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Abstract

Background: Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a facultative intracellular
pathogen that can persist within the host. The bacteria are thought to be in a state of reduced replication and metabolism
as part of the chronic lung infection. Many in vitro studies have dissected the hypothesized environment within the infected
lung, defining the bacterial response to pH, starvation and hypoxia. While these experiments have afforded great insight,
the picture remains incomplete. The only way to study the combined effects of these environmental factors and the
mycobacterial response is to study the bacterial response in vivo.

Methodology/Principal Findings: We used the guinea pig model of tuberculosis to examine the bacterial proteome during
the early and chronic stages of disease. Lungs were harvested thirty and ninety days after aerosol challenge with Mtb, and
analyzed by liquid chromatography-mass spectrometry. To date, in vivo proteomics of the tubercle bacillus has not been
described and this work has generated the first large-scale shotgun proteomic data set, comprising over 500 unique protein
identifications. Cell wall and cell wall processes, and intermediary metabolism and respiration were the two major functional
classes of proteins represented in the infected lung. These classes of proteins displayed the greatest heterogeneity
indicating important biological processes for establishment of a productive bacterial infection and its persistence. Proteins
necessary for adaptation throughout infection, such as nitrate/nitrite reduction were found at both time points. The PE-PPE
protein class, while not well characterized, represented the third most abundant category and showed the most consistent
expression during the infection.

Conclusions/Significance: Cumulatively, the results of this work may provide the basis for rational drug design – identifying
numerous Mtb proteins, from essential kinases to products involved in metal regulation and cell wall remodeling, all present
throughout the course of infection.
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Introduction

The Mycobacterium tuberculosis (Mtb) bacillus has the ability to lie

dormant in the human body for decades, only progressing to active

disease in 5–10% of immunocompetent individuals. The organism

is transmitted through aerosols, and enters the pulmonary system

through inhalation. Within the lung, the bacillus can take up

residence inside an alveolar macrophage triggering the aggregation

of immune cells and the formation of a granuloma. During the

course of infection, granulomas play a dual role - serving as a niche

for the invading bacteria, whilst, protecting the host from active

disease. The population of granulomas within the infected host

consists of both primary and post-primary lesions. Primary

granulomas containing the inhaled founder strain are morpholog-

ically different from post-primary granulomas that have developed

through disseminated infection. This results in a heterogeneous

population of bacilli that are unique to the in vivo experience [1,2,3].

Substantial research has been dedicated to determining the

cellular architecture and molecular features of the host response,

including the granulomatous response, its formation and the role

of the host response in containing the bacterium. Until recently

few studies have focused on the significance of the bacterial

contribution within the infected host. Depictions of the mycobac-

terial proteome during infection thus far have been simulated

through in vitro studies – utilizing either infected cell culture [4,5]

or through the mimicry of hypoxic environments [6,7,8,9].

Further, models of nutrient starvation [10] and non-replicative

persistence (NRP) [11] have also contributed to the overall

dissection of the bacterium’s intracellular lifestyle. More recently,

bioinformatics was used to pool the overwhelming amount of data

from these studies, extracting the commonalities and proposing

new drug targets and vaccine candidates [12,13]. Specifically,

these studies illustrated the importance of proteins involved in the

transport of sulfur and cations, iron scavenging and nitrogen
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reduction. While experiments reflective of the global gene

expression profile of Mtb during the in vivo infection provide a

more relevant picture of bacterium during infection [14], to date,

no thorough proteomic studies have been performed on in vivo

samples. In order to better understand the bacterial populations

within the lung, we believe a proteomic approach is necessary to

gain insight into the fundamental physiological state of Mtb during

infection and the mycobacterial response within the infected host

tissue.

Using the guinea pig model of aerosol infection, our study has

identified over 500 mycobacterial proteins present over the course

of infection. Our in vivo data gives solidarity to many of the in vitro

models of dormancy and is enhanced by the absence of artifacts

from in vitro growth in culture medium. Together, our results yield

a picture of the bacterial expression profile during infection.

Results and Discussion

Optimization of sample processing for mass
spectrometry
All Mtb protein identifications were derived from the lungs of

infected guinea pigs. Since homogenates were made from the

whole lung, all proteomic samples contained both host and

bacterial proteins. Based on growth curve data from infected

guinea pig lungs, 10–20 CFU seeded the lungs of each animal and

time-points earlier than 30 days were not addressed due to the

challenge of confident protein identification in lung tissue

containing less than 5 log10 bacilli [15]. The ratio of guinea pig

to mycobacterial cells were previously determined using uninfect-

ed lung tissue spikes with decreasing numbers of bacteria in order

to determine a lower limit of detection with our mass spectrometry

methods (data not shown). CFU data was determined for each

sample: day 30 samples averaged 5.77 log10 (60.19) and day 90

samples averaged 5.89 log10 (60.32) consistent with previous

observations [15]. Similarly, the pathological state of the lungs

demonstrated typical progression of chronic tuberculosis, with day

30 infected lungs demonstrating contained lesions consisting of

inflammation and areas of central necrosis (Figure 1A). Day 90

infected lungs demonstrated progression of disease with multiple

areas of inflammation and coalescing necrosis throughout the lung

along with secondary granulomas (Figure 1B) [16,17]. In either

case, a vast majority of each sample was composed of host

material. Thus, methodology was developed to significantly reduce

host proteins from overwhelming the analyses of Mtb proteins.

Similar in vivo samples previously analyzed by microarray

experiments utilized amplification of bacterial RNA or selective

analysis of transcripts to eliminate the burden of host RNA. For

proteomics, we applied a similar work-flow, whereby chromato-

graphic separation was used to amplify bacterial products via

reduction of the sample complexity prior to MS analysis, and

construction and interrogation of a smaller custom database

(rather than complex databases, ie NCBI or SwissProt) was used

for selective analysis of bacterial peptides.

Initial LC-MS/MS optimization was assessed with tryptic

digests of Mtb whole cell lysate (WCL) utilizing nanospray mass

spectrometry. The number of mycobacterial proteins identified

was found to directly correlate to the length of the elution segment

during chromatography. A short and shallow gradient (42 min)

did not allow for enough of a separation of host and bacterial

proteins. Since the host proteins were much more abundant, ion

suppression hindered the identification of many bacterial proteins.

In this study, multiple gradient conditions were evaluated, and it

was determined that with a peptide load of 50 ng, a 90 minute

linear gradient provided optimal separation (Table 1). Addition-

Figure 1. Representative photomicrographs of A) day 30, B) day
90 post-infection guinea pig lungs, andC) uninfected guineapig
lungs. Guinea pigs were aerosolized with a low dose infection of virulent
Mtb (H37Rv). Tissues were stained (H&E) to demonstrate differences in
granulomas based on size (primary granuloma, marked with the letter P)
and the absence (secondary granuloma, marked with the letter S) of a
necrotic core. Bars are 200 mm.
doi:10.1371/journal.pone.0013938.g001
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ally, the number of unique protein identifications per sample

increased drastically with sequential injections of the same sample

(Figure 2). Therefore, all samples were run in triplicate. In

addition, the database used for interrogation contained the

predicted proteins of the Mtb H37Rv and mouse proteomes, so

that the host ion peaks would not be matched to the predicted m/z

for bacterial ions. Data was then subjected to a second

interrogation using a reverse database to further eliminate non-

mycobacterial specific spectra.

Composite analysis of in vivo Mtb proteomes
The sample set consisted of homogenates made from the lungs

of six animals, that were harvested 30 and 90 days after low dose

aerosol (LDA) infection (total of 12 samples, 6 biological replicates

for each time point). The concatenated Mtb-mouse database was

chosen due to the poor annotation of the guinea pig genome. Since

the goal of this study was to identify mycobacterial proteins, rather

than host, we felt that the confidence of our protein identifications

would be improved by the concatenation to this large mammalian

database, which is well-defined and includes over two hundred

thousand entries. We are confident in this database due to the

homology between the Mus musculus and Cavia porcellus proteins.

Indeed, the most commonly found host proteins, including:

albumin, calmodulin, actin, superoxide dismutase, were found

whether we used the mouse database or the poorly annotated

guinea pig database (data not shown). To reduce the false

discovery rate, two separate data filters were designed and applied

prior to pooling. The first filter removed proteins identified by

peptides that had low ratios of observed to theoretical MS/MS

ions – guaranteeing a certain amount of protein coverage and

removing bias from larger proteins. The second set of filters was

applied at the protein level, retaining only those proteins that were

present in 2 or more biological replicates. All filtered data were

pooled using the Scaffold program, which added another level of

stringency utilizing the Peptide and Protein Prophet statistical

analysis algorithms [18,19]. Proteins and peptides were disqual-

ified below a 90% threshold. Proteins identified by a single peptide

were removed from our analysis, while those identified by only two

peptides (in separate biological samples) were subject to manual

validation. To summarize, from the six 30-day time-point samples,

355,411 spectra were acquired. From these spectra, 1,598 were

matched to mycobacterial peptides within 310 proteins. Due to the

presence of mammalian tissue, the match ratio was low,

accounting for 0.4496% of the spectra. Likewise, from the six

90-day time-point samples, 287,843 spectra were acquired. From

these spectra, 2,336 were matched to mycobacterial peptides

within 323 proteins, accounting for 0.8116% of the total spectra.

This multi-filtered analysis provided a final list of 545 protein

identifications, ranging from 10 to 432 kDa with a pI range of 3.54

to 12.12. Between the 30 and 90-day samples, 222 and 235

proteins were uniquely identified and 88 proteins were common

between the two sample sets. (Figure 3; Supplementary Tables S1

and S2). As a negative control, six uninfected lung samples were

subjected to an identical analysis. Several falsely identified proteins

were removed from the final analysis based on the identification of

Mtb peptides in uninfected that were also found in our infected

samples. From this negative control, false discovery rates (FDRs) of

9.1% and 6.9% were calculated in the 30 and 90-day analysis

Figure 2. The percent of novel protein identifications taper after sequential injections of MS. Illustration showing the number of proteins
identified during 10 replicates (x-axis). The circles signify 50 ng injections of the same WCL digest peptide mixture (standard deviation= 13.1).
Squares represent the additive effect of protein identifications after each replicate after combining the Sequest and Mascot result files in Scaffold (left
y-axis). The triangles depict the percentage (right y-axis) of unique protein identifications gained per additional replicate.
doi:10.1371/journal.pone.0013938.g002

Table 1. Summary LTQ method optimization.

Elution time (min)

# of Proteins Identified (standard

deviations)

42 43 (8.7)

60 78.7 (0.58)

90 93 (6.7)

120 117.3 (4.7)

Note: A constant amount (50 ng) of peptide was injected, while the elution
time (42–120 min) was altered in order to determine the optimal yield per
injection (number of injections = 3). The increase in elution time generates
better resolution of the complex peptide mixture.
doi:10.1371/journal.pone.0013938.t001
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respectively. FDRs were also calculated via the traditional reverse

database analysis method and yielded similar FDRs, 11% and

6.8% for 30 and 90-day samples respectively. Since the FDRs

calculated from the potential false positives identified in the

uninfected samples are similar to the calculated FDRs from the

reverse database analysis, a high confidence (90%) for proteins

indentified in this analysis was retained.

Based on the TubercuList Web Server (http://genolist.pasteur.

fr/TubercuList) designations, all proteins were sorted by their

functional category (Figure 4A). Two functional groups, categories

3 (cell wall and cell processes) and 7 (intermediary metabolism and

respiration) comprised about half of the total data, representing

22.7% and 21% of the total identifications respectively. Interest-

ingly, there is little overlap between the day 30 and day 90 proteins

identified for these two categories, with only 13 identical proteins

(10.3%) and 12 identical proteins (10.3%) found in both day 30

and day 90 samples (Figure 4B and C).

A closer look at category 3 shows an abundance of membrane

transport proteins (Figure 5). This includes many members of the

metal-cation transporting ATPase family, including CtpV and

CtpB (copper), CtpD (possibly cadmium), CtpE (unknown), CtpF

(unknown), CtpG (unknown), CtbH (unknown) and CtpI (magne-

sium) – illustrating that the adjustment of cation levels is critical

within the host. Just upstream of CtpB (Rv0103), Rv0102 also

shows homology (by BLAST analysis) to copper resistance

transporters. In addition, 10 efflux pumps were identified and

were found to be particularly prevalent in the early stages of

infection. Conversely, proteins involved in the binding and

transport of phosphate were found entirely in the 90-day data

set. The presence and wide variety of pumps and transport

proteins during infection lends to the conjecture that the bacteria

may adapt to the host environment by scavenging resources and

altering the micronutrient levels.

Category 7 includes an assortment of proteins involved in

catabolism. While examination of the data demonstrated no

significant difference in hexose metabolism between day 30 and

90, significant differences were found in the later stages

metabolism, beginning with dehydrogenation of pyruvate through

the TCA cycle. Of the 10 proteins identified for this pathway, only

1 was specific to the 90-day samples and the spectra of the

remaining 9 proteins are overwhelmingly found in the 30-day

samples (Figure 5). This data supports that of others’ and indicates

a decrease in the preferred carbon nutrients, as well as a decrease

in phosphate during the chronic infection [20]. This also supports

the hypothesis that mycobacteria may breakdown lipids, rather

than carbohydrates, as a source of carbon and energy [21,22]. The

phospholipases C are noted virulence factors and are hypothesized

to breakdown host phospholipids for bacterial use [23]. Similarly,

Rv0183 – lysophospholipase, LipR (Rv3084) - a lipolytic esterase

and LipY (Rv3097) – a triacylglycerol lipase, were all expressed at

the 90-day time point. To obtain phosphorous for energy from the

host environment, Mtb may utilize two types of transport proteins,

a low-affinity, PitA and two high-affinity, PstS1 and PstS3

phosphate transporters [24], as well as a phosphate binding

lipoprotein. These were present during the chronic infection.

The third most abundant category consists of the acidic PE/

PPE proteins, which represent 16.2% of the total protein

identifications. It is important to note that the PE/PPE proteins

have numerous peptides that overlap or are highly similar. Thus

any ambiguities in the assignment of a PE/PPE peptide were

analyzed and validated. In this study, all peptides assigned to more

than one protein were only retained if the protein in question had

an additional two or more unique peptides. Unlike the categories

discussed above, this category contains the largest overlap - 37

proteins (45.7%), common between the 30 and 90-day samples.

However, from day 30 to day 90, there is also an increase of 7.4%

in respect to total proteins represented. This is the largest increase

in any of the categories. This increase is most evident in Tables 2

and 3, which show that of the ten most abundant proteins in each

sample set by spectral counting, two and five (30 and 90-day,

respectively) of these proteins are from the PE/PPE category. The

exact role of these proteins is unknown, but in general, these

proteins are thought to reside in the cell envelope and have been

implicated in increasing antigenic variation [25]. Many PE/PPE

proteins, such as PE-PGRS54, have been shown to be upregulated

in response to conditions such as hypoxia, exposure to H2O2 and

during NPR [26]. Of interest, it has been hypothesized that some

PE and PPE proteins may interact with each other after co-

expression from the same operon [27]. Following this notion, two

sets of proteins, PE-PGRS53/54 and PE-PGRS56/57, all highly

represented in the 90-day infection set, may be products of the

same operons.

Other dominant protein groups present in the in vivo

samples
Polyketide Synthesis and Virulence Lipids. The Mtb

genome encodes a variety of polyketide synthases (pks). These

large multi-domain proteins carry out a series of complex reactions

to construct complex lipids and metabolites. A total of 9 Pks

proteins were identified, including Pks4-9, 13, 15 and 17. Four of

the five PapAs or polyketide synthase associated proteins were also

identified. These proteins are co-regulated with the pks genes and

the mmpLs. Nine of the twelve MmpLs, large membrane-spanning

proteins involved in the translocation of lipids, were found in this

analysis, consistent with others’ hypotheses of their role during

infection and their active involvement in virulence [28,29]. One

such secreted virulence lipid, phthiocerol dimycocerosate (PDIM),

has been implicated in infection in mice, and more recently, genes

involved in PDIM synthesis have been shown as up-regulated in

response to lung surfactants [30,31]. While microarray data show

Figure 3. Venn diagram depicting the breakdown of proteins
identified at each time-point in this study. While a similar amount
of proteins were identified at each of the two infection time points, the
overlap is only 28% and 27% of the total identification in the 30 and 90-
day samples, respectively.
doi:10.1371/journal.pone.0013938.g003
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these genes to be up-regulated 2 hour after exposure to lung

surfactants, the data presented here shows that many of these

proteins, including PpsA-D, Mas, PapA5, DrrA and MmpL7, are

present throughout in vivo growth. This is also contrary to

assumptions made with starvation models, in which many of

these genes were shown to be down-regulated [10]. Similarly,

sulfolipids (SL) have also been implicated to play a role in

virulence and at day 90, MmpL8 and PapA1 were found to be

present [32,33].

Cell Wall and Fatty Acid Biosynthesis. The mycobacterial

cell envelope is a thick, complex structure composed of covalently

linked mycolic acids, arbinogalactan and peptidoglycan [34]. The

production of mycolic acids (C70–C90) is the result of the two

types of fatty acid synthesis: de novo synthesis of short chain fatty

acids by the Fas protein and long chain fatty acid elongation of

FAS products by the FASII pathway. Unlike the Fas protein,

which like the pks proteins, is a large multifunctional protein, the

FASII pathway is composed of individual proteins working in

complex to carry out reactions such as condensation, keto-

reduction and dehydration. While the Fas protein was found

exclusively in the 30-day samples, the members of the FASII

pathway were found primarily in the 90-day samples. The FASII

pathway forms the long-chain fatty acyl precursors to mycolic

acids. One might speculate that the Fas products (C16–C26) are

shuttled into pathways, such as PDIM and SL biosynthesis, which

are required for virulence and in vivo survival. Interestingly, the

majority of the proteins involved in the synthesis of peptidogylcan

were found in the 30-day lung tissue and none of the

arabinogalactan biosynthesis proteins were detected. Only the

MurG protein showed a significant presence during chronic

infection (Figure 5). This may be indicative of MurG having dual

functions, first as the well-characterized last step of peptidoglycan

synthesis on the cytoplasmic side of the bacterial membrane

during the early infection and an additional role in cell elongation,

resulting in filamentous bacilli during the chronic stage [35,36].

While some residual replication or cell wall formation may be

occurring during infection, the cessation of mycolic acid assembly

early in infection is consistent with evidence that the bacteria can

Figure 4. A) Comparison of functional categories. The 30-day (blue), 90-day (red) and total identifications (green) were broken down by functional
categories. Categories codes are assigned by TubercuList (http://genolist.pasteur.fr/TubercuList/help/function-codes.html): 0 = virulence, detoxifica-
tion & adaptation; 1 = lipid metabolism; 2 = information pathways; 3 = cell wall & cell processes; 5 = insertion sequences & phages; 6 = PE/PPE;
7 = intermediary metabolism & respiration; 8 = unknown; 9 = regulatory proteins; 10 = conserved hypotheticals and 16 = conserved hypotheticals with
an ortholog in M. bovis. B) Venn diagram showing the overlap between the 30-day and 90-day infection in category 3 and C) category 7.
doi:10.1371/journal.pone.0013938.g004
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lose its acid-fast property within the host [37]. This entertains the

hypothesis that the resumption of the FASII pathway in the 90-day

samples is indicative of the synthesis of free mycolic acids, perhaps

to create drug-tolerant persistent bacterial populations [38].

Metal Regulation. The impermeable mycobacterial cell wall

serves as a barrier to the import/export of micronutrients essential

for the catalytic activity for many enzymes. The production and

transport of mycobactin, either to the cell membrane or beyond, is

critical in the acquisition of host-derived iron. Production of this

polyketide siderophore and its ability to scavenge and chelate iron

is an essential part of intra-host survival for the bacillus [39,40,41].

Enzymes within the mycobactin synthesis pathway MbtA, B, C

Figure 5. Changes over the course of infection of representative pathways from categories 3 & 7. Each bar in the graph corresponds to
the normalized spectral count for each protein within the same category. Each color signifies the infection time-point: blue = 30-day, red = 90-day and
green=proteins found at both time-points, of which the area below the black line is the 30-day count and above equals the 90-day count. To the
right of each category is the percent breakdown of the total spectral counts in the 30 versus 90-day samples.
doi:10.1371/journal.pone.0013938.g005
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and D were represented during either day 30 or at both time-

points. Likewise, copper is highly toxic but entirely essential for

maintaining activity of several mycobacterial enzymes. Therefore

its levels must be tightly regulated, using mechanisms such as

active export by the membrane protein, CtpV [42,43]. Similarly,

several other cation-transporting atpases were identified in this

study, as previously mentioned in the cell wall and cell wall

processes section. Due to the prevalence of the Ctp membrane

proteins in the infected lung samples, their functions may be

investigated further as potential drug targets. In support of this,

ctpG mutants were attenuated for virulence in the guinea pig,

supporting their role in this model [44]. CtpH and CtpV are found

at both infection time-points.

Protein Kinases and Nitrogen Assimilation. Of the eleven

serine/threonine-protein kinases (Pkns) found in the Mtb genome,

we found eight in the in vivo analysis, only three of which (PknA, B

and G) are noted to be essential proteins [45,46]. The inhibition of

protein kinases as part of drug therapy has already been noted; as

they have shown great utility in other fields, such as in the

treatment of certain cancers [47,48]. PknH is hypothesized to be

necessary for adapting to nitrite stress and development of the

chronic infection in the murine model [49]. This data corroborates

with the presence of this PknH exclusively at the 90-day infection

time point. Nitric oxide, generated by macrophages is a rich

source of nitrogen, which can be metabolised for incorporation

into various bacterial macromolecules. Proteins involved in

Table 2. The ten most dominant Mtb proteins within the 30-day Mtb-infected lung samples based on normalized spectral counts.

Rv# Protein Name Normalized Spectral Count Functional Category

30 Day 90 Day # Type

1 Rv2209 Rv2209 Probable Conserved Integral
Membrane Protein

27.9 0 3 Cell Wall & Cell Processes

2 Rv2315c Rv2315c Hypothetical Protein Rv2315c 27 23.5 10 Conserved Hypotheticals

3 Rv0860 FadB Probable Fatty Oxidation Protein 27 5.6 1 Lipid Metabolism

4 Rv0101 Nrp Probable Peptide Synthase 22.5 0 1 Lipid Metabolism

5 Rv3512 PE_PGRS56 PE_PGRS Family Protein 20.7 25.8 6 PE/PPE

6 Rv1360 Rv1360 Probable Oxidoreductase 18.9 11.2 7 Intermediary Metabolism &
Respiration

7 Rv0015c PknA Transmembrane Serine/
Threonine-Protein Kinase A

15.3 5.6 9 Regulatory Proteins

8 Rv3403c Rv3403c Hypothetical Protein Rv3403c 15.3 0 16 Conserved Hypotheticals with
an Orthologue in M. bovis

9 Rv3507 PE_PGRS53 PE_PGRS Family Protein 14.4 68.3 6 PE/PPE

10 Rv3859c GltB Probable Ferredoxin-Dependent
Glutamate Synthase

13.5 8.9 7 Intermediary Metabolism
& Respiration

Note: Early in the infection there are many functional categories represented. Many of the proteins are transient, having lower spectral counts or completely absent at
day 90. The major exceptions to this are the PE_PGRS proteins and the hypothetical protein Rv2315c.
doi:10.1371/journal.pone.0013938.t002

Table 3. The ten most dominant Mtb proteins within the 90-day Mtb-infected lung samples based on normalized spectral counts.

RV# Protein Name Normalized Spectral Count Functional Category

30 Day 90 Day # Type

1 Rv2244 AcpM Acyl Carrier Protein 0 118.7 1 Lipid Metabolism

2 Rv3507 PE_PGRS53 PE_PGRS Family Protein 14.4 68.3 6 PE/PPE

3 Rv2352c PPE38 PPE Family Protein 0 48.2 6 PE/PPE

4 Rv3447c Rv3447c Probable Conserved Membrane
Protein

9.9 39.2 3 Cell Wall & Cell Processes

5 Rv2589 GabT 4-Aminobutyrate Aminotransferase 0 31.4 7 Intermediary Metabolism
& Respiration

6 Rv3508 PE_PGRS54 PE_PGRS Family Protein 0 31.4 6 PE/PPE

7 Rv2567 Rv2567 Conserved Hypothetical Alanine &
Leucine Rich Protein

2.7 30.2 10 Conserved
Hypotheticals

8 Rv3514 PE_PGRS57 PE_PGRS Family Protein 8.1 29.1 6 PE/PPE

9 Rv3512 PE_PGRS56 PE_PGRS Family Protein 20.7 25.8 7 Intermediary Metabolism
& Respiration

10 Rv2315c Rv2315c Hypothetical Protein Rv2315c 27 23.5 10 Conserved Hypotheticals

Note: The chronic state of infection is dominated by an abundance of proteins from the PE/PPE category.
doi:10.1371/journal.pone.0013938.t003
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nitrate/nitrite transport, such as NarX have been previously

identified in a hypoxia model by microarray analysis (along with

narK2), as well as by in situ hybridization in human lungs [50,51].

Our proteomic analysis shows the presence of not only the NarX

protein, but in addition, 4 of the 6 of the proteins from the nitrate

reductase family from the narGHJI and narK2X operons, consistent

with their role in microaerophilic conditions [7,51,52]. The narU

gene product, which plays a role in nitrite excretion, was also

found, as was the NirB, nitrite detoxification protein. While this

protein class is present throughout infection, an increase in of most

of these proteins during the chronic infection may be due to the

effects of hypoxia (Figure 5).

Possible relationships between proteomic and
microarray datasets
The proteomic analysis of Mtb infected guinea pig lungs 30 and

90-days post-aerosol challenge provides a description of proteins

present during the establishment and maintenance of infection.

Prior to this study, the majority of the information known about

the bacterial state during hypoxia or infection was gleaned from

correlative microarray studies. It has been noted that due to post-

transcriptional events, the relationship between the amount of

mRNA and protein is not 1:1 [53]. This was very evident when

comparing the 30 and 90-day proteomic data to that of the gene

expression data sets from the well-characterized in vitro models of

NRP and starvation. For example, the Muttucumaru et al. data

set, which summarizes the changes cells undergo in the transition

from aerobic growth to that of NRP1 (microaerophilic) and NRP2

(anaerobic) stage, showed a 6.8% overlap between the genes

upregulated in NRP1/2 and our 30/90-day in vivo analysis

(Table 4) [54]. The commonalities include: narK2 and narH (nitrate

reductase), ppsB and mas (PDIM synthesis), ctpV (copper transport)

mbtB (mycobactin synthesis) and several ppe genes. Similar trends

in upregulation were apparent in the Voskuil et al microarray

analysis of the stationary phase and NRP models, the Rachman et

al microarray analysis ofMtb in infected lungs and even the Cho et

al ICAT study on in vitro NRP (Table 4) [8,11,55]. While Cho’s

study identified representatives from important up-regulated

pathways, the proteomics methodology employed in our study

recognized several more members of each of these pathways –

reinforcing their importance in vivo. In addition to those

similarities, major fundamental differences exist between micro-

array data sets from in vitro studies and the proteomic data

described in this study. Specifically, a large amount of chaperones

and detoxification proteins were identified in the in vitro models. In

fact, the single most common finding in the in vitro scenarios,

including both Rachman and Cho studies, is the upregulation of

hspX (Rv2031) [11,55]. It is very likely that HspX is present in vivo

– however, based on our findings, it is either rapidly exported from

the lung or its mass spectra are obscured in our study.

Interestingly, the starvation model [10] appears the least similar

to the in vivo results described in this study. In fact, the results

appear to be reversed – the profile of genes found down regulated

in response to starvation are more similar to our infection model

than those found to be up-regulated. Perhaps in the lung of the

host, the bacteria are not nutrient restricted at all. Since the

sequencing of theMtb genome in 1998, it has been known thatMtb

contains an unusually large number of proteins involved in lipid

metabolism [25]. Many FadD and FadE proteins are present in

the in vivo data set, thus, it is likely that the bacteria are able to

breakdown host lipids in order to utilize them as nutrients [56].

Contrary to our results, the Betts’ model shows PDIM synthesis to

be decreased, as well as down-regulation of several genes,

including: glcB, pknB, phoS1 and fas – many of which have been

Table 4. Overlap of our study with a sampling of in vitro studies.

Present in 30-day

(% of 30-day total)

Present in 90-day

(% of 90-day total)

Present in both

(% of ‘both’ total)

Present in either

(% of ‘either’ total)

This Study 30-day 310
(100%)

- - 310
(57.2%)

90-day - 323
(100%)

- 323
(60.1%)

Total - - 88
(100%)

545
(100%)

Rachman
[55]

Total = 188 12
(3.9%)

16
(5.0%)

6
(6.8%)

22
(4.0%)

Muttucumaru
[54]

NRP1 & NRP2 Total = 299 27
(8.7%)

21
(6.5%)

10
(11.4%)

38
(7.0%)

Voskuil
[8]

Stationary Phase &
Low Oxygen

Total = 116 5
(1.6%)

9
(2.8%)

4
(4.5%)

9
(1.7%)

Rohde
[62]

Macrophage
Infection - 24 hours

Total = 115 5
(1.6%)

8
(2.5%)

2
(2.3%)

11
(2.0%)

Cho
[11]

NRP1 - ICAT Total = 87 8
(2.6%)

8
(2.5%)

1
(1.0%)

15
(2.8%)

NRP2 - ICAT Total = 111 19
(6.1%)

14
(4.3%)

4
(4.5%)

29
(5.3%)

Betts
[10]

Starvation
Model - Up

Total = 44 1
(0.3%)

1
(0.3%)

0
(0.0%)

2
(0.4%)

Starvation
Model - Down

Total = 70 7
(2.3%)

7
(2.2%)

5
(5.7%)

9
(1.7%)

Note: For the most part, in vitro studies have less than 5% similarity with the proteomic data in this study. The two studies depicting changes found during NRP1/2 by
Muttucumaru and Cho show the highest similarity to this study.
doi:10.1371/journal.pone.0013938.t004
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shown to be present in other infection models [30,57,58]. Rv3403,

a hypothetical protein found to be in our preliminary 10 most

abundant proteins list at day 30 (Table 2), is shown to be down-

regulated in the starvation model [10]. However, by day 90 this

protein is completely absent and may be potentially related to the

decrease in a nutrient in the lung.

Much of the literature defining the bacterial state during NRP

has been based on microarray studies, in which changes in mRNA

levels in response to the implementation of stresses on culturedMtb

were monitored. While it is important to tease out which pathways

may be upregulated due to each stress the bacteria faces in the

host, it is equally as important to establish the combined and

actual effects of intra-host pressure. In this study, none of the

simulated in vitro (model) environments accurately reflect the

protein profile within the lung – even the ‘‘multiple stress

dormancy model’’ [59]. This is not entirely surprising; in vitro

cultures include a different set of variables resulting in bacterial

stress, such as nutrients are static and can be exhausted, toxic

bacterial byproducts can build up, and physical space is limiting.

Likewise, even tissue culture experiments yield an incomplete

picture, in that they are missing more complex immunological

influences. Perhaps the most important difference is that in vitro

studies focus on a clonal population, while in the in vivo experience

different populations exist – a major contributing factor that has

hindered the progress of treatment. In order to tease out which

proteins vary across the various bacterial populations and host

environments, in future studies, primary and secondary granulo-

mas will be compared to uninvolved tissue.

Lastly, we acknowledge that our described in vivo proteome lacks

the identification of the major secreted proteins. This was

unexpected, since in all previous in vitro analyses by ourselves

and others [6,60,61], secreted/stress response proteins such as

GroEL, HspX and DnaK, were highly abundant. Similarly,

during the development of our mass spectrometry methodology,

we utilized uninfected lung tissue spiked with 106 gamma-

irradiated (dead) Mtb and in this analysis the secreted proteins

and several chaperones remained dominant (data not shown).

Likewise, microarray analysis of Mtb from macrophage culture,

show transcripts of the stress-associated proteins in high abun-

dance [62]. Clearly, there is a difference between mock-infected

lung tissue, cell culture-based analyses, and lung tissue obtained

from an actual infection. Since our proteomics was performed on

whole lung homogenates, it is likely that the exported proteins

were not identified because these proteins are not simply secreted

by the bacillus and retained at the site of infection; rather we

hypothesize that these proteins are trafficked to the draining

lymph node, serving as important T-cell antigens. These secreted

proteins, therefore, may not be valid drug targets because they are

not directly associated with the site of infection. However, their

role as potential biomarkers, diagnostic reagents, or vaccine

candidates remains. In addition to phagocytosis-mediated export

of secreted proteins from the lung, some proteins may directly

traffic to the blood, sputum, or other bodily fluids. Indeed,

members of the antigen-85 complex (Rv3804c, Rv1886c and

Rv0129c) have been detected in serum and cerebral spinal fluid

[63,64]. Further, some secreted mycobacterial products may be

shuttled away in exosomes; as is the case described for the 19 kDa

liproprotein (Rv3763) and lipoarabinomannan (LAM) [65].

Final remarks
In this study, over 500 Mtb proteins present at 30 and 90 days

post infection are described. This description provides a picture of

the Mtb proteome in mammalian lungs. The exclusion of a protein

from either sample list does not rule out its presence. These

samples are highly complex, containing both host and bacterial

peptides. Thus it is likely that only the most dominantMtb proteins

(where dominance is reflective by quantity and capacity for mass

spectrometry detection based on the physiochemical ionization

properties of the protein) are described here. One of the flaws of

large-scale shotgun proteomic studies is that dominant peptides

can skew the results in a manner that causes some proteins to

remain undetected. Thus, tables 3 and 4 contain the proteins

observed based on the abundance of unique and repetitively

sequenced peptides from one protein. While this is an accepted

method to glean which proteins are more dominant relative to

other proteins identified in a given sample, their absolute

abundance has not been validated. Most of the spectral counts

(the spectral counts for each protein identified in this study can be

found in Supplementary Table S3.) mentioned in our study are

significantly lower (ten-fold) than the dominant host proteins,

which are in the hundreds (data not shown). This is entirely

expected and is reflective of the nature of the sample – the infected

lung contains few bacteria in relation to host cells. Validation of

any of the proteins or pathways in question can be performed with

a quantitative mass spectrometry technique, like multiple reaction

monitoring (MRM); these studies are currently being developed in

our laboratory to validate some of our findings.

This proteomic study on infected lung homogenates has

supplied a long list of mycobacterial proteins that are present

during infection. The most challenging facet to treating tubercu-

losis is that there are multiple populations of Mtb within the lung.

Thus, it is not surprising that our data does not correlate with any

one in vitro model. The Mtb-infected lung comprises a heteroge-

neous and dynamic population of bacteria. One additional source

of heterogeneity is the contribution of organisms that have

infiltrated from other infection sites, such as the spleen. It is

believed that after seeding the spleen, organisms can re-enter the

lung as secondary infection sites [2]. Therefore, it is highly likely

that these organisms are also sampled in our 90-day post-infection

analysis, in addition to those retained in the lung throughout the

course of infection. This aspect is beneficial when defining drug

targets. We believe that several of the proteins identified in our

analysis will give us clues to which pathways and biosynthetic

processes of Mtb might be worth targeting during an infection. It is

difficult to determine which, of the hundreds of proteins identified

are important from this study. The comparisons of our dataset to

others’ afford some conjecture (Table 4). Few studies have looked

at specific factors contributing to Mtb survival in the guinea pig

model of infection. One study did explore survival rates of

attenuated Mtb and identified 18 mutants with reduced fitness in

the guinea pig [44]. Two of the eighteen gene products, Rv1798

and ctpG were identified in this study. As part of our future

undertakings, we hope to further mine which of these aspects of

Mtb physiology persist in specific Mtb lesions through continued

comprehensive and targeted proteomic profiling during infection

in an effort to define novel, specific targets that lead to advances in

vaccine and drug discovery efforts.

Materials and Methods

Mtb samples and cultures for guinea pig infection
M. tuberculosis H37Rv whole cell lysate was provided through the

NIAID contract ‘‘Tuberculosis research materials and vaccine

testing (HHSN266200400091c). For guinea pig infections, Mtb

H37Rv was initially grown for three passages as a pellicle on

Proskauer & Beck media (5 g KH2PO4, 5 g asparagine, 0.6 g

MgSO4.7H2O, 2.5 g magnesium citrate, 20 mL glycerol, 1 L

water, pH 7.8) medium to produce seed stocks. Working stocks
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with a maximum of six passages were expanded from the seed

stocks in P&B medium with 0.1% Tween-80. Working stocks were

prepared at the mid-log phase, and aliquots were stored at –80uC.

Low dose aerosol (LDA) infection of guinea pig
Out-bred female Hartley guinea pigs weighing 450–500 grams

were purchased from Charles River Laboratories (Wilmington,

MA). Guinea pigs were maintained under ABSL-3 barrier

conditions in isolator cages (Thoren, Hazleton PA). Bacterial

suspensions described above were used to infect 12 guinea pigs

with H37Rv by the LDA method (approximately 10 CFU) with a

Madison Chamber [66]. In addition, a small aliquot of the

suspension is plated on 7H11 media to confirm dose of aerosolized

bacilli used in each infection. After infection, individuals in each

group are weighted weekly and checked daily for signs of disease.

The Karnofsky scale for pain and distress was used to evaluate the

well being of each guinea pig. Guinea pigs with a score of 8 or

more were euthanized. CFUs were determined by plating organ

homogenates onto nutrient 7H11 agar supplemented with OADC.

Colonies were enumerated after 21-days incubation at 37uC. All

animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal work was approved by the

appropriate committee (IACUC #06-239A). The aforementioned

experimental procedures were approved by the Colorado State

University Institutional Animal Care and Use Committee.

Preparation of guinea pig lung homogenates
At the 30 or 90-day post-infection time point, guinea pigs were

sacrificed and the right cranial lung lobe was used for bacilli

counts. The remaining lobes were added to 3 mL of PBS and

subject to 4 rounds of homogenization with an Omni MultiMix

200. Samples were removed and homogenization tubes were

rinsed with an additional 1 mL of PBS. The total homogenate was

then treated with collagenase H (final concentration: 0.7 mg/mL)

and DNase (final concentration: 30 mg/ml) for 1 hour at 37uC,

shaking. Homogenates were delipidated with 2 rounds of

chloroform:methanol (1:1). The remaining cell pellets were

sonicated in PBS and the product was centrifuged at 14k rpm

for 10 minutes to remove insoluble particles. The supernatant was

mixed with collagen-agarose to remove any residual collagenase.

The remaining protein was quantified by bicinchoninic acid (BCA)

assay (Pierce). As a control, 6 uninfected guinea pigs were

sacrificed on the same day as the 30-day infected guinea pigs. The

lungs were processed identically to the infected lungs.

Processing of proteins isolated from lung tissue
10 mg of each sample lysate was denatured in 6 M guanidine

hydrochloride, reduced with 10 mM DTT and alkylated with

100 mM iodoacetamide. After overnight micro-dialysis in 10 mM

ammonium bicarbonate the samples were digested with trypsin

(1:50, trypsin:lysate) in 10% acetonitrile (ACN) overnight at 37uC.

Digests were dried and resuspended in LTQ loading buffer, 3%

ACN and 0.1% formic acid. All digests are performed in

deplasticized tubes to reduce plastic polymer contamination.

Mass Spectrometry of tryptic peptides
All samples were injected at a concentration of approximately

50 – 100 ng/mL. Peptides were purified and concentrated using an

on-line enrichment column (Agilent Zorbax C18, 5 mm,

560.3 mm column, Agilent 1100 nanoHPLC,). Subsequent

chromatographic separation was performed on a reverse phase

nanospray column (Zorbax C18, 5 mm, 75 mm ID 6 150 mm

column). Samples were eluted into a LTQ linear ion trap (Thermo

Scientific) using a flow rate of 300 nL/min with the following

gradient profile: 0% B for 0–5 min, 0–15% B for 5–8 min, 15–

55% B for 8–98 min, and 55–100% B for 98–103 min (A= 3%

ACN, 0.1% formic acid; B= 100% ACN, 0.1% formic acid). This

elongated method has been optimized to separate complex

samples, such as whole cell lysate. Mass spectra are collected over

a m/z range of 200–2000 Da using a dynamic exclusion limit of 2

MS/MS spectra of a given mass for 30 s (exclusion duration of

90 s). Compound lists of the resulting spectra were generated using

Bioworks 3.0 software (Thermo Scientific) with an intensity

threshold of 5,000 and 1 scan/group. All samples were run in

triplicate.

Database searching
All tandem mass spectra (.raw files) were extracted by

LCQ_DTA.exe (Thermo Scientific) for subsequent loading into

the Mascot (Matrix Science, London, UK; version: 2.1 Mascot)

[67] MS/MS search engine or into Bioworks Browser (version

3.3.1 SP1) for subsequent analysis with Sequest (Thermo Finnigan,

San Jose, CA; version SRF v.5). Mascot was set up to search a

customized database (created on 05/06/08) composed of the

Mycobacterium tuberculosis H37Rv FASTA (GenBank accession

number AL123456, release R9, 3,998 protein genes) concatenated

to the IPI Mouse database (International Protein Index - http://

www.ebi.ac.uk/IPI/IPIhelp.html), which contains 222,498 entries.

Sequest and X!Tandem (Version 2007.01.01.1) were set up to

search only the Mycobacterium tuberculosis H37Rv database listed

above. All searches were performed assuming trypsin digestion,

with a fragment ion mass tolerance of 1.00 Da, a parent ion

tolerance of 3.00 Da. Mascot and Sequest searches allowed for 1

and 5 missed cleavages, respectively. Oxidation of methionine

(+16) and the iodoacetamide derivative of cysteine (+57) were

specified as variable modifications.

Criteria for Protein Identification
Sequest result files were subject to two filters. At the peptide

level, peptides were excluded if the ratio of observed to theoretical

peptides was ,0.2, when the theoretical was less than 100, or a

ratio of,0.1, when the theoretical value was greater than or equal

to 100. This step removed 15–30% of the peptides per run. The

second filter was applied at the protein level. Peptides from a single

technical replicate corresponding to a single protein were pooled.

Those proteins not represented in at least two biological replicates

were dropped. Lastly, peptides not present in at least two

biological replicates were dropped and the resulting single peptide

identifications were dropped. The reduced Sequest results, as well

as the Mascot results were compiled in Scaffold (version 2.02.01,

Proteome Software Inc., Portland, OR) in order to validate MS/

MS based peptide and protein identification. Peptide identifica-

tions were accepted if they could be established at greater than

90% probability as specified by the Peptide Prophet algorithm

[18]. Protein identifications were only accepted if they could be

established at greater than 90% probability and contained at least

two identified peptides. Protein probabilities were assigned by the

Protein Prophet algorithm [19]. At this stage, all remaining

peptide identifications were screened for presence in multiple

biological replicates and those proteins identified by two peptides

were subject to manual validation for final confirmation. The final,

compressed files and accepted spectra are available for review

through Tranche (https://proteomecommons.org/tranche/; enti-

tled ‘‘30day_mudpitted_condensed’’ and ‘‘90day_mudpitted_con-

densed’’).

Mtb Proteome In Vivo

PLoS ONE | www.plosone.org 10 November 2010 | Volume 5 | Issue 11 | e13938



Normalization of Spectral Counts
In order to compare the two time-points, the spectral counts

were normalized. To do this, the average number of spectra in

both 30 and 90-day analysis (321,627) was divided by the 30-day

total (355,411) and the 90-day-total (287,843) yielding the values

0.9 and 1.12, which were used as multipliers to the spectral counts

in the 30 and 90-day samples respectively [68].

Calculation of False Discovery Rates (FDRs)
In order to calculate the FDR for each of the time-point data

sets, all .raw files were searched against a decoy database. Decoy

databases contain a reversed version of the proteins included in

either the customized database composed from the Mycobacterium

tuberculosis H37Rv FASTA (for Sequest), as well as concatenated to

the reverse IPI Mouse database (for Mascot). The resulting files

were pooled in Scaffold and the analysis was identical to that

described above. The number of proteins matched to the reverse

database, 35 and 23, in the 30 and 90-day data sets respectively, is

equal to the number of false positives (FP). The equation for the

FDR is FP/TP, where TP is the number of total positives found in

each data set (318 for day 30 and 334 for day 90). Therefore, the

FDRs are 11% and 6.8% for the 30 and 90-day data sets,

respectively. In addition, uninfected guinea pig lungs were

subjected to the identical protocol including lung homogenization

and process through mass spectrometry and analysis. This analysis

identified 74 Mtb proteins, however only 11 of these proteins

contained peptides identified in our 30 and 90-day infected lung

samples. These 11 proteins were considered false positives and

removed from the analysis of infected tissues. Of the remaining 63

‘‘Mtb proteins’’ (Supplementary Table S4, Supplementary Figure

S1A), 29 and 23 were identified in the 30 and 90-day infected lung

samples, respectively. However, none of the peptides used to make

these identifications were identical to those found in infected lung

tissue, thus, these proteins were retained in our study (Supple-

mentary Figure S1B). By retaining these proteins, an FDR of 9.1%

and 6.9% for day 30 and 90-day samples, respectively, is derived.

This rate is compares with the FDR calculated by decoy method

described above, supporting the traditional statistical validation

used.

Western Blots
For validation of proteins, two antibodies against Mtb proteins

identified in this study, anti-GlcB and anti-PstS1, were available

and provided through the NIAID contract, ‘‘Tuberculosis research

materials and vaccine testing’’ (HHSN266200400091c). 10 mg of

each lung homogenate sample and the ECL Plex Fluorescent

Rainbow Marker (GE) Healthcare) were resolved by SDS-PAGE

on a 4 – 12% Bis-Tris Mini Gel (Invitrogen) in MES Buffer,

followed by transfer to a PVDF membrane (Hybond LFP, GE

Healthcare). Western blot procedure was performed as recom-

mended by the manufacturer. ECL Plex Cy2 conjugated anti-

mouse IgG was used as the secondary antibody. Blots were

scanned using the Typhoon scanner (GE Healthcare), and bands

were analyzed using ImageQuantTM TL software. Mtb whole cell

lysate (2.5 mg) was used as the positive control (Supplementary

Figure S2).

Supporting Information

Table S1 Mtb proteins identified in 30-day infected guinea pig

lungs. Data includes number of unique peptides identified for each

protein.

Found at: doi:10.1371/journal.pone.0013938.s001 (0.10 MB

XLS)

Table S2 Mtb proteins identified in 90-day infected guinea pig

lungs. Data includes number of unique peptides identified for each

protein.

Found at: doi:10.1371/journal.pone.0013938.s002 (0.10 MB

XLS)

Table S3 Spectral counts of the Mtb proteins identified in 30-

day and 90-day infected guinea pig lungs.

Found at: doi:10.1371/journal.pone.0013938.s003 (0.22 MB

XLS)

Table S4 Spectral Counts of the Mtb Proteins Identified in

Uninfected Guinea Pig Lungs.

Found at: doi:10.1371/journal.pone.0013938.s004 (2.57 MB

XLS)

Figure S1

Found at: doi:10.1371/journal.pone.0013938.s005 (0.30 MB TIF)

Figure S2 Fluorescent western blots of GlcB (80.4 kDa) and

PstS1 (38.2 kDa) at 30 and 90 day infection time points. C: positive

control; U: uninfected guinea pig; 1-6: infected guinea pigs.

Found at: doi:10.1371/journal.pone.0013938.s006 (0.26 MB TIF)
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