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Abstract Portfolio methods support the combination of different algorithms and
heuristics, including stochastic local search (SLS) heuristics, and have been identified
as a promising approach to solve computationally hard problems. While successful in
experiments, theoretical foundations and analytical results for portfolio-based SLS
heuristics are less developed. This article aims to improve the understanding of the
role of portfolios of heuristics in SLS. We emphasize the problem of computing
most probable explanations (MPEs) in Bayesian networks (BNs). Algorithmically,
we discuss a portfolio-based SLS algorithm for MPE computation, Stochastic Greedy
Search (SGS). SGS supports the integration of different initialization operators (or
initialization heuristics) and different search operators (greedy and noisy heuristics),
thereby enabling new analytical and experimental results. Analytically, we introduce
a novel Markov chain model tailored to portfolio-based SLS algorithms including
SGS, thereby enabling us to analytically form expected hitting time results that
explain empirical run time results. For a specific BN, we show the benefit of using
a homogenous initialization portfolio. To further illustrate the portfolio approach,
we consider novel additive search heuristics for handling determinism in the form
of zero entries in conditional probability tables in BNs. Our additive approach adds
rather than multiplies probabilities when computing the utility of an explanation.
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We motivate the additive measure by studying the dramatic impact of zero entries
in conditional probability tables on the number of zero-probability explanations,
which again complicates the search process. We consider the relationship between
MAXSAT and MPE, and show that additive utility (or gain) is a generalization,
to the probabilistic setting, of MAXSAT utility (or gain) used in the celebrated
GSAT and WalkSAT algorithms and their descendants. Utilizing our Markov chain
framework, we show that expected hitting time is a rational function—i.e. a ratio
of two polynomials—of the probability of applying an additive search operator.
Experimentally, we report on synthetically generated BNs as well as BNs from
applications, and compare SGS’s performance to that of Hugin, which performs BN
inference by compilation to and propagation in clique trees. On synthetic networks,
SGS speeds up computation by approximately two orders of magnitude compared
to Hugin. In application networks, our approach is highly competitive in Bayesian
networks with a high degree of determinism. In addition to showing that stochastic
local search can be competitive with clique tree clustering, our empirical results
provide an improved understanding of the circumstances under which portfolio-
based SLS outperforms clique tree clustering and vice versa.

Keywords Stochastic local search · Portfolios · Bayesian networks ·

Most probable explanations · Determinism · Stochastic greedy search ·

Markov chains · Hitting times

1 Introduction

In this article we study the problem of computing a most probable explanation
(MPE) in Bayesian networks [71]. Informally, an MPE is an instantiation of all non-
evidence nodes in a BN such that no other instantiation has greater probability.
MPE computation is a problem that is common to probabilistic formulations of
diagnosis, image processing, error correction decoding, and genetic linkage analysis
[22, 23, 49, 81, 82]. Ideally, one would prefer to use exact algorithms for MPE
computation—for example algorithms such as clique tree clustering [2, 45, 79],
conditioning [37, 70, 71], variable elimination [47, 85], or branch-and-bound [50–
52]. However, the MPE problem is computationally hard [1, 80], and this hardness
manifests itself in slow execution times even in relatively simple networks that are
used in current applications. The complexity of structure-based algorithms depends
on the treewidth of a BN’s underlying graph or the optimal maximal clique size of
a BN’s induced clique tree [3, 16, 18]. Due to their very large treewidths or optimal
maximal clique sizes, exact algorithms have proven to be infeasible or impractical in
many application BNs.

Because of the limitations of exact algorithms, along with the importance of the
MPE problem in applications, the development of improved algorithms for MPE
computation is of great interest. Stochastic local search (SLS) algorithms have proven
to be competitive in solving computationally hard problems including satisfiability
(SAT) [27, 35, 75, 77, 78], the most probable explanation [39, 41, 48, 54, 60], and
the maximum a posteriori (MAP) hypothesis [67, 68]. Unfortunately, the theoretical
understanding of SLS algorithms has been lagging [33], and despite recent progress
[32, 57, 62] it is clear that further advances are needed. This work is part of a larger
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research effort where the ultimate goal is the development of highly adaptive but
well-understood SLS algorithms, including SLS algorithms for MPE computation in
BNs. Progress on such adaptive SLS algorithms has already been made, for example
in the areas of adaptive noise [20, 31, 53] and learning predictive models [36, 43, 73,
84]. In these adaptive SLS algorithms, there is a need to search in the space of SLS
search parameters in addition to the fundamental SLS search process for an MPE.
In other words, there is a two-level or two-step process: object-level SLS search, and
metal-level search for approximately optimal SLS parameters that control the object-
level SLS search process. To make the vision of this two-level or two-step process a
reality, we believe that an improved understanding of the object-level search space
is essential, hence we set in this paper out to provide such improved understanding
in the context of portfolio methods.

Portfolio methods support the combination of a wide range of different algo-
rithms, and have been identified as a promising research direction [25, 26, 38, 39,
60, 84]. This article provides an improved understanding of the role of portfolios of
heuristics in stochastic local search. Algorithmically, we introduce a portfolio-based
stochastic local search approach which utilizes an initialization portfolio and a search
portfolio. Our approach is implemented in the Stochastic Greedy Search (SGS)
system; two SGS algorithms called SimpleSGS and OperatorSGS are presented in
this article. The OperatorSGS algorithm is a portfolio-based [25, 38, 60, 84] approach
to MPE computation using SLS. It provides a flexible and general framework for
stochastic explanation initialization and search. Specifically, OperatorSGS allows us
to combine different initialization operators (or initialization heuristics) and different
search operators (greedy and noisy heuristics). Given our portfolio approach, one
does not need to take a winner-takes-all approach to these different heuristics
or operators. Instead, one can combine (and eventually adaptively tune) them
according to the problem instance and application-specific requirements at hand.
Within this portfolio framework, we make progress related to the use of a variety
of different initialization and search algorithm operators. We introduce a novel
augmented random walk model (Definition 54) and show that it induces a Markov
chain (Theorem 55), thereby enabling us to analytically form expected hitting time
results that parallel empirical run time results [57]. For a specific BN, we show
the benefit of using a homogenous initialization portfolio (see Definition 56 and
Theorem 58).

To illustrate the portfolio approach, we consider novel heuristics for handling
determinism in BNs.1 Our approach, which we here carefully relate to MAXSAT,
adds rather than multiplies probabilities when computing the utility of an explana-
tion, and we therefore call it additive utility. Quantitatively, we study the impact
of zero entries in CPTs on the number of zero-probability explanations, and show

1There are several alternative, very different, approaches to handling determinism. Arithmetic
circuits handle determinism very well [4, 7], as does branch-and-bound that explores an AND/OR
search tree [50–52], and one can also carefully encode a BN into a weighted MAXSAT problem
instance [66, 74] and then use a weighted MAXSAT solver [19, 29, 42, 44, 46, 83] . Since the main
emphasis in this article is on the portfolio approach to SLS, with determinism handling serving as an
illustration, we leave detailed comparison to these alternative approaches to future work.
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dramatic increases in the probability of a randomly picked BN explanation being
zero as a function of the probability of a CPT entry being zero, the number of BN
nodes, and the BN node state space size (Theorem 13 ). Gain (i.e., change in utility)
functions merely measure the progress made when one BN node’s state is flipped in
an explanation. The traditional gain function, multiplicative gain, computes change in
an explanation’s probability resulting from a flip. We carefully formalize and analyze
multiplicative and additive gain. We consider the relationship between MAXSAT
and MPE, and show that additive utility (or gain) is a generalization of MAXSAT
utility (or gain) from the GSAT and WalkSAT algorithms and their descendants
[35, 75, 77, 78] to the probabilistic setting. Both gain functions are utilized in greedy
and noisy search operators, which make up the search portfolio, where the noisy
operators are used to effectively escape local but non-global optima. Let pA be the
probability of selecting an operator that uses additive gain. Utilizing the Markov
chain framework mentioned above, we show that expected hitting time h(pA) is a
rational function P(pA)/Q(pA) of pA, where P(pA) and Q(pA) are polynomials
(Theorem 60).

Empirically, the performance of SGS is compared to that of the state-of-the-
art inference system Hugin, which implements a clique (or join) tree algorithm
[2, 14, 45]. The clique tree algorithm can be used to compute either marginals
[45] or MPEs [14], and is among the most well-known inference methods for
Bayesian networks. We experiment with Hugin and SGS on both synthetic and
application BNs. Comparisons to Hugin show that Stochastic Greedy Search per-
forms significantly better for certain randomly generated Bayesian networks as
well as for partly deterministic Bayesian networks from applications. We utilize an
experimental paradigm for generating hard and easy synthetic BN instances [56, 61].
In a bipartite BN, let V be the number of root nodes and let C be the number
of leaf nodes. Synthetic bipartite BNs of increasing hardness can be generated
by increasing C while keeping V constant [54, 61]. Our results on synthetic BNs
generated in this way, and where root nodes have uniform distributions and leaf
node are or-nodes, are as follows: As the C/V-ratio increases, the measured run
times of both Hugin and SGS increase at an approximately exponential rate as a
function of increasing C/V-ratio. However, given a suitable measure of gain, and
specifically additive gain, SGS is approximately two orders of magnitude faster than
Hugin. Beyond synthetic BNs, we also found that our algorithm is quite effective
on application networks with substantial determinism, and in many cases it performs
comparably to or better than Hugin. In this article we highlight two reasons for SGS’s
success in application BNs, namely the ability to exploit different search operators in
OperatorSGS as well as the use of the additive measure of gain. (Another significant
component in the success of SGS is the stochastic initialization portfolio, including its
dynamic programming and forward simulation algorithms [60, 62]. The heuristics in
the initialization portfolio suggest good starting points to the stochastic local search
component of SGS; see also [41, 67, 68].)

The rest of this article is organized as follows. Section 2 introduces the problem of
computing a most probable explanation (MPE) as well as related results, definitions,
and notation. Section 3 discusses measures of utility and gain which form the basis
of all local search algorithms, including SGS, and pays special attention to the
additive approach. In Section 4 we describe the overall structure of our stochastic
local search approach, SGS. We present two SGS algorithms, namely SimpleSGS
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and OperatorSGS, and also discuss related research. Section 5 discusses analytical
results. In Section 6 we turn to the experimental results of the article: Section 6.1
presents results for synthetically generated Bayesian networks, while in Section 6.2
we discuss experimental results for application BNs. Section 7 discusses related work
and compares it to our two SGS variants. Section 8 concludes and discusses future
work. This article extends and revises our earlier reports on SGS [54, 60].

2 Preliminaries

This section briefly reviews some of the key definitions and results for Bayesian
networks and MPE computation as they relate to our research. Let (X, W ) be a
directed acyclic graph (DAG) with nodes X and edges W , and let Xi ∈ X. We use the
notation �(Xi) = �Xi

to indicate the parents of Xi in the DAG, and �(Xi) = �Xi

to indicate the children of Xi. A Bayesian network (BN), formally introduced in
Definition 1 below, represents a multi-variate probability distribution as a DAG,
where the nodes represent random variables.

Definition 1 (Bayesian network) A Bayesian network is a tuple β = (X, W , P),
where (X, W) is a DAG with an associated set of conditional probability distrib-
utions P =

{

Pr(X1 | �X1
), . . . , Pr(Xn | �Xn

)
}

. Here, Pr(Xi | �Xi
) is the conditional

probability distribution for Xi ∈ X. Further, let n = |X| and let πXi
represent the

instantiation of the parents �Xi
of Xi. The independence assumptions encoded in

(X, W ) imply the joint probability distribution

Pr(x) = Pr(x1, . . . , xn) = Pr(X1 = x1, . . . , Xn = xn) =

n
∏

i=1

Pr(xi | πXi
). (1)

A conditional probability distribution Pr(Xi | �Xi
) is also known as a conditional

probability table (CPT). While BN nodes can be continuous, this article is restricted
to the discrete case and we will take “BN node” to mean “discrete BN node”.
Suppose that a BN node X has states {x1, . . . , xm}. We then use the notation
�X = �(X) = {x1, . . . , xm}. For simplicity, but without loss of generality, we often
use binary nodes in the following, in which case a BN node X has |�X | = |X| =

|{0, 1}| = 2 states.
A BN may be given evidence by clamping some of its nodes to their observed

states. An instantiation of the remaining nodes is an explanation, formally defined as
follows.

Definition 2 (Explanation) Consider a BN β = (X, W , P) with X = {X1, . . ., Xn}

and evidence e = {X1 = x1, . . ., Xm = xm} where m < n. An explanation x is defined
as x = {xm+1, . . ., xn} = {Xm+1 = xm+1, . . ., Xn = xn}.

When discussing an explanation x, the BN β is typically left implicit. One is often
interested in computing Pr(x | e). However, in order to simplify the exposition, we
may consider Pr(y) = Pr(x, e), where y = x ∪ e, instead of Pr(x | e). This does not
fundamentally change the computation since Pr(y) = Pr(x, e) = Pr(x | e) Pr(e).
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Given evidence, one can perform various forms of BN inference. This article
focuses on computing the most probable explanation, which is defined as follows.

Definition 3 (Most probable explanation (MPE)) Computing a most probable ex-
planation (MPE) in a BN with evidence e = {X1 = x1, . . ., Xm = xm} is the prob-
lem of finding an explanation x∗ ∈ �(Xm+1)× · · · × �(Xn) such that Pr (x∗ | e) ≥

Pr (y | e), where y ∈ �(Xm+1)× · · ·× �(Xn) is any other explanation in the BN.
The set of the k most probable explanations is defined as X∗ = {x∗

1, . . ., x∗
k} where

Pr (x∗ | e) = Pr
(

x∗
1 | e

)

= · · · = Pr
(

x∗
k | e

)

.

In other words, given evidence e, no other explanation has higher probability than
x∗ ∈ X∗. It is sometimes convenient to include e into an MPE and consider y∗ =

x∗ ∪ e to be an MPE. Note that there might be many explanations with the same
probability, and for this reason we say “an” MPE rather than “the” MPE.

In this article we emphasize the connection between the SAT and MPE problems
and now introduce a few relevant definitions.

Definition 4 (SAT, SAT problem) A satisfiability (SAT) formula φ = (x, q, c) is
defined by V variables x = {x1, . . ., xV}, a set of L literals q = {q1, . . ., qL}, where
qi = x or qi = x̄ for x ∈ x, and C distinct clauses c = {c1, . . ., cC}, where each clause
consists of literals combined using the or (“∨ ”) connective. The satisfiability (SAT)
problem is to determine whether there is a truth assignment τ : x → {0, 1}V that makes
c j = 1 for all 1 ≤ j ≤ C. Such an assignment is called a satisfying (truth) assignment
(or model).

SAT is a celebrated NP-complete decision problem, and the SAT problem and
algorithms for solving it are of central importance both in theoretical computer
science and in artificial intelligence [27, 64, 76, 78]. In a SAT problem, we have ci = 1

if the i-th clause is satisfied; ci = 0 if it is not satisfied. The SAT utility measure
is

∏C
i=1 ci. Consequently,

∏C
i=1 ci = 1 for some truth assignment if the formula is

satisfiable, else
∏C

i=1 ci = 0 for all variable assignments.
The SAT utility measure is not very useful for hill-climbing purposes, since it

does not distinguish between few and many satisfied clauses. The MAXSAT utility
measure is therefore often used, and one considers the MAXSAT optimization
problem.

Definition 5 (MAXSAT, MAXSAT utility) Let φ = (x, q, c) be a SAT formula
where C = |c|. The MAXSAT utility measure US of φ, given a truth assignment
τ , is the number of true clauses in φ: US (τ ) = |{ci ∈ c | ci = 1 and 1 ≤ i ≤ C}|. The
maximum satisfiability problem (MAXSAT) is to find a truth assignment τ

∗ such
that the number of true clauses US (τ ) in φ is maximized.

MAXSAT defines an optimization problem where one optimizes the number of
satisfied clauses,

∑C
i=1 ci. Note that

∑C
i=1 ci = C for some truth assignment if the

formula is satisfiable, else
∑C

i=1 ci < C for all variable assignments. If
∑C

i=1 ci = C is
reached in MAXSAT optimization, one has also solved the underlying SAT problem.
Since SAT is NP-complete, clearly MAXSAT is NP-complete as well, however
MAXSAT is much more useful for hill-climbing. A generalization of MAXSAT
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exists, called weighted MAXSAT, in which each clause ci has a weight wi, and the
task is to optimize the weight over all clauses. Weighted MAXSAT optimization and
MPE computation are closely related; see Section 7.

A key contribution in this article, see Section 3, is how the MAXSAT utility
measure can be generalized to an additive BN measure which is then utilized in MPE
search. In order to set the stage we introduce these definitions.

Definition 6 (SAT-equivalent, SAT-like) A BN β is SAT-equivalent to a SAT
formula φ (and vice versa) if there is a one-to-one mapping between β and φ. A
BN β is SAT-like if there exists a formula φ that is SAT-equivalent to β.

The constructions underlying Definition 6 are well-known [8, 72, 80] and we do
not discuss details in this article. Along similar lines, one can define an explanation x

in a BN β as SAT-equivalent to a truth assignment τ in a formula φ, where β is SAT-
equivalent to φ and there is a one-to-one mapping between the individual assignment
of states to nodes in x and the assignments of truth values to individual variables in τ .
Here, a special case of great interest occurs when an MPE x = x∗ is SAT-equivalent
to a satisfying assignment τ = τ

∗.
We now introduce a few additional SAT-related concepts. Below, τ maps one

variable x to {0, 1} while τ maps all V variables x in φ to {0, 1}V . The notation τ(x)

means that variable x’s truth assignment τ(x) is inverted; τ(x) = 1 iff τ(x) = 0 and
τ(x) = 0 iff τ(x) = 1.

Definition 7 In a SAT problem instance φ = (x, q, c) with truth assignment τ , let x ∈

x. The notation τ̄ (φ, x, τ ) (often abbreviated τ̄ ) is a new truth assignment with τ̄ (x) =

τ(x) and where for all y ∈ x − {x}, τ̄ (y) = τ(y). We say that τ̄ (φ, x, τ ) is flipped
compared to τ .

SAT is relevant to the study of BNs for several reasons. First, BNs often have
many deterministic nodes, of which the or- and and-nodes found in SAT are special
cases. For examples of application BNs with many deterministic nodes, we refer to
Fig. 3. Second, significant progress on stochastic local search to solve the satisfiability
problem has been made in recent years [27, 35, 75, 77, 78]. Of particular relevance to
our work is (i) the use of the GSAT measure of gain, which is based on the MAXSAT
utility measure, and (ii) the use of noise as a mechanism of escape from local optima.
In the research reported here, we have extended the MAXSAT utility measure and
the GSAT measure of gain to the probabilistic setting, giving the additive utility
measure and the additive measure of gain respectively.

It can be shown by reduction from SAT that MPE computation is NP-hard [80].
Approximating an MPE to within a constant ratio-bound has also been proven to be
NP-hard [1]. In fact, the problem is much harder, since the evaluation problem is #P

complete [72]. Since inference in BNs is computationally hard and the MPE problem
is important in applications, we believe that it is important to study SLS algorithms
for MPE computation, where estimates of x∗ are computed.

Definition 8 (MPE (lower-bound) estimate) Let x∗ be an MPE given evidence e. A
best-effort estimate of x∗ is denoted x̂

∗
; if Pr(x̂

∗
| e) ≤ Pr (x∗ | e) then x̂

∗
is a lower-

bound estimate.
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Generally, lower-bound MPE estimates x̂
∗

are computed using SLS algorithms.
In the remainder of this article, our main focus is on SLS algorithms as Las Vegas
algorithms [35]. In other words, we typically assume that Pr (x∗ | e) or Pr(x∗) is a
known SLS input parameter, therefore SLS terminates once an x∗ ∈ X∗ has been
found. Las Vegas algorithms are used in theoretical computer science as well as in
SLS research [25, 35], and enables our scientific study of SLS algorithms as further
discussed in Section 5.1.

SLS algorithms can be analyzed using discrete time Markov chains with discrete
state spaces [32, 57]. Only time-homogenous Markov chains with finite state spaces
will be considered in this article. A Markov chain is a stochastic process (At, t ≥ 0) =

(A0, A1, . . .) induced by a three-tuple M = (S , V , P), where S is k = |S| discrete
states, a k-dimensional vector V = (π1, . . ., πk) represents the initial probability
distribution, and a k × k matrix P represents the transition probabilities. As we will
elaborate in Section 5, M is given by the objective function, the SLS algorithm, and
the SLS algorithm’s parameter settings.

In M, some states O ⊂ S represent optimal states, and we introduce the following
definition.

Definition 9 (SLS model) Let M = (S , V , P) define a Markov chain. Further,
assume an objective function f : S → R and an optimal objective function value
f ∗ ∈ R that defines optimal states O = {s | s ∈ S and f (s) = f ∗}. The two-tuple (M,
O) defines an SLS model.

The objective function f and the optimal states O are independent of the SLS al-
gorithm and its parameters; finding an s∗ ∈ O is the purpose of SLS search including
MPE computation. We emphasize maximization in the form of MPE computation in
this article, therefore f in Definition 9 is given by Pr (x) in Definition 1. We often
consider BNs with binary nodes. In this case, explanations can be represented as
bitstrings of length n, b ∈ {0, 1}n, and s∗ = b∗ ∈ {0, 1}n.

Consider an SLS model (M,O). A hitting time analysis of M, known from
Markov chain theory, gives the expected number of search steps needed to reach
s∗ ∈ O. Hitting times are based on first passage times.

Definition 10 (First passage time) Consider an SLS model (M,O) and let si ∈ S

where S is M’s states. The first passage time T, a random variable, into s∗ ∈ O is
given by T = min( j ≥ 0 : A j ∈ O}. The expected value of T, given initial state A0 =si,
is defined as

mi,O = E(T | A0 = si).

Definition 10 covers |O| ≥ 1 and thus includes first passage time into multiple
optimal states. For simplicity we emphasize the one-state case |O|=1 here, with O=

{s∗} = {sk}. First passage time now simplifies to T = min( j ≥ 0 : A j = sk}, and mi,O

simplifies to mi,k.
Using conditional expectations, one obtains from Definition 10 the following well-

known result.
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Theorem 11 (Expected hitting time) Let M be a Markov chain with state space S =

{s1, . . ., sk} and f irst passage time T (into s∗ = sk). The expected hitting time h is then

h =

k
∑

i=1

E(T | A0 = i) Pr(A0 = i) =

k
∑

i=1

miπi. (2)

Expected hitting time can be used to analyze the expected time to reach an optimal
state s∗ ∈ O in an SLS model (M, O), and is often closely related to the observed
mean run time for an SLS algorithm. For SLS, the hitting time h is with respect
to some state in O and depends on the algorithm’s input parameters including the
problem instance. Previously, we have studied hitting time h(pN), where pN is the
noise probability [57]. By varying pN , we have constructed expected hitting time
curves that are analytical counterparts to experimental noise response curves [57].
These expected hitting time curves provide an analytical foundation for finding
optimal noise level p∗

N . This noise level is optimal in the sense that it minimizes
expected hitting time, or p∗

N = arg min0≤p≤1 h(p).

3 Measures of Utility and Gain

Stochastic local search algorithms are based on evaluating the absolute goodness
(utility) of an explanation and relative goodness (gain) of an explanation compared
to explanations that are neighbors in the search space. Gain is, informally speaking,
change in utility from one explanation x to another explanation x′. The explanation
x′ may be derived from x, for example by changing (flipping) one node’s state.

Measures of utility and gain play essential roles in any local search algorithm,
including SGS, and this section focuses on these matters. We first present measures
of utility in Section 3.1, then measures of gain in Section 3.2. We highlight two
different approaches, the multiplicative approach and the additive approach. While
the multiplicative approach is natural, the additive approach is related to MAXSAT
and turns out to give excellent performance in partly deterministic BNs. The basis
for how the measures of gain are utilized in stochastic local search is described in
Section 3.3.

Readers interested in our portfolio approach but not in our approach to handling
zeros in BNs may want to skip this section.

3.1 Measures of Utility

A utility measure (or function) is also known as a cost function, an energy function,
a fitness function, or an objective function. We introduce the notion of a utility
measure U(x), where x is an explanation in a BN.

3.1.1 Multiplicative Utility

As one might expect, the definition of a joint probability from Eq. 1 is used as a utility
measure in SLS. For purposes of notational convenience and uniform treatment in
our SLS algorithms we also consider it a multiplicative utility UM.
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Definition 12 (Multiplicative utility) Let x = (y, e) be an explanation in a BN with n

nodes and evidence e. The multiplicative utility is defined as

UM(x) = Pr(x) =

n
∏

i=1

Pr(xi | π(Xi)). (3)

While multiplicative utility is a natural utility measure, it does have limitations, in
particular in so-called partly deterministic BNs. These are BNs with many zeros in
their CPTs and consequently many explanations x with UM(x) = Pr(x) = 0.

To obtain further insight into partly deterministic BNs, suppose that zeros are
assigned to CPT entries in an existing BN according to the following randomized
algorithm. The algorithm is controlled by a probability parameter ρ, where 0 ≤ ρ ≤ 1

(see [21] for details). With the exception of the last entry in a CPT column, ρ is
the probability that a CPT entry is set to zero. Specifically, ρ controls the setting
of zeros in the CPT entries of a BN node in the following manner. We assume
a random number generator Random(a, b) that generates a real number r, where
a ≤ r ≤ b , uniformly at random. Let V be an arbitrary non-root node in the BN, and
let y be an arbitrary instantiation of parent nodes Y = �(V). The algorithm sequen-
tially assigns probabilities to V’s CPT entries, given y, and distinguishes these
two cases. Case 1 is for a state vi ∈ �V that is not the last state of V: If
Random(0, 1) < ρ then put Pr(V = vi | Y = y) = 0, else put Pr(V = vi | Y = y) > 0.
Case 2 is for the state v|V| ∈ �V that is the last state: Let Pr(V = v|V| | Y = y) =

1 −
∑|V|−1

i=1 Pr(V = vi | Y = y). The situation where V is a root node in the BN is
handled in a similar manner.

For the above randomized algorithm, the following theorem holds.

Theorem 13 Consider a BN β with n nodes, with w = �(V1) = · · · = �(Vn), and

where CPTs are set according to the above randomized algorithm. Let x be an

explanation picked uniformly at random in β. Then

Pr(UM(x) = 0) = 1 −

(

1 −
w − 1

w
× ρ

)n

. (4)

This theorem is a slight variation on a result in [21]. Figure 1 illustrates (4), and
clearly shows the rapid speed at which the probability Pr(UM(x) = 0) grows, for an
explanation x, with growing BN size n and probability parameter ρ. The slowest
growth for Pr(UM(x) = 0) in Fig. 1 is for w = 2 and ρ = 0.1, where for n = 10 we
have Pr(UM(x) = 0) ≈ 0.4. The fastest growth, on the other hand, takes place for
w = 8 and ρ = 0.9, where already for n = 10 we have Pr(UM(x) = 0) ≈ 1.0. In other
words, almost all explanations picked uniformly at random have zero probability or
UM(x) = 0. Since most application BNs of interest contain substantially more than
n = 10 nodes, the effect of zeros in CPTs is often much worse than indicated by these
two examples.

As presented in Table 3, a large percentage of zeros can often be found in CPTs of
application BNs. Theorem 13 suggests that in such BNs, if an explanation x is picked
uniformly at random, UM(x) = Pr(x) = 0 with high probability. Further, by the SAT
reduction it is NP-hard to find an explanation x such that Pr(x) > 0 [72, 80]. The case
UM(x) = Pr(x) = 0 therefore presents a serious complication for the SLS approach
to computing MPEs. With a large part of the search space of explanations equal to
zero, there is often no gradient to hill-climb for an SLS algorithm using UM. This
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BN node state space size w = 2 BN node state space size w = 8

Fig. 1 The probability of a randomly picked BN explanation x being zero, or y = Pr(UM(x) = 0), as
a function of varying BN size n (along the x-axis), CPT entry zero probability ρ, and BN node state
space size w. The curves are for varying ρ, with ρ = 0.1 (curve indicated by blue crosses), ρ = 0.5

(curve indicated by black line), and ρ = 0.9 (curve indicated by red squares). The BN node state
space size is different in these two panels. Left panel: State space size w = 2; Right panel: State space
size w = 8

limitation of the multiplicative measure leads us to the additive approach, which we
discuss below.2

3.1.2 Additive Utility

Due to the limitations of multiplicative utility, we now consider a complementary
utility measure, namely additive utility U A [54, 60]. This utility measure is based
on the MAXSAT utility measure, which was used in the seminal GSAT family of
algorithms [77, 78].

Definition 14 (Additive utility) Let x = (y, e) be an explanation in a BN with n nodes
and evidence e. The additive utility is defined as

U A(x) =

n
∑

i=1

Pr(xi | π(Xi)). (5)

Additive utility clearly avoids multiplicative utility’s problem with zeros as dis-
cussed above in Section 3.1.1. The detailed investigation and use of the additive
utility measure in BN inference is, to our knowledge, a novel aspect of our research
as reported in this article.

We provide formal and experimental arguments in support of additive utility
and gain in the following. First, as shown in Theorem 15 below, additive utility is
a generalization of MAXSAT utility in the following sense. MAXSAT utility adds
the number of satisfied CNF clauses [76, 77], given a truth assignment to the logic
variables. In a SAT-like BN, additive utility adds the probabilities of root and leaf
nodes, given an instantiation of root nodes (which correspond to SAT variables) and

2In addition, this analysis underlines the importance of related work on handling determinism, for
example by means of compilation into arithmetic circuits [4] or by encoding BNs into weighted
MAXSAT problem instances and then apply weighted MAXSAT solvers [66, 74].
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clamping of the leaf nodes (which correspond to SAT clauses) to 1. Second, additive
utility is an approximation to multiplicative utility. (Formal results concerning the
relationship between additive gain and multiplicative gain are provided later in
Section 3.) Third, it turns out that additive utility and gain give excellent empirical
results in certain BNs as reported in Sections 6.2 and 6.1.

Theorem 15 (Generalization of MAXSAT) Let φ = (y, q, c) be a SAT problem

instance with |y| = V, |c| = C, and n = C + V. Let β = (X,W ,P) be a Bayesian

network that is SAT-equivalent to φ and with leaf nodes clamped, i.e. e = {X1 =

1, . . . , XC = 1}. Let τ be a truth assignment to the logic variables y = {y1, . . . , yV}

in φ and let x = {XC+1 = xc+1, . . . , Xn = xn} be an equivalent explanation over the V

root nodes in β. Then US (τ ) = k if and only if 3

U A(x) = k +
V

2
. (6)

Proof Case (⇐): Consider a SAT-equivalent BN β with an explanation x, and
suppose that U A(x) = k + V

2
. Now suppose that β has n nodes {X1, . . . , Xn}, and

form

U A(x) =

n
∑

i=1

Pr(Xi = xi | π(Xi)).

Since β is SAT-equivalent to some formula φ, β is bipartite with V root nodes
(corresponding to variables in φ) and C = n − V leaf nodes (corresponding to clauses
in φ). We decompose the additive utility U A(x) accordingly to

U A(x) =

C
∑

i=1

Pr(Xi = xi | π(Xi)) +

n
∑

i=C+1

Pr(Xi = xi), (7)

where {XC+1, . . . , Xn} are root nodes and have no parents. By construction, the V =

n − C root nodes are binary and each root node state has probability mass 1
2

[8, 72,
80]. Since there are V = n − C of them we obtain for the second term in (7)

n
∑

i=C+1

Pr(Xi = xi) =

V
∑

j=1

Pr(X j+C = x j+C) =
V

2
. (8)

Clearly, (7) can be written as

C
∑

i=1

Pr(Xi = xi | π(Xi)) = U A(x) −

n
∑

i=C+1

Pr(Xi = xi) = k, (9)

where the last equality follows from U A(x) = k + V
2

and (8). Now, in β, C leaf nodes
are being clamped as follows: e = {X1 = 1, . . ., XC = 1}. Without loss of generality

3Recall that Us is MAXSAT utility; see Definition 5 for the formal definition.
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we assume a suitable ordering, and from (9) we know that for explanation x the leaf
nodes in β look like this:

Pr(X1 = 1 | πX1
) = 1, . . . , Pr(Xk = 1 | πXk

) = 1, Pr(Xk+1 = 1 | πXk+1
)

= 0, . . . , Pr(XC = 1 | πXC
) = 0;

Due to the equivalence between explanations in β and truth assignments in φ, there is
an assignment τ for φ that is SAT-equivalent to explanation x. And from the above
it follows that exactly k ≤ C clauses are satisfied in φ under τ , or US(τ ) = k. Case
(⇒) is similar, giving the desired result. ⊓⊔

While the MAXSAT measure US applies to the variables in a SAT formula, the
additive measure U A applies to the full explanation in a BN, with BN nodes in a SAT-
like BN corresponding to both variables and clauses in the SAT-equivalent formula.
More importantly, additive utility is not restricted to the logical setting as MAXSAT
is. The additive measure U A can therefore be applied in all BNs, not only in SAT-like
BNs.

Even though the U A measure clearly does not compute an explanation’s prob-
ability, it is very useful for the special but important case of deterministic BN
nodes. As already noted, surprisingly many BNs from applications have substantial
deterministic fragments. Examples of such partly deterministic BNs are SAT-like
BNs as discussed above (with or-nodes), error correction decoding BNs (with xor-
nodes) from information theory [22, 49], and other BNs from applications—see
Table 3.

3.2 Measures of Gain

For an explanation x′, a measure of gain, say 
U , simply measures change in utility
U compared to another explanation x. When a node X is flipped in an explanation
x, it has a localized impact in the BN at hand. The following definition introduces a
vocabulary for such localized changes. To simplify the exposition, we often assume
|�X | = 2 in the remainder of this section; this can easily be generalized to |�X | ≥ 2.

Definition 16 (Flipped node, flipped explanation) Consider an instantiated BN node
Xi = xi. If one puts Xi = x̄i, where x̄i = 0 if xi = 1 and x̄i = 1 if xi = 0, then the node
is flipped (from Xi = xi). An explanation x′ is flipped from another explanation x if
at least one node Xi has Xi = xi in x while Xi = x̄i in x′.

We note that the terminology “flipping” does not imply that CPTs are being
changed—we are not performing machine learning but rather search.

In the following definition, the notation x[Xi = xi] means that the current state
of the BN node Xi is xi in the explanation x; no changes are made. The notation
x′ = x[Xi ← x̄i], on the other hand, means that Xi (which was assigned state xi in
x) is now, after the assignment Xi ← x̄i, assigned state x̄i in x′. This is similar to
assignment in programming languages.

Definition 17 (One-flipped) An explanation x′ = {Xm+1 = xm+1, . . . , Xi =

x̄i, . . . , Xn = xn} is one-flipped from an explanation x = {Xm+1 = xm+1, . . . , Xi =

xi, . . . , Xn = xn} if exactly one node, here the i-th node, is flipped. For one-flipped
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explanations the notation x′ = x[Xi ← x̄i], where x′ is the new explanation, is also
used. A one-flipped parent instantiation, denoted π̄X , means that some node Y

∈ �X has its state flipped from y to ȳ in X’s parent instantiation πX .

At the core of SLS algorithms is an evaluation of whether the state of a node Xi

should be flipped from xi to x̄i, leading to a corresponding one-flipped change in
explanation from x[Xi = xi] to x[Xi ← x̄i]. These evaluations are based on the con-
cept of gain. We now discuss multiplicative gain, which is derived from multiplicative
utility.

3.2.1 Multiplicative Gain

The multiplicative gain is obtained as follows. Let x be the explanation before
flipping, x′ the explanation after flipping some number of nodes. A measure of the
goodness of those flips is introduced in the following definition.

Definition 18 (Multiplicative gain, one-flip multiplicative gain) Let x and x′ be
explanations, assume that UM(x) > 0, and suppose that we flip from x to x′. The
multiplicative gain 
UM(x, x′) is defined as


UM(x, x′) =
UM(x′)

UM(x)
. (10)

Suppose that xi,k ∈ �Xi
, xi, j ∈ �Xi

, and x[Xi = xi,k]. The general case of one-flipping
x’s Xi from xi,k to xi, j, where j �= k, is defined as


UM(x, xi, j) =
UM(x[Xi ← xi, j])

UM(x[Xi = xi,k])
. (11)

Definition 19 (Binary one-flip multiplicative gain) Assume that Xi is binary, x[Xi =

xi], and let x′ = x[Xi ← x̄i]. Binary one-flip multiplicative gain is then defined as


UM(x, x̄i) =
UM(x′)

UM(x)
=

UM(x[Xi ← x̄i])

UM(x[Xi = xi])
. (12)

We now show how multiplicative gain computation can be simplified compared to
the above definitions.

Theorem 20 (One-flip multiplicative gain) Let x and x′ be explanations such that x′ =

x[Xi ← x̄i]. Further, let C = �Xi
, let C j ∈ C, and let π(C j) ⊆ x (respectively π̄(C j) ⊆

x′) be the instantiation of all parent nodes for children of Xi before (respectively after)

a one-f lip of Xi. Suppose that UM(x) > 0. The one-f lip multiplicative gain 
UM(x, x̄i)

is


UM(x, x̄i) =
Pr(x̄i | π(Xi)) ×

∏

C j∈C Pr(C j = c j | π̄(C j))

Pr(xi | π(Xi)) ×
∏

C j∈C Pr(C j = c j | π(C j))
, (13)

with Pr(xi | π(Xi)) ×
∏

C j∈C Pr(C j = c j | π(C j) > 0.
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Proof We start with the definitions of multiplicative gain and utility, obtaining


UM(x, x̄i) =
UM(x[Xi ← x̄i])

UM(x)
=

Pr(x[Xi ← x̄i])

Pr(x)
. (14)

We now consider Xi’s children C = �Xi
. Let Y be the BN nodes other than Xi and

C: Y = V − ({Xi} ∪ C), and rewrite Eq. 14 as


UM(x, x̄i)=
Pr(Xi = x̄i | π(Xi))×

∏

C j∈C Pr(C j =c j | π̄(C j))×
∏

Y∈Y Pr(Y = y | π(Y))

Pr(Xi =xi | π(Xi))×
∏

C j∈C Pr(C j =c j | π(C j))×
∏

Y∈Y Pr(Y = y | π(Y))
.

Since only one node Xi is flipped (from xi to x̄i), we can exploit the Markov blanket
locality of the BN and only need to consider the CPT in Xi itself as well as CPTs for
children C, and obtain


UM(x, x̄i) =
Pr(Xi = x̄i | πXi

) ×
∏

C j∈C Pr(C j = c j | π̄(C j))

Pr(Xi = xi | πXi
) ×

∏

C j∈C Pr(C j = c j | π(C j))
.

This is exactly the multiplicative gain 
UM(x, x̄) in Eq. 13. Obviously, since by
assumption UM(x) > 0 it is clear that Pr(xi | π(Xi)) ×

∏

C j∈C Pr(C j = c j | π(C j)) > 0

as well. ⊓⊔

Note that the computation of Pr(x′) of a flipped explanation can be expressed as
taking the probability of the old explanation, Pr(x), and multiplying it with the gain
from Eq. 10, giving

Pr(x′) = 
UM(x,x′) Pr(x). (15)

We typically restrict ourselves to the one-flipped case in this article, and consequently
have x′ = x[Xi ← x̄i] and thus obtain

Pr(x′) = Pr(x[Xi ← x̄i]) (16)

= 
UM(x, x̄i) Pr(x)

=
Pr(Xi = x̄i | πXi

) ×
∏

C j∈C Pr(C j = c j | π̄(C j))

Pr(Xi = xi | πXi
) ×

∏

C j∈C Pr(C j = c j | π(C j))
Pr(x).

Especially when the number of nodes n is large, using (16) iteratively rather than
evaluating all of x′ to compute Pr(x′) provides substantial computational savings.

In the use of multiplicative gain in SGS and other SLS algorithms there is a
slight but crucial complication in that multiplicative gain is not defined, according
to Definition 18, if the denominator UM(x) = 0. In practice, UM(x) = 0 is very
common in partly deterministic BNs. We discuss how this can be handled in an ad-
hoc manner in SGS in Section 4.1. However, this limitation of UM(x) also motivates
our investigation of additive gain which we turn to now.

3.2.2 Additive Gain

The assumption UM(x) = Pr(x) > 0 made for multiplicative gain in Eq. 10 is some-
times not realistic and leads us to introduce additive gain based upon additive utility.
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Definition 21 (Additive gain, one-flip additive gain) Let x and x′ be explanations.
The additive gain 
U A(x, x′) is defined as


U A(x, x′) = U A(x′) − U A(x). (17)

Suppose that xi,k ∈ �Xi
, xi, j ∈ �Xi

, and x[Xi = xi,k]. The general case of one-flipping
x’s Xi from xi,k to xi, j, where j �= k, is defined as


U A(x, xi, j) = U A(x[Xi ← xi, j]) − U A(x[Xi = xi,k]). (18)

Definition 22 (Binary one-flip additive gain) Assume that Xi is binary, x[Xi = xi],
and let x′ = x[Xi ← x̄i]. Binary one-flip additive gain is then defined as


U A(x, x̄i) = U A(x′) − U A(x) = U A(x[Xi ← x̄i]) − U A(x[Xi = xi]).

The additive gain is well-defined in cases where the multiplicative gain is not. As
a consequence, we can in the SGS implementation of additive gain computation (see
Fig. 4) handle the case Pr(x) = 0 without complicating the stochastic local search
algorithm (see Fig. 3) or changing the CPT entries (see [66]) as has been done when
using multiplicative gain. As we will see in experiments, additive gain proves useful
as a complement to multiplicative gain.

Theorem 23 (One-flip additive gain) Let x and x′ be explanations such that x′ =

x[Xi ← x̄i]. Further, let C = �Xi
, let C j ∈ C, and let π(C j) ⊆ x (respectively π̄(C j) ⊆

x′) be the instantiation of all parent nodes for children of Xi before (respectively after)

a one-f lip of Xi. The one-f lip additive gain 
U A(x, x̄i) is then


U A(x, x̄i) = Pr(x̄i | πXi
) +

∑

C j∈C

Pr(C j = c j | π̄(C j)) − Pr(xi | πXi
)

−
∑

C j∈C

Pr(C j = c j | π(C j)). (19)

Proof The one-flip additive gain can be derived in a manner similar to the proof of
one-flip multiplicative gain 
UM(x, x̄) in Theorem 20. ⊓⊔

3.2.3 Additive Gain and Multiplicative Gain

We have several arguments for why the use of additive gain may be productive.
One reason, which is stated formally in Theorem 27 below, relates additive gain and
multiplicative gain. In order to improve readability, we introduce in Definitions 24
and 25 alternative ways of expressing additive and multiplicative gains when flipping
a node Xi with children C.

Definition 24 (Simple additive gain notation) Let α = |C| + 1 and put in The-
orem 23: p1 = Pr(x̄k | πXk

),
∑α

i=2 pi =
∑

C j∈C Pr(C j = c j | π̄(C j)), q1 = Pr(xk | πXk
),

and
∑α

i=2 qi =
∑

C j∈C Pr(C j = c j | π(C j)). This gives the following simplified notation
for additive gain:


U A(x, x̄k) =

α
∑

i=1

pi −

α
∑

i=1

qi.
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Definition 25 (Simple multiplicative gain notation) Let |C| = α + 1 and put in
Theorem 20: p1 = Pr(x̄k | πXk

),
∏α

i=2 pi =
∏

C j∈C Pr(C j = c j | π̄(C j)), q1 = Pr(xk |

πXk
), and

∏α
i=2qi =

∏

C j∈C Pr(C j = c j | π(C j)). This gives the following simplified
notation for multiplicative gain:


UM(x, x̄k) =

α
∏

i=1

pi

qi

, (20)

again under the assumption
∏α

i=1 qi > 0.

The following fact follows easily from the definitions of 
U A and 
UM.

Proposition 26 Let x and x′ be explanations and suppose that 
UM(x) > 0.


U A(x, x′) = 0 if and only if 
UM(x, x′) = 1.

We now turn to the more general case where 
U A(x, x′) �= 0 and 
UM(x, x′) �= 1.

Theorem 27 Consider the def initions of additive gain 
U A(x, x̄k) =
∑α

i=1 pi −
∑α

i=1 qi and multiplicative gain 
UM(x, x̄k) =
∏α

i=1
pi

qi
from Def initions 24 and 25

respectively. Suppose that there exists a permutation σ of {q1, . . . , qα}, denoted

{qσ(1), . . . , qσ(α)}, and a permutation ρ of {p1, . . . , pα}, denoted {pρ(1), . . . , pρ(α)}, such

that

pρ(1) > qσ(1), . . . , pρ(κ) > qσ(κ), pρ(κ+1) = qσ(κ+1), . . . , pρ(α) = qσ(α) (21)

for some 1 ≤ κ ≤ α. If (21) is true and 
U A(x,x̄k) > 0 then 
UM(x,x̄k) > 1.

Proof Since, by assumption, 
U A(x,x′) =
∑α

i=1 pi −
∑α

i=1 qi > 0, we must have κ ≥

1 in (21). For any 1 ≤ j ≤ κ , it is the case that pρ( j) > qσ( j) or in other words
pρ( j)

qσ( j)
> 1,

giving also

κ
∏

j=1

pρ( j)

qσ( j)

> 1. (22)

For the remaining elements in (21) we have pρ(κ+1) = qσ(κ+1), . . . , pρ(α) = qσ(α) and
thus

α
∏

j=κ+1

pρ( j)

qσ( j)

= 1. (23)

Going back to the definition (20) as well as (22) and (23) gives


UM(x, x̄k) =

α
∏

i=1

pi

qi

=

κ
∏

j=1

pρ( j)

qσ( j)

α
∏

j=κ+1

pρ( j)

qσ( j)

> 1

as desired. ⊓⊔

Theorem 27 justifies the use of 
U A in MPE local search algorithms as follows:
When flipping from explanation x to explanation x′—and if 
U A(x,x′) > 0 as well
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as condition (21) holds during local search—one is also making progress according
to 
UM.

Despite the result above, we emphasize that a positive additive gain 
U A does not
always imply an increase in an explanation’s probability or multiplicative gain 
UM.
This is stated formally in the following result.

Proposition 28 Let x be an explanation, and x′ be one-f lipped from x. It is not always

the case that if 
U A(x, x′) > 0 then 
UM(x, x′) > 1.

Proof A counter-example in a BN with two nodes X1 and X2 is pro-
vided. The nodes both have state space {0, 1}. Node X1 is X2’s parent.
Let the CPTs be {Pr(X1 = 0) = 0.2, Pr(X1 = 1) = 0.8, Pr(X2 = 0 | X1 = 0) = 0.4,
Pr(X2 = 1 | X1 = 0) = 0.6, Pr(X2 = 0 | X1 = 1) = 0.05, Pr(X2 = 1 | X1 = 1) = 0.95}.
Now consider x={X1 = 0, X2 = 0} and x′ = {X1 = 1, X2 = 0}. In this case we
have 
U A(x, x′) = U A(x′) − U A(x) = (0.8 + 0.05) − (0.2 + 0.4) = 0.25 > 0 while

UM(x, x′) = UM(x′)/UM(x) = (0.8 × 0.05)/(0.2 × 0.4) = 0.5 ≯ 1. ⊓⊔

3.2.4 Additive Gain and GSAT Gain

The reasoning behind the GSAT gain [77, 78] and the additive gain shown in Eq. 19 is
similar. Reflecting this, we introduce the following two definitions based on previous
research [77, 78].

Definition 29 (GSAT gain) Let τ and τ ′ be truth assignments. Then GSAT gain

US

(

τ , τ ′
)

is defined as


US

(

τ , τ ′
)

= US

(

τ
′
)

− US (τ ) .

The notation 
US

(

τ, τ ′
)

is used for GSAT gain over truth assignments τ and τ ′

for SAT formulas, similar to additive gain 
U A(x, x′) for explanations x and x′ in
BNs as introduced in Definition 21.

Definition 30 (One-flip GSAT gain) Let τ be a truth assignment to the variables y in
a SAT instance φ = (y, q, c). Suppose that τ is changed to τ̄ by flipping one variable
y ∈ y from τ(y) to τ̄ (y). Let MakeCount(τ , ȳ) be the number of clauses satisfied (or
made 1) by the flip of y. Let BreakCount (τ , ȳ) be the number of clauses unsatisfied
(or made 0) by the flip of y. One-flip GSAT gain is defined as


US (τ , ȳ) = MakeCount (τ , ȳ) − BreakCount (τ , ȳ) .

In a manner similar to GSAT gain’s success in SAT, our additive gain turns out to
be powerful on deterministic BN nodes, which occur in application BNs, as well as
in SAT-like BNs which encode satisfiability instances [8, 72]. In fact, GSAT gain is a
special case of additive gain as expressed in the following result.

Theorem 31 Let BN β = (Y , W , P) and suppose that SAT instance φ = (y, q, c)

is SAT-equivalent to β. Further, let two explanations x1 and x2 in β be SAT-

equivalent to two truth assignments τ 1 and τ 2, respectively, for φ. Then 
U A(x1, x2) =


US (τ 1, τ 2).
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Proof Applying Theorem 15 to both x1 and x2 gives

U A(x1) = US(τ 1) +
V

2
(24)

U A(x2) = US(τ 2) +
V

2
, (25)

and when (24) is subtracted from (25) we obtain

U A(x2) − U A(x1) = US(τ 2) − US(τ 1). (26)

Simply substituting the definitions of 
U A(x1, x2) (Definition 21) and 
US (τ 1, τ 2)

(Definition 29) into (26) gives the desired result. ⊓⊔

The following result follows easily from Theorem 31.

Corollary 32 Let 
U A(x1, x̄i) be the additive gain obtained by f lipping a root node

Xi ∈ X in a SAT-like BN β = (Y , W , P). Assume that the SAT instance φ = (y, q, c)

is SAT-equivalent to β and that τ 1 is equivalent to x1. Further, let 
US (τ 1, ȳi) be the

GSAT gain obtained, under τ 1, by f lipping the variable yi ∈ y corresponding to the

root node Xi ∈ X. It is then the case that 
U A(x1, x̄i) = 
US (τ 1, ȳi).

Proof Put x2 ← x1[Xi ← x̄i] and let τ 2 ← τ̄ (φ, yi, τ 1) (copying τ 1 into τ 2 but
exchanging τ (yi) with τ̄ (yi)). Observe that node Xi corresponds to the variable
yi. Clearly, the constructed truth assignment τ 2 is equivalent to the constructed
explanation x2, thus Theorem 31 applies and the result follows. ⊓⊔

3.3 Criteria of Choice

In addition to measures of utility and gain, SLS algorithms including SGS need
criteria of choice. These criteria determine how an SLS algorithm decides, based
on its gain computations, which BN node(s) to flip next. Gains in a neighborhood
around the current explanation x are computed and placed in a candidate array (or
set), defined as follows.

Definition 33 (Candidate array) Let x be an explanation and let gi, j = 
U(x, xi, j)

be the one-flip gain obtained by flipping explanation x’s i-th node Xi from its k-
th state k ∈ {1, . . . , |�Xi

|} to its j-th state, where j ∈ {1, . . . , |�Xi
|} − {k}. The set of

three-tuples

A =
{(

Xi, xi, j, gi, j

)

| Xi is the i-th BN node, xi, j is Xi’s j-th state,

and gi, j is the one-flip gain
}

is denoted the candidate array.

At present, gi, j = 
U(x, xi, j) is either multiplicative gain 
UM(x, xi, j) (11) or
additive gain 
U A(x, xi, j) (18). The candidate array describes explanation x’s local
neighborhood and is used to determine—using a criterion of choice—which node to
actually flip in x. We have investigated two types of criteria of choice, the greedy
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criterion CG and the noisy criterion CN . Both criteria rely on the candidate array A

and a tuple of gains in A, formally G = (g1, . . . , gm).4

Definition 34 (Greedy criterion CG) The greedy (or maximizing) criterion CG(A) is
defined as picking a tuple with gain gmax such that gmax ≥ g j for all 1 ≤ j ≤ m. Among
k such maximal tuples, CG(A) picks the i-th tuple with probability pi = 1/k for 1 ≤

i ≤ k; all remaining tuples are picked with probability pi = 0 for k + 1 ≤ i ≤ m.

Definition 35 (Noisy criterion CN) The noisy (or stochastic) criterion CN(A) is
defined as picking the i-th tuple with gain gi, for 1 ≤ i ≤ m, according to the
probability distribution

pi = gi

/

m
∑

j=1

g j .

It is easy to see that
∑m

i=1 pi = 1 in Definition 34 and in Definition 35, thus these
are both valid probability distributions.

In SGS, the maximizing criterion in Definition 34 chooses greedily from the
candidate array A and yields classical steepest-ascent hill-climbing. The stochastic
criterion in Definition 35 yields probabilistic hill-climbing, since it probabilistically
decides which node and state to flip to, using gain information in the candidate array
A. This stochastic criterion is closely related to the approach used in the stochastic
simulation algorithm [71] as well as to noise strategies such as “random walk” used
in stochastic local search for SAT [77].

A measure of gain, then, defines how to measure progress for candidate local
search steps. A criterion of choice, on the other hand, determines how to choose
between the different candidate local search steps, based on the candidate gains,
using a maximizing criterion or a stochastic criterion.

4 Stochastic Local Search Algorithms

Stochastic greedy search (SGS) is a local search approach augmented with stochastic
initialization and noise steps. This section presents two variants of SGS, in order of
increasing complexity and power. Section 4.1 presents simple SGS (or SimpleSGS),
while Section 4.2 presents operator-based SGS (or OperatorSGS). Among these,
SimpleSGS is most similar to other SLS algorithms, and acts as a stepping stone to
reach OperatorSGS, our portfolio-based main contribution.

4.1 Simple Stochastic Greedy Search

SimpleSGS, which is presented in Fig. 2, starts from an explanation x as constructed
by an initialization algorithm Initialize and performs one-flip local changes to x in

4For the binary case and when there is no evidence, m = n since an explanation in a BN with n nodes
has n possible one-flip gains.
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Fig. 2 The simple stochastic greedy search algorithm SimpleSGS. The algorithm repeatedly in-
terleaves noise and greedy hill-climbing steps; hill-climbing is done by calling either Compute-

MultiplicativeGain or ComputeAdditiveGain. These functions return a candidate array A which
contains candidates for the next hill-climbing step. A candidate is a tuple (Xi, xi, j, gi, j), where Xi is
the BN node potentially being flipped, xi, j is a state of that node, and gi, j is the gain obtained by
flipping Xi to xi, j. The ChooseState function applies the criterion of choice C to pick a node Xi and
state xi, j, which is then subsequently flipped to

order to improve the utility U(x). The input parameter U controls which measure of
utility and gain is used, and is currently either UM or U A. The algorithm is related
to the GSAT and WalkSAT algorithms [77, 78] as well as other SLS algorithms
as discussed in Section 7: There is an outer loop for tries (or restarts), and an
inner loop for flips (or stochastic local search steps). The parameter MAX-FLIPS
limits how many flips are done before a restart, while the number of tries is upper
bounded by MAX-TRIES.5 The parameter pN controls the noise level. Applying

5An alternative to the use of MAX-TRIES, not further pursued in this article, would be to use an
upper bound on computation time in wall-clock time. Further discussion of termination criteria can
be found in Section 5.1.
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noise amounts to taking a random step with probability pN , and taking a greedy
step using the chosen measure of gain with probability 1− pN . This is similar to
WalkSAT with random noise [77]. SimpleSGS terminates when an explanation x̂

∗
is

found such that U(x̂
∗
) ≥ Umin. Other termination criteria can easily be incorporated

into SimpleSGS. In particular, we have implemented the option of terminating after
executing SimpleSGS for a certain time period, even though this is not shown in
Fig. 2.

The SimpleSGS algorithm returns a two-valued tuple (b, x̂
∗
). The first value b is

a Boolean value signifying whether search was successful or not; the second value x̂
∗

is the explanation with the highest utility score. The input value pN = 0 means that
no noise should be applied; in this case SimpleSGS returns when reaching a local
maximum. With Umin > 0, SimpleSGS is successful if utility Umin or better is attained.
SimpleSGS uses gain computation algorithms ComputeMultiplicativeGain and
ComputeAdditiveGain, see Figs. 3 and 4 respectively, to evaluate candidate tuples
and construct the candidate array A. Which gain computation is used depends on
the value of the input parameter U . Both gain computation algorithms iterate over

Fig. 3 This algorithm, which implements the multiplicative measure of gain 
UM, is called by SGS

and is used to fill in the candidate array A with gains for neighbors of the current explanation x
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Fig. 4 This algorithm, which implements the additive measure of gain 
U A, is used by SGS to fill in
the candidate array A with gains for neighbors of the current explanation x

all non-evidence nodes and over all states of each node Xi, excluding a node’s current
state xi,k. Within the inner-most loops there are calls to NodeChildrenProbability,
which are used to compute the gain g associated with flipping node Xi’s state in
explanation x.

We now discuss how the ComputeMultiplicativeGain and ComputeAdditive-

Gain algorithms implement multiplicative gain 
UM and additive gain 
U A re-
spectively. In the implementation of the multiplicative measure as shown in Com-

puteMultiplicativeGain in Fig. 3, the assignment to Old is the denominator in
multiplicative gain, while the assignment to New is multiplicative gain’s numerator.
Recall from Definition 18 and Theorem 20 that multiplicative gain is not defined if
the denominator is zero. Consequently, there is a test for zero in ComputeMulti-

plicativeGain, and the following action is taken: If Old (denominator in Eq. 12) and
New (numerator in Eq. 12) are both zero, we define multiplicative gain g to be one:
g ← 1. If Old is zero but New is non-zero, we greedily pick the new state s in the
statement Force(A, Xi, s), and then return. So in this case where Old (denominator)
is zero but New (numerator) is non-zero, the algorithm is more greedy than in the
remaining cases, since the first state in the first node where a flip leads from a zero
to a non-zero probability is picked as a candidate for flipping, by using Force.

Both ComputeMultiplicativeGain and ComputeAdditiveGain return a filled-
in candidate array A to SimpleSGS. After computation of A, SimpleSGS calls
the ChooseState function. ChooseState applies the criterion of choice and picks
which state xi, j to flip to. Then, after a possible noise step, the utility measure U(x)
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is applied. Using either multiplicative utility UM or additive utility U A, the better
explanation of x and x̂

∗
is kept. The algorithm then terminates or iterates.

SimpleSGS has been very successful in certain BNs, as is demonstrated in
Section 6.1. It turned out that the algorithm also has some limitations, including the
following. First, SimpleSGS does not accommodate an arbitrary number of different
initialization and search operators in the same invocation of the algorithm. Second,
the measures of utility and gain are coupled through the input parameter U , and
it is not possible to apply different measures of gain in the same invocation of the
algorithm. Addressing these limitations is crucial to obtaining strong performance.
We now discuss how they are addressed in the operator-based variant of SGS.

4.2 Operator-Based Stochastic Greedy Search

The operator-based variant of SGS, denoted OperatorSGS, is presented in Fig. 5.
OperatorSGS retains the structure of SimpleSGS, with two nested loops for tries
and flips. What is novel in OperatorSGS is how the algorithm chooses from two
sets of operators or heuristics when an initialization or search step is performed.
This operator-based approach gives better flexibility and extensibility, resulting
in substantially better performance on a range of different BNs compared to

Fig. 5 The operator-based stochastic greedy search algorithm (OperatorSGS). OperatorSGS

computes an MPE estimate x̂
∗

given the input parameters, and operates in two main phases: an
initialization phase and a local search phase. The initialization algorithm Initialize applies initial-
ization operators from �I , while the search algorithm Search applies search operators from �S.
OperatorSGS terminates if an explanation x̂

∗
of utility Umin or greater is found or if the computation

exceeds MAX-TRIES tries
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SimpleSGS. We will return a more detailed discussion of OperatorSGS after for-
mally introducing its initialization and search operators.

Definition 36 (Initialization operator, initialization operators) An initialization op-
erator is a heuristic that computes, given a BN β and evidence e, an explanation x. A
set of initialization operators is denoted �I .

The initialization operators that have so far been explored using OperatorSGS

are: uniform initialization (UN), forward simulation (FS), backward dynamic pro-
gramming (BDP), and forward dynamic programming (FDP); we thus have �I =

{UN,FS,BDP,FDP} [62]. Other algorithms, for example the mini-bucket algorithm
[41], can easily be incorporated as initialization operators in OperatorSGS.

Definition 37 (Search operator, search operators) A (local) search operator is a
heuristic that computes, for a BN β with evidence e and an explanation x, a new
explanation x′. A one-flip (local) search operator is a search operator where x′ =

x[Xi ← x̄i]. A set of search operators is denoted �S.

Our search operators are closely related to flip selection strategies such as GSAT
[78], WSAT-G [53], WSAT-B [53], WSAT [53, 77], Novelty [53], Novelty+, and
DLM [75] in the SAT setting, and similar strategies in the BN setting [41, 48,
60, 67, 68]. Traditionally, flip selection strategies are hard-coded using an if-then-
else statement containing a greedy part and a noisy part similar to what is done
in SimpleSGS. In OperatorSGS, on the other hand, these two parts are typically
represented by means of two distinct operators in a search portfolio. More impor-
tantly, OperatorSGS is not restricted to two operators. We will return to the issue of
flip selection strategies and search operators after introducing the following type of
search operator.

Definition 38 (Compound operator) A compound operator is a two-tuple (
U(x,
xi, j), C(A)), where 
U(x, xi, j) is a gain function and C(A) is a criterion of choice
operating on a candidate array A.

Example gain functions referred to in the above definition are additive gain

U A(x, xi, j) and multiplicative gain 
UM(x, xi, j). Compound operators are used by
CompoundSearch, see Fig. 6.

The operators {MG,AG,MN,AN} are compound operators that we have used in
OperatorSGS so far; these operators are defined as follows.

Definition 39 (Compound operators MG, AG, MN, and AN) Using C(A) = CG(A)

(the greedy criterion) we define these greedy search operators:6

MG = (
UM(x, xi, j), CG(A)) {multiplicative gain with greedy criterion}

AG = (
U A(x, xi, j), CG(A)) {additive gain with greedy criterion}.

6In previous work [60] MG was called BM, AG was called GM, MN was called BS, AN was
called GS.
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Fig. 6 An algorithm used by the Search algorithm in OperatorSGS. It performs stochastic local
search on the input explanation x, using a compound operator defined by the input parameters 
U
and C. The result is an updated explanation x, which is output

Using C(A) = CN(A) (the noisy criterion) we define these noisy search operators:

MN = (
UM(x, xi, j), CN(A)) {multiplicative gain with noisy criterion}

AN = (
U A(x, xi, j), CN(A)) {additive gain with noisy criterion}.

The AG operator is formally justified by Theorems 27 and 32. Informally, there is
the following relationship between maximizing GSAT gain and maximizing additive
gain: Using GSAT gain, one flips the logic variable which gives the highest increase
in the number of satisfied clauses [78]. Using the additive operator AG, we flip the
BN node which gives the greatest additive increase in values of the affected CPTs.

In addition to the compound operators introduced in Definition 39, there are
operators that are not formed by combining a gain function and a criterion of choice.
For example, we have investigated the uniform noise (NU) and stochastic simulation
(SS) operators. Uniform noise means that a non-evidence node, picked uniformly
at random, is flipped with probability pN . Stochastic simulation is Gibbs sampling
in BNs, where nodes are sequentially sampled [71]. Altogether, this gives search
operators �S = {NU,SS,MG,AG,MN,AN}.

An operator portfolio �, formally introduced in Definition 40 below, is generally
speaking a set of operators along with an approach to operator selection. We focus
here on selection according to a probability distribution defined by associating a
probability with each operator as follows.7

7An alternative to the stochastic portfolio is a round-robin portfolio or schedule. A round-robin
portfolio is a sequence of q operators � = (φ0, . . . , φq−1) such that the j-th time an operator is
selected for execution from �, operator φi where i = j mod r is selected. We do not further investigate
round-robin portfolios in this article.
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Definition 40 (Stochastic portfolio) Let q ≥ 1 and let � = {φ1, . . . , φq} be a set of op-
erators. A stochastic portfolio over � is a set of q operator tuples � = {ν1, . . . , νq} =

{(φ1, p1), . . . , (φq, pq)} where 0 ≤ pi ≤ 1,
∑q

i=1 pi = 1, and (φi, pi) means that the i-
th operator φi, where 1 ≤ i ≤ q, is selected (and then executed) with probability pi

whenever some operator is selected from �.

Initialization algorithms have turned out to be important components in SGS

as well as in other similar algorithms [41, 48, 62, 68]. In OperatorSGS, the input
parameters therefore include a portfolio of initialization operators �I , defined as
follows.

Definition 41 (Initialization portfolio) Let �I be a set of initialization operators. The
OperatorSGS initialization portfolio �I is a stochastic portfolio over �I according
to Definition 40.

The initialization algorithms construct explanations which make up starting points
that the local search steps incrementally improve, leading to increasingly better MPE
estimates. We have investigated the following initialization operators for stochastic
generation of initial explanations: uniform initialization (UN), forward simulation
(FS), forward dynamic programming (FDP), and backward dynamic programming
(BDP) [62]. These stochastic initialization operators all have a time complexity of
O(n) in the number of nodes. A wide range of initialization heuristics can easily be
incorporated as initialization operators in OperatorSGS.

The portfolio �S for the local search heuristics is formally introduced as follows.

Definition 42 (Search portfolio) Let �S be a set of search operators. The Op-

eratorSGS search portfolio �S is a stochastic portfolio over �S according to
Definition 40.

The input parameters of OperatorSGS, see Fig. 5, largely overlap those of
SimpleSGS but include a portfolio of search operators �S and a portfolio of ini-
tialization operators �I . OperatorSGS chooses only among the operators included
in the portfolios �I and �S. More specifically, Initialize(β, e, �I) returns a new
explanation x for β, created using the initialization operators in the initialization
portfolio �I (see Definition 41). Search (β, e, x, �S) performs a search step on the
explanation x, using the measure of gain associated with the search operator chosen
from the search portfolio �S. A search operator is picked from the search portfolio
�S as described in Definition 42. Compound operators are invoked by Search using
CompoundSearch, see Fig. 6.

This operator-based approach allows us to use a mixture of different operators,
thus allowing us to emulate a wide range of SLS algorithms investigated previously.
Here are a few examples from the literature.

Example 43 For computing SAT, Selman et al. investigated, in the mixed random
walk strategy, greedy search (GSAT) combined with a random walk (RW) [77]: �S =

{(GSAT, pGSAT), (RW, pRW)}.
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Table 1 Joint probability table decomposed according to the two orthogonal dimensions of (i)
greedy versus noisy search and (ii) additive versus multiplicative gain computation. Taken together,
these two dimensions define four operators or two-tuples of search operators (or heuristics) and
probabilities as illustrated

Greedy: pG = pAG + pMG Noisy: pN = pAN + pMN

Additive: Additive & greedy: Additive & noisy:

pA = pAG + pAN (AG, pAG) (AN, pAN)

Multiplicative: Multiplicative & greedy: Multiplicative & noisy:

pM = pMG + pMN (MG, pMG) (MN, pMN)

Example 44 For computing MPE, Kask and Dechter investigated greedy search
(GR) with stochastic simulation (SS) using mini-bucket (MB) initialization [41]:
�S = {(GR, pGR), (SS, pSS)} and �I = {(MB, 1)}.

Example 45 For computing MAP, Park and Darwiche investigated (among a total of
11 SLS algorithms) hill-climbing (Hill) with random noise (NU), using MPE-based
initialization (MPE) [68]: �S = {(Hill, pHill), (NU, pNU)} and �I = {(MPE, 1)}.

For further examples, Schuurmans and Southey investigated eight flip selection
strategies [75]; these could also be formulated as OperatorSGS search portfolios.8

Turning to our additive approach, we now introduce a particular search portfolio
which contains additive operators; see also Table 1.

Definition 46 Consider the compound operators from Definition 39 and suppose
that pAN + pAG + pMN + pMG = 1. We define �S(pAN, pAG, pMN) = {(AN, pAN),
(AG, pAG), (MN, pMN), (MG, pMG)}, where pMG = 1 − pAN − pAG − pMN, as a
search portfolio.

In Section 6.2 we will see that this search portfolio is very effective on appli-
cation BNs. Also, the search portfolio in Definition 46 enables us to discuss an
analogue between the probabilistic use of our additive measure and the use of
noise in SLS. Varying the noise probability pN , or the probability of applying a
non-greedy heuristic, has been found to have a dramatic impact on SLS run time
[20, 31, 34, 53, 57, 76, 77]. Utilizing our additive utility measure, we introduce
the concept of additive probability pA, or the probability of applying an additive
heuristic, which is similar but orthogonal to noise probability pN . In Definition 46,
only the operators AN and AG are additive, hence pA = pAN + pAG. Varying the
additive probability pA turns out to have a major impact on SLS computation time
when searching for MPEs in partly deterministic BNs, as presented in Section 6.

8Schuurmans and Southey introduced a novel flip selection strategy called DLM; in addition
they considered the existing strategies GSAT, HSAT, WSAT-G, WSAT-B, WSAT, Novelty, and
Novelty+.
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5 Analysis of Portfolios in Stochastic Local Search

The goal of this section is to analyze SLS portfolio effects and the initialization
and search portfolios of OperatorSGS in particular. Given our observation that
this operator-based approach can simulate many other SLS algorithms, including
SimpleSGS, the analysis is hopefully of broad interest and complements previous
SLS analysis efforts [32, 57, 62].

Section 5.1 discusses the incompleteness of SGS, and argues for the Las Vegas
analysis and experimentation approach we have used in this article. We discuss
our Markov chain-based analysis approach in Section 5.2, present results for the
initialization portfolio in Section 5.3, and for the search portfolio in Section 5.4.

5.1 Incompleteness, Termination, and Las Vegas Algorithms

Stochastic local search algorithms are in general incomplete algorithms. Specifically,
if there is no input parameter like SGS’s Umin = Pr(x∗), one cannot say whether
a current estimate x̂

∗
∈ X∗ or x̂

∗
/∈ X∗, and this raises the question of when to

terminate search. Incomplete algorithms are appropriate when complete methods
are impractical due to excessive demands on time, space, or both. For example, with
limited space a complete algorithm like clique tree clustering might not even be
able to compile a given BN [54, 61, 81]. Alternatively, there might only be a fixed
amount of time available that is too short for complete computation, and one might
at the same time be willing to sometimes make a mistake. For example, there are
situations where the cost of making an occasional mistake by finding x̂

∗
/∈ X∗, is

small compared to the cost—in terms of space or time—needed to use a complete
BN inference algorithm such as clique tree clustering.

Since SLS algorithms are randomized, their operation may be described using
bivariate distributions with random variables for (i) the running time (in number
of operations, say) and (ii) the current estimate of the utility of an optimal solution.
Unfortunately, keeping track of both execution time and the quality of the MPE
estimate complicates scientific analysis and experimentation. For simplicity, we gen-
erally take a Las Vegas approach [25] and use Umin = Pr(x∗), making SGS terminate
only after an MPE is found. Clearly, in applications one will in general not know
Pr(x∗), and therefore cannot use Umin = Pr(x∗) as a termination criterion in SGS.
Using Umin = Pr(x∗) might therefore by some readers be regarded as “cheating”.
However, in a scientific study such as the present we argue that using Umin = Pr(x∗)

is entirely appropriate and indeed often to be preferred. First, it is the hardest
test of SLS algorithms in terms of computing an explanation, since they are not
allowed to terminate with x̂

∗
/∈ X∗. Second, since the SLS algorithm can terminate

as soon as some x̂
∗

∈ X∗ is reached, one avoids additional complication induced
by the termination criterion. In this manner, the effect of the initialization and
search algorithms (our main interest here) is cleanly isolated from the effect of the
termination criterion, which in applications might be quite involved.

The question of when to terminate SLS has, we believe, ultimately an application-
dependent answer. Certain applications, including real-time applications, have hard
upper bounds on execution time and they might need to terminate MPE computation
if that hard upper bound is exceeded. Other applications do not have hard real-time
requirements and softer termination criteria would be appropriate. Giving specific
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recommendations beyond these general observations is unfortunately beyond the
scope of this article.

5.2 Markov Chains and Hitting Times

We now introduce definitions of a few random variables that will be used to
characterize SLS performance.

Definition 47 Let the flip length (number of SLS flips until termination) be a
discrete random variable F. Let the run length (number of SLS operations, both
initializations and flips, until termination) be a discrete random variable R.

There are in fact families of random variables involved here. These families are
characterized by the η input parameters of an SLS algorithm, a tuple (�1 = θ1, . . .,
�η = θη). In OperatorSGS, η = 7 and of particular interest are the initialization
portfolio parameter �η−1 = �6 = �I as well as the search portfolio parameter �η =

�7 = �S. In SimpleSGS we have η = 6. Since F depends on the parameter values θ =

(θ1, . . ., θη) used, we say F(θ) when we want to make this explicit. For example, if we
consider MAX-FLIPS and vary m in MAX-FLIPS = m while keeping the remaining
η − 1 input parameters constant, we may write F(m); R(m) is similar. In addition, we
may condition on portfolio parameters �I and �S of OperatorSGS; more about this
below.

The search processes of SimpleSGS and similar SLS algorithms can be analyzed
using exact or approximate Markov chain models as follows (see also [32, 57]). Let
us for simplicity assume n binary non-evidence BN nodes such that an exact Markov
chain model has 2n states. This Markov chain is structured as a hypercube where each
hypercube node b represents a bitstring. A state b ∈ {0, 1}n in such a Markov chain
has n neighbors, namely states that are one flip away.

Definition 48 (Neighborhood) Let b be a bitstring of length n. b’s neighbors n(b),
strict neighbors n′(b), and non-neighbors n̄(b) are defined as follows

n(b) =

{

c ∈ {0, 1}n

∣

∣

∣

∣

∣

n
∑

i=1

|b i − ci| ≤ 1

}

n′(b) = n(b) − {b}

n̄(b) = {0, 1}n − n(b).

We now introduce the notion of exact Markov chains over bitstrings; they will be
useful when analyzing how SLS algorithms process problem instances.

Definition 49 (Exact Markov chain model) An exact Markov chain model M has
states S = {s0, s1, ...} = {b | b ∈ {0, 1}n} and an initial probability vector V with
Pr(A0 = sk) = πk for 1 ≤ k ≤ 2n. The transition probability matrix P is a stochastic
matrix given by

Pr(At+1 = c | At = b) = 0 if c ∈ n̄(b) (27)

Pr(At+1 = c | At = b) ≥ 0 if c ∈ n(b). (28)
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For the uniform noise operator tuple (NU, pNU), (28) is clearly Pr(At+1 = c | At =

b) = 1/n in the transition matrix P of an exact Markov chain model. Probabilities as
introduced in Definitions 34 and 35 also define rows in transition matrixes P .

To enable introduction of operators, we slightly extend the exact Markov chain
notation in Definition 49 as follows. If there are ξ different initialization operators,
we have multiple initial probability vectors Vi with Pr(Ai,0 = sk) for 1 ≤ i ≤ ξ and
1 ≤ k ≤ 2n. If there are χ search operators, we have multiple transition probability
matrixes P j for 1 ≤ j ≤ χ .

SimpleSGS and OperatorSGS can be analyzed using exact Markov chain models
up to MAX-FLIPS flips, similar to the SimpleSLS algorithm [57]. In fact, using
the exact Markov chain model, we can provide a sufficient condition for MPE
computation using SimpleSGS.

Theorem 50 Let MAX-TRIES = ∞, MAX-FLIPS = ∞, pN > 0, U = UM, and

Umin = Pr(x∗) in SimpleSGS. Then SimpleSGS is a Las Vegas algorithm and returns

(true, x∗) such that x∗ ∈ X∗.

Proof Since MAX-TRIES = ∞, there are two if-then statements from which Sim-

pleSGS can return, and they both read “if (U(x̂
∗
) � Umin) then return (true, x̂

∗
).”

By substituting in assumptions, we obtain

U(x̂
∗
) = UM(x̂

∗
) = Pr(x̂

∗
) � Umin = Pr(x∗),

which clearly only holds when Pr(x̂
∗
) = Pr(x∗). If SimpleSGS returns from its first

if-then statement we are done. Suppose that SimpleSGS does not return from the
first if-then statement. We argue that SimpleSGS will eventually return from the
second if-then statement as follows. Consider the exact Markov chain model M =

(S , V , P) corresponding to the particular input parameters for SimpleSGS. Pick
any two distinct states si ∈ S and s j ∈ S . Since by assumption pN > 0, it is easy
to see that si and s j communicate. Thus, all states S , including optimal states O,
are recurrent. Some optimal state x∗ ∈ O, where Umin = Pr(x∗), will thus eventually
be visited regardless of the initial state. When this happens, SimpleSGS will return
(true, x∗). ⊓⊔

The proof of the following theorem, which provides a sufficient condition for MPE
computation using OperatorSGS, is similar to that of Theorem 50.

Theorem 51 Let MAX-TRIES = ∞, MAX-FLIPS = ∞, (NU, pNU) ∈ �S with

pNU > 0 , U = UM, and Umin = Pr(x∗) in OperatorSGS. Then OperatorSGS is a

Las Vegas algorithm and returns (true, x∗) such that x∗ ∈ X∗.

Due to the exponential growth of V and P as a function of n in Definition 49, it is
also of interest to formalize SLS behavior by means of approximate Markov chains.
Let the current state of SGS search be b, and consider how search brings us closer to
or farther away from an MPE b∗. In the following definition we assume for simplicity,
but without loss of generality [57], that b∗ = 1 . . . 1; u(b) is a function that counts the
number of 1s, or in other words the correct states relative to b∗, in b. Clearly, when
u(b) = n we have b = b∗.
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Definition 52 (Positive and negative neighbors) Let the bitstring b, of length n,
represent the current state of search and let b∗ = 1 . . . 1 be the optimal bitstring.
We then define positive neighbors n+(b) = {c ∈ n(b) | u(c) > u(b)} and negative
neighbors n−(b) = {c ∈ n(b) | u(c) < u(b)}.

In an approximate Markov chain model, denoted a basic random walk in Fig. 7,
we introduce states that correspond to all counts of the number of correct bits u(b).
Clearly, 0 ≤ u(b) ≤ n. With the exception of the two boundary states 0 and n, each
state i has two neighbors i − 1 and i + 1. Therefore we have a Markov chain model
with n + 1 states in which each state has two neighbors; a so-called random walk.

Can Markov chains such as random walks be applied also in the portfolio setting,
and specifically to analyze OperatorSGS? As we will see in the following, the answer
to this question is “yes”; we first illustrate our analysis by means of an example.

Example 53 Suppose that we have a BN β with n = 5 binary nodes. For Oper-

atorSGS, let �I = {(φ1, p1), (φ2, p2), (φ3, p3)} and �S = {(ω1, q1), (ω2, q2)}.
Figure 7 shows an augmented Markov chain model M (see also Definition 54) for
OperatorSGS processing β, given these portfolios �I and �S.

In addition to states representing the underlying search space, corresponding to
the states in a basic random walk model, our novel augmented Markov chain model
includes states that represent the search and initialization operators—see Fig. 7.
The advantage of this model is that it allows us to analyze search and initialization
operators within the same framework as the underlying search space.

Basic Random Walk:

Augmented Random Walk:

States for Search Operator 1

State for Initialization

Operator 2

State for

Initialization

Operator 1

State for Initialization

Operator 3

States for Search Operator 2

0 1 2 3 4 5

0 1 2 3 4 5 0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18

19 20

Fig. 7 An example of a basic random walk (top) and a corresponding augmented random walk
model (bottom) for OperatorSGS and other stochastic local search algorithms that use initialization
and search portfolios. To reduce clutter, the states for the underlying search space are shown twice,
namely in the context of the search portfolio with χ = 2 operators (bottom left) and in the context of
the initialization portfolio with ξ = 3 operators (bottom right). See also Example 53
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The details for Example 53 are as follows. We first consider states S . The number
of states in S is k = (n + 1)(χ + 1) + ξ = 6 × 3 + 3 = 21. Among these, states {0, . . . ,
5} represent OperatorSGS search right before search operator selection. States {6,
. . . , 11} represent search right after selection of search operator ω1; states {12, . . . ,
17} represent search right after selection of search operator ω2. States 18, 19, and
20 represent selection of initialization operators φ1, φ2, and φ3 respectively. In V ,
Pr(B0 = i) = 0 for 0 ≤ i ≤ (n + 1)(χ + 1) − 1 = 17 and Pr(B0 = 17 + j) = p j for 1 ≤

j ≤ 3, where p j are the initialization operator selection probabilities in Example 53.
In P , we have Pr(Bt+1 = i | Bt = j) ≥ 0 as indicated by edges in Fig. 7. For all other
entries in P , Pr(Bt+1 = i | Bt = j) = 0.

We now formally introduce our novel Markov chain construction that clearly
reflects the initialization and search portfolios of OperatorSGS. This construction
is illustrated in Example 53. We will in Theorem 55 formally show that a Markov
chain is created.

Definition 54 (Augmented random walk) Consider a BN with n binary nodes.
Suppose that we have an initialization portfolio �I = {(φi, pi) | 1 ≤ i ≤ ξ} with initial
probability vectors Vi for 1 ≤ i ≤ ξ and a search portfolio �S = {(ω j, q j) | 1 ≤ j ≤ χ

} with transition probability matrixes P j for 1 ≤ j ≤ χ . The augmented random walk
model (S , V , P) is defined as follows. Put m = (n + 1) and ℓ = m(χ + 1). M has
k = ℓ + ξ = |S| discrete states named {0, . . . , k − 1}. The k-dimensional vector V of
initial probabilities is defined as Pr(B0 = i) = 0 for 0 ≤ i ≤ ℓ − 1 and Pr(B0 = i) =

pi−ℓ+1 ≥ 0 for ℓ ≤ i ≤ k − 1. The potentially non-zero entries in the k × k matrix P

of conditional probabilities are defined as:

Pr(Bt+1 = i | Bt = j + ℓ − 1) =
∑

{b|u(b)=i}

Pr(A j,0 = b), 0 ≤ i ≤ n and 1 ≤ j ≤ ξ (29)

Pr(Bt+1 = jm + i | Bt = i) = q j, 0 ≤ i ≤ n and 1 ≤ j ≤ χ (30)

Pr(Bt+1 = i + 1 | Bt = jm + i) =
∑

{b+|b+∈n+(b)}

Pr(A j,t+1 = b+ | A j,t = b) (31)

Pr(Bt+1 = i − 1 | Bt = jm + i) =
∑

{b−|b−∈n−(b)}

Pr(A j,t+1 = b− | A j,t = b), (32)

where in (31) and (32) we have 0 < i ≤ n and 1 ≤ j ≤ χ.The remaining entries in P

are zero.

We now discuss Definition 54 in more detail; see also Fig. 8. There is a one-
to-one mapping between the ξ last states in the augmented random walk model
and the tuples in the initialization portfolio �I = {(φ1, p1), . . . , (φξ , pξ )}. These ξ

initialization (operator) states are shown at the bottom in Fig. 8; the probabilities
of the edges from these states are given by (29). There is also a relationship between
states 0 ≤ i ≤ (n + 1)(χ + 1) and the tuples in the search portfolio �S = {(ω1, q1), . . . ,
(ωχ , qχ )}: States 0 ≤ i ≤ n, which we will call (search operator) selection states, corre-
spond to the moment, in OperatorSGS, right before search operator selection from
�S according to (30). States (n + 1) ≤ i ≤ (n + 1)(χ + 1) are called (search operator)

application states. Each of these latter states correspond to a time when a search
operator has been picked from �S, and is about to be applied by OperatorSGS. Once
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Basic Random Walk:

Augmented Random Walk:
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Fig. 8 The general constructions for a basic random walk model (top) and a corresponding
augmented random walk model (bottom) for stochastic local search algorithms that use initialization
and search portfolios

an operator has been selected and applied using (31) and (32), the Markov chain is
again in a selection state 0 ≤ i ≤ n, and the selection-application cycle continues until
restart or termination.

There are two options for Markov chain analysis of our portfolio approach. First,
we can perform analysis directly on the augmented random walk. Second, we can
use the augmented random walk merely as an aid in constructing the basic random
walk, and perform analysis on the basic random walk. In either case, since we have
a Markov chain, Markov chain analysis techniques can be applied. In the rest of this
work our main emphasis is on analysis directly on the augmented random walk, as
reflected in the following result.

Theorem 55 An augmented random walk model (S , V , P) induces a Markov chain

M = (S , V , P) over the random variables (Bt, t ≥ 0).

Proof We consider S , V , and P in turn. S has k = (n + 1)(χ + 1) + ξ = ℓ + ξ states
and obviously defines a finite state space. V is given by (π0, . . . , πℓ+ξ−1), where

ℓ+ξ−1
∑

i=0

πi =

ℓ−1
∑

i=0

πi +

ℓ+ξ−1
∑

i=ℓ

πi =

ξ
∑

j=1

pi = 1
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by the definition of �I = {(φ1, p1), . . . , (φξ , pξ )}. For P ’s ξ initialization states we
have for any 1 ≤ j ≤ ξ :

ℓ+ξ−1
∑

i=0

Pr(Bt+1 = i | Bt = j + ℓ − 1) =

n
∑

i=0

Pr(Bt+1 = i | Bt = j + ℓ − 1)

=
∑

{b|u(b)=i}

Pr(A j,0 = b) = 1,

which follows from (29) and the fact that A j,0 is an initial probability vector in an
exact Markov chain model. For P ’s n + 1 (search operator) selection states we have
for any 0 ≤ i ≤ n:

ℓ+ξ−1
∑

j=0

Pr(Bt+1 = j | Bt = i) =

χ
∑

j=1

Pr(Bt+1 = jm + i | Bt = i) =

χ
∑

j=1

q j = 1,

which follows from (30) and the definition �S = {(ω1, q1), . . . , (ωχ , qχ )}. Finally,
for P ’s χ(n + 1) (search operator) application states we have for 1 ≤ j ≤ χ and
0 ≤ i ≤ n:

ℓ+ξ−1
∑

k=0

Pr(Bt+1 = k | Bt = jm + i) =

n
∑

k=0

Pr(Bt+1 = k | Bt = jm + i)

= Pr(Bt+1 = i + 1 | Bt = jm + i)

+ Pr(Bt+1 = i − 1 | Bt = jm + i),

and by substituting (31) and (32) into the above we obtain:

ℓ+ξ−1
∑

k=0

Pr(Bt+1 = k | Bt = jm + i) =
∑

{b+|b+∈n+(b)}

Pr(A j,t+1 = b+ | A j,t = b)

+
∑

{b−|b−∈n−(b)}

Pr(A j,t+1 = b− | A j,t = b) = 1,

where the last equality follows because
∑

c∈n′(b)

Pr(A j,t+1 = c | A j,t = b) = 1 in an exact

Markov chain model and n′(b) can be partitioned into n+(b) and n−(b). Since we
have now shown that (i) V is a valid initial probability vector of size k = |S| and (ii)
all of P ’s ξ + n + 1 + χ(n + 1) = k rows sum to one and hence P is a valid k × k

conditional probability matrix, the desired result follows. ⊓⊔

For SLS algorithms, one is typically interested in expected run time and its mini-
mization. In this article, we study the expected hitting time h(θ). For our augmented
random walk, the concept of expected hitting time is well-defined since the walk is
a Markov chain. Given our results on additive utility and gain in Section 3 we are in
particular interested in h(pA), were pA is the probability of applying an additive
operator in the search portfolio. We now turn to hitting time minimization and
define θ

∗ = arg min h(θ) and in particular p∗
A = arg min h(pA). The general problems

of efficiently computing θ
∗ and p∗

A are topics for ongoing research. In the rest of this
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section we provide a few analytical results; in addition there are substantial empirical
results as reflected in the experiments of this article.

5.3 Analysis of Initialization

We now turn to an analysis of the OperatorSGS initialization portfolio. We consider
different types of initialization portfolios, and introduce the following terminology.

Definition 56 Let � be a stochastic portfolio. If |�| = 1 then we call � a homoge-
neous portfolio. If |�| ≥ 2 then we call � a heterogeneous portfolio.

Instead of varying the size of a portfolio, as implied by Definition 56, one
can set selection probabilities to zero. For example, a portfolio with exactly one
operator is obviously equivalent to a portfolio in which exactly one operator has
selection probability one while all other operators have selection probability zero.
For simplicity we exclude portfolios in which operators have zero probability of
selection in our analysis in this section.

We introduce a random variable � to represent OperatorSGS’s random selection
of an initialization operator from �I . Suppose there are ξ operators in the initializa-
tion portfolio. Given � and the random variable F representing the number of flips,
we introduce conditional probabilities Pr(F | � = φi) and conditional expectations
E(F | � = φi) for 0 ≤ i ≤ ξ . For the special case of MAX-FLIPS = ∞, we have

E(F | � = φi) = E(F | B0 = j) = E(T | B0 = j),

where j=i+(n+1)(χ+1)−1.
We may consider different initialization portfolios of the form �I = {(φ1, p1),

(φ2, p2), . . . , (φξ , p
i
)}. Of particular interest is the optimal initialization portfolio

�∗
I , formally defined as follows.

Definition 57 (Optimal initialization) The optimal initialization portfolio �∗
I =

{(φ1, p∗
1), (φ2, p∗

2), . . . , (φξ , p∗
ξ )} is defined by its optimal probabilities

p∗ = (p∗
1, . . . , p∗

ξ ) = arg min
p1,...,pξ

(

ξ
∑

i=1

E(F | � = φi)pi

)

.

Clearly, the challenge here is to find p∗. It turns out that homogeneous initializa-
tion portfolios, defined as �I,1 = {(φ1, 1)}, �I,2 = {(φ2, 1)}, . . . , �I,ξ = {(φξ , 1)}, play
a central role as reflected in the following result.

Theorem 58 Let ξ be the number of operators in the initialization portfolio. Consider,

for 1 ≤ i ≤ ξ , E(F | � = φi).
9 Suppose that E(F | � = φi) �= E(F | � = φ j) for all

1 ≤ i, j ≤ ξ where i �= j. Then there is a unique optimal initialization portfolio �∗
I ,

namely some homogeneous portfolio �I,i for 1 ≤ i ≤ ξ .

9Note that E(T | � = φi) is a number while E(T | �) is a random variable. In the former case the
initialization portfolio � is given as a specific portfolio φi, while in the latter case � is not specified.
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Proof Since E(F | � = φi) �= E(F | � = φ j) for 1 ≤ i, j ≤ ξ where i �= j, we assume
without loss of generality the strict ordering of homogenous portfolios E(F | � =

φ1) < E(F | � = φ2) < · · · < E(F | � = φξ ). Consider now the expectation E(F) for
an arbitrary heterogeneous initialization portfolio {(φ1, p1), (φ2, p2), . . . , (φξ , pξ )}.
Using the law of conditional expectation gives

E(F) =
ξ

∑

i=1

E(F | � = φi) Pr(� = φi) =
ξ

∑

i=1

E(F | � = φi)pi. (33)

By our strict ordering assumption of the homogenous portfolios, we can for 2 ≤

i ≤ ξ write E(F | � = φi) = E(F | � = φ1) + ci for increasing constants ci > 0. For
convenience, we define c1 = 0. Now, (33) can be written as

E(F) =
ξ

∑

i=1

(E(F | � = φ1) + ci) pi

=
ξ

∑

i=1

E(F | � = φ1)pi +
ξ

∑

i=1

ci pi

= E(F | � = φ1) +
ξ

∑

i=1

ci pi. (34)

There are now two cases to consider. Case (i): p1 = 1. From (34) it is easy to see that
E(F) = E(F | � = φ1) since pi = 0 for i �= 1. Case (ii): p1 < 1. From (34) it follows

that E(F) > E(F | � = φ1), since clearly
ξ

∑

i=1

ci pi > 0. Consequently, E(F | � = φ1)

is the minimal expectation, and the homogeneous initialization portfolio containing
exactly one operator is optimal, and specifically �∗

I = �I,1 = {(φ1, 1)}. ⊓⊔

The implication of Theorem 58 is that once parameters θ have been fixed, then
best performance is ensured by using a homogeneous initialization portfolio. Some
readers might regard Theorem 58 as a negative result for initialization portfolios and
might ask why we consider them in the first place. Here is why. First, Theorem 58
could not have been derived unless an initialization portfolio was assumed. Second,
one is typically interested in performing inference over distributions of BNs, not
one particular BN. And for different BNs, different initialization algorithms often
turn out to be optimal, and the use of an initialization portfolio supports the desired
flexibility in the use of initialization algorithms. Third, even though one initialization
algorithm among many is optimal, it is often not a priori obvious which one it is.
So there is a pre-processing phase, during which different initialization operators
are considered, and the existence of an initialization portfolio enables this pre-
processing phase.

5.4 Analysis of Search

We now turn our attention to SLS operations and assume that MAX-TRIES = ∞

and that the initialization portfolio has been fixed. In OperatorSGS an operation
is executed when an operator is picked from either �S or �I and then run. In
SimpleSGS an operation is executed when Initialize is called in the loop of tries
and when Search is called in the loop of flips.
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The expected number of operations executed, including both initializations and
local search steps, is characterized by the following result (see [62] for the derivation).

Theorem 59 (Expected number of operations) Suppose that Pr(R(m) ≤ m) > 0 and

let MAX-FLIPS = m. The expected number of SLS operations executed, E(R(m)), is

given by

E(R(m)) =
m(1 − Pr(F(∞) ≤ m)) +

∑m
i=0 i Pr(F(∞) = i) + 1

Pr(F(∞) ≤ m)
. (35)

Theorem 59 is a generalization of previous results [69, 75] in that it accounts for
all operators including initialization operators in �S.

Our analysis in the rest of this section assumes an SLS model (M,O), where M =

(S , V , P) is a Markov chain. Further, T is (as before) a random variable representing
M’s hitting time. The benefit of a Markov chain analysis is illustrated as follows.
Suppose that we vary only the �S part in θ , and further suppose that �S contains only
two operators, namely a noisy operator (applied with probability pN) and greedy
operator (applied with probability pG = 1 − pN). In related work we have shown
that the expected hitting time h as a function of pN , h(pN), are rational functions,
or in other words ratios of polynomials P(pN) and Q(pN): h(pN) = P(pN)/Q(pN)

[57]. The curves for h(pN) are analytical counterparts to and explain theoretically the
so-called noise response curves that have been extensively studied empirically [57].
The impact of noise varies with BN hardness, with optimal noise level increasing with
increasing problem hardness.

Analogously, we consider here hitting time as a function of additivity pA, with
corresponding (empirical) additive response curves investigated in Section 6. Con-
sider an SLS model (M,O), where the Markov chain M = (S ,V ,P) is defined over
a bitstring of length n and with parameter pA. Let κ = n + 1, assume optimum states
{sλ, . . . , sκ} = O where λ ≤ κ , and form a system of equations for M’s expected
first passage times mi for 1 ≤ i ≤ κ. There exists an equivalent upper triangular
system Um = b, where m = (m1, . . . , mλ−1)

T , in which all coefficients in U and b

are rational functions of pA. Performing back substitution on Um = b, we obtain
the following expected hitting time result.

Theorem 60 (Rationality of hitting time) Consider an SLS model (M,O), where

M = (S ,V ,P) is an augmented Markov chain def ined over a bitstring of length n

and with parameter pA. The expected hitting time for M is a rational function of pA,

h(pA) = P(pA)/Q(pA), where P(pA) and Q(pA) are polynomials.

The proof of Theorem 60 is similar to that of a previous result [57], except that (i)
it concerns pA rather than pN , and (ii) is based on our approximate (see Definition
54) rather than an exact Markov (see Definition 49) chain model. In the proof of the
theorem, the key idea is to perform Gaussian elimination symbolically, such that the
parameter pA is preserved throughout the derivation.

Theorem 60, which is concerned with a single BN, can be extended in a natural
way to multiple BNs by means of finite mixture distributions. Again, we consider
additive probability to be the independent parameter. Because of closure properties
[57], it follows from Theorem 60 that the SLS hitting time for a mixture of BNs is also
a rational function h(pA) = P(pA)/Q(pA). To approximate the rational functions
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induced by single BNs as well as multiple BNs we have used low-order polynomials
[57]; this approach is motivated by Weierstrass’ theorem and supported by empirical
results.

6 Experiments

We now turn to experiments performed with the SGS system, which implements
the SimpleSGS and OperatorSGS algorithms [54, 57, 60, 62]. In these experiments,
we attempt to carefully balance scientific and competitive experimentation [30]. In
other words, we aim to complement our analytical results, and in particular improve
the understanding of our portfolio approach as well as that of additive utility and
gain (scientific experimentation [30]). For two reasons, we study SGS in depth rather
than investigate a large number of SLS systems at a more superficial level. First,
apart from SGS we know of no SLS system for MPE computation that implements
the additive approach. Second, there is clear evidence that a problem instance that is
hard for one SLS algorithms is also hard for other SLS algorithms [34].

On the competitive experimentation side, we investigate the question of how our
SLS algorithms, as implemented by SGS, compare to exact algorithms, in particular
clique tree clustering as implemented in the state-of-the-art tree clustering system
Hugin [14, 45]. Hugin uses two phases to compute an MPE, a compilation phase
and an execution phase. Hugin was chosen since (i) we wanted to employ an exact
algorithms to compute MPEs (as opposed to approximations) and (ii) Hugin uses
one of the best exact methods, the tree clustering algorithm. In our experiments, we
used a Las Vegas methodology, motivated in Section 5.1, which has also been used
extensively in experimental research on satisfiability [64]: Hugin was always used
before SGS, in order to find an MPE x∗ if one existed. The reason for focusing on
instances which Hugin could process is as follows. For these cases we know for sure
that some non-zero MPE x∗ exists and can therefore input Umin = Pr(x∗) to SGS to
force convergence to an MPE. In addition, and following what is typically done in
experiments, we assume that Hugin’s compilation time as well as SGS’s parameter
optimization time can be amortized over a large number of MPE queries to a BN.

In the rest of this section we provide experimental results for SGS and compare
SGS to Hugin. We use synthetic BNs in Section 6.1 and BNs from applications in
Section 6.2. For the experiments discussed here, a Dell Dimension 4500 CPU, 2GHz
Intel Pentium IV using 1GB of RAM and up to 2GB of swap space has been used.
The computer was running Windows XP.

6.1 Experiments with Synthetic Bayesian Networks

We now compare SGS to Hugin, using synthetically generated BNs. The exper-
iments reported in this section focused on varying the C/V-ratio in BNs, using
synthetic networks where the hardness of MPE computation can be controlled. These
results provide insights into the general patterns of performance of a stochastic local
search algorithm such as SGS compared to a well-established baseline.

Section 6.1.1 outlines the methodology used. In Section 6.1.2 we focus on the
effect, on Hugin as well as on SimpleSGS and OperatorSGS, of varying the C/V-
ratio in BNs. In Section 6.1.3 we investigate additive gain using OperatorSGS.
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6.1.1 Synthetic Networks: Methodology

In this section, we briefly discuss a paradigm for the generation of increasingly hard
BNs for inference, namely the BPART algorithm [54, 61]. The BPART algorithm
extends research on generating hard instances for the satisfiability problem [64], and
we are exploiting the close relationship between computing an MPE and finding a
satisfying truth assignment of a corresponding CNF formula [8, 72, 80]. Generating
problem instances at random can result in very easy problems [64]. By carefully
manipulating one or more BPART input parameters, one can construct BNs that
existing tree clustering inference algorithms cannot handle due to an approximately
exponential increase in clique tree size [56, 61]. The main quantity we vary here
is the ratio C/V, where C and V are BPART input parameters representing the
number of leaf and root nodes in a BN respectively. The C/V-ratio is perhaps easiest
to motivate using bipartite BNs for medical diagnosis, where V is the number of
diseases and C is the number of symptoms. Clearly, it is interesting to understand
how the speed of MPE computation varies when the ratio of symptoms to diseases
is varied, or in other words as the C/V-ratio is varied. For the experiments reported
here we set BPART’s input parameters as follows, generating SAT-like BNs [61]:
The CPT type of the root nodes was Q = uniform; the CPT type of the non-root
nodes was F = or; the number of root nodes was V = 30; the number of states
per node was S = 2; the number of parents per leaf node was P = 3; and irregular
BNs were created by setting R = false. Here, “irregular” refers to the fact that each
root node has an irregular or randomly varying number of children. We varied the
number of leaf nodes while keeping V = 30 constant, giving C/V-ratios ranging from
C/V = 2.0 to C/V = 3.4.

Our main focus in the following is the comparison of the execution phase of Hugin

with that of SGS (using approximately optimal parameter settings) when computing
an MPE. Our methodology is to generate a number of BN instances according to the
BPART construction, run SGS and Hugin on these instances, and record statistics
for the time it takes to compute an MPE. We do not report results for BNs that
Hugin was not able to process, even in cases where SGS might have been able to
find an MPE. For example, we did not experiment with as large SAT-like BNs as the
SAT formulas used in earlier research [64], since Hugin was not able to process these
large networks for interesting C/V-ratios. Consequently, our results do not include
the region where C/V ≈ 4.25, which is SAT’s phase-transition region [64].

Even though these SAT-like BNs have a clear mapping to SAT instances, a few
crucial differences make our BN experiments different from previous experiments in
the SAT setting. Our BN data structures are different, since they are able to represent
arbitrary CPTs, not just the logical true or false values that arise in pure logical
inference. Along similar lines, our gain and utility computations are generalizations
of their logical counterparts as discussed in Sections 3 and 4. They need to handle the
general, real-valued case as encountered in CPTs, not just the special, integer-valued
case of logical inference.

6.1.2 Synthetic Networks: Hardness and the C/V Ratio

The purpose of the experiments reported here was to compare the performance of
SGS, both SimpleSGS and OperatorSGS, with that of Hugin as the C/V-ratio was
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varied. For each C/V level, 100 BNs were generated using the BPART algorithm
and processed using Hugin and SGS.

Clique tree results for Hugin are summarized in Table 2; each row shows statistics
for BPART instances. There are dramatic increases in total clique tree size as well
as in the size of the largest clique as C/V increases. The rapid growth of the total
clique tree size with C/V causes MPE computation times to grow rapidly as well.
In Table 2, sample means and standard deviations of MPE computation times for
Hugin are presented.

We also experimented with both variants of SGS, namely SimpleSGS and Opera-

torSGS, with parameters set as follows: MAX-TRIES = ∞, U = U A, C = CG, and
Umin = 75 (for C = 60) to Umin = 117 (for C = 102). MAX-FLIPS and pN were set
to approximately optimal levels, varying with C/V. For both variants, an MPE was
found for all problem instances.

In Fig. 9 the results from these experiments are shown along with exponential re-
gression lines of the form y = aeb x where a, b ∈ R and x = C/V. For SimpleSGS and
OperatorSGS, each data point in the figure represent a total of 10,000 experiments.
This is because there are 100 BNs per C/V level, and each SGS variant was executed
100 times for each BN. The exponential regression results in Fig. 9 show that the
computation times of Hugin and SGS increase with x = C/V in a fashion that is well-
approximated by exponential curves. For Hugin, this confirms earlier results [56, 61].
For Hugin, we note also that the execution phase consists of several propagations
when there is more than one MPE (Madsen 2003, personal communication). The
existence of multiple MPEs for this C/V range is reflected in the obvious difference

Table 2 Clique tree statistics (top half) and propagation times (bottom half) for Hugin on synthetic,
bipartite Bayesian networks. Parameters characterizing these BNs are the number of root nodes V
and the number of leaf nodes C

BNs Mean StDev Median Max Min Mean StDev Median Max Min

C/V

Total clique tree size (in 1000) Size of maximal clique (in 1000)

2.0 201.7 95.17 172.1 513.3 53.34 70.94 44.49 65.54 262.1 16.38

2.2 388.2 211.1 337.9 1,212 53.60 150.6 109.0 131.1 524.3 16.38

2.4 573.8 288.3 504.5 1,628 131.8 238.6 157.1 262.1 1,049 65.54

2.6 852.7 449.1 718.8 2,302 190.9 329.6 226.1 262.1 1,049 65.54

2.8 1,285 789.0 1,158 5,463 278.5 503.3 356.3 524.3 2,097 131.1

3.0 1,881 991.7 1,651 6,506 580.9 720.9 331.4 524.3 2,097 131.1

3.2 2,559 1,241 2,337 6,468 607.6 1,077 669.5 1,049 4,194 262.1

3.4 3,779 1,807 3,504 11,204 689.1 1,565 944.4 1,049 4,194 262.1

BNs Mean StDev Median Max Min Mean StDev Median Max Min

C/V Time, all propagations (s) Time, one propagation (s)

2.0 1.119 0.5590 1.039 3.234 0.328 0.07038 0.03405 0.06491 0.1902 0.01726

2.2 2.123 1.220 1.860 7.047 0.375 0.1404 0.08568 0.1236 0.5560 0.02344

2.4 3.102 1.758 2.696 9.953 0.891 0.2291 0.1345 0.1952 0.7864 0.04689

2.6 4.809 3.234 3.898 24.55 0.718 0.3655 0.2374 0.3015 1.444 0.1000

2.8 6.349 4.249 5.258 25.64 1.234 0.5706 0.4164 0.5137 3.205 0.1198

3.0 8.267 5.039 7.008 36.31 1.782 0.8618 0.4744 0.7428 3.026 0.2206

3.2 12.76 8.332 10.79 41.91 2.875 1.293 0.6811 1.120 3.224 0.2756

3.4 14.67 9.867 9.781 66.5 2.797 1.864 1.059 1.738 6.045 0.3108
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Fig. 9 A comparison of the performance of Hugin, SimpleSGS, and OperatorSGS as C/V is varied.
In general, Hugin needs multiple clique tree propagations in order to find an MPE, hence results
for one propagation (“Hugin—one prop”) as well as multiple propagations (“Hugin—all props”)
are shown. On average, both SimpleSGS and OperatorSGS are more than one order of magnitude
faster than one Hugin propagation, and more than two orders of magnitude faster than all Hugin

propagations

between y = 0.03847e1.797x (for all propagations) and y = 0.000870e2.289x (for one
propagation) in Fig. 9.

Figure 9 shows that both SimpleSGS and OperatorSGS clearly outperform
Hugin. Specifically, for MPE computation we note that SimpleSGS and Opera-

torSGS on average are more than two orders of magnitude faster than Hugin (the
“all props” regression line in Fig. 9) on these BPART BNs where 2.0 ≤ C/V ≤

3.4. Even if Hugin had always only needed one propagation (a best-case scenario
reflected by the “one prop” regression line in Fig. 9) in order to compute an MPE,
both SGS variants are on average well over one order of magnitude faster than
Hugin for 2.0 ≤ C/V ≤ 3.4. The run time curves of SimpleSGS and OperatorSGS

in Fig. 9 are quite similar and in fact it is difficult to tell them apart. A potential
disadvantage of OperatorSGS compared to SimpleSGS, namely slower speed due
to computational overhead associated with operator selection and application, is in
other words minimized in our current implementation.

6.1.3 Synthetic Networks: Investigation of Additive Gain for Varying C/V

The goal of this set of experiments was to investigate different OperatorSGS

variants. In particular, we wanted to investigate both multiplicative gain and additive
gain in SAT-like BNs, generated using the BPART algorithm as discussed in Section
6.1.2. Since the additive measure is tailored to SAT-like BNs, one might expect SGS

with �S = {(AG, pAG), (NU, pNU)} to outperform SGS with �S = {(MG, pMG),
(NU, pNU)} in this experiment. However, SGS with �S = {(MG, pMG), (NU, pNU)}

is augmented with a “force state” heuristic which handles deterministic nodes, as
shown in Fig. 3, and the question is how helpful this heuristic is compared to the
additive measure. In this set of experiments, we again used V = 30 root nodes, and
considered C = 60 and C = 102.
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Results of the experiments are shown in Fig. 10. In the two panels to the left in
the figure, we show results for OperatorSGS with �S = {(AG, pAG ), (NU, pNU)},
a portfolio with an additive operator AG. In the two panels to the right, we show
results for OperatorSGS with �S = {(MG, pMG), (NU, pNU)}, a portfolio with a
multiplicative operator MG. Results for C/V = 2.0 are displayed in the top two
panels in Fig. 10, while the bottom two panels show results for C/V = 3.4. In
addition, we used three different values for p = pNU, and consequently for pAG = 1−

pNU and pMG = 1− pNU respectively, and varied MAX-FLIPS as shown on the x-
axis in Fig. 10.

Our main observations with respect to these experimental results are as follows.
For both C/V = 2.0 and C/V = 3.4, the additive approach (to the left in Fig. 10)
is the winner over the multiplicative approach in the sense of having the parameter
settings that minimizes the number of flips. In addition, the additive approach is more
robust in the sense that there is good performance for a wider range of parameter
values. This experiment provide an experimental rationale for the “artificial” addi-
tive approach, which is used in OperatorSGS with �S = {(AG, pAG ), (NU, pNU)},
compared to the multiplicative approach used in OperatorSGS with �S = {(MG,
pMG), (NU, pNU)}.
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Fig. 10 Empirical results for synthetic BNs under different experimental conditions for Opera-

torSGS. The additive search operator AG is used in the column to the left, the multiplicative search
operator MG is used in the column to the right. The top row is for C/V = 2.0 and the bottom row
is for C/V = 3.4. The restart parameter varies from MAX-FLIPS = 8 to MAX-FLIPS = 4096 as
shown on the x-axis. The noise probability p = pN is varied according to the labels. Each data point
represents the sample mean of 10,000 runs: 100 runs for each of 100 BNs
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6.2 Experiments with Application Bayesian Networks

This section reports on SGS experiments using BNs from applications, and highlights
the system’s performance when using different initialization portfolios, different
search portfolios, and different measures of gain. The OperatorSGS algorithm
was to a large extent motivated by our early work with these BNs, which unlike
the synthetic instances investigated in Section 6.1 have no restriction on topology,
number of states, number of parents, or CPTs.

In Section 6.2.1 we outline the methodology and briefly discuss the BNs used
in experiments. Section 6.2.2 empirically compares SGS and Hugin. Section 6.2.3
covers the effect of using different search operators in OperatorSGS, while Section
6.2.4 covers the effect of varying MAX-FLIPS in OperatorSGS.

6.2.1 Application Networks: Methodology

The BNs investigated here, most of which are taken from Friedman’s Bayesian
Network Repository, are denoted Munin1, Munin2, Mildew, and Water. (At the
time of this writing, the location of the Bayesian Network Repository is http://www.
cs.huji.ac.il/labs/compbio/Repository/.) Given our emphasis on additive utility and
gain derived from MAXSAT, we focus on BNs with a substantial number of zeros;
see Table 3.

The Munin BNs, Munin1 and Munin2, are medical BNs from the field of elec-
tromyography. The Munin1 BN has, among the BNs we consider here, the largest
total clique tree size and the slowest compile and per-propagation execution time.
The Water BN models the biological processes of water purification, while Mildew
is for making dosage recommendations regarding the amount of fungicide needed
to fight mildew in wheat. For each of these BNs, statistics for the CPT values along
with the number of nodes and the average number of states per node are presented
in Table 3.

For these application BNs, we first ran Hugin. Following the methodology
presented in Section 6.1.1, for each BN the resulting MPE probability Pr(x∗) was
then used as utility limit Umin = Pr(x∗) for SGS. This approach makes our comparison
between algorithms more informative as discussed in Section 5.1.

Table 3 Information on Bayesian networks from applications. Parameters characterizing the BNs
are the number of nodes n and the average number of states per node. Conditional probability table
values are also shown. These BNs have a large number of zeros in CPTs, thus for a large number
of explanations x have Pr (x) = UB(x) = 0. In these highly deterministic Bayesian networks, the
additive approach turns out to reduce run time when used in stochastic local search

Bayesian Nodes States Conditional probability table (CPT) values (in %)

network n avg. 0 (0, 10−3] (10−3, 10−2] (10−2, 10−1] (10−1, 1) 1

Munin1 189 5.26 56.0 3.64 3.87 7.99 18.0 10.4

Munin2 1003 5.36 55.5 4.74 5.08 9.46 17.4 7.74

Mildew 35 17.6 93.1 0.01 0.75 2.07 3.93 0.15

Water 32 3.63 51.7 0.04 1.4 12.7 31.8 2.35

http://www.cs.huji.ac.il/labs/compbio/Repository/
http://www.cs.huji.ac.il/labs/compbio/Repository/
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6.2.2 Application Networks: SGS and Hugin

The goal of the experiments we report on now is to compare the performance of
OperatorSGS and Hugin using BNs from applications. Results for Hugin are shown
in Table 4; the fill in weight triangulation heuristic was used. In Table 4, all Hugin

timing results are averages of 30 experiments, except for Munin1 which is the average
of five experiments.

Results for OperatorSGS are shown in Table 5. We use approximately optimal
parameter settings for OperatorSGS. Reflecting our analytical result in Theorem 58,
OperatorSGS uses homogenous initialization portfolios with the forward simulation
(FS) and forward dynamic programming (FDP) initialization operators here. Further
experiments investigating the impact of varying the search portfolio and MAX-
FLIPS on the performance of OperatorSGS can be found in Sections 6.2.3 and 6.2.4.

Comparing the results for Hugin and OperatorSGS in Tables 4 and 5 respectively,
we make the following observations. First, OperatorSGS is highly competitive with
Hugin for these BNs. Particularly impressive is the performance of OperatorSGS

for Munin1 and Water, where the computation time of OperatorSGS (measured in
seconds) is substantially better than Hugin’s. For Munin1, one Hugin propagation
takes 4,057.8 s while OperatorSGS computation time is 0.02537 s. For Water,
one Hugin propagation takes 0.715 seconds while OperatorSGS computation
time is 0.0625 s. Second, for three of the BNs in Table 5, approximately optimal
OperatorSGS performance is obtained for additive probability pA ≥ 0.9, thus high-
lighting the power of our additive approach.

6.2.3 Application Networks: Dif ferent Search Operators

In this set of experiments with OperatorSGS, we investigated different search
operators by varying the search portfolio �S. The purpose of these experiments
was to investigate the effect of varying additive probability pA and noise probability
pN . Appropriate use of noise has been found to be a powerful way to improve SLS
performance [20, 31, 34, 53, 57, 76, 77]; however we know of no previous experiments
where the effect of varying additive probability pA is systematically investigated. To
do so, we considered the following search portfolio.

Definition 61 (Search portfolio) The search portfolio �S(pN , pA) is parametrized
by noise probability pN and additive probability pA and is defined as

�S(pN, pA) = {(AN, pA pN) , (AG, pA(1 − pN)) , (MN, (1 − pA)pN) ,

(MG, (1 − pN)(1 − pA))} .

Table 4 Performance of Hugin on application Bayesian networks. These are clique tree statistics,
and the results in the Total column are for computing an MPE. The Compile and Execute columns
give the time taken in each of these two phases

BN Clique tree statistics Execution times (s)

Sum Max Median Compile Propagate Execute Total

Munin1 384,620,599 288,000,000 300 6,058.2 4,057.8 4,057.8 10,114.8

Munin2 4,861,824 504,000 320 2.089 0.815 2.445 4.535

Mildew 9,566,232 4,372,480 8,600 1.0671 0.821 3.284 4.352

Water 3,657,180 1,769,472 2,187 0.616 0.715 0.715 1.330
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Table 5 Performance of OperatorSGS on application Bayesian networks. The values of approxi-
mately optimal input parameters, including initialization and search operators, as well as results for
computing an MPE are shown. Note how pA, or additive probability, is non-zero in all cases

BN Input parameters Execution times

Initialization Search MAX-FLIPS pA Time (s) Flips

Munin1 pFS = 1.0 pMN = 0.05, pMG = 0.05, 30 0.9 0.02537 25.37

pAG = 0.45,pAN = 0.45

Munin2 pFS = 1.0 pAN = 0.5, pAG = 0.5 70 1.0 1.385 245.5

Mildew pFDP = 1.0 pMN = 0.336, pMG = 0.504, 200 0.16 0.2404 193.3

pAN = 0.064, pAG = 0.096

Water pFS = 1.0 pAN = 0.1, pAG = 0.9 10 1.0 0.00625 61.71

By introducing �S(pN , pA), we reduce the three-dimensional problem of varying
probabilities in the portfolio �S(pAN, pAG, pMN) from Definition 46 into a two-
dimensional problem of varying probabilities pN and pA. Reflecting Theorem 58,
a BN-specific optimal initialization algorithm—either forward simulation [28] or a
randomized variant of the Viterbi algorithm [62, 82]—was used in �I for each appli-
cation BN. Forward simulation was used for Munin1, Munin2, and Water. Mildew
was initialized using the forward variant of the randomized Viterbi algorithm. BN-
specific values for MAX-FLIPS were also used: MAX-FLIPS = 30 for Munin1,
MAX-FLIPS = 100 for Munin2, MAX-FLIPS = 10 for Water, and MAX-FLIPS =

200 for Mildew.
For each application BN, the probability of using an additive operator, pA, was

varied from pA = 0 to pA = 1 in increments of 
pA = 0.1. Noise probability pN was
varied from pN = 0.1 to pN = 0.9 in increments of 
pN = 0.2. We call these and
similar run time curves generated by varying the probability pA “additive response
curves”, since they are similar to noise response curves generated by varying the
probability pN [31, 53]. Results, in the form of sample means and piecewise linear
approximations for r̂(pA), are reported in Fig. 11. Each data point represents the
mean of 1,000 experiments.

In Fig. 11, the case pN = pG = 0.5 represents the situation where greedy and
noise search operators are applied with equal probability. Further, at pA = 0 only
the operators MN and MG are applied, while at pA = 1 only AN and AG are used.
Previous experimental results are at pA = 0 if they only use multiplicative gain and
not additive gain in their search heuristics; we will shortly see the disadvantage of
this traditional approach.

Some of the main points found in Fig. 11 are as follows. One main novel result is
that varying pA has, in many cases, a striking impact on SLS run time. Specifically,
by using pA = 0 as is employed in most traditional SLS approaches to BN inference,
one may obtain far from optimal performance. The impact depends on the particular
BN and also varies dramatically with noise level pN .

In Fig. 11, the shapes of the additive response curves for Water, Munin1, and
Munin2 are quite similar: Optimal levels of pA, p∗

A, appear to be found at high values
of pA, and for such values the impact of noise is relatively minor. Combining high
noise probability pN and low additive probability pA has, on the other hand, a very
negative impact on run time. Examples of this can be found for pN = 0.7 and pA =
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Fig. 11 Empirical results for OperatorSGS for the BNs Munin1, Munin2, Water, and Mildew under
different experimental conditions. The additive probability pA, or the probability of applying an
additive search operator, varies from pA = 0 to pA = 1 as shown on the x-axis. The noise probability
p = pN is varied from pN = 0.1 to pN = 0.9 according to the labels. Each data point represents the
sample mean of 1,000 runs. Clearly, varying pA and pN has a significant impact on run time

0.1 in Fig. 11 for Water, Munin1, and Munin2. Robust OperatorSGS performance,
with respect to variations in pN , is ensured by using a high value for pA.

The shapes of the OperatorSGS run time curves for Mildew are somewhat
different than those for Water, Munin1, and Munin2. Here we find, in all cases,
monotonic decreases in run times for small values of pA and monotonic increases in
run times for large values of pA. These convex empirical curves suggest an optimal
value for p∗

A that is increasing with pN . A relatively high level of noise improves
the run time on Mildew; pN = 0.5 gives best results in these experiments, with an
average run time of 209.8 flips at p̂∗

A = 0.2.

6.2.4 Application Networks: Impact of Restart

In this section we investigate the impact, on OperatorSGS performance, of varying
the restart parameter MAX-FLIPS along with pA and pN . We experiment with
Mildew since it has the most challenging (and interesting) additive response curve
in Fig. 11. Similar to in Section 6.2.3, we employ the search portfolio �S(pN , pA). In
order to further investigate the region where minimal average run time occurred in
Fig. 11 , we varied additive probability pA from pA = 0.1 to pA = 0.3 in increments
of 
pA = 0.02. Noise probability pN was varied from pN = 0.3 to pN = 0.6 in
increments of 
pN = 0.1.
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Mildew, noise probability p = 0.4
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Fig. 12 Empirical results for the Mildew BN under different experimental conditions for Oper-

atorSGS. The probability pA of applying an additive search operator, varying from pA = 0.1

to pA = 0.3, is shown on the x-axis. The noise probability p = pN is systematically varied from
pN = 0.3 (top left) to pN = 0.6 (bottom right), and the restart parameter MAX-FLIPS is varied
according to the labels. Each data point represents the sample mean of 1,000 runs. Clearly, varying
pA, pN , and MAX-FLIPS has a significant impact on run time

Results, in the form of sample means and piecewise linear approximations for
r̂(pA), are reported in Fig. 12. Each data point represents the mean of 1,000 runs.
In each panel of Fig. 12, varying MAX-FLIPS has a substantial impact. Generally,
MAX-FLIPS = 50 gives the fastest run time. Further, careful optimization of pA,
pN , and MAX-FLIPS gives significant benefit, and the approximate performance
optimum is at pA = 0.17, pN = 0.4, and MAX-FLIPS = 50.

7 Related Work and Discussion

The problem of computing a most probable explanation (MPE) in Bayesian net-
works has been addressed using exact algorithms [2, 37, 45, 47, 70, 79, 85] as
well as inexact algorithms [39, 41, 48, 54, 60]. In addition, there is related work
on SAT and MAXSAT [27, 35, 53, 75, 77, 78] as well as on weighted MAXSAT
[10, 19, 29, 42, 44, 46, 66, 74, 83]. Since a comprehensive literature review is well
beyond the scope of this article, we only discuss the previous research most closely
related to our work in the rest of this section.
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7.1 Portfolio Algorithms

Our work is related to research on hybrid or portfolio algorithms [25, 26, 38, 84].
Huberman, Lukose, and Hogg investigate hard computational problems and how
heuristic algorithms, often randomized, have been developed to solve such problems
[38]. Their main emphasis is on portfolios of independent Las Vegas algorithms,
where run times can be described using probability distributions, and consequently
one can form expectation and variance (or standard deviation). By considering the
2-dimensional space spanned by expectation and standard deviation, an efficient
frontier can be formed, similar to what is done in economics, based on varying the
fractions of CPU-time allocated to different Las Vegas algorithms in a portfolio.
Empirically, the NP-hard problem of graph coloring was studied using the Brelaz
heuristic. By taking a portfolio approach, it was found that expected performance
could be increased by 30% while also reducing risk (or standard deviation) [38].
While the main emphasis of Huberman, Lukose, and Hogg is on completely indepen-
dent algorithms, they also briefly discuss cooperating algorithms which is our main
focus in SGS.

Gomes and Selman note that performance profiles vary dramatically among
different algorithms over different problem instances [25]. In response, they investi-
gate portfolios of algorithms, and find that it can be beneficial to combine algorithms
with high run time variance in portfolios. Gomes and Selman consider one or more
Las Vegas algorithms running independently and in parallel on multiple processors.
They investigate constraint satisfaction and mixed integer programming problems
empirically, and conclude that optimal portfolio design strongly depends on details
of the run time distribution.

Lagoudakis and Littman formalize algorithm selection as a Markov decision
process, and investigate a reinforcement learning approach to learning the value
function [43]. Algorithms are selected from the portfolio in a cooperative, not
independent, manner. Experimentally, they obtain promising results on algorithms
for sorting and order statistics selection. Xu et al. integrate a learning approach with
SAT algorithm portfolios [84]. All algorithms in the portfolio execute all problem
instances in the training set in order to learn empirical hardness models. Learning is
performed using features that characterize the problem instances, and learned ridge
regression models are used to predict run times for individual problem instances.
During test, a problem instance is solved by the SAT algorithm predicted to be
fastest, hence there is no cooperation between algorithms. Using this approach,
strong results in the 2007 SAT competition have been reported [84].

7.2 Stochastic Local Search for SAT Computation

We distinguish between local search algorithms that rely on the use of a history or
memory (of search)-and those that do not. For example, tabu-search [24, 67] and
guided local search [39, 63, 66] are both meta-heuristics that introduce histories into
local search. Roughly speaking, guided local search modifies the objective function
during search as a tactic to escape states that are local minima, while tabu search
dynamically maintains a list of search space states that it does not immediately re-
visit. While the use of history has been found to be powerful, it also significantly
complicates analysis, and we here emphasize algorithms that do not rely on histories.
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We first consider related research on stochastic local search for solving the
satisfiability problem (SAT) [27, 35, 53, 75, 77, 78]. An early contribution was the
GSAT algorithm, which searches for a satisfying truth assignment in a CNF formula
[78]. GSAT is controlled by the number of local search steps before a restart, MAX-
FLIPS, and the number of restarts, MAX-TRIES [78]. A major contribution of
GSAT was its “sideways moves”; the algorithm continues to flip variables even
when the number of satisfied clauses stays the same. Experiments showed that
GSAT outperformed the Davis–Putnam (DP) algorithm on synthetic instances [64],
and strong performance on other problems including graph coloring, the N-queens
problem, and Boolean induction were also reported [78].

The GSAT algorithm has been extended in a number of directions (see [35] for a
summary). For instance, the three heuristic techniques of clause weighing, averaging
in of previous near solution, and (mixed) random walk have all been found to
improve the performance of basic GSAT [76]. Mixed random walk, which is also
known as WalkSAT [53, 77], combines random walk and greedy local search and is
more focused than random noise in that it applies noise only in variables that occur
in unsatisfied clauses. The main conclusion of an empirical evaluation was that mixed
random walk is superior to simulated annealing and random noise in a wide range
of cases [77]. Further flip selection strategy improvements—such as WSAT-G [53],
WSAT-B [53], Novelty [53], Novelty+, and DLM [75]—have followed, along with
progress in noise adaptation [20, 31, 53].

7.3 Stochastic Local Search for MPE and MAP Computation

We now discuss related research using stochastic search techniques to compute MPE
or MAP in Bayesian networks [41, 48, 54, 60, 67, 68, 71]. Pearl argued early on that
stochastic simulation, also known as Gibbs sampling, can be used for computing the
MPE although the algorithm was primarily intended for belief updating [71, p. 216, p.
262]. In stochastic simulation, evidence nodes are clamped, and then random samples
are created by randomly picking among a node’s states based on their probabilities
as given the node’s Markov blanket.

An early investigation of MPE computation by means of stochastic search tech-
niques considers iterative local search (ILS), simulated annealing (SA), and genetic
search (GS) [48]. ILS is a probabilistic hill-climbing that combines next-ascent
and random-mutation hill climbing. ILS stops on (local) maxima, however since it
iterates, it typically finds many maxima, one of which might be an MPE. For the
empirical study of these algorithms a bipartite BN version of the QMR medical
knowledge base, QMR-DT, was used. Experiments with ILS, SA, and GS showed
that they converged, in many cases, to an MPE. In terms of computational speed, ILS

was found to be significantly faster than SA which was significantly faster than GS.
However, SA was more accurate than ILS and GS. It is speculated that the weaker
performance of ILS was due to the local search getting trapped in the plethora of
local maxima [48].

Kask and Dechter empirically investigated MPE computation using stochastic
simulation [41], and concluded that it does not perform as well as a greedy approach
or as an approach where stochastic simulation and greedy search is combined. In
addition, they found that augmenting the approach with the mini-bucket algorithm
for initialization was important, which is in line with our results. We note that both
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stochastic simulation and greedy search are operators in OperatorSGS, such that
combining greedy search and stochastic simulation, as well as additional algorithms,
within the SGS framework is easy. For the purpose of computing MAP, which
generalizes MPE, Park and Darwiche investigated a total of 11 SLS algorithms and
found that they performed very well, in particular when MPE-based initialization
was used [68].

7.4 Weighted MAXSAT and Bayesian Networks

Recently, much progress has been made in developing solvers for the weighted
MAXSAT problem [19, 29, 42, 44, 46, 83]. An early algorithm was Weighted-

WalkSAT [42], a generalization of WalkSAT. It was emphasized how the weighted
MAXSAT problems could encode hard and soft constraints in discrete optimization
problems, including NP-complete problems such as network Steiner tree problems.
Network Steiner tree problems are concerned with finding paths in graphs. Using an
approximate encoding of Steiner tree problems, for which much of the numeric in-
formation can be represented using clause weights, WeightedWalkSAT was shown
to produce strong empirical results [42]. The GRASP algorithm also solves weighted
MAXSAT using local search. Specifically, GRASP uses greedy randomized adaptive
search, computing locally optimal solutions and using path relinking techniques to
improve search [19].

The weighted MAXSAT problem can also be solved using exact (complete)
algorithms, often based on the DP [13] and DPLL [12] algorithms. The MaxSolver

uses heuristic strategies for DPLL, giving strong performance in experiments with
random problems instances as well as problems instances from applications [83].
Other weighted MAXSAT solvers, for which details are beyond the scope of this
article, include the MaxSatz [46], MiniMaxSAT [29], and MaxDPLL [44] solvers.

There is a close connection between weighted model counting and MPE com-
putation [10, 66, 74], and the use of weighted MAXSAT solvers to solve the MPE
problem and the use of MPE solvers to solve the weighted MAXSAT problem
has been investigated [66, 74]. Park encodes the MPE problem as a weighted
MAXSAT problem, uses weighted model counting algorithms to compute answers
to probabilistic queries, and finds that the incomplete guided local search (GLS)
algorithm performs very well [66].

7.5 Other Related Work

Other related work includes exact BN algorithms such as clique (or join) tree propa-
gation [2, 40, 45, 79], conditioning [9, 70], variable elimination [15, 47, 85], arithmetic
circuit evaluation [6, 11], and AND/OR search [17]. The compilation paradigm,
which underlies clique tree propagation and arithmetic circuit evaluation, is well-
suited to resource-bounded and real-time settings [55, 65], and has found application
in sensor validation and diagnosis of electrical power systems in aerospace vehicles
[58, 59]. Recently, a connection between BNs and multi-linear functions has been
made [10, 11], supporting the compilation of BNs into arithmetic circuits [6, 10, 11].
The compilation of BNs into arithmetic circuits may rely on encoding of a BN into
a CNF formula [10], which has been shown to take advantage of determinism [4]
as well as other local structure in BNs [5]. Chavira and Darwiche encode a BN
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in the form of a weighted CNF theory, and investigate the effect of search versus
compilation; different encodings; and local structure and evidence [5, 7].

7.6 Discussion and Comparison

We now discuss how our SGS approach is similar to and different from related
research, and also how OperatorSGS and SimpleSGS compare. SimpleSGS was
primarily inspired by previous seminal research on stochastic local search for SAT,
in particular the GSAT and WalkSAT algorithms [77, 78]. SGS is also related
to ILS and SLS, and extends ILS by applying to a wider range of BN topologies,
using the additive measure, and using more advanced initialization operators before
local search commences. We also note that the random-mutation hill climbing of
ILS gives an effect similar to that of SGS noise operators. SLS [41], which was
developed independently of SGS, shares several characteristics with SGS, such
as stochastic steps and initialization that goes beyond initialization uniformly at
random. However, there are several important differences between SGS and SLS,
including the initialization algorithms, the fact that SGS can use different measures
of gain (including additive gain), as well as the fact that SGS has an operator-based
variant OperatorSGS.

OperatorSGS makes a stronger distinction between utility and gain than Sim-

pleSGS and other SLS algorithms. A key point is that each compound search

operator has an associated gain, which is unrelated to how an explanation’s overall

utility is computed using U . So, for example, some search operators in �S can use
additive gain 
U A, while the overall utility of an explanation can be computed
using multiplicative utility UM. This provides greater flexibility than what is present
in SimpleSGS and other SLS algorithms. Operators that use the additive measure
are optimized for the special but often occurring case of deterministic nodes, while
operators using the multiplicative measure are optimized for the general case of
probabilistic nodes. SimpleSGS as well as other SLS algorithms can not use both
measures in the same invocation of the algorithm, while OperatorSGS can. Since
many application BNs contain both probabilistic nodes and deterministic nodes, it
turns out that using 
U A and 
UM in combination gives, in many cases, faster
computation of MPEs using SGS. See Section 6.2 for supporting experiments with
application BNs.

OperatorSGS can simulate SimpleSGS in the following manner: One can regard
the noise and hill-climbing steps of SimpleSGS as two operators chosen from a
stochastic search portfolio �S of size two, where one search operator is a greedy
operator such as AG, the other is a stochastic operator such as NU: �S = {(NU,
pN), (AG, 1 − pN)}. And we can regard SimpleSGS initialization as an initialization
operator chosen from an OperatorSGS stochastic initialization portfolio �I of
size one: �I = {(UN, 1)}. The advantage of OperatorSGS compared to standard
SGS is generality and flexibility, which typically leads, as shown in experiments in
Sections 6.1 and 6.2, to better performance. Further, as detailed in Section 6.1, the
speed of OperatorSGS and SimpleSGS is essentially the same on SAT-like BNs.

Previous portfolio-based approaches have emphasized running multiple heuristics
independently, either on the same computer or independently on multiple computers
[25, 38]. Alternatively, they have picked, for a particular problem instance, the
best algorithm among a portfolio of algorithms [84]. In comparison, there is in
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OperatorSGS a cooperation between heuristics (similar to [43]), in the sense that
initialization and search operators work on the same explanation x to compute an
MPE estimate x̂

∗
. There is currently no learning in OperatorSGS, unlike in some

related work [36, 43, 73, 84]. Finally, we note that our Las Vegas analysis and
experimental approach is different from most previous efforts in several ways. First,
we emphasize finding an MPE, and not just getting close to it, and therefore we
compare with an exact method, the Hugin clique tree clustering algorithm. Second,
our synthetic networks are constructed in a systematic way, generating instances of
varying hardness. This allows us to experimentally show that SGS can outperform
Hugin on synthetic BN of increasing hardness.

Comparing SLS algorithms with a broader range of algorithms including those
for weighted MAXSAT [10, 19, 29, 42, 44, 46, 66, 74, 83], we find that two broad
approaches are emerging: In the encoding approach, instances of one problem
(say, MPE) can be encoded as another (say, weighted MAXSAT). A current view
is that MPE and weighted MAXSAT are complementary, where an instance of
one problem can be encoded as an instance of the other problem, with some loss
of effectiveness [74]. In the generalization approach, on the other hand, one or
more existing algorithms or techniques are generalized to handle a wider range of
problems. For instance, one may generalize from MAXSAT to weighted MAXSAT
(see [42, 44]) or from MAXSAT to MPE (as in [57] and in this article). The two
approaches, encoding and generalization, both have their pros and cons. In the
encoding approach, there is a separate encoding or compilation step that can be
performed off-line. This step can thus be amortized over a potentially large number
of queries to the same problem instance. A disadvantage is that encoding may lead to
a blow-up in problem instance size. Understandability and simplicity are, on the other
hand, facilitated by the generalization approach; disadvantages include the lack of
an off-line step and ability to take advantage of special problem structure. It appears
that both approaches merit investigation, and in this paper we generally are taking a
generalization approach.

8 Conclusion and Future Work

Stochastic local search has proven to be powerful algorithms for finding satisfying
assignments in satisfiability (SAT) instances [27, 35, 53, 75, 77, 78]. In this article, we
discuss the generalization of stochastic local search from the logical case of SAT
to the probabilistic case of Bayesian networks (BNs). While SLS techniques for
MPE and MAP computation are well established [41, 48, 60, 67, 68], we present
here several novel techniques and results centering around search and initialization
portfolios as well as an additive measure of utility and gain. These techniques have
been incorporated into the SGS stochastic local search approach, which heuristically
computes a most probable explanation (MPE) in a Bayesian network. SGS combines
greedy search, stochastic search, and stochastic initialization algorithms. We have
presented two SGS algorithms, namely simple SGS (SimpleSGS) and operator-based
SGS (OperatorSGS); the latter is more flexible and general than the former due
to its initialization and search portfolios. The initialization and search portfolios of
OperatorSGS contain operators, which are algorithms for initialization or search
respectively, along with probabilities that control their selection and execution. The
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OperatorSGS algorithm, for which we provide both theoretical and experimental
results, is closely related to previous research on SLS algorithms for MPE and MAP
computation [41, 67, 68] as well as to work on portfolio (or hybrid) algorithms for
other computational problems [25, 26, 38, 39, 60, 84].

We carefully formalized the concepts of SLS utility and gain in the context of
MPE computation, and emphasized our additive approach. The additive measure,
for which we provided several new results, is a generalization of GSAT’s and
WalkSAT’s utility and gain measures to the probabilistic setting. Application BNs
often have many deterministic nodes, and the additive measure turned out to be very
powerful in such BNs. This measure has, to our knowledge, not been extensively
studied in previous research on MPE computation using stochastic local search, and
we also investigated how it relates to traditional multiplicative gain as used in other
SLS algorithms for MPE. In addition, we introduced a novel Markov chain model,
augmented random walk, where the behavior of OperatorSGS’s initialization and
search operators is explicitly represented as Markov chain states. We also showed
that the optimal OperatorSGS initialization portfolio is homogenous.

Two sets of experiments have been conducted. We have shown that SGS out-
performs Hugin on hard BNs constructed from satisfiability instances, and also
outperforms Hugin on application BNs with a high degree of determinism. In
one set of experiments, we have utilized an approach to constructing synthetic
Bayesian networks of varying hardness [61]. This approach helps in developing an
understanding of the suitability of different algorithms for different classes of BNs. In
these experiments, we found that SGS can outperform Hugin by well over one order
of magnitude, and in particular that SGS consistently performed one or more orders
of magnitude better than the state-of-the-art exact algorithm Hugin as the C/V-
ratio was varied. In addition, we found that the additive measure U A gave better
performance than the multiplicative measure UM in partly deterministic, SAT-like
networks.

Experiments with OperatorSGS on application BNs have also been done. We
have found that the algorithm is quite effective on these networks too, and performs
comparably to Hugin. Key factors in the success of OperatorSGS are the initial-
ization operators, the additive measure, and the approach of using a portfolio of
operators for computation. OperatorSGS’s varying approximately optimal parame-
ter values, including values for the selection probabilities of the initialization and
search operators, highlights the importance of the portfolio approach to stochastic
local search.

Areas for current and future work include the following. First, the important
role of portfolios and different measures of gain, especially in application networks,
highlights the opportunity of adaptively tuning the probabilities (similar to noise
adaptation [20, 31, 53]) of portfolio operators when computing MPE or MAP for a
given BN. While our focus here has not been on adaptation or learning during search,
we believe that our framework and results can also enable innovations in these areas,
thereby further enhancing portfolio-based stochastic local search algorithms. Both
analytical and experimental work on portfolio adaptation would be of great interest.
Second, in local search, an essential question is how to escape from local minima. In
this article, our answer has been the use of noise, which is a local escape mechanism.
Another approach is to use crossover from genetic algorithms. In the MPE or MAP
context, crossover would take place between two explanations, thus providing a
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more global escape mechanism than noise. More generally, there is potential for
additional hybridization, for example combining stochastic local search with clique
tree clustering. Third, additional investigation of when to terminate, other than by
using a Las Vegas approach or time limits, is needed in order to increase the easy-of-
use of the SGS approach in applications.
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