mean. If it is un-
derestimated, the user will likely be pleased with the out-
put, whereas if it is overestimated, the user will likely be
displeased with the output. Thus, for risk-averse users or
systems, the variance should stay as small as possible, but,
for risk-loving users or systems, a large variance might be a
preferable attribute.

For the risk-averse case, consider the following example
of movie recommendation, a popular application in IR. The
task is to suggest top-n ranked movie items that the user
is most likely to like, given the user’s past ratings (a repre-
sentation of information needs). In this example, the movie
items’ relevance scores have multiple values 1-6, with 1 being
the lowest rating and 6 being the highest one. Suppose that
the system returns a top-10 ranked list of movie items as a
recommendation solution. Fig. 1 plots the randomly sam-
pled recommendation solutions, marked by circles, each of
which contains top-10 ranked items. Their means and vari-
ances are calculated based on Eq. (2) and Eq. (3). The item-
based model [17] was used to predict the individual items’
relevance, and the covariance matrix is estimated from the
historic rating data. For a risk-averse decision, the graph
shows that, given a mean value (the expected relevance),
one can find an efficient ranking solution that has the min-
imal variance (risk). Varying the mean value, we obtain
a set of efficient ranking solutions; they are geometrically
located on the upper left boundary. In finance, the bound-

Figure 1: The relationship between the expected
overall relevance and variance of the top-10 ranked
list. The curve is the Efficient Frontier.

ary is called the efficient frontier [11]. In IR, it represents
the set of ranking solutions that have maximal mean (the
expected overall relevance) given an upper bound on the
variance (risk).

Therefore, mathematically, we have the following criteria
for risk-averse ranking:

1. Maximize the mean E[Rn] regardless of its variance
2. Minimize the variance V ar(Rn) regardless of its mean
3. Minimize the variance for a specified mean t (parame-

ter): min V ar(Rn), subject to E[Rn] = t (4)

4. Maximize the mean for a specified variance h (param-
eter): max E[Rn], subject to V ar(Rn) = h (5)

5. Maximize the mean and minimize the variance by using
a specified risk preference parameter b:

max On = E[Rn] − bV ar(Rn) (6)

The first two criteria provide the two simplest cases, opti-
mizing either of the quantities; the first criterion is what
the PRP has optimized, while the second one gives min-
imum variance solutions, which might be suitable for the
most cautious users or system setup.

The important ones are the ranking criteria 3, 4, and 5,
and they are mathematically equivalent [2]. Here, we focus
on the formulation of Eq. (6) as it is the common objective
function used in practice. For a risk-averse solution, the
parameter b > 0. The efficient frontier plotted in Fig. 1 is a
set of the solutions that maximize the objective function as
b ranges from 0 (the right side) to 40 (the left side). Note
that the frontier cannot tell us which one is the single best
ranked list for a given user information need; it has to be
dependent on the user’s risk preference, and can be tuned
for the specified evaluation metric, shown in Section 4.

In finance, investors are usually assumed to be risk-averse.
But in IR risk-loving behaviors may be useful in some sit-
uations. For instance, pseudo relevance feedback is a risky
solution since it assumes the first few retrieved documents
are relevant. It is often reported to have an ability to im-
prove MAP (mean average precision) [12, 19]. In this regard,
it is beneficial to study the effectiveness of the risk-loving so-
lutions when we set b < 0 in the objective function. In fact,
by applying the utility theory, one can give a more general
justification of the objective function in Eq. (6) [22]. For
readability, its detailed derivation is given in Appendix.



3.3 Diversification vs. Uncertainty
This section discusses diversification, and formally derives

its relationship with the uncertainty of a ranked list. A
further decomposition of the variance in Eq. (3) gives

V ar(Rn) =

n
X

i=1

w2
i ci,i + 2

n
X

i=1

n
X

j=i+1

wiwjci,j

=
n

X

i=1

w2
i σ2

i + 2
n

X

i=1

n
X

j=i+1

wiwjσiσjρi,j ,

(7)

where σi =
√

ci,i is the standard deviation, and ρi,j =
ci,j

σiσj

is the correlation coefficient. ρi,j = 1 means that there
is an exact positive relationship between two documents,
ρi,j = 0 means no relationship between the two documents,
and ρi,j = −1 indicates an exact negative relationship be-
tween the two documents. As shown in Eq. (7), to reduce
the uncertainty of the relevance prediction for the returned
documents, we need to have small correlation coefficients
(preferable negative correlations) between documents. This
means diversifying the documents in the ranked list will re-
duce the variance and therefore the uncertainty of the ex-
pected overall relevance of the returned documents.

To understand this, consider two extreme cases: in the
first case, suppose we have a ranked list consisting of two
documents, where the correlation coefficient ρ between them
is −1. This means that their estimated relevance scores
change in the exact opposite direction in response to differ-
ent information needs. The volatility (the change) of the
documents’ relevance cancels one another completely and
leads to a situation where the ranked list has no volatility at
all. As a result, a certain amount of relevance for any kind
of user information needs is maintained. Conversely, when
we have two documents that are perfectly correlated (ρ = 1)
in the list, the relevance returns of the two documents move
in the perfectly same direction in response to different in-
formation needs. In this case, the returned relevance of the
list mimics that of each of the two documents. As a result,
the list contains the same amount of uncertainty (risk) as
each of the two documents alone. In this case, risk is not
reduced.
3.4 Document Ranking - A Practical Solution

Unlike in finance, the weight wn in IR, representing the
discount for each rank position, is a discrete variable. There-
fore, the objective function in Eq. (6) is no-smooth, and
there is no easy solution for directly optimizing it. In this
section, we present an efficient document ranking algorithm
by sequentially optimizing the objective function. It is based
on the observation that the larger the rank of a relevant doc-
ument, the less likely it would be seen or visited by a user.
An economical document selection strategy should first con-
sider rank position 1, and then add documents to the ranked
list sequentially until reaching the last rank position n. For
each rank position, the objective is to select a document that
has the maximum increase of the objective function. Notice
that such a sequential update may not necessarily provide
a global optimization solution, but it provides an excellent
trade-off between accuracy and efficiency.

The increase of the objective function from position k−1
to k is:

Ok − Ok−1 =
k

X

i=1

wiE[ri] − b
k

X

i=1

k
X

j=1

wiwjci,j

−
k−1
X

i=1

wiE[ri] + b
k−1
X

i=1

k−1
X

j=1

wiwjci,j ,

(8)

Table 1: Overview of the six tested collections.
Name Description # Docs Topics # Topics

TREC2007
enterprise
track docu-
ment search

CSIRO website
crawl

370,715 1-50 minus 8,
10, 17, 33, 37,
38, 46, 47

42

TREC2001
web track

WT10g web
collection

1,692,096 501-550 50

TREC
Robust 2004

TREC disks 4,
5 minus CR

528,155 301-450 and
601-700 minus
672

249

Robust2004
hard topics

TREC disks 4,
5 minus CR

528,155 Di¡cult Ro-
bust2004 topics

50

TREC8 ad
hoc task

TREC disks 4,
5 minus CR

528,155 401-450 50

TREC
subtopic
collection

Financial
Times of Lon-
don 1991-1994

210,158 TREC 6,7,8 in-
teractive track
topics

20

where k ∈ {2, ..., n}. The final equation is derived as

Ok − Ok−1 = wk(E[rk] − bwkσk
2 − 2b

k−1
X

i=1

wiσiσkρi,k)

Since wk is a constant for any document in rank k, dropping
it gives the following ranking criterion:
select a document at rank k that has the maximum value of

E[rk] − bwkσk
2 − 2b

k−1
X

i=1

wiσiσkρi,k (9)

3.5 Discussions
Ranking principle: Eq. (9) extends the PRP into a

more general situation. It contains three components. The
first component concerns the point estimate of the relevance
E[rk], which is essentially equivalent to the PRP. The second
component generalizes the PRP by considering the uncer-
tainty of the point estimate. It concerns the variance of the
estimates of individual documents. The third component ex-
tends it further by looking at the correlations between the
estimates. A positive b produces risk-averse ranking where
negatively correlated (with previously retrieved documents)
documents should be given high ranking scores. In this case,
diversification, which is quantified by the weighted average
of the correlations between the ranked documents (see the
second component in Eq. (7)), is effectively incorporated
into the document ranking. The smaller the parameter b
is, the less risk-averse the ranking is. When b = 0, it goes
back to the PRP, which only considers the point estimate
E[rk]. When b < 0, the ranker intends to take more risk.
The impact of b and its relations with IR metrics are studied
in Section 4.

Higher moments: The discussions so far rely on a Gaus-
sian assumption about the distribution of relevance scores.
Most probabilistic retrieval models are, however, not Gaus-
sian. Strictly speaking, using the first two moments (the
mean and variance) may not be entirely adequate to describe
the distribution, and the third moment might be needed to
indicate the skewness (asymmetry to the mean) if any. But
in practice as an approximation the analysis of the mean
and variance is fair enough to trade-off between complexity
and speed.

Relations with prior work Our ranking approach is a
general one. When b > 0, the last component in Eq. (9) re-
sembles the MMR (Maximal Marginal Relevance) re-ranking
method [3]. As discussed, the MMR re-ranking, as a heuris-
tic method, linearly combines relevance and novelty using a
parameter between 0 and 1. It judges a document to have
high “marginal relevance” if it is both relevant to the query
and contains minimal similarity to already selected docu-
ments. Thus, our probabilistic approach provides a theoret-
ical justification. Also, our formulation is less computation-
ally expensive as it does not need to find minimal similarity.
The empirical comparison between them is in Section 4.3.2.



(a) (b) (c)
Figure 2: Relationship between: (a) MRR and b, (b) MAP and b, and (c) optimal b and k-call, k = 1, ..., 10.

The ranking criterion in Eq. (4) gives an alternative for-
mulation for the objective at which Chen and Karger in [4]
have aimed: fixing the amount of relevance the user intends
to receive in Eq. (4) (by setting the parameter t) is similar to
optimizing the number of relevant documents in the ranked
list, proposed in [4]. The merit of our mean-variance formu-
lation is that the resulting ranking principle is a general one
and can be applied to any IR models, whereas the formu-
lation in [4] is only suitable for binary relevance IR models
as it explicitly relies on the assumption of binary relevance,
and is coupled with the IR model during ranking.

4 Empirical Study and Evaluation
Our evaluation focuses on text retrieval, where ad hoc and

subtopic retrieval [5] are studied; we report results on five
TREC test collections for ad hoc retrieval and one TREC
collection for subtopic retrieval. These collections are de-
scribed in Table 1. Our main goal is to validate our theo-
retical development, and investigate the effectiveness of the
various risk preference settings.

4.1 Calculation of Mean and Variance in IR
Different probabilistic retrieval models result in different

estimators of E[ri] and Cn. E[ri] can be determined by a
point estimate from the specific text retrieval model that has
been applied. In this paper, three widely-adopted retrieval
models, namely, the Dirichlet and Jelinek-Mercer smooth-
ing language models [23], and the BM25 model [16] are used
to calculate the expected relevance scores. For the two lan-
guage models, we employ the posterior mean of the query-
generation model as the estimator. Strictly speaking, the
BM25 scores are not calculated in a probabilistic way, but
it is reasonable to assume that its output scores are random
variables and have uncertainty associated with them.

The covariance matrix Cn represents both the uncertainty
and correlation associated with the estimations. Although
they are largely missing in current probabilistic retrieval
models, there are generally two ways of estimating them
in practice. Formally, they should be determined by the
second moment of the relevance scores. For instance, one
can estimate the (co)variances of individual document mod-
els (parameters) by adopting the Bayesian paradigm [1, 25].
Alternatively, for given two documents, the covariance be-
tween their relevance scores can be approximated by the
covariance with respect to their term occurrences. This is
similar to use historic data of two stocks to calculate the
correlation between their future returns in finance.

In this paper, for the two language models, the relevance
scores are assumed to follow the Dirichlet distribution, and
their variances σ2 are thus conveniently calculated [25]. Since
the BM25 is not a probability model, we set the variances
as a constant for all documents. This allows us to study
the effectiveness of the correlations solely when using the
BM25 scores. The correlation ρ is approximated by using

the Pearson’s correlation coefficient between each pair of
documents’ term vectors. Ranking is based on the sequen-
tial update formulated in Eq. (9), and only the correlations
with the previously retrieved documents are needed. Thus,
the computational load of calculating covariances has been
reduced significantly. The weights of rank positions wi are
chosen according to the discount factors in [9].

4.2 Ad Hoc Text Retrieval
4.2.1 Parameter: As studied by Thom and Scholer in

[18], the IR evaluation metrics generally have two distinct
categories: those strongly biased towards early-retrieved doc-
uments, such as Mean Reciprocal Rank (MRR), and those
trying to capture a broader summary of retrieval perfor-
mance, including Mean Average Precision (MAP). Let us
first evaluate the impact of the risk preference parameter b
toward the two categories.

Fig. 2 (a) and (b) plot the percentage of improvements
against a varying b from -6 (risk-loving) to 6 (risk-averse).
The fitted curves are based on the data points, and the per-
centage of improvement on the MRR and other metrics is
based on the improvement over the setting where b = 0
(equivalent to the PRP). In this experiment, the Dirichlet
smoothing language model (where µ=2000, a typical set-
ting) is adopted for obtaining the relevance scores. From
Fig. 2 (a), we can see that positive values of b, i.e, diversify-
ing search results, helps improve the MRR metric. This ex-
plains that by “investing” into different kinds of documents,
the actual chance of returning the first relevant documents
as early as possible can be actually increased.

By contrast, for a metric capturing a broader summary of
retrieval performance such as MAP, Fig. 2 (b) shows that
negative values of b, which emphasize a document positively
correlated with the early-retrieved documents, help improve
the performance. “Investing” in the same “type” of docu-
ments is a risky action (big variance), and might hurt the
MRR metric. But, on average, it does increase the perfor-
mance of the entire ranked list (in this setting, n = 1000).
This is similar to the effectiveness of pseudo relevance feed-
back in ad hoc retrieval, i.e., the top ranked documents are
generally likely to be relevant, and to find other documents
similar to these top ranked ones will help improve MAP [19].

To further understand these risk behaviors, we then study
how the parameter behaves under a risk-sensitive metric
called k-call at 10, or k-call for simplicity, proposed in [4].
Given a ranked list, k-call is one if at least k of the top-
10 documents returned for a query are relevant. Otherwise,
k-call is zero. Averaging over multiple queries yields mean
k-call. The two extremes are 10-call, an ambitious metric
of perfect precision: returning only relevant documents, and
1-call as a conservative metric that is satisfied with only one
relevant document. Thus, a risk-averse approach, which can
reliably find one relevant document, is preferred for 1-call,
while a risk-loving approach is favored for 10-call [4].



Table 2: Comparison of our approach against the PRP via three retrieval models. For a retrieval model, three
lines in each cell are performance of our approach and the PRP, and performance gain of our approach over
the PRP, respectively. A Wilcoxon signed-rank test is conducted and statistically significant improvements
are marked with ∗.

(a) Our approach vs. the PRP via the Dirichlet smoothing language model
Measures CSIRO WT10g Robust Robust TREC8 Measures CSIRO WT10g Robust Robust TREC8

hard hard
MRR 0.774 0.587 0.612 0.427 0.635 Prec@10 0.684 0.382 0.387 0.227 0.433

0.765 0.574 0.596 0.402 0.615 0.653 0.333 0.379 0.211 0.407
+1.18% +2.26% +2.68%+6.22%*+3.25% +4.75% +14.71%* +2.11% +7.58%* +6.39%*

MAP 0.404 0.225 0.232 0.092 0.226 Prec@100 0.448 0.196 0.173 0.129 0.213
0.388 0.202 0.228 0.089 0.223 0.432 0.178 0.169 0.124 0.204

+4.12%+11.39%*+1.75% +3.37% +1.35% +3.70% +10.11%* +2.37% +4.03% +4.41%
NDCG 0.664 0.499 0.501 0.317 0.493 1-call 0.98 0.902 0.877 0.8 0.94

0.651 0.477 0.483 0.312 0.484 0.98 0.88 0.819 0.74 0.88
+2.01% +4.55% +3.53% +1.61% +1.98% 0.0% +2.50% +7.08%* +8.11%* +6.82%*

NDCG@10 0.170 0.169 0.183 0.083 0.162 6-call 0.74 0.34 0.278 0.08 0.32
0.162 0.152 0.179 0.077 0.154 0.66 0.202 0.261 0.04 0.28

+4.66%+11.22%*+2.31%+7.75%*+5.28% +12.12%*+68.32%* +6.51%* +100.0%*+14.29%*
NDCG@100 0.382 0.318 0.341 0.180 0.326 8-call 0.52 0.16 0.151 0.02 0.2

0.367 0.295 0.331 0.173 0.315 0.38 0.11 0.129 0.005 0.16
+4.02% +7.63%* +2.98% +3.89% +3.65% +36.84%*+45.45%*+17.05%*+300.0%*+25.00%*

Prec@1 0.147 0.064 0.056 0.046 0.072 10-call 0.28 0.057 0.042 0.02 0.04
0.145 0.062 0.054 0.046 0.072 0.2 0.02 0.036 0.0 0.02

+1.38% +3.23% +3.70% 0.0% 0.0% +40.00%*+185.0%*+16.67%* –* +100.0%*

(b) Our approach vs. the PRP via the Jelinek-Mercer smoothing language model
Measures CSIRO WT10g Robust Robust TREC8 Measures CSIRO WT10g Robust Robust TREC8

hard hard
MRR 0.869 0.558 0.592 0.393 0.589 Prec@10 0.729 0.384 0.399 0.242 0.444

0.843 0.492 0.549 0.352 0.472 0.653 0.309 0.371 0.229 0.398
+3.08% +13.41%* +7.83%* +11.65%*+24.79%* +11.64%*+24.27%* +7.55%* +5.68%* +11.56%*

MAP 0.41 0.182 0.204 0.084 0.212 Prec@100 0.432 0.167 0.156 0.125 0.219
0.347 0.157 0.185 0.078 0.198 0.406 0.143 0.148 0.122 0.209

+18.16%*+15.92%*+10.27%* +7.69%* +7.07%* +6.40%* +16.78%* +5.41% +2.46% +4.78%
NDCG 0.633 0.433 0.421 0.271 0.452 1-call 1.0 0.92 0.865 0.81 0.94

0.587 0.398 0.396 0.252 0.422 0.98 0.86 0.831 0.78 0.86
+7.88%* +8.82%* +6.25%* +7.55%* +7.05%* +2.04% +6.98%* +4.09% +3.85% +9.30%*

NDCG@10 0.185 0.157 0.175 0.081 0.149 6-call 0.74 0.28 0.297 0.12 0.32
0.170 0.141 0.169 0.078 0.140 0.62 0.18 0.241 0.06 0.28

+8.96%* +11.23%* +3.80% +3.90% +6.36%* +19.35%*+55.56%*+23.24%*+100.0%*+14.29%*
NDCG@100 0.377 0.286 0.314 0.169 0.305 8-call 0.64 0.14 0.181 0.04 0.22

0.355 0.262 0.292 0.159 0.287 0.44 0.08 0.133 0.02 0.2
+6.25%* +9.27%* +7.55%* +6.58%* +6.34%* +45.45%*+75.00%*+36.09%*+100.0%*+10.00%*

Prec@1 0.133 0.052 0.049 0.038 0.063 10-call 0.38 0.06 0.064 0.02 0.12
0.13 0.048 0.044 0.037 0.062 0.26 0.0 0.032 0.0 0.02

+2.31% +8.33%* +11.36%* +2.70% +1.61% +46.15%* –* +100.0%* –* +500.0%*

(c) Our approach vs. the PRP via the BM25 model
Measures CSIRO WT10g Robust Robust TREC8 Measures CSIRO WT10g Robust Robust TREC8

hard hard
MRR 0.906 0.614 0.619 0.448 0.602 Prec@10 0.776 0.404 0.438 0.267 0.447

0.893 0.602 0.544 0.442 0.579 0.718 0.353 0.416 0.26 0.431
+1.46% +1.99% +13.79%*+1.36%+3.97% +8.08%* +14.45%* +5.29% +2.69% +3.71%

MAP 0.434 0.211 0.249 0.101 0.231 Prec@100 0.486 0.179 0.184 0.137 0.233
0.415 0.191 0.231 0.096 0.225 0.463 0.169 0.177 0.133 0.228

+4.58%+10.47%* +7.79%* +5.21%+2.67% +4.97% +5.92%* +3.95% +3.01% +2.19%
NDCG 0.683 0.491 0.516 0.332 0.498 1-call 1.0 0.912 0.883 0.78 0.904

0.667 0.469 0.497 0.322 0.480 1.0 0.86 0.876 0.76 0.88
+2.33% +4.60% +3.87% +3.03%+3.85% 0.0% +6.05%* +0.80% +2.63% +2.73%

NDCG@10 0.193 0.181 0.204 0.089 0.157 6-call 0.8 0.298 0.349 0.103 0.322
0.184 0.162 0.191 0.086 0.150 0.74 0.24 0.297 0.1 0.32

+4.83%+11.94%* +6.87%* +3.84%+4.44% +8.11%* +24.17%* +17.51%* +3.00% +0.63%
NDCG@100 0.413 0.317 0.360 0.183 0.325 8-call 0.72 0.182 0.189 0.06 0.284

0.401 0.297 0.345 0.181 0.314 0.62 0.141 0.161 0.04 0.22
+3.05% +6.87%* +4.44% +1.15%+3.69% +16.13%*+29.08%* +17.39%* +50.00%*+29.09%*

Prec@1 0.151 0.063 0.058 0.049 0.077 10-call 0.4 0.03 0.076 0.02 0.098
0.149 0.062 0.057 0.049 0.076 0.26 0.02 0.036 0.0 0.02

+1.34% +1.61% +1.75% 0.0% +1.32% +53.85%* +50.0%* +111.11%* –* +390.0%*

The relationship between the optimal value of b and k-
call (k=1,...,10) is plotted in Fig. 2 (c). The figure shows
that when k is small such as 1 and 2, the optimal b is posi-
tive for all collections. This means that diversifying top-10
search results reduces the risk of not returning any relevant
documents. When k increases, the optimal b becomes neg-
ative. This shows that a risk-loving approach will increase
the chance of finding many relevant documents.

4.2.2 Performance: We continue the study by compar-
ing with the PRP by various setups and metrics. 5-fold cross
validation is carried out on the four ad hoc test collections.
Queries in each collection were randomly partitioned. For
each partition, model parameters were trained with all the

other partitions and performance for the partition is eval-
uated with the trained parameters. We evaluated the con-
catenated ranked lists from all 5 partitions, and report the
results in Table 2.

When compared with the PRP via the Dirichlet smooth-
ing language model in Table 2 (a), out of the 60 reported
results, 57 improvements are positive, and 27 improvements
are statistically significant. When compared with the PRP
via the Jelinek-Mercer smoothing language model in Table 2
(b), out of the 60 reported results, all the improvements are
positive, and 48 improvements are statistically significant.
When compared with the PRP via the BM25 model in Ta-
ble 2 (c), out of the 60 reported results, 58 improvements are



positive, and 22 improvements are statistically significant.
Overall, our approach largely outperformed the PRP in

our experiments. Since different IR metrics may behave dif-
ferently under different risk-taking preferences, such as risk-
loving or risk-averse, our approach provides an effective way
for optimizing different IR metrics.
4.3 Subtopic Text Retrieval

Subtopic retrieval is concerned with finding documents
that cover many different subtopics of a general query topic.
In subtopic retrieval, the utility of a document is dependent
on other documents in the ranking. To study the effective-
ness of our ranking approach in this task, we compare our
approach with the PRP and the MMR ranking method [3].
We also study the relationship between the parameter b and
a range of subtopic specific metrics. We used the TREC
interactive track subtopic collection, which, to our knowl-
edge, is the only publicly available subtopic collection. The
collection consists of 20 topics adapted from TREC ad hoc
retrieval topics. The number of subtopics for these topics
ranges from 7 to 56 with an average length of 20. For a
topic, the relevance judgment for each document is a vector,
whose length is the number of subtopics. The vector con-
sists of 1 and 0, which represents relevant and not relevant
for a subtopic, respectively.

We report the metric called α-NDCG (Normalized Dis-
counted Cumulated Gain) proposed by [5], which takes into
account both novelty and relevance of documents. A pa-
rameter α between 0 and 1 balances novelty and relevance
in α-NDCG, and when α = 0, α-NDCG is equivalent to
standard NDCG [9]. The larger the α value, novelty is re-
warded more over relevance, and vice versa. We fixed α as
0.5 for a balance between novelty and relevance.

We also extended the traditional Recall at n and MRR
metrics to define two new subtopic retrieval metrics, namely,
subtopic Recall (sub-Recall) at n and subtopic MRR (sub-
MRR). These two new metrics emphasize novelty, and have
simpler definitions than α-NDCG, therefore, will likely help
us gain a more direct view of the effect of parameter b
on subtopic retrieval. Suppose there are N subtopic for a
topic, we define sub-Recall at n as the number of differ-
ent subtopics covered by the top n documents divided by
N . Given a topic, we define sub-MRR as the inverse of the
rank of the first position where documents covering all the
subtopics have been retrieved. Therefore, sub-MRR awards
a system which can retrieve all subtopics as close to the top
of a ranked list as possible. We average sub-Recall at n
and sub-MRR over a number of topics to get their means,
respectively.

4.3.1 Parameter: We plot the relationship between sub-
Recall at n and the corresponding optimal value of b in
Fig. (3). In Fig. (3), when the cut-off points are beyond 20,
the optimal b is around 0.0, i.e., little or no diversification is
employed. This tells us that for top 20 or more documents,
the PRP can perform as well as our risk-aware approach,
i.e., a sufficient number of relevant documents retrieved by
the PRP can cover different sub-topics well. However, for
lower cut-off points from 2 to 15, the optimal b is always
between 4.0 and 12.0, showing that a risk-averse approach
helps choose documents on different aspects of a topic.

4.3.2 Performance: We compared our approach with
the PRP and MMR [3] ranking criterion. We again used
5-fold cross-validation for subtopic retrieval on the TREC
subtopic collection to optimize the parameters, and the re-
sults are shown in Table 3.

We can see from Table 3 that our approach can largely
outperform both the PRP and the MMR method. Com-
pared with the PRP, out of 30 reported results, all the per-

Figure 3: Relation between optimal b and sub-
Recall@n.

formance gains by our approach are positive, and 15 perfor-
mance gains are statistically significant. Compared with the
MMR method, out of 30 results, all the performance gains
by our approach are positive, and 12 performance gains are
statistically significant.

The MMR method can slightly outperform the PRP when
the cut-off points of sub-Recall and α-NDCG are below 10,
but performed worse than the PRP when the cut-off points
are above 10; while our approach consistently outperformed
the PRP.

We think the good performance of our approach over the
MMR method is due to the reason that our approach pro-
vides a more principled way for taking into account both
variance and diversification in document ranking. Besides,
in our approach, correlations between a new document and
all top ranked documents are considered, while the MRR
method only considers the maximum similarity between a
new document and one top ranked document. We think
that the use of only one pair of documents’ similarity in
the MMR method may result in unstable results when the
ranked list is long.

5 Conclusion and Future Work
To address the ranking uncertainty, we have followed the

school of thinking from the Modern Portfolio Theory in fi-
nance, and presented the mean-variance paradigm for doc-
ument ranking in text retrieval. The analysis of the mean
and variance of a ranked list led to a new and generalized
document ranking principle.

Handling uncertainty is critical for IR modelling. There
are fruitful avenues for future investigations into the pro-
posed mean-variance paradigm, including 1) the analysis of
mean and variance of IR evaluation metrics. 2) Variance as
an indicator of the risk does not distinguish a bad surprise
from a good surprise. It is worthwhile investigating “down-
side risk” in finance that considers only bad surprises. 3)
Large numbers of documents make the estimation of cor-
relations between all documents a great challenge. How to
effectively and efficiently calculate the variance (risk) and
correlation of the estimation remains an open question. 4)
It is of great interest to study the mean-variance analysis
in other IR applications such as filtering [21], multimedia
retrieval, and advertising.
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APPENDIX
In Section 3.2, we have given Eq. (6) on the basis of our

mean-variance analysis. Here we present an additional jus-
tification from a Bayesian view point. The intuition is that
the loss function for estimating the returned relevance of
a ranked list is asymmetric. To model this, we adopt the
LINEX asymmetric loss function [22]:

L(R̂n, Rn) = eb(R̂n−Rn) − b(R̂n − Rn) − 1, (10)

where b is the parameter to balance the loss. When b >
0, the loss of over-estimate is larger than that of under-
estimate, and when b < 0, otherwise.

From the Bayesian point of view, the returned overall rel-
evance of a top-n ranked document list is a random vari-
able. The posterior probability of the Rn can be written as
p(Rn|ri, ..., rn). Integrating out the unknown hidden vari-
able Rn gives the expected loss as:

ERn [L(R̂n, Rn)] =

Z

L(R̂n, Rn)p(Rn|O)dRn

=ebR̂nERn(e−bRn |ri, ..., rn)−
b(R̂n − ERn(Rn|ri, ..., rn)) − 1,

(11)

where E denotes the expectation. R̂n is the Bayes estimator
of Rn with respect to the cost function L. The optimal
estimator of Rn should minimize the expected loss function.
Minimizing Eq. (11) gives the optimal Bayesian estimator
as follows (for detailed information, we refer to [22]):

R̂B
n = −(1/b) ln(ERn(e−bRn |ri, ..., rn)) (12)

If the overall relevance Rn is assumed to be a normal distri-
bution, one can derive the estimation analytically as follows:

R̂B
n = E[Rn] − b

2
V ar(Rn), (13)

where E[Rn] is the posterior mean and V ar(Rn) is the pos-
terior variance. Replacing b/2 with b gives Eq. (6). Our
derivation shows that, for selecting an optimal top-n ranked
list, maximizing the objective function in Eq. (6) is equiva-
lent to the Bayesian estimator of returned overall relevance
that minimizes the asymmetric loss.


