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Abstract

Background: In the past decade, systematic and comprehensive analyses of cancer genomes have identified

cancer driver genes and revealed unprecedented insight into the molecular mechanisms underlying the initiation

and progression of cancer. These studies illustrate that although every cancer has a unique genetic make-up, there

are only a limited number of mechanisms that shape the mutational landscapes of cancer genomes, as reflected by

characteristic computationally-derived mutational signatures. Importantly, the molecular mechanisms underlying

specific signatures can now be dissected and coupled to treatment strategies. Systematic characterization of

mutational signatures in a cancer patient’s genome may thus be a promising new tool for molecular tumor

diagnosis and classification.

Results: In this review, we describe the status of mutational signature analysis in cancer genomes and discuss the

opportunities and relevance, as well as future challenges, for further implementation of mutational signatures in

clinical tumor diagnostics and therapy guidance.

Conclusions: Scientific studies have illustrated the potential of mutational signature analysis in cancer research. As

such, we believe that the implementation of mutational signature analysis within the diagnostic workflow will

improve cancer diagnosis in the future.

Keywords: Mutational signature, Cancer diagnosis, Cancer biomarkers, Cancer genomics, Molecular

medicine, Whole genome sequencing

Background

Historically, cancer diagnostic and treatment decisions

were predominantly based on tumor morphology, clin-

ical symptoms, and the cancer site of origin. In the past

decade, systematic analyses of cancer genomes have

changed this paradigm [1], and the term ‘cancer’ now

encompasses more than a hundred different diseases dif-

ferentiated on the basis of varying combinations of can-

cer gene mutations [2, 3]. This development, together

with the emergence of molecularly targeted drugs, re-

sulted in an increase in molecular testing to support de-

cision making in cancer diagnostics and treatment.

Thus far, the development of cancer diagnostics has

mainly focused on identifying driver mutations that pro-

vide growth advantages to cancer cells and thereby

promote tumorigenesis [2]. Genetic testing for driver

genes can identify the biological characteristics of tu-

mors. These genes can also act as direct targets for ef-

fective treatment. The rapidly growing number of drugs

directly targeting proteins encoded by mutated driver

genes has fueled the development of assays for the ac-

curate detection of mutations for cancer diagnosis [4].

Although this knowledge has contributed significantly

to drug development and improved cancer care, a sub-

stantial portion of patients do not benefit from this strat-

egy because of poor response rates to targeted drugs and a

lack of adequate biomarkers. Therefore, cancer diagnostics

require better molecular characterization of tumors, as

well as reliable biomarkers for patient stratification.

Next-generation sequencing (NGS) technologies have

emerged as an important tool to fulfill this unmet need.

The capacity of NGS to analyze large panels of genes, up

to complete cancer genomes, has enabled the generation

of comprehensive catalogues of somatic mutations in can-

cer patients [5–7]. However, only a very small fraction of
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the identified variants are tumor drivers or actionable bio-

markers. The vast majority of somatic mutations in a can-

cer genome are passenger mutations, which are not

believed to be involved in cancer development. Neverthe-

less, it has recently been shown that these alterations can

be used to provide insight into the history of the tumor

and identify mutational processes that have occurred be-

fore and during tumorigenesis [8]. Somatic mutations can

originate from exogenous factors, such as environmental

carcinogens or UV radiation, or endogenous processes,

such as normal mutational decay due to spontaneous de-

amination of methylated nucleotides, base misincorpora-

tion by error-prone polymerases, and unrepaired or

incorrectly repaired DNA damage due to impaired DNA

damage response (DDR) gene function (reviewed by Hel-

leday et al. [9]). Interestingly, each of these leave a charac-

teristic pattern of mutations, which have been dubbed

‘mutational signatures’ [8]. For instance, cells defective in

homologous recombination repair (HRR) machinery or

non-dividing cells must rely on alternatives to repair DNA

breaks, such as non-homologous end-joining and alterna-

tive end-joining to repair double-stranded DNA breaks

[10]. These repair processes are not error free and leave a

characteristic mutational pattern, which has been shown

to be useful for the identification of tumors deficient in

HRR [11, 12]. Mutational signatures can therefore reflect

the presence or absence of cellular processes in cancer

cells. Because multiple endogenous or exogenous muta-

tional forces can operate simultaneously or successively

on the genome during a cell’s life span, the mutational

catalogue of a cancer genome harbors a mixture of signa-

tures shaped by different mutational processes. Some of

these mutational processes are active continuously

throughout the lifetime of the cancer cell (clock signa-

tures) [13], whereas others are active periodically, some of

which are influenced by the patient’s lifestyle [14].

It has recently been shown that mutational signatures

can be biomarkers for specific characteristics of a cancer

[8, 15]. As such, they bear potential clinical value as pre-

dictors of the therapy response in cancer [11]. An import-

ant prerequisite for mutational signature analysis is the

availability of genome-wide mutational data across many

independent cancers. As the cost of whole-genome se-

quencing decreases and the amount of available cancer

mutation data grows, it is timely to consider mutational

signature analysis a novel opportunity for biomarker dis-

covery, tumor diagnostics, and treatment guidance.

Signatures reveal mutation etiology

The first mutational signatures introduced were base

substitutions. For these mutation types, a signature is

characterized by the specific base change and its direct

5′ and 3′ flanking base. Because there are six classes of

base substitution and 16 possible sequence contexts,

there are 96 distinguishable trinucleotide changes.

Therefore, mutational signatures can be distilled from

large cohorts of sequenced cancer patients by a compu-

tational framework that attempts to decompose distin-

guishable recurrent patterns from the cohort’s

96-mutation matrix. Ultimately, each pattern represents

the relative proportion of each trinucleotide mutation,

which reflects a mutational signature. More theoretical

details about the framework can be found in Alexandrov

et al. [16], and Serena et al. [17] provides a chronological

overview on mutational signature analysis in cancer.

Although mutational signatures are a relatively recent

concept in cancer biology, the idea of linking mutational

processes with mutational patterns is not new. The first

studies linking specific mutation characteristics to vari-

ous environmental mutagens, such as UV-radiation [18],

smoking [19], and aristolochic acid [20], were focused

on single cancer genes that were recurrently mutated in

a wide range of cancers, such as TP53 and BRAF. These

studies provided the first evidence that mutational pro-

cesses can leave characteristic patterns in the DNA that

are visible and analyzable in tumor samples via the de-

tection of distinct signatures [21]. In 2013, Stratton and

his team introduced a computational framework that

used nonnegative matrix factorization (NMF) to

recognize multiple base substitution patterns in human

cancers [15, 22]. Moreover, some of these patterns corre-

lated with known mutagenic processes, indicating that

this mathematical concept can extract biologically rele-

vant information to unravel mechanisms underlying

tumorigenesis [16]. Since this seminal study by Stratton’s

group, the field of mutational signature analysis has

grown rapidly in cancer biology. Currently, there are 30

different reference signatures described in primary can-

cer that are categorized in the COSMIC database

(http://cancer.sanger.ac.uk/cosmic/signatures) [22].

However, additional signatures continue to be identified

by various research groups [23–26], and methods to

characterize cancer genomes in a similar way based on

indels, structural variants, and copy-number changes are

currently under development [27].

Comparing these signatures with the scientific litera-

ture, as well as statistically associating them with patient

phenotypes, provided the first mechanistic insights into

the etiology of a number of mutational processes. Mech-

anisms underpinning mutational signatures have been

suggested for roughly half of the 30 COSMIC signatures.

The establishment of large pan-cancer genomic datasets,

such as The Cancer Genome Atlas (TCGA) [28], Wel-

come Trust Sanger Institute’s Cancer Genome Project

[29] and the International Cancer Genome Consortium

(ICGC) [1], were vital for these analyses. By doing so,

exogenous processes (e.g., tobacco smoking and

UV-exposure) and endogenous processes (e.g., APOBEC
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overactivity, deficiency in double strand break repair,

and polymerase slippage) could be attributed to specific

signatures. However, obtaining evidence that the pro-

posed etiology of a signatures is a specific mutational

process, based solely on data derived from cancer pa-

tients, is not straightforward. It is complicated by the

lack of complete catalogues of true pathogenic driver

variants and missing information on the environmental

exposure history of the patient cohort. Additional com-

plexities can be found in the heterogeneous landscape of

mutational processes that is typically identified in indi-

vidual cancers. Furthermore, the detected somatic muta-

tions are the result of a balance between mutation-

inducing and DNA repair processes, which are not fully

independent, and mechanisms may vary between tissues.

Therefore, more controlled experimental approaches are

needed to determine the origin of a signature. We re-

cently showed that the application of CRISPR-Cas9 tech-

nology in human colon organoids to delete key genes

involved in specific DNA repair pathways, followed by

genome-wide characterization of the resulting mutation

patterns, is a powerful approach because it can link the

observed signatures of the accumulated mutations dir-

ectly to the biological functionality of the inactivated

gene [30].

Diagnostic mutational signatures

Currently, the most notable advances in mutational sig-

nature analysis-based diagnosis are in the field of breast

cancer. Tumors with mutations in BRCA1/2 are defect-

ive in the HRR process. These tumors show promising

responses to treatment with a PARP inhibitor (olaparib),

a drug that decreases the DDR in cancer cells to a fatally

low level [31–33]. DNA-damaging agents that directly

induce double strand breaks, such as chemotherapy

based on platinum salts, prove therapeutically efficient

in these cancers as well [34–36]. Recently, a model that

can accurately predict HRR deficiency (HRDetect) was

developed for breast cancers [11]. This computational

tool uses HRR-deficiency features from the complete

mutation catalogue of base substitutions, indels, and

structural rearrangements. The use of this tool revealed

that microhomology-mediated indels, two COSMIC sig-

natures (further referred to as CS) and two rearrange-

ment signatures (further referred to as RS) correlated

with HRR deficiency (Fig. 1). By accounting for their

mutational contribution, HRDetect could predict BRCA-

ness (i.e., a BRCA1/2-associated phenotype) with a sensi-

tivity of almost 100%, which is an improvement on the

sensitivity obtained by more traditional copy number

based tests (~ 60%) [37] and functional assays of HRR

deficiency (~ 80%) [38]. HRDetect identified 44 cancers

that carried a germline or a somatic BRCA1/2 variant in

a cohort of 560 breast cancer patients and, interestingly,

in 47 cancers demonstrating BRCAness in which no

pathogenic variant in BRCA1/2 was detected. The latter

category can possibly be explained by the epigenetic in-

activation of BRCA1/2 or the inactivation of other com-

ponents involved in HRR.

The HRDetect tool demonstrates that signature ana-

lysis can be deployed to successfully identify BRCAness

in patients without the need for prior knowledge of

BRCA mutations. Polak et al. [12] found similar results

in a different breast cancer cohort, and pointed out that

cancers carrying a somatic event in BRCA1 (n = 36, co-

hort size = 995) or BRCA2 (n = 34, 995) had a stronger

contribution from CS-3. Interestingly, cancers that

showed epigenetic silencing of BRCA1 (n = 32, 995) or

RAD51C (n = 23, 995), or that carried germline PALB2

(n = 3, 995) or RAD51C (n = 1, 995) mutations, also dis-

played an increased contribution from CS-3. Because

epigenetic modifications cannot be directly verified by

traditional diagnostic methods, identifying mutational

signatures associated with HRR defects can increase the

number of patients who would benefit from treatment

with PARPi and platinum-based drugs [11]. Recently, we

validated this strategy in breast cancer organoids by sub-

jecting organoids derived from a patient who displayed a

high contribution from CS-3 mutations to two different

PARPi drugs [39]. These organoids were sensitive to

PARPi, whereas breast cancer organoids negative for

CS-3 did not show any response, illustrating the

principle that CS-3 can act as a useful marker for PARPi

sensitivity in cancer. A recent retrospective study com-

puted HRDetect scores for 93 advanced breast cancer

patients, 33 of which were treated with platinum chemo-

therapy [34]. All patients scoring high for HRR defi-

ciency showed a significantly association with clinical

improvement on platinum-based therapy. These findings

provide evidence for the use of mutational signatures as

sensitive biomarkers for HRR defects, and can inspire

the design of therapeutic trials.

Moreover, mutational signature analysis to detect HRR

deficiency could be applied to many different cancer

types beyond breast cancer. Germline mutations in

BRCA1/2 have long been known to affect the risk of

ovarian cancer [40] and pancreatic cancer [41]. Bio-

markers for HRR deficiency were found in 24 additional

cancer classes or cancer-associated syndromes [8, 42–

44]. These findings suggest that HRR deficiency and the

associated therapeutic benefits may apply to a greater

number of patients than is currently appreciated. Indeed,

in a study on pancreatic cancer, all patients that

responded to platinum-based chemotherapy harbored

the BRCA-associated CS-3 [45]. These examples indicate

that an effective response to specific anti-cancer drugs is

more dependent on specific functional defects in a

tumor than by the organ in which this tumor is located.
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Nevertheless, the efficacy of HRDetect in selecting pa-

tients of all cancer types for PARPi, platinum-based,

and/or immune-based therapy needs testing in (pre)clin-

ical trials.

Similar tactics could be employed for other mutational

process signatures as well. DNA mismatch repair

(MMR) corrects stochastic errors by polymerases that

arise during DNA replication [46]. A deficiency in MMR

and DNA proofreading results in increased mutational

load of base substitutions and instability at tandem re-

peats of short nucleotide sequences (a feature called

microsatellite instability [MSI]) [47] (Fig. 1). Colorectal

cancers with MMR deficiency are sensitive to pembroli-

zumab [48] and nivolumab [49], which are both inhibi-

tors of the programmed death 1 (PD1) immune

checkpoint. In 2015, the Consensus Molecular Subtypes

(CMS) Consortium subcategorized all hypermutated

MSI cancers in one CMS group (CMS1, 14% of colorec-

tal cancers) based on gene expression data. Mutational

signature analysis demonstrated that MSI colorectal can-

cers leave specific mutational signatures (CS-6, CS-15,

CS-10, CS-20, and CS-26) [8, 9], which can be used to

identify MMR deficiency in cancers [26, 30]. Recently,

we validated the association between MMR deficiency

and a CS-20-like signature in colon organoids that lack

the essential MMR gene MLH1 [30]. These organoids

were exclusively characterized by this base substitution

signature accompanied by small indels (< 3 bp) within a

tandem repeat context (Fig. 1). These mutation charac-

teristics could be used to identify colon cancer patients

with MMR deficiency even when that deficiency is

caused by epigenetic mechanisms such as the well-stud-

ied MLH1 promotor methylation. Although MRR-defi-

cient cancers dominate in colorectal cancers [50],

signature analysis revealed MMR-deficient pancreatic

cancer as well (n = 3, 180) [51]. Thus, as in the case of

HRR deficiency, signature analysis might be a convenient

approach to simultaneously screen for MMR deficiency

to identify patients who would benefit from immuno-

therapy, regardless of the cancer’s tissue of origin [52].

Indeed, in a follow up study, Le et al. showed that PD1

inhibition is not just successful in treating colon cancer

with MSI but also in treating 11 other cancer types with

MMR-deficiency [53].

A B C D E

Fig. 1 Mutational processes linked to treatment selection via mutational signatures. Mutational signatures in tumor genomes can reflect the

activity of specific mutational processes and thereby provide support for therapy selection. Different types of mutational signatures (a) can be

considered: base substitution signatures (orange), indel signatures (green), rearrangement signatures (yellow), geographically localized mutational

phenomena (blue) or other signatures characterized by copy-number variations (grey). Diagnostic interpretation of characteristic signatures can

contribute to therapy choice (e) and include (green) or exclude (red) patients from a treatment. Actionable pathways that can be identified by

mutational signatures (a) mainly include DNA repair defects (b), which was confirmed by the presence of pathogenic mutations in the indicated

genes in these pathways (c). The prevalence of germline pathogenic mutations in these genes is typically linked to a cancer predisposition

syndrome (d). Abbreviations: CS-[number], COSMIC signature; RS-[number], rearrangement signature; MH-indels, indels at microhomologies; STR-indels,

short tandem repeat-mediated indels; TSB sigs, signatures showing transcriptional strand bias. APOBEC, apolipoprotein B DNA-editing complex; MAP,

MUTYH-associated polyposis; NAP, NTHL1-associated polyposis; PARP, poly(ADP-ribose) polymerase; PPAP, polymerase proofreading associated polyposis.

* defects in base excision repair have been associated with these characteristic substitutions
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Base excision repair (BER) is a third category of DNA

repair that could potentially be discerned by mutational

signatures. Defects in BER components SMUG1, OGG1,

and NTHL1 result in higher rates of C > A transversions

(SMUG1 and OGG1) [54, 55] and C > T transitions

(SMUG1 and NTHL1) [56, 57]. These findings indicate

that the failure of BER processes might also leave spe-

cific predictive marks. Indeed, using CRISPR/Cas9-me-

diated knockout of NTHL1 in colon organoids, we have

shown that NTHL1 deficiency results in increased muta-

tions, which can be attributed to CS-30 [30]. This signa-

ture had been identified in only a single cancer patient

within a breast cancer cohort [22]. Upon examining the

germline of this patient, we identified a heterozygous

mutation causing a premature stop codon in NTHL1,

with loss of heterozygosity in the tumor. Mutations in

MUTYH, a BER- and nucleotide excision repair (NER)--

associated protein, are specifically associated with CS-18

[58] and a CS-18-like signature [26, 59]. Because BER

and NER can both be coupled to transcription [60, 61],

more specific mutational signatures could possibly be

dissected when such genomic features are taken into ac-

count (including CS-4, CS-5, CS-8, CS-12, CS-16, and

CS-22 – see Fig. 1) [8]. For example, a specific muta-

tional signature that closely resembles CS-5 has been as-

sociated with defects in ERCC2, a core protein of the

NER pathway [62]. Importantly, this signature was sig-

nificantly increased in responders to cisplatin compared

to non-responders, and other studies have also con-

firmed a positive response to cisplatin in NER-deficient

patients [63–65]. However, the studies of CS-5 also illus-

trate one of the limitations of the use of mutational sig-

natures. It is now considered that this siganture

represents a universal ageing signature, as does CS-1

[13, 30], since both signatures have been observed in

healthy cells. CS-5 therefore has little diagnostic value,

but it remains to be shown whether quantitative analyses

reveal a robust association of NER deficiency with in-

creased levels of CS-5 mutations. Furthermore, not all

NER-deficient tumors show the same signature contri-

bution, suggesting that distinct mutational processes re-

lated to NER deficiency might be active. Indeed, recent

findings from our laboratory indicate that deficiency in

global genome NER results in a tissue-specific increase

in mutations, which can be attributed to CS-8 [66].

In addition to DNA repair deficiencies, other cellular

processes can leave informative signatures in tumors.

Activation of the RNA-editing enzyme APOBEC consti-

tutes part of the cellular immune response to viruses

and retrotransposons, but overactivity of APOBEC is a

driving force of somatic hypermutation [67]. This im-

plies that tumors with APOBEC overactivity could be

treated by lethal mutagenesis, which consists of adminis-

tration of drugs stimulating mutation rates past a lethal

threshold, thereby stimulating programmed cell death

[68]. APOBEC enzymes have also been proposed to

drive cancer evolution, heterogeneity, and therapy resis-

tence [69]. APOBEC overactivity has been shown to pro-

mote drug resistance to the cancer drug Tamoxifen [70,

71], perhaps due to APOBEC-driven intratumor hetero-

geneity. The APOBEC-associated signatures CS-2 and

CS-8, as well as an associated phenomenon of clustered

mutagenesis called kataegis (Fig. 1), have been found in

more than half of the investigated cancer types [6]. Add-

itionally, later studies found these signatures in in a

range of cancer types [24, 72–74] and directly linked them

to an APOBEC3A/3B germline deletion allele in breast

cancer [75]. Detection of APOBEC overactivity could

therefore be useful in a wide range of cancer types. More-

over, mutational signature analysis allows discrimination

between the signatures of different APOBEC-subtypes

[76]; the APOBEC3B subtype could be further subdivided

with clustered mutational signatures [77], which means

even more specific targeting could be possible. For ex-

ample, APOBEC stimulators might be used to stimulate

lethal mutagenesis.

Stratification of cancer patients

In addition to using mutational signatures as a genomic

biomarker for targeted therapeutics, mutational signa-

ture analysis presents possibilities in the stratification of

patients (Fig. 2). For instance, breast cancer is among

the most common types of cancer worldwide, with an

estimated incidence of 1.7 million cases in 2012 [78].

Around 5–10% of all breast cancers are attributed to

somatic or germline mutations in the genes BRCA1 and

BRCA2 [79]. However, HRR deficiency is currently not

an intrinsic subclass in breast cancer diagnostics, al-

though this cohort may have a better prognosis when

treated with specific drugs. A few recent studies have ap-

plied mutational signature analysis to identify which pa-

tients are most likely to respond to certain therapies,

including studies of patients with esophageal adenocar-

cinoma (EAC) [43], pancreatic ductal adenocarcinoma

(PDAC) [44], oral squamous cell carcinoma (OSCC)

[80], gastric cancer [25], and prostate cancer [81].

EAC is an illustrative example. Highly heterogeneous

mutational landscapes and a current lack of efficient

stratification methods has led to the generally poor per-

formance of targeted therapeutic approaches [43, 82].

However, in a cohort of 129 EAC patients, Secrier et al.

[43] were able to define each patient’s tumor by its dom-

inant mutational signature and performed hierarchical

clustering to stratify tumors into three subgroups with

distinct etiologies. The first subgroup exhibited faults in

the HRR pathway and was characterized by CS-3, and

could therefore benefit from PARP inhibitors or

platinum-based chemotherapy. The largest subgroup
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predominantly showed CS-17, a signature that does not

yet have a defined etiology but could be related to gas-

troesophageal reflux [83]. In this subgroup of cancers,

an increased response to WEE1/CHK1 inhibitors was

observed. In addition, CS-17 has been shown to correl-

ate with high neoantigen loads, which could implicate

these patients for immunotherapy [84–86]. The final

subgroup predominantly showed the signatures CS-1,

which is age-related, and CS-18, which has no consensus

etiology as yet but has been suggested to be associated

with damage from reactive oxygen species (ROS) [26,

59]. Although Secrier et al. suggested traditional chemo-

therapy for these patients, the clinical meaningfulness of

this subgroup is questionable, because there is no other

obvious treatment alternative for these patients at this

time. Uncovering the mechanisms underlying CS-18 and

CS-1 will possibly energize the search for therapeutic

potential in this subgroup. Molecular stratification of

cancer patients based on mutational signatures is used

in a growing number of studies, although in variable

forms. Whereas EACs and gastric cancers were classified

using predominantly mutational signature analysis [25,

43], PDACs and OSCCs were stratified using mutational

signatures as part of an integrated genomics approach

[44, 80]. However, other tumor characteristics must

often contribute to a comprehensive tumor diagnosis

and treatment decision, because not all therapies are dir-

ectly related to the mutational processes driving cancer.

Nevertheless, mutational signatures already provide rele-

vant information for treatment selection in at least some

subgroups. In addition, evaluation of mutational signa-

tures is an interesting approach that could be explored

for the stratification of patients in clinical trials.

Revealing cancer predisposition

The majority of cancers are believed to result from som-

atic mutations [2]. Nevertheless, up to 10% of the cases

can be attributed to inherited variants present in the pa-

tient’s germline [87]. Exome sequencing studies in the

last decade have revealed many new predisposition gene

candidates, and whole-genome sequencing (WGS)

pan-cancer studies will likely unravel new predisposition

genes in the future, such as non-coding driver variants

[88]. Mutational signature analysis could potentially be

applied as a powerful screening tool to uncover new

pathogenic inherited mutations affecting mutation accu-

mulation, and as a validation method to accurately clas-

sify variants of uncertain significance (VUS) as either

Fig. 2 Mutational signature analysis as a tool in cancer diagnostics. A patient who is diagnosed with cancer will undergo biopsy of both the

tumor tissue and a healthy tissue sample (e.g. blood). The entire DNA of both specimens will then be read using whole-genome sequencing

(WGS), which allows the characterization of somatic mutations in the form of base substitutions, indels, rearrangements, copy-number variations

(CNVs) and variations thereof. The healthy sample can be used to characterize predisposition variants, and somatic events can identify potentially

actionable somatic tumor driver variants. Mutational signature analysis can provide additional evidence to support the interpretation of these

measurements, such as for the interpretation of Variants of Unknown Significance (horizontal arrows), but can also provide direct support for the

cancer diagnosis. The result of this workflow will influence clinical interventions such as treatment decisions and family counseling if a

predisposition variant has been identified, and allows for stratification of patients towards effective anti-cancer drugs (precision medicine) to

improve the patient’s outcome (prognosis)
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pathogenic or benign (Fig. 2). For instance, we have

identified a germline NTHL1 variant in a breast cancer

patient by screening for CS-30 conribution [30]. Polak et

al. revealed that nearly all samples showing a pathogenic

BRCA1/2 germline variant and loss of the intact allele

were positive for CS-3 in the TCGA breast cancer co-

hort, and accurately classified 12 BRCA1/2 VUSs [12].

The integration of indel and rearrangement signatures

can even segregate BRCA1 deficient tumors from

BRCA2 mutants [11]. It is worth mentioning that not all

heritable breast cancers harbor germline variants solely

in BRCA1/2, indicating that predisposing variants in

other genes likely exist and contribute to hereditary

breast cancer via altered mutation accumulation.

A more advanced approach could incorporate the evo-

lutionary dynamics of the signatures to identify

early-onset signatures which, together with true driver

detection, can be used to trace predisposition variants

from tumor-only sequencing data [89]. Such an ap-

proach has been tested in 15 ultrahypermutated cancer

patients (> 100 mutations per Mb) and in each individ-

ual, a germline MMR mutation was found. Moreover,

this analysis was performed on panel sequencing data,

which covers a sufficient number of nucleotides to iden-

tify early-onset signatures from highly mutated cancer

types but is likely not adequate for less mutated cancer

types. However, this strategy can be implemented in a

whole-genome/−exome framework to predict predispos-

ition variants in other cancer types.

The application of mutational signature analysis to re-

veal cancer predisposition could be an important step

forward in familial cancer diagnosis. For instance, many

colorectal cancer patients harbor mutated predisposition

genes that can be classified into distinct colorectal can-

cer subtypes including polymerase proofreading associ-

ated polyposis (PPAP), MUTYH-associated polyposis

(MAP), NTHL1-associated polyposis (NAP), and Lynch

syndrome. These subtypes are pathologically very similar

and therefore difficult to identify, requiring extensive

multifactorial testing [90, 91]. However, PPAP has been

associated with a distinct mutational signature, CS-10 [8];

MAP with two signatures, one CS-18-like [58] and a simi-

lar signature currently named signature 36 [26]; and NAP

with CS-30 [30, 57]. The clinical value of detecting these

predispositions is shown in Fig. 1. In addition, Lynch syn-

drome can be identified using the MMR-associated signa-

ture CS-6 [8] and indel signatures [30]. Indeed, a study

aiming to detect Lynch syndrome used the aforemen-

tioned two Lynch syndrome-associated signatures and the

PPAP-associated signature CS-10 to distinguish these two

groups of patients [89]. However, for most of these syn-

dromes, more research is required to validate the signa-

tures. Additional studies of larger, selected cohorts can

help unravel which syndromes are linked to which

signatures. In addition, it is important to study whether

other predisposition syndromes, not functionally linked

with DNA repair deficiency, can be associated with a spe-

cific mutational pattern. These studies might best focus

on hereditary cancer syndromes that are currently difficult

to identify with targeted gene panels, such as Cowden syn-

drome [92]. Furthermore, additional studies are necessary

to evaluate the efficacy of mutational signature analysis in

identifying different hereditary cancer types, particularly

because different syndromes may converge on the same

signature and be indistinguishable. Nevertheless, the as-

signment of germline mutations in cancer patients has

several important clinical implications, because these vari-

ants can serve as sentinels for identifying families with

high risk for cancer development. Family members carry-

ing pathogenic germline variants could be encouraged to

obtain genetic counseling, take preventive measures, or

enter increased surveillance programs (Fig. 2).

Identifying tumor tissue of origin

Roughly 3% of all new cancer cases are diagnosed as a

cancer of unknown primary (CUP) [93]. Furthermore,

substantial uncertainty about the tissue of origin re-

mains, especially when the cancer is metastatic or poorly

differentiated; this complicates treatment because most

targeted drugs are tumor type-specific. Mutational se-

quencing data could support histopathological examin-

ation in identifying the cancer site of origin.

Comprehensive mutational signature analyses have

shown that tumor types leave distinctive patterns of

somatic mutations. For example, CS-12 and CS-16 are

so far exclusively associated with liver cancer [94], and

ovarian cancer typically harbors a high number of struc-

tural variants [95]. Such tissue-specific patterns, or a

combination thereof, could be exploited to accurately

decipher the primary tissue type. The ICOMS [96] (in-

ferring cancer origins from mutation spectra) tool and

TumorTracer [97] are two examples of well-trained clas-

sifiers that utilize TCGA and COSMIC data to infer the

origin of distinct primary tumor sites. Although these

tools deliver performance scores that may be accurate

enough to aid in the clinical diagnosis of CUPs, the use

of pan-cancer WGS data and advanced signature extrac-

tion methods will likely lead to more accurate ap-

proaches [98].

Existing challenges

Thus far, we have discussed the current state and poten-

tial diagnostic value of mutational signature analysis, as

well as applications for the detection of germline predis-

position mutations and the determination of organ of

origin for CUPs. However, clinical integration of such

detection requires critical examination and further re-

finement of these signatures, and some obvious
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weaknesses and limitations must be addressed. First, the

current 30 COSMIC signatures are derived from a mix

of whole-exome sequencing (WES) and WGS data

(10,952 whole exomes and 1048 whole genomes). This

has resulted in discrepancies between WES- and

WGS-derived signatures; for example, certain processes

specifically act on coding or non-coding elements, such

as transcription-coupled repair. This heterogeneity could

be removed by creating WES- and WGS-specific signa-

tures. This should ideally rely on the most comprehen-

sive inventories obtained by WGS, because this also

maximizes the ability to obtain insight into the under-

lying biological mechanisms. For clinical use, however,

refitting of predefined signatures on WES data is likely

feasible and more cost-efficient, which would make mu-

tational signature analysis more broadly applicable. Sec-

ond, a number of the current signatures are identified in

only a few genomes at low contributions [8]. Their rele-

vance should be substantiated before they are used in re-

fitting approaches, because such signatures may mask

the contributions of other signatures due to overlapping

features. Likewise, signatures observed in single cohorts

likely represent artifacts due to sequencing errors or

from inadequate somatic mutation calling pipelines [99].

Consequently, the identification of such artifactual signa-

tures makes it valid to question and optimize the sensi-

tivity and specificity of the mutation calling strategy.

Alternatively, artifactual signatures can be included to

capture predefined false positive mutations as for ex-

ample in single cell sequencing that generates numerous

T > C mutations [100]. Third, not all mutational signa-

tures will lead to targeting approaches or clinical advice.

It is arguably unlikely that age-related CS-1, which is

present in approximately 70% of all cancer types, can be

translated to any form of prevention or treatment.

Fourth, the accuracy of mutational signature extraction

decreases when a multitude of mutational processes are

or have been active in a sample, when low numbers of

mutations are present (e.g. pediatric cancers and adult

acute myeloid leukemia (AML) [101]), and when muta-

tional signatures are relatively similar. Fifth, it is prefera-

ble to distinguish historical mutational processes from

those that are presently ongoing to identify a

signature-based treatment. For example, targeting APO-

BEC overactivity, a process that is known to operate

transiently, solely on the presence of its signature will

not necessarily affect patient survival. Likewise, sub-

clones within tumors that have lost the activity of certain

mutational processes will still contain their characteristic

signatures within the genome. Moreover, subclones that

have become the dominant clone during cancer recur-

rence after the first stages of treatment will still show

their historic mutational signatures. In a diagnostic set-

ting, mutational processes may be classified as historical

or ongoing by analyzing samples from serial biopsies or

biopsies from different sites within the tumor. Alterna-

tively, active signatures can be characterized computa-

tionally by focusing on subclonal variants, because they

are considered to originate from recent processes in

local portions of the cancer. More sophisticated compu-

tational strategies also exist to assess the evolutionary

history of mutational processes [102, 103].

It is important to mention that signatures of muta-

tional classes other than base substitutions have enjoyed

less attention. This is partly due to the known lower sen-

sitivity and specificity of current algorithms used to call

indel and structural variant mutations, which results in

noisier data and more challenging extraction of biologic-

ally relevant signatures, as well as the higher complexity

of defining other signatures [9]. The context of these sig-

natures includes features beyond neighboring nucleo-

tides, such as length, location, repeat engagement,

copy-number changes, involvement of microhomology,

and other biologically relevant attributes. Regarding

indels, two distinct informative signatures were defined

by Stratton and colleagues in breast cancer [9, 15]. The

first indel signature is characterized by small indels (1–5

bp) flanked by short tandem repeats (STRs), and the sec-

ond is characterized by larger indels (up to 50 bp) present

in short stretches of identical sequences at the breakpoints

(microhomology). Regarding structural rearrangements,

six signatures (RS1-RS6) based on rearrangement type

(duplications, deletions, translocations, inversions), degree

of clustering, and size have been identified by analyzing

560 breast cancer genomes [22]. These indel and RS sig-

natures are also found in liver cancer [94], highlighting

the robustness of these preliminary indel and RS signa-

tures. More signatures are likely to be recognized in the

near future as techniques to identify indels and rearrange-

ments develop and as cancer genomes are more systemat-

ically analyzed [104]. Additional relevant parameters may

be incorporated into signatures in the future as well, in-

cluding genomic features such as transcriptional strand

bias [8, 105], replication timing [106, 107], genomic pos-

ition [77], chromatin organization [108, 109], and other

relevant genomic features [110]. For instance, heterogen-

eity in mutation rate has been observed within a single

gene that is associated with higher mismatch repair activ-

ity in exonic regions [111], and clustered mutation signa-

tures are related to variable APOBEC activity and tobacco

smoking [77]. The inclusion of such parameters into pat-

terns increases the resolution of mutational signatures to

distinguish different processes. These parameters could

also be clinically meaningful as stand-alone signatures,

such as indels in STRs to identify MMR deficiency [112].

Which parameters must be incorporated into signatures

and which can stand alone is a question that could poten-

tially be addressed by feature correlation analyses of very
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large cancer genomics datasets. Furthermore, incorporat-

ing biases into signatures enhances the power of muta-

tional signature analysis to detect underlying mutational

processes.

The algorithmic approach behind mutational signature

analysis still requires further development. A recent

study validated a number of peer-reviewed mutational

signature frameworks and found large variation in signa-

ture exposures, of which NMF gave on average the lar-

gest decomposition error [113]. Furthermore, NMF

relies upon large cohorts of cancer genomes to accur-

ately extract signatures and cannot efficiently analyze

samples with high mutational load. Hence, a growing

number of bioinformatics studies are attempting to ad-

dress the shortcomings of NMF [16] by proposing and

testing different mathematical approaches for problems

such as defining the optimal number of signatures in a

sample [114–120]. Alternatively, after a complete set of

mutational signatures has been verified, the contribution

of these predefined signatures (e.g., those currently re-

corded in the COSMIC database) could be refitted on

the genomic data of a single patient [117, 119]. The lat-

ter strategy might prove faster and more cost-effective

[43] and, most importantly, is applicable at the single pa-

tient level, which is a requirement for use in a clinical

diagnostic setup. Methods for refitting known signatures

to mutation inventories are still in their infancy, and are

faced with challenges due to the overlapping characteris-

tics of signatures, making it difficult to assign individual

mutations to specific signatures. Hence, additional spe-

cific genomic features (e.g. broader mutation context,

strand biases, association with functional elements) ex-

clusively linked to a signature might be crucial to accur-

ately asses the contribution of highly similar signatures

and could simultaneously make refitting approaches

more accurate.

Also, not all forces driving tumorigenesis might be de-

tectable by DNA mutation analyses. Epigenetic modifica-

tions are another important cancer driver mechanism,

but such alterations are not detected by routine WGS. It

has been suggested that epigenetic changes, as detected

by other targeted or genome-wide techniques, could be

integrated into mutational signature analysis if need be

[11]; however, no framework has been published yet.

Feasibility and costs

Despite the recent advances in DNA sequencing technol-

ogy and the consequent wave of studies using mutational

patterns, diagnostic application of mutational signatures is

still at an early stage of development. Certain mutational

signatures can be linked to mutational processes and, via

this route, to a treatment plan. To date, however, studies

on how mutational signature-based subtyping translates

to treatment response are largely absent. Studies using

HRDetect or stratifying studies on the basis of mutational

signatures do demonstrate a correlation with therapy re-

sponse [11, 43, 44], but these studies were performed

retrospectively. Therefore, the major challenge for muta-

tional signature analysis will be to predict treatment re-

sponse in a prospective study.

In addition, mutational signature analysis requires NGS

data to accurately identify somatic mutations, preferably

from WGS data with sufficient sequencing depth, accom-

panied by a matched healthy sample. WGS-derived data

contain 20–50 times more mutations than do data from

whole exomes [121, 122]. Hence, the decomposition of a

patient’s mutational profile into de novo signatures using

WES data may generate unstable signatures, as discussed

above. However, Polak et al. [12] successfully detected

BRCAness in the TCGA WES-derived dataset using an

optimal threshold of 37 CS-3 associated mutations (AUC

= 0.82). Therefore, refitting on robust mutational signa-

tures and optimizing threshold levels may well work with

only exome sequencing data of the diagnostic sample [98,

100]. Regarding sequencing depth, only a small drop in

sensitivity was observed in the WGS breast cancer analysis

when data with a 30-fold read depth was down-sampled

to a 10-fold read depth (r = 0.96), with a remaining sensi-

tivity of 86% for low-coverage sequencing data [12]. Simi-

larly, a simulated 10-fold read depth could be successfully

used to identify the dominant signature for EAC-patient

stratification [43], although the required read depths will

also strongly depend on the percentage of tumor cells in

the sample and the tumor heterogeneity. Furthermore, the

current somatic calling pipeline demands a matched

healthy DNA sequence to distinguish somatic mutations

from germline variants. However, the establishment of

comprehensive population resources and well-trained

computer models could potentially overcome this require-

ment without losing the detection power of mutational

signature analysis.

Studies presenting the feasibility of mutational signa-

ture analysis for cancer patients have mostly used

high-quality DNA extracted from fresh-frozen biopts.

However, in clinical practices, such specimens are rou-

tinely fixed in formalin and paraffin-embedded (FFPE)

for histopathological diagnosis, which lowers DNA qual-

ity [123]. Nevertheless, HRDetect (using 30-fold read

depth) sustained high probability using FFPE tissues, in-

dicating that mutational signature analysis may work in

the current framework of molecular pathology. However,

low-exposure signatures such as CS-3 and CS-5 might

be lost in FFPE-induced noise [11].

Overall, it is difficult to draw conclusions on the

cost-effectiveness of mutational signature analysis at this

moment, although it is clear that costs for WGS are still

clearly prohibitive for routine application in most clinical

studies. However, when the potential of WGS to replace
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the multifactorial testing of mutated genes and to allow

better patient stratification is met, cost-effectiveness

could likely be reached, because WGS costs are only a

fraction of total clinical study costs or the costs of

current novel targeted treatments. In addition, with the

decreasing costs of NGS, full commitment to WGS

might be less of an issue at some point in the future.

Clinical trials

Mutational signature analyses have been applied in re-

search, but not yet in the clinical setting. Currently, our

theoretical understanding of the mechanisms by which

mutational signatures accumulate is still relatively rudi-

mentary. However, the findings that are gained by WGS

analysis open up the question of when WGS analyses

will enter routine clinical cancer care. Therefore, exam-

ination of the mutational landscapes in clinical trials ex-

ploring the accuracy of this approach in a wide range of

cancer types are a pertinent next objective. So far, only a

very limited number of clinical trials (as reported on

clinicaltrials.gov) have been initiated to examine the clin-

ical relevance of mutational signatures.

The potential therapeutic efficacy of the PARP inhibitor

olaparib in BRCA-mutated tumors has been assessed in

clinical trials in breast cancer (NCT00494234 – com-

pleted), ovarian cancer (NCT00494442 – completed;

NCT00753545 – completed; NCT00679783 – completed),

prostate and pancreatic cancer (NCT01078662 – com-

pleted, NCT02677038 – recruiting; NCT02184195 –

recruiting) and has been approved by the FDA in 2014

[124]. Currently, other PARP inhibitors are being tested

for BRCA-deficient cancers in clinical settings, such as

veliparib (NCT01149083) and rucaparib (NCT02855944),

and platinum-based chemotherapy has been tested in

prostate cancer (NCT01289067). However, these patients

were mostly screened using targeted assays for germline

and somatic BRCA mutations. The development of a

companion diagnostic biomarker that relies on signatures

(such as HRDetect) could guide treatment of

HRR-deficient cancer types beyond those carrying BRCA

mutations in the cancer types discussed above, and thus

increase the target population. In this context, one trial

(NCT01042379) investigated a BRCA-signature from gene

expression data that was developed within the EU FP7

RATHER project, which showed promise in predicting the

response to PARP inhibitor veliparib in combination with

carboplatin [125]. However, the prognostic and diagnostic

value of BRCA-associated signatures from somatic muta-

tions remains to be assessed through a prospective clinical

trial, with participants being selected based on the muta-

tional signatures of their tumor.

One trial (NCT02710396) is currently recruiting pa-

tients to explore the mutational smoking signature as a

potential biomarker in advanced non-small cell lung

cancer treated with pembrolizumab. This PD1-blocking

agent was FDA-approved in May 2017 for cancer pa-

tients diagnosed with microsatellite instability-high

(MSI-H) or mismatch repair deficient (dMMR) cancers.

Currently, MSI detection depends on a small number of

known microsatellite loci or mismatch repair genes, and

has limited reliability [126]. However, NGS data can

offer highly accurate detection of MSI [127, 128]. Pem-

brolizumab was the first FDA-approved cancer treat-

ment solely based on a genetic biomarker, rather than in

combination with a primary tumor type. This decision

opens up the route for additional biomarkers that focus

on genomic profiles. In this context, a clinical trial

(NCT02750657) has been set up to study the potential

of mutational signature analysis for better treatment se-

lection in PDAC, which is currently recruiting patients

and might prove important for realizing the diagnostic

potential of mutational signature analysis [44].

Conclusion

In conclusion, cancer diagnosis may benefit from the im-

plementation of mutational signature analysis, which is

complementary to existing diagnostic approaches such

as analyses of driver mutations in oncogenes and tumor

suppressors. The identification of HRR deficiency in

breast cancer and other cancers suggest the potential for

a broader application of mutational signature analysis in

different cancer types. Moreover, the detection of add-

itional signatures suggests that similar developments

could occur in the diagnosis of a broader range of DNA

repair defects. Mutational signatures are proving to be

clinically useful biomarkers for a growing range of can-

cer types, and signatures have already been shown to be

useful for prognosis in several studies, such as the pre-

diction of responses to conventional chemotherapy, tar-

geted therapy, and immunotherapy approaches.

Moreover, mutational signatures are found to be power-

ful biomarkers for the identification of hereditary cancer

syndromes, providing opportunities for cancer preven-

tion, monitoring, and early detection strategies.

Despite these promising results, mutational signature

analysis will need further research to define universal

reference signatures based on all types of mutational

events and relevant genomic features, as well as to delin-

eate the underlying mutational processes. This will re-

quire analyses of extensive, and more diverse, cancer

genome sequencing datasets, as well as the targeted ma-

nipulation or perturbation of experimental models.

Moreover, it is important that prospective clinical trials

are undertaken to assess the effectiveness and accuracy

of mutational signature analyses in predicting response

to therapy. Finally, for patients to benefit from these de-

velopments, transparency regarding technical advances

in algorithms and sharing of methods and data are
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imperative for the timely and responsible transfer of mu-

tational signature analyses from the research domain to

the clinical setting.
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