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ABSTRACT

The MAGFLOW lava simulation model is a cellular automaton developed
by the Sezione di Catania of  the Istituto Nazionale di Geofisica e
Vulcanologia (INGV) and it represents the peak of  the evolution of  cell-
based models for lava-flow simulation. The accuracy and adherence to
reality achieved by the physics-based cell evolution of  MAGFLOW comes
at the cost of  significant computational times for long-running simulations.
The present study describes the efforts and results obtained by porting the
original serial code to the parallel computational platforms offered by
modern video cards, and in particular to the NVIDIA Compute Unified
Device Architecture (CUDA). A number of  optimization strategies that
have been used to achieve optimal performance on a graphic processing
units (GPU) are also discussed. The actual benefits of  running on the GPU
rather than the central processing unit depends on the extent and duration
of  the simulated event; for large, long-running simulations, the GPU can
be 70-to-80-times faster, while for short-lived eruptions with a small extents
the speed improvements obtained are 40-to-50 times.

1. Introduction
Modeling and simulation of  lava flows is of  extreme

importance for short-term and long-term hazard assessment
in volcanic areas. Physical models of  lava flows must take
into consideration the non-linear, temperature-dependent
rheology, the variation in space and time of  the rheological
parameters, and the irregularity of  natural topography. The
more physically correct a model, the more computationally
intensive it is, a condition that can hinder the applicability of
the model to short-term forecasting of  lava emplacement
during an eruption, as it is essential for scenario simulations
to be completed in very short times compared to the actual
evolution of  the phenomenon.

One of  the most successful approaches to lava-flow
modeling is cellular automaton [Crisci et al. 1986, Ishihara et
al. 1990, Miyamoto and Sasaki 1997, Avolio et al. 2006], in
which the computational domain is represented by a (usually

regular) grid of  two-dimensional or three dimensional cells,
each of  which is characterized by some properties, such as
lava height and temperature, and where the modeling of  the
phenomenon is described through an evolution function for
the properties of  the cells.

The MAGFLOW model [Vicari et al. 2007] was
developed at the Sezione di Catania of  the Istituto Nazionale
di Geofisica e Vulcanologia (INGV-Catania), and it is one of
the few cellular automata that are based on physical
modeling of  lava flows, including thermal effects, to describe
the system evolution. The MAGFLOW model has been used
successfully both to reproduce past events with well-
determined characteristics (for validation) and to predict
Mount Etna lava flows in real time during the eruptions of
2004 [Del Negro et al. 2008], 2006 [Hérault et al. 2009, Vicari
et al. 2009] and 2008 [Bonaccorso et al. 2011]. The use of  this
model in scenario forecasting has been possible because of  its
good performance, which allows simulation of  several days
of  eruption in a few hours.

Although the original MAGFLOW implementation is
written for serial execution on standard computer
processors, the cellular automaton paradigm has a very high
degree of  parallelism that makes it particular suitable for
implementation on parallel computing hardware. In
particular, our choice has been geared towards the use of
graphic processing units (GPUs), as these offer very high
performance in parallel computing with a total cost of
ownership that is significantly lower than that of  traditional
computing clusters of  equal performance: a workstation
with a modern GPU offers a computing capability in the
order of  teraflops (1012 floating-point operations per second),
while it is priced at about €1,000 and consumes about 600 W.

We chose to implement the MAGFLOW model using
Compute Unified Device Architecture (CUDA), an
architecture that is provided by NVIDIA for the deployment
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of  their latest generations of  GPUs as high-performance
computing hardware [NVIDIA 2008]. As CUDA provides a
programming environment that is closely related to the C
family of  programming languages [NVIDIA 2010], this has
allowed us to preserve much of  the code and structure from
the original serial MAGFLOW implementation, while
providing a significant benefit in terms of  computational
speed, due to the parallel nature of  the hardware.

As a preliminary to a better understanding of  the details
of  the porting of  MAGFLOW from C to CUDA (Section 5)
and our discussion of  the optimization strategies considered
(Section 6), we will briefly present the fundamental concepts
of  GPU programming (Section 2) and a summary of  the
automaton structure and evolution functions (Section 3). A
summary of  the overall benefits are presented in Section 4,
and the conclusions are presented last.

2. Hardware platform
The videogaming request for ever more realistic

gameplay has driven the development of  extremely high-
performance, dedicated hardware for the real-time rendering
of  high-quality, realistic, animated, interactive three-
dimensional scenes.

The computing power of  GPUs has been initially
exploited for non-graphic computing tasks (GPGPU: General-
purpose Programming on GPU) by going through convoluted
transformations that can express the numerical problems in
graphical terms. The growing interest for the use of  the GPUs
as general purpose high-performance computing processors
has led the two main manufacturers, ATI and NVIDIA, to
develop interfaces that allow programming of  their GPUs
with a more conventional approach. For NVIDIA cards, this
has resulted in CUDA, an extension of  the C programming
language, to support the GPU programming model. This has
led to a significant breakthrough in performance in their use
as high-performance computing devices [Berczik 2008].

GPU programming follows the stream processing
concept, where a set of  instructions (called a kernel) is
executed in parallel over all of  the items of  a dataset. Each
instance of  a kernel is called a thread; threads are grouped in
one-, two- or three-dimensional blocks that are themselves
arranged in one- or two-dimensional grids.

The number of  threads in a kernel launch is thus given
by the number of  threads per block times the number of
blocks in the grid. As this is in general much larger than the
number of  computing cores available on the card, the GPU
takes care of  the dispatching of  the threads to the
multiprocessors as they become available. The threads from
the same block are always assigned to the same
multiprocessor, which will automatically distribute their
execution over its cores. The smallest number of  threads that
can run physically in lockstep on a single multiprocessor is
called the warp size, which is 32 for CUDA cards.

As the thread dispatching and concurrency is handled
by the hardware, the programmer can focus on the
implementation of  the actual algorithm. This has allowed
GPU usage for high-performance computing to flourish in a
wide range of  fields, from medical imaging [Roberts et al.
2010], to cryptography [Szerwinski and Gneysu 2008], and
from statistical physics [Preis 2011], to computational fluid
dynamics [Hérault et al. 2010, Kuznik et al. 2010].

The details of  the thread distribution only become
relevant during the optimization phase and in cases where
threads have to communicate with each other to solve
concurrency issues (separate threads trying to update the
same datum). In these cases, the developer can query the
driver at runtime for the hardware details of  a specific card
and tune the kernel parameters accordingly.

Different hardware generations (marked as the compute
capabilities of  the device) usually have a different number of
processors, as well as a different number of  cores per
processor and different amounts of  resources, such as
registers and shared memory per processor. The number of
concurrent threads that are executing at any given time
depends on the number of  computing cores that are
available, and also on the complexity of  the kernels and on
their use of  the resources available on the multiprocessors:
the overall resource use by a batch of  concurrent kernels is
called the occupancy, which is an index of  the overall
efficiency with which the hardware is being used.

The occupancy, however, does not tell the whole story
about the performance of  an implementation, as there are a
number of  other factors that must be taken into consideration.
These include algorithm features such as the presence of
conditionals, or the nature and structure of  the memory
access patterns. Some of  these issues will be discussed when
presenting the GPU implementation of  MAGFLOW. More
information about the CUDA platform can be found in the
CUDA programming guide of  NVIDIA [2010].

3. Automaton structure
In this section, we present the key aspects of  the

automaton underlying the MAGFLOW model, while
recalling only the aspects that are more relevant to the GPU
implementation. A more detailed description of  the model
can be found in Vicari et al. [2007].

The MAGFLOW cellular automaton has a two-
dimensional structure with cells described by five scalar
quantities: ground elevation, lava thickness, heat quantity,
temperature, and amount of  solidified lava. The system
evolution is purely local, in the sense that each cell evolves
according to its present status and the status of  its eight
immediate neighbors (the Moore neighborhood).

The domain (automaton size) is chosen to be large
enough to include the prospected maximum extent of  the lava
flow emplacement, and it is decomposed into square cells such
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that their width matches the resolution of  the digital elevation
model (DEM) that is available for the area, which is used to set
the ground elevation property of  each of  the automaton cells.

The lava thickness varies according to the lava influx
from the vent (for cells corresponding to a vent location),
plus any lava flux between neighboring cells. Cross-cell lava
flux is determined according to the height difference, using
a steady-state solution for the one-dimensional Navier-Stokes
equations for a fluid with Bingham rheology.

The rheological parameters are the yield strength Sy and
the plastic viscosity h. The Bingham flow condition, which
requires that the shear stress is greater than the yield strength,
is modeled by introducing a critical height hcr and having flux
between two adjacent cells only when h > hcr, with h being the
lava height in the cell with the higher total height. When this
condition is verified, the volumetric flux is given by:

(1)

where Dx is the distance between adjacent cells, and a =
h/hcr. The Bingham flow condition ensures that a > 1 always
when the formula is applied.

The critical thickness hcr is computed from the yield
strength and the slope angle, to account for both pressure-
driven and gravity-driven flows, according to the formula:

(2)

where t is the lava density, a is the slope angle of  the inclined
plane, g is the gravity acceleration, Dz is the overall height
difference (considering ground elevation and lava height),
and Dh is the difference in lava thickness. 

Following Ishihara et al. [1990], the yield strength is
computer according to the formula:

(3)

and the viscosity follows Giordano and Dingwell [2003]:

(4)

where T is the temperature in Kelvin, and H2O is the water
content in weight percent (wt%). MAGFLOW assumes a
constant (average) water content across the flow, and its
value is a user-controlled parameter that is typically in the
range 0.02-0.2.

The actual amount of  lava gained or lost by a cell at each
iteration is given by the total flux Q of  the cell multiplied by
the timestep Dt for that iteration. To prevent non-physical
solutions, the timestep is controlled by ensuring that for each
cell QDt < chA, where h is the lava height in the cell and A is the
cell area. The constant 0 < c < 1 ensures that only a fraction of
the total fluid lava volume is lost at each iteration, and this

should be selected o be small enough to ensure that the
stationary solution of  the Navier-Stokes equation used to
compute the flux remains approximately valid during the next
step. The timestep used by the cellular automaton is then the
minimum of  the Dt computed by each cell.

3.1. Computational pipeline
An iteration of  the cellular automaton can be divided

into the following steps, each of  which can be executed
independently by each cell: (i) compute the eruption flux if
the cell is a vent cell; (ii) compute the fluxes with the
neighboring cells; (iii) compute the maximum allowed
timestep; and (iv) update the cell status. 

The cell-status update itself  consists of  three steps: (a)
compute the new lava thickness; (b) compute the heat
radiation loss; and (c) transfer an appropriate amount of  lava
thickness to the solid lava thickness if  there is solidification.

There are a few important differences between serial
and parallel implementation of  such an algorithm. When
computing the fluxes between neighboring cells, serial
execution can compute the flux between each pair of  cells a
single time, and then add the result (with opposite signs) to
the total flux of  each cell involved. On the other hand, a
parallel implementation benefits more from totally
independent cell evolutions: it is therefore more efficient to
let each cell compute all of  its fluxes, even though this means
that fluxes will be computed twice.

Similarly, during the serial execution, the maximum
allowed time-step is updated by each cell at the end of  the
flux computation loop, while a parallel implementation
would store the maximum time-step of  each cell in an array,
and then use parallel reduction to determine its minimum.

In both cases, the simulation time is updated at the end
of  the iteration, and a new iteration begins if  the simulation
time has not passed the given end time.

4. Preliminary results

4.1. A test case: the 2001 Mount Etna eruption
To test the performance of  our CUDA implementation,

we compare here the timing for three different NVIDIA
GPUs versus the CPU timing. All of  these simulations were
run on the same machine, which has an Intel Core2 Quad
clocked at 2.83 GHz as well as all three of  the GPUs specified
in Table 1. The operating system used for the tests is Ubuntu
10.04, with the CUDA tool-kit version 3.2.

To compare the computational performance of  the
CPU and GPU implementations, we look at the average
number of  evolutions per second simulated by each
hardware choice, and then compute the speed improvements
obtained by the CPU over the GPU.

The average number of  evolutions per second (obtained
by dividing the total number of  evolutions at the end of  the
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simulation by the seconds spent in the simulation functions)
gives us better grounds for comparison than the simple
runtime, because due to hardware differences, the actual
number of  evolutions needed to complete the simulation
differ on the different hardware platforms, as further
discussed in Section 5.3 (Accuracy).

In applications such as scenario forecasting, the total
runtime of  a simulation, i.e. the time from program launch
to production of  the results, is an important factor to
consider, and possibly even more so than the bare
computational speed improvements that we have considered.
The total runtime accounts for janitorial and maintenance
tasks, such as loading the initial data and saving the final
results, in addition to the time spent in the actual simulation.
It is therefore important to consider that the GPU code must
perform some additional tasks with respect to the CPU
implementation; namely, the uploading of  the initial data to
the GPU, the retrieval of  the maximum allowed Dt at each
time step, and finally the download of  the final results from
the GPU. However, the total cost of  these additional
operations is barely significant, and they only take a fraction
of  the overall simulation time: the overall performance of
the GPU implementations closely follows  the computational
performance in terms of  the overall speed improvements, as
shown by the results presented in the next section.

We will present and discuss the timing results from two
simulations, both based on the data available for the 2001
Mount Etna eruption, and which differ only in the size of  the
cells and the cell numbers, due to their different grid
resolutions (DEMs with 10-m and 5-m cell resolutions,
respectively).

4.2. Performance comparison
By considering only the raw computational power of  the

CPU and the GPUs, and therefore factors such as the clock
rates, the number of  cores, and finally that on the GPU each
flux is computer twice (once per cell, instead of  once per pair
of  cells), we can expect a maximum speed improvement of
about 8 times when using the 9500 GT. Similarly, the GTX 280
can be expected to be 6-to-8-times faster than the 9500 GT
(and thus about 50 times faster than the CPU), and the GTX
480 more than twice as fast as the GTX 280 (and therefore
about two orders of  magnitude faster than the CPU).

The actual performance numbers are presented in
Tables 2 and 3. We also show the average runtimes over three

simulations for each hardware choice, with the offsets for the
slowest and fastest execution times (Table 4). The results
show both the accuracy of  the timing throughout the study,
and how the runtimes essentially follow the qualitative
benefits of  the computational speed improvements.

The highlights of  Tables 2 and 3 are the low
performance of  the oldest hardware generation, which
comes out as 3-to-4-times slower than the forecast according
to its raw computing power; only minor differences in the
speed improvements are seen between the 10-m and 5-m
cells. The more modern hardware, on the other hand, comes
closer to the expected results for the 5-m cells, but falls short
by about 50% with the 10-m cells.

These phenomena can be explained by looking at some of
the factors that can have a significant (negative) impacts on the
performance of  a GPU. The first, and probably the most
important factor, is given by the very high latency of  the GPU
global memory: 800 computing cycles are needed to access a
single value in the global memory, with the threads stalling in
a wait queue until the datum becomes available. The GPU can
compensate for these long wait times by coalescing memory
accesses and by running some threads while others are stalled.

Coalescing happens when a single memory access is
carried out to fetch or write multiple values. This typically
happens when threads with consecutive global indices in the
launch grid access values that are contiguous in correctly
aligned memory; the actual details about when memory
accesses are coalesced depend on the hardware, with that of
the more recent generations having improved coalescing
capabilities than the older hardware.

The thread dispatcher built into the GPU will also take
care of  the execution of  threads that are ready to run while
the others are stalled waiting for data: this will allow the
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CPU 9500 GT GTX 280 GTX 480

CUDA compute capability n.a. 1.1 1.3 2.0

Clock rate (GHz) 2.83 1.35 1.30 1.40

CUDA cores n.a. 32 (4 × 8) 240 (30 × 8) 480 (15 × 32)

Table 1. Specifications of  the hardware used to run the test simulations.

CPU 9500 GT GTX 280 GTX 480

10 m DEM cell 86.2 127.8 2501.6 4415

5 m DEM cell 17.1 31 833.5 1685

CPU 9500 GT GTX 280 GTX 480

10 m DEM cell 1 1.5 29 51.2

5 m DEM cell 1 1.8 48.7 98.5

CPU 9500 GT GTX 280 GTX 480

10 m DEM cell 6:07:21 ± 4s 4:05:26 ± 3s 13:58 ± 2s 8:29 ± 2s

5 m DEM cell 89:35:59 ± 35s 43:04:26 ± 21s 1:39:31 ± 2s 52:46 ± 1s

Table 2. Average number of  automaton evolutions per second.

Table 3. Speed improvement factors over the CPU.

Table 4. Total runtime (h:m:s).
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latency of  subsequent accesses to be covered by the
execution of  the other threads, as long as there are enough
threads ready to be executed.

When all of  the GPU multicores are busy running
threads, the GPU is said to be saturated. Saturation typically
needs tens or hundreds of  thousands of  threads, depending
on the complexity of  the kernels, and it is also a very
important factor in achieving optimal GPU performance. A
rule of  thumb to detect saturation is a linear increase in the
execution time with the size of  a problem. Indeed, Table 2
shows such a trend for the 9500 GT, but not for the GTX cards.

A third aspect that can have an impact on the
performance is given by the number of  divergences in the
code. Divergences happen when threads in the same block
run different branches in conditional code paths. When such
a situation occurs, thread execution is serialized by the GPU,
losing the benefit of  the parallel execution, which is a crucial
aspect of  the GPU performance.

In the MAGFLOW case, the first phase of  an eruption
has conditions that are typically not favorable for the GPU, as
there are only a very few active cells, and a number of  these
are either neighbors to the vents or are boundary cells for
the lava flow, both of  which represent situations that increase
the number of  divergences. When the number of  such cells
is dominant, the GPU will suffer significant performance loss,
resulting in little benefit over the CPU execution.

The GPU works closer to peak performance when the
number of  cells covered by the main body flow grows to be
significant. This usually happens towards the end of  the
simulation, if  the lava flow grows to cover a large area, or if
the resolution of  the DEM is not too coarse.

5. Porting details

5.1. Memory structures
Most of  the automaton data is stored in the GPU global

memory. To allow easier coalescing, and thus to speed up
memory access, we follow the best practice recommended by
NVIDIA: the use of  “structures of  arrays” rather than “arrays
of  structures”. While the original serial implementation of
MAGFLOW defined a cell structure holding the data for that
cell, and the automaton was modeled as a list of  cells, the
CUDA version of  MAGFLOW defines six arrays with the CPU
and 10 arrays with the GPU. These six CPU arrays are ground
elevation, vent index (which is 0 if  the cell has no vent, or the
vent number otherwise), lava height, solid lava height, heat
quantity, and temperature.

Each of  these arrays has the number of  elements equal
to the number of  cells in the automaton. With the GPU,
there are six arrays that mirror those of  the CPU, plus four
additional arrays that hold lava fluxes, heat fluxes, the
maximum time-step, and a marker to denote whether the
cell has an erupting vent or not. Again, these arrays have as

many elements as there are cells in the automaton.
The only CPU arrays that get initialized and uploaded to

the GPU are the ground elevation array, where the data are
read from a specified DEM file in ASCII grid format, and the
vent index array. The other arrays are only used during
checkpoints, to download the data from the GPU and to save
the results on file. They are also used when loading a
previous checkpoint to continue a simulation that was
interrupted abruptly.

5.2. CUDA kernels
In MAGFLOW, the CUDA computational kernels can be

distributed in a natural way by having one thread per cell in the
automaton. The iteration structure also suggests a natural way
to split the algorithm into computational kernels:

Erupt, which is executed only on vent cells and which
computes the effusion rate at the given time;

CalcFlux, which is executed on each active cell and
which computes the ingoing and outgoing lava fluxes with
respect to all 8 neighbors, and the maximum timestep for
that cell;

Reduction, from the CUDPP library [Sengupta et al.
2008], which operates a parallel reduction to determine the
maximum allowed timestep;

UpdateCells, which is executed on each active cell to
update its status, and thus to complete the iteration.

The instant timings for each kernel, i.e. the actual kernel
runtime at each iteration, are plotted in Figure 1.

The instant timings show that the runtime for CalcFlux,
the timestep reduction and UpdateCells grows with the
number of  active blocks. The Erupt kernel, on the other
hand, has an overall constant runtime, which is one-to-three
orders of  magnitude lower than the runtime of  each of  the
other kernels. A small decrease in the execution time is seen
in the Erupt kernel due to the actual eruption ending a few
days before the end of  the simulation.

On the GTX 280 and GTX 480, the runtime of  CalcFlux
has a slightly negative slope after the maximum number of
blocks is reached. This is due to the increasing homogeneity
of  the status of  the active cells as the eruption progresses,
and the consequent decrease in the number of  divergences
for the conditional kernel code.

The differences in the runtimes between Erupt and the
other kernels is particularly visible for the oldest hardware,
while with the newer hardware, CalcFlux and UpdateCells
gain up to an order of  magnitude in execution speed. The
same is not observed for Erupt, which is easily explained by
noting that CalcFlux and UpdateCells are highly parallel, as
they are distributed across all of  the active cells, while Erupt
is limited to the very small number of  vent cells. Therefore,
the Erupt kernel does not scale as well as the others with the
improvements offered by the newer hardware. On the GTX
480, the Erupt runtime is of  the same order of  magnitude

PORTING AND OPTIMIZING MAGFLOW ON CUDA



(10-2 ms) as the hard lower boundary imposed by the kernel
launch time.

The same factors also influence the distribution of  the
runtime percentages at each iteration, as plotted in Figure 2.
The percentages are obtained by dividing the runtime of  the
single kernel by the sum of  all of  the kernel runtimes at the

given iteration. These clearly show that CalcFlux takes more
than half  of  the total iteration runtime, as expected by its
high computational density, but with a decreasing weight
(from over 75% on the 9500 GT down to 65% or less on the
GTX 480) as the hardware improves and the kernel runtimes
grow smaller.
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Figure 1. Instant timings for each kernel on the 9500 GT (left), GTX 280 (center) and GTX 480 (right). The kernel timing is on a base-10 log axis, and the
block sizes are on a base-2 log axis.
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5.3. Accuracy
For historical reasons, the first generation of  NVIDIA

GPUs was strongly optimized for floating-point operations in
single precision; the later hardware revisions introduced
support for double precision, which was about eight-times
slower than single precision. Although the support for
double precision has greatly improved with the latest
generation of  NVIDIA GPUs (known as Fermi), our CUDA
implementation of  MAGFLOW uses single precision to
support a wider range of  hardware.

The existing CPU implementation of  MAGFLOW can
be used with either single or double precision, which is
important both for performance comparison with the GPU
implementation (in our benchmarks here, we used single
precision on both the CPU and the GPU), and to help
determine the numerical robustness of  the algorithm.
Indeed, the lack of  associativity of  the floating-point
operations (on both CPUs and GPUs) can produce slight
differences in the computed fluxes, which can depend, for
example, on the order in which the neighborhood is
transversed (clockwise vs counterclockwise, which neighbor
the cycle is started from, etc.)

The differences in the flux computation can accumulate,
although even on long-running simulations (a month of
simulated time), the number of  cells invaded by lava and the
cell status components (height, heat, solid height, temperature)
remain well within 1% discrepancy. The algorithm itself  is
therefore particularly stable numerically. Further details, with
a more complete analysis of  the sensitivity of  the model can
be found in Bilotta et al. [submitted 2011].

We elected to further improve the accuracy of  the GPU
code by using Kahan summation [Kahan 1965] during the
flux computation. This incurs a performance penalty of  less
than 5%, due to the handful of  extra summations that need
to be computed, but it stabilizes the results with respect to
the neighbor access patterns. 

Kahan summation was also considered for the
evolution of  each of  the cell variables, but the idea was
discarded due to its inefficiency. Using Kahan summation
for the cell evolution requires one additional array for each
cell status variable (height, heat, solid height, temperature),
to store the Kahan reminders, and this results in the need
for twice the access to the global memory during the
UpdateCells kernel. The overall effect on the performance is
between 25% and 30%, which is not justified for differences
in the results of  less than 1%.

6. Optimization

6.1. Register use
The effects of  latency hiding that are provided by having

more blocks per multiprocessor can be seen by studying the
effects of  register use. 

For example, the CalcFlux kernel with Kahan
summation compiles by default for the use of  33 registers,
which results in a limit of  six blocks per multiprocessor on
the GTX 280; forcing the compiler to use no more than 32
registers, thus allowing eight concurrent blocks, results in a
5% speed improvement for the kernel. On the 9500 GT,
however, a reduction in the number of  registers (thus
bringing the concurrent blocks from three to four) provides
no significant benefits.

6.2. Active cells and block structure
At each iteration, only the cells that either have lava or

have a neighbor with lava can have non-zero thermal or mass
flux, and therefore can evolve into a different status at the end
of  an iteration. In the CPU implementation of  MAGFLOW,
the number of  cells for which fluxes were computed was
therefore minimized by the tracking of  a list of  active cells,
which was updated at the end of  each iteration when a
previously empty cell had a positive lava flux.

A similar approach with the GPU would result in
scattered memory reads and very low coalescing, with a
drastic reduction in performance. To favor the regular access
patterns that increase coalescing and improve the memory-
access performance, our choice was to compute at each
iteration the smallest rectangular bounding box that covered
any cells with fluid or solid lava, plus one additional row/
column on each of  the four sides of  the rectangle.

With the appropriate memory and block layout (see also
Sections 6.3 and 6.6) the two-dimensional structure of  the
blocks and the grid allows fast memory access, which on the
Fermi architecture provides good exploitation of  the cache.
The bounding box also ensures that all of  the active cells (in
the sense used for the CPU implementation) are included in
the computation, although it also includes a number of
additional cells for which fluxes do not actually need to be
computed. Figure 3 illustrate a fictitious case that represents
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Figure 3. Bounding box inefficiency. Black squares mark cells with lava,
yellow squares mark active cells without lava, white squares (inside the
red frame) indicate cells for which computations are run but which are
known to have zero flux.



the worst possible situation, in which the lava flow has a linear
emplacement which is at 45˚ with respect to the automaton
orientation.

An interesting effect of  the bounding box covering is
that especially during the latter phases of  the simulation, a
single extra active cell in one direction can cause the number
of  cells for which computations are run to jump suddenly by
a significant factor.

This phenomenon can be seen in Figure 1, when
comparing the behavior of  the GTX 480 (right) with that of
the GTX 280 (center) for the 5-m DEM resolution, around
about day 20. The detailed plot of  the grid structure with the
distinct width and height increases (Figure 4) clearly shows
the anomalous step caused by the 384 × 4 block grid
expanding to a 384 × 5 grid.

6.3. Optimal thread and memory layout
The optimal block structure for kernel execution depends

on the compute capability of  the hardware, due to the
following differences between the hardware generations: the
number of  cores and registers and the amount of  shared
memory available for each multiprocessor, the improved
memory coalescing available in devices with a compute
capability 1.2 or higher, and the availability of  L1 and L2 cache
memory in devices with a compute capability of  2.0 or higher. 

The thread layout can be tuned both in terms of  the
number of  threads per block and with respect to the two-
dimensional structure of  the block. For example, blocks with
64 threads can be distributed as 64 threads in a row (1 × 64),
64 threads in a column (64 × 1), a square block with 8 × 8
threads, or any other combination. The choice can have a
drastic impact on performance, as it contributes to the
improvement of  coalescing of  memory access.

In particular, it is important that the thread block
structure closely follows the memory structure. The linear
layout of  the two-dimensional array storing cell data in global
memory can be either row-major, with the data in the same
row that occupies consecutive column-ordered memory
locations, or column-major, with the data in the same column
that occupies consecutive row-ordered memory locations.

With row-major global arrays, a block structure of  1 × 64
is optimal because threads in the same block will access
consecutive memory locations, which improves coalescing.
Conversely, with column-major data disposition, a block
structure of  64 × 1 will provide the best performance. The
results for row-major data ordering are shown in Table 5, with
the average number of  evolutions per second correlated to the
block structure, assuming a constant block size of  64 threads.

We can see that in the case of  the 9500 GT, the oldest
device, the block structure does not have any significant
influence (10% variation). In the case of  the more recent
hardware, however, the correct block structure can provide up
to a five-times boost in performance. This can be explained by
the very small number of  concurrent blocks that can execute
on a multiprocessor in the 9500 GT and to its reduced
coalescing capabilities, which means that the global memory
access latency is the dominant slowing down factor. In the case
of  the GTX 280, instead, the improved coalescing and the
higher number of  blocks that can be dispatched to a single
multiprocessor result in much more reduced memory
latencies in the case of  the optimal block structure.

These effects are not as obvious in the case of  the GTX
480 due to the L1 cache that is provided by its Fermi
architecture, which helps further to reduce the memory
latency. Indeed, if  we let the block size grow with the GTX 480,
we can see how the performance improves until the number of
blocks per multiprocessor drops below the level at which the
cache system can compensate for this (Table 6). In this case, a
more two-dimensional block structure helps to improve the
performance, as the L1 cache becomes more effective.
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Figure 4. Width and height of  the computational grid, and resulting
number of  blocks, during the 5-m simulation with the GTX 480. The left
scale tracks the width of  the grid in blocks, the right scale tracks the height
of  the grid and the total number of  blocks, in hundreds of  blocks. The
large step around day 20 is caused by the width of  the grid increasing from
4 to 5, when the height of  the grid is already at 384 blocks.

Block size
(rows × cols)

9500 GT GTX 280 GTX 480

1 × 64 114 2501 3449

8 × 8 127 1347 3345

64 × 1 120 553 869

1× 64 1 × 128 1 × 192 2 × 64 3 × 64 4 × 64

GTX 480 3449 3634 3151 4285 4326 4210

GTX 280 2501 2150 n.a. 2299 n.a. n.a.

Table 5. Influence of  block structure on the average number of  evolutions
per second, with 64 threads per block.

Table 6. Influence of  increased block size on the GTX 480 and GTX 280.
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Table 6 shows that the GTX 480 reaches its peak
performance with 192 threads per blocks, with a 3 × 64
structure, while blocks with more than 64 threads are
counter productive on the older hardware generations.

6.4. Texture versus global memory
Graphic cards provide a special memory area, called the

texture memory, that is optimized for two-dimensional access
and that provides caching even on the older hardware
generations. Although the two-dimensional structure of  the
cellular automaton suggests that this feature can provide some
benefit, experimentation shows that the reads and writes of
the coalesced global memory obtained with the highly regular
access patterns of  appropriate thread/ block structuring leads
to a higher data throughput than for the noncoalesced but
cached texture memory. Indeed, the loss of  coalescing due to
the use of  the texture memory can reduce the implementation
performance by two or three times.

6.5. Shared memory versus multiple data reads
With a fully parallelized implementation, each cell

computes the interaction with all of  its neighboring cells,
with the result that each interaction is computed twice. As
flux computations depend on costly operations, such as the
exponential, it is possible to halve the number of  operations
by computing each interaction once and then updating both
of  the cells involved.

To achieve this, each block must load into the shared
memory the height, total solid height, and temperature of
the whole block, plus a ring of  neighboring cells; this is
achieved according to the loading pattern illustrated in
Figure 5. The shared memory also holds the lava and heat

flux for each cell in the block, before it is stored back in the
global memory.

Each cell then computes the interaction with its left,
bottom left, bottom and bottom right neighbors, while
updating both its own flux and that of  its neighbor. Thread
synchronization is used between the updates, to ensure that
all of  the writes occur correctly. The leftmost, rightmost
and topmost cells also compute the interactions with the
outer ring that are not computed in the common loop
(Figure 6).

In this case, a block structure with a square shape
provides the best benefit, as the amount of  shared
information is higher. However, the benefits of  this approach
depend on the compute capability of  the device: the
enormous increase in shared memory use results in a
proportional reduction in the concurrent block execution.
Additionally, the different behavior of  the extremal cells in
each block causes divergences at every execution, both
during the initial phase of  the kernel execution (data
loading), and during the computational phase.

While a net benefit of  35% has been measured for the
older, memory-bound hardware, such as the 9500 GT, due
to the reduced computation, the much smaller number of
concurrent blocks results in an equal loss in kernel
performance for the GTX 280, as the reduced number of
computations are not sufficient to offset the reduced
number of  concurrent threads. Given the obsolescence of
the older hardware, the structure without shared memory is
preferred. The L1 caching introduced in the Fermi
architecture (GTX 480) provides an automatic way to reduce
memory access, which is more efficient than manual shared
memory use.
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Figure 5. Load pattern for shared memory use. Each block cell (inside the
red frame) loads its own data, and the boundary cells also load data from
the outer ring of  their neighboring cells.

Figure 6. Flux computation pattern. When all of  the cells use the same
pattern (highlighted in the central cell), each pair of  cells interacts only
once, although the cells in the outer rim are missing some neighbors,
which requires additional interactions to be computed.



6.6. The Fermi L1 cache
With the new Fermi architecture, NVIDIA introduced

two caching levels for global memory access (L1 and L2).
The appropriate use of  this capability can bring a substantial
benefit to the execution of  kernels that require repeated
access to a small number of  global memory values from
multiple threads in the same block. This is indeed the case
for our flux computation kernels, where all of  the
neighboring cells have to access each other’s height, lava
height, solid lava height and temperature.

As much of  the hardware for the L1 cache is common
with the shared memory hardware, CUDA provides an
interface that allows the programmer to choose whether
shared memory is preferred (in which case 48 kb will be used
for the shared memory, and 16 kb will be used for the L1
cache), or whether the L1 cache is preferred (in which case
16 kb will be used for shared memory, and 48 kb will be used
for the L1 cache). A third option (which is the default)
informs CUDA that the kernel should use whatever setting
is currently active, which is typically to prefer shared
memory, unless the programmer has set the preference as
the L1 cache for a previous kernel.

As in our case shared memory does not bring any
particular benefit for the more recent GPUs, we can set
CUDA to prefer L1 caching to shared memory without
affecting the number of  kernels being executed.

The performance comparison (Table 7) shows a

consistent gain of  about 2% that derives from the preference
for L1. We can get deeper insight into how the cache affects
the performance by making use of  the visual profiler
provided in the latest versions of  CUDA, and by analyzing
the impact that the cache settings have on the cache hit rate
(Figure 7) and on the average kernel runtime (Figure 8).

We observe that the effects on the two kernels of  the
cache preference and the block structure are quite different,
as expected. As CalcFlux needs to access the data for each
cell multiple times, the cache hit rate without any specific
optimization is already relatively high (>50%), and is limited
by the actual cache size, as expressed by the increase in the
cache hit rate with the preference for L1 caching.

In contrast, the UpdateCells kernel only accesses data for
a single cell in each thread, and therefore it can exploit the
cache at a much lower level; this is indicated by the lack of
significant increase in the cache hits when L1 is preferred, for
the default 1 × 64 block structure. As the block structure
becomes more rectangular with the increase in the first
dimension, the Fermi hardware can make better use of  the
cache lines, and the cache size becomes an increasingly
limiting factor.

The average kernel runtime provides a comparison with
the older CUDA architecture, thereby indirectly showing the
influence the new L1 cache can have on performance. In
Figure 8 there is a growth in the average of  the GTX 280
kernel runtimes, as expected by the increased block size and
the diminishing number of  blocks per multiprocessor.

In contrast, for the GTX 480, the CalcFlux kernel shows
a constant decline in the average runtime with the increase in
the blocksize, which can be explained by the cache efficiency
and the high number of  memory accesses required by the
kernel. In the UpdateCells case, on the other hand, we again
see a slight increase in the average runtime, due to the very
small number of  memory accesses and the consequent minor
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Figure 8. Average running time for each kernel for the different block
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1 × 64 2 × 64 3 × 64 4× 64

Prefer shared 3449 4285 4326 4210

Prefer L1 3543 4337 4415 4328

Table 7. Average number of  evolutions per second on the GTX 480 that
depend on the shared versus L1 preference setting for kernel launch.
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impact of  the caching. The L1 influence can, however, still be
seen by considering that the GTX 280 suffered almost a 100%
increase in average runtime with a triple block size, while for
the GTX 480 this effect was limited to a 30% increase. 

6.7. CPU versus GPU vents
The eruption phase cannot really exploit the GPU

parallel computation capabilities. However, it is more
efficient to run the kernel on the GPU directly rather than
running it on the CPU and then uploading the new data to
the GPU at every iteration, because of  the high host-to-
device latency.

6.8. Vector types versus separate memory array
The cellular automaton structure needs four floats to

describe each cell status, plus two floats to describe mass and
heat flux from cell to cell. This suggests that using the native
float4 and float2 vector types might result in more efficient
code and better memory accesses.

As with the shared memory, however, the actual benefit
is only present for the lower-end hardware (9500 GT), where
the bottleneck is caused by the memory access, and the
lower number of  blocks limits the number of  blocks running
concurrently: switching from arrays of  floats to arrays of
vector types in this case results in a gain in performance of  up
to two times.

For the GTX 280, however, the same change results in a
10% loss in performance, due to the higher register use of
the resulting kernel. This again can be mostly recovered by
forcing the compiler to use no more than 32 registers for the
kernel, which limits the performance loss to 1%; this can be
attributed to the slightly inferior bandwidth that vector types
have over scalars.

7. Conclusions
The MAGFLOW cellular automaton has an intrinsically

highly parallel structure that can substantially exploit the
high-performance parallel hardware of  modern GPUs. A
straightforward conversion of  the serial CPU code leads to
only minor improvements in the execution speed on the
older GPUs, while a speed improvement of  almost 50 times
can be obtained with the last generation of  CUDA cards
during the simulation of  lava flows from typical Mount Etna
eruptions. Further benefits are harder to achieve for typical
eruptions due to the inability for these events to saturate the
hardware, although long-running eruptions or lava flows
spanning a wider area can provide speed improvements of
almost 100 times.

We believe that the optimization strategies presented in
this study can also be useful for other CUDA applications
that are based on similar mathematical structures and
algorithms. In particular, the same computational approach
can be extended to include other hazardous natural

phenomena where the physical modeling is close to that of
lava flow, with the primary examples being land slides and
debris flow.

An optimization that has not been implemented yet is
the possibility to use different block sizes for the CalcFlux
and UpdateCells kernels. The profiling conducted on the
GTX 480 card appears to indicated that a block size of  1 × 64
is optimal for UpdateCells, while 3 × 64 is optimal for
CalcFlux; however, UpdateCells only takes 10% of  the total
evolution time, and the consequent speed improvement of
30% on its runtime would result in a net impact of  less than
1% over the whole simulation runtime; this is actually within
the standard runtime fluctuations encountered during our
tests.

Other optimizations might also be possible, in particular
concerning the bounding box strategy used to determine the
kernel launch grid: the current strategy can launch a
significant number of  kernels on cell which are far from the
lava flow and would therefore not need flux calculations nor
updating. A more sophisticated strategy can be used to map
execution blocks only on the minimal number of  cells
surrounding the lava flow that can be covered, while still
retaining the efficient memory access patterns that ensure
coalescence (and high L1 cache use on the GTX 480).
Experimentation is needed to determine whether the
complexity of  such an irregular grid mapping would be
balanced out by the fewer blocks needed to cover the active
area of  the automaton.

Even without this additional optimization, the increase
in simulation speed is already sufficient to provide a 7-day
forecast in a couple of  minutes, and a month forecast in 10 to
15 min. This thus matches, or indeed surpasses, the speed of
more simplistic lava-flow simulation models, while still
retaining the reliability of  the physics-based evolution.
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