POS0899 HIGH FATIGUE SCORES IN PATIENTS WITH IDIOPATHIC INFLAMMATORY MYOPATHIES: A MULTIGROUP COMPARATIVE STUDY FROM THE COVAD E-SURVEY.

<u>S. Grignaschi^{1,2}</u>, L. Cavagna^{1,2}, M. Kim³, N. R⁴, J. B. Lilleker^{5,6}, P. Sen⁷, V. Agarwal⁸, S. Kardes⁹, J. Day^{10,11,12}, A. Makol¹³, M. Milchert¹⁴, T. A. Gheita¹⁵, B. Salim¹⁶, T. Velikova¹⁷, A. E. Gracia-Ramos¹⁸, I. Parodis^{19,20}, A. Selva-O'callaghan²¹, E. Nikiphorou^{22,23}, T. Chatterjee³, A. L. Tan^{24,25}, M. A. Saavedra²⁶, S. Katsuyuki Shinjo²⁷, N. Ziade^{28,29}, J. Knitza³⁰, M. Kuwana³¹, A. Nune³², O. Distler³³, H. Chinoy^{34,35,36}, V. Agarwal⁴, R. Aggarwal³⁷, L. Gupta^{4,38} on behalf of COVAD. ¹ Fondazione I.R.C.C.S. Policlinico San Matteo, Rheumatology, Pavia, Italy; ²The University of Pavia, Department of Internal Medicine and Medical Therapeutics, Pavia, Italy; ³University of Illinois College of Medicine at Peoria, Department of Internal Medicine, Peoria, United States of America; ⁴Sanjay Gandhi Postgraduate Institute of Medical Sciences, Department of Clinical Immunology and Rheumatology, Lucknow, India; ⁵School of Biological Sciences University of Manchester, Division of Musculoskeletal and Dermatological Sciences, Rochester, United Kingdom; ⁶Manchester Centre for Clinical Neurosciences, Clinical Neurosciences, Salford, United Kingdom; ⁷Maulana Azad Medical College(MAMC), Rheumatology, New Delhi, India; ⁸Mahatma Gandhi Mission Medical College, -, Navi Mumbai, India; ⁹Istanbul University Faculty of Medicine, Department of Medical Ecology and Hydroclimatology, Istanbul, Turkey; ¹⁰Royal Melbourne Hospital Neuroscience Foundation, Department of Rheumatology, Parkville, Australia; ¹¹WEHI - Walter and Eliza Hall Institute of Medical Research, -, Parkville, Australia; ¹²University of Melbourne, Department of Medical Biology, Parkville, Australia; ¹³Mayo Clinic, Division of Rheumatology, Rochester, United States of America; ¹⁴Pomeranian Medical University, Department of Rheumatology, Internal Medicine, Geriatrics and Clinical Immunology, Szczecin, Poland; ¹⁵Faculty Of Medicine Kasr Al-Ainy Cairo University, Rheumatology Department, Cairo, Egypt; ¹⁶Fauji Foundation Hospital Road, Rheumatology Department, Rawalpindi, Pakistan; ¹⁷Lozenetz University Hospital, Department of Clinical Immunology, Sofia, Bulgaria; ¹⁸IMSS, Department of Internal Medicine, Ciudad de México, Mexico; ¹⁹Karolinska University Hospital, Division of Rheumatology, Stockholm, Sweden; ²⁰ Örebro University, Department of Rheumatology, Örebro, Sweden; ²¹La Vall d'Hebron, Systemic Autoimmune Diseases Unit, Internal Medicine Department, Barcelona, Spain; ²²King's College London, Centre for Rheumatic Diseases, London, United Kingdom; ²³King's College Hospital, Dept of Rheumatology, London, United Kingdom; ²⁴Leeds General Infirmary, NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom; ²⁵University of Leeds, Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom; ²⁶Centro Medico Nacional La Raza, Departamento de Reumatología, Ciudad de México, Mexico; ²⁷Faculdade de Medicina da Universidade de São Paulo, Division of Rheumatology, Sao Paulo, Brazil; ²⁸Saint Joseph University of Beirut, Rheumatology Department, Bayrut, Lebanon; ²⁹Hôtel-Dieu de France, Rheumatology Department, Bayrut, Lebanon; ³⁰University of Erlangen-Nuremberg, Medizinische Klinik 3 - Rheumatologie und Immunologie, Erlangen, Germany; ³¹Nippon Medical School, Department of Allergy and Rheumatology, Bunkyo City, Japan; ³²Southport & Ormskirk Hospital NHS Trust, -, Southport, United Kingdom; ³³University Hospital of Zürich, Rheumatology, Zürich, Switzerland; ³⁴School of Biological Sciences University of Manchester, Division of Musculoskeletal and Dermatological Sciences, Manchester, United Kingdom; ³⁵NIHR Manchester Biomedical Research Unit, -, Manchester, United Kingdom; ³⁶Salford Royal NHS Foundation Trust, Rheumatology, Manchester, United Kingdom; ³⁷University of Pittsburgh School of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh, United States of America; ³⁸The Royal Wolverhampton NHS Trust, Dept. of Rheumatology, Wolverhampton, United Kingdom

Background: Idiopathic inflammatory myopathies (IIM) are a rare, multisystem, heterogeneous diseases, and contribute to high psychological burden. The patients' perception of physical health, deteriorating independence and social and environmental relationships may not always be a direct function of disease activity. To face with these aspects, several worldwide specialized organization have recommended the use of patient reported outcome measures (PROMs) both in clinical trials and observational studies to highlight patient's perception of the disease (1). Unfortunately, data on fatigue scores in IIM is limited.

Objectives: We compared fatigue VAS scores in patients with IIM, autoimmune diseases (AIDs) and healthy controls (HCs) and triangulated them with PROMIS physical function in a large international cohort made up of answers from the e-survey regarding the COVID-19 Vaccination in Autoimmune Diseases (COVAD) study.

Methods: Data of 16327 respondents was extracted from the COVAD database on August 31th 2021. VAS fatigue scores were compared between AID, HC and

IIM using univariate followed by multivariate analysis after adjusting for baseline differences. We further performed a propensity score matched analysis on 1827 subjects after adjusting for age, gender and ethnicity. The Kruskal-Wallis test was used for continuous variables and chi-square test for categorical variables, and Bonferroni's correction was applied for the post hoc analyses considering IIMs as a reference group.

Results: We analyzed answers from 6988 patients, with a mean age of 43.8 vears (SD 16.2). The overall percentage of female was 72% and the population ethnicity was mainly composed of White (55.1%), followed by Asian (24.6%), and Hispanic (13.8%). The overall fatigue VAS was 3.6 mm (SD 2.7). IIMs VAS was 4.8mm (SD 2.6), AIDs 4.5mm (SD 2.6), and HC 2.8mm (SD 2.6) (P <0,001). VAS fatigue scores of IIMs were comparable with AIDs (P 0.084), albeit significantly higher than the HCs (P <0,001). Notably, fatigue VAS was lower in IIMs than AIDs in two distinct subsets: inactive disease as defined by the patient's perception and the "excellent" general health condition group. where IIMs had worse scores (P <0,05). Interestingly, fatigue VAS was comparable in active disease defined by physician assessment, patient perception, based on general functional status, or when defined by steroid dose being prescribed. Notably, after propensity matched analysis of patients adjusting for gender, age and ethnicity (1.827 answers, i.e. 609 subjects per group, P = 1) the differences disappeared and IIMs and AIDs had comparable fatigue levels across all levels of disease activity, although the fatigue discrepancies with HCs were substantially confirmed. After application of a multivariate linear regression analysis we found that lower fatigue VAS scores were related to HC (P < 0,001), male gender (P < 0,001), Asian and Hispanic ethnicities (P < 0,001) and 0.003)

Conclusion: Our study confirms that there is a higher prevalence of fatigue in all the AIDs patients, with comparable VAS scores between IIMs and other AIDs. We can also read our data commenting that females and/or Caucasians patients suffer a higher impact of this manifestation of chronic autoimmune diseases upon their lives. This is why these subjects, to our judgement, should be carefully evaluated during outpatients visits and to whom we should spend some extra time to discuss health related issues and how to improve them. **REFERENCES:**

 Regardt, M. *et al.* OMERACT 2018 Modified Patient-reported Outcome Domain Core Set in the Life Impact Area for Adult Idiopathic Inflammatory Myopathies. *J. Rheumatol.* 46, 1351–1354 (2019).

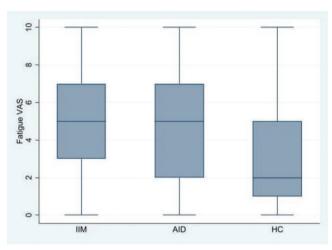


Figure 1. distribution of Fatigue VAS scores in the three population evaluated. IIM idiopathic inflammatory myositis; AID autoimmune diseases; HC healthy controls; * P < 0.05.

Disclosure of Interests: None declared DOI: 10.1136/annrheumdis-2022-eular.3537

POS0900

SYSTEMIC PHARMACOLOGICAL TREATMENT OF DIGITAL ULCERS IN SYSTEMIC SCLEROSIS: A SYSTEMATIC LITERATURE REVIEW

N. Maltez¹, <u>L. Ross²</u>, M. Hughes^{3,4}, J. Schoones⁵, M. Baron⁶, L. Chung⁷, C. Campochiaro⁸, Y. A. Suliman⁹, D. Giuggioli¹⁰, P. Moinzadeh¹¹, Y. Allanore¹², C. P. Denton¹³, O. Distler¹⁴, T. Frech¹⁵, D. Furst¹⁶, D. Khanna¹⁷, T. Krieg¹¹, M. Kuwana¹⁸, M. Matucci-Cerinic¹⁹, J. Pope²⁰, A. Alunno²¹on behalf of World Scleroderma Foundation Digital Ulcer Working Group. ¹*University of Ottawa, Department of Medicine, Ottawa, Canada;* ²*The University of Melbourne, Department of Medicine at St Vincent's Hospital, Fitzroy, Australia;* ³*Tameside and Glossop Integrated NHS Foundation Trust, Department of Rheumatology, Manchester, United Kingdom;* ⁴*The University of Manchester, Division of* Musculoskeletal and Dermatological Sciences, Manchester, United Kingdom; ⁵Leiden University Medical Center, Directorate of Research Policy, Leiden, Netherlands; ⁶Jewish General Hospital, Department of Rheumatology, Montreal, Canada; ⁷Standford University, School of Medicine & Palo Alto VA Health Care System. Palo Alto. United States of America: ⁸IRCCS San Raffaele, Vita-Salute San Raffaele, Unit of Immunology, Rheumatology, Allergy & Rare Diseases, Milan, Italy; ⁹Assiut University Hospital, Rheumatology & Rehabilitation Department, Assiut, Egypt; ¹⁰University of Modena and Reggio Emilia, University Hospital of Modena, Scleroderma Unit, Rheumatology Unit, Modena, Italy; ¹¹University Hospital of Cologne, Department of Dermatology and Venereology, Cologne, Germany; ¹²Paris Descartes University, Institut Cochin, Paris, France; ¹³University College London, UCL Division of Medicine, London, United Kingdom; ¹⁴University Hospital Zurich, Department of Rheumatology, Zurich, Switzerland; ¹⁵Vanderbilt University Medical Center, Department of Rheumatology, Nashville, United States of America: ¹⁶David Geffen School of Medicine, University of California, Division of Rheumatology, Los Angeles, United States of America; ¹⁷University of Michigan, Scleroderma Program, Ann Arbor, United States of America; ¹⁸Nippon Medical School, Department of Allergy and Rheumatology, Tokyo, Japan; ¹⁹University of Florence. Department of Experimental and Clinical Medicine. Florence. Italy: ²⁰University of Western Ontario, Schulich School of Medicine & Dentistry, London, Canada; ²¹University of L'Aquila, Internal Medicine and Nephrology Unit. L'Aquila. Italv

Background: Digital ulcers (DU) are common in systemic sclerosis (SSc) and associated with reduced survival, high morbidity and poor quality of life. Recommendations have previously been proposed for DU management yet there remains significant unmet patient need. Therefore the World Scleroderma Foundation DU Working Group intends to develop practical evidence based recommendations for DU management.

Objectives: To summarise data on efficacy and safety of systemic treatments for SSc DU.

Methods: A systematic literature review to May 2021 was performed. PubMed, MEDLINE, Embase, Web of Science, Cochrane Library, Emcare (OVID) and Academic Search Premier databases were searched for original studies on adult patients with SSc DU treated with systemic pharmacological treatment. Based on the PICO framework, eligibility criteria were defined and references were independently screened by two reviewers. Reviewers independently assessed the full text of eligible articles. Owing to interstudy heterogeneity narrative summaries were used to present data.

Results: The search strategy identified 1271 references of which 45 eligible articles were included. Seventeen studies were randomised placebo controlled trials (RCT) pertaining to PDE5 antagonists (PDE5i) (n=3), endothelin receptor antagonists (ERA) (n=3), prostanoids (n=7), antiplatelet agents (n=1) and other (n=3) (Table 1). No head to head RCT was retrieved. All other studies were observational studies (OBS). Studies were highly heterogeneous with application of differing definition of DU, variable study eligibility criteria, clinical endpoints and follow up periods. This limited the calculation of effect size and comparison across studies.

Table 1. Characteristics of placebo controlled randomised controlled trials

Author Year	Intervention	n	Follow up	Outcome	Favours intervention
Hachulla 2016	Sildenafil	83	12 weeks	Time to DU healing	-
Andrigueti 2017	Sildenafil	41	12 weeks	DU healing	+
Shenoy 2010	Tadalafil	24	6 weeks	New DU	+
Khanna 2016	Macitentan	554	16 weeks	New DU	-
Matucci-Cerinic	Bosentan	188	32 weeks	New DU Time to	+-
2011				healing of DU	
Korn 2004	Bosentan	122	12 weeks	New DU	+
Kawald 2008	IV iloprost	50	12 months	DU healing	-
Wigley 1992	IV iloprost	35	10 weeks	DU healing	+
Wigley 1994	IV iloprost	73	9 weeks	50% reduction in DI	J-
				score	
Seibold 2017	Treprostinil	148	20 weeks	Net DU burden	-
Vayssairat 1999	Beraprost	107	25 weeks	% patients with	-
				new DU	
Denton 2017	Selexipag	74	12 weeks	Number of new DU	-
				DU healing	
Lau 1993	Cicaprost	33	4 weeks	Number of DU	-
Abou-Raya 2008	Atorvastatin	84	4 months	Number of DU	+
Au 2010	Cyclophosphamide	158	12 months	Number of patients	-
				with DU	
Beckett 1984	Dipyridamole /	41	2 years	Change in general	-
	aspirin			SSc	
Nagaraja 2019	Riociguat	17	32 weeks	Net DU burden	-

+ significantly superior to comparator- non significantly different from comparatorDU: digital ulcers IV: intravenous SSc: systemic sclerosis Several RCT found improved DU healing with treatment: two with PDE5i, one with iloprost and one showed improved DU healing and prevention with atorvastatin. Two RCT demonstrated effective prevention of new DU with bosentan. OBS studies with a total of 621 patients showed variable improvements in the healing of DU with CCB, PDE5i, ERA, statins, N-acetylcysteine, prostanoids and ketanserin and prevention of new DU with ERA. Regarding safety, all treatments were generally tolerated with few serious adverse events. Treatment was ceased in 6.25-17.5% of patients in RCT due to treatment related side effects.

Conclusion: Despite several studies assessing the efficacy and safety of systemic pharmacological treatment of SSc DU, it is not possible to draw solid conclusions due to study heterogeneity. Small RCT have shown treatment benefit with PDE5i, iloprost and atorvastatin. Large studies demonstrated effective prevention of new DU with bosentan. Our results highlight the urgent need for improved clinical trial design to generate more robust evidence and novel therapies to guide the management SSc DU.

Acknowledgements: This work was supported by the World Scleroderma Foundation.

Disclosure of Interests: Nancy Maltez: None declared, Laura Ross: None declared. Michael Hughes Speakers bureau: Actelion Pharmaceuticals. Eli Lilly and Pfizer outside of the submitted work., Jan Schoones: None declared, Murray Baron: None declared, Lorinda Chung Consultant of: Eicos, Corrado Campochiaro: None declared, Yossra A. Suliman: None declared, Dilia Giuggioli: None declared, Pia Moinzadeh Speakers bureau: Actelion Pharmaceuticals. Boehringer Ingelheim. Yannick Allanore: None declared. Christopher P Denton: None declared, Oliver Distler Speakers bureau: Abbvie, Acceleron, Alcimed, Amgen, AnaMar, Arxx, AstraZeneca, Baecon, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galapagos, Glenmark, Horizon, Inventiva, Kymera, Lupin, Medscape, Miltenyi Biotec, Mitsubishi Tanabe, MSD. Novartis. Prometheus. Roivant. Sanofi and Topadur., Consultant of: Abbvie, Acceleron, Alcimed, Amgen, AnaMar, Arxx, AstraZeneca, Baecon, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galapagos, Glenmark, Horizon, Inventiva, Kymera, Lupin, Medscape, Miltenyi Biotec, Mitsubishi Tanabe, MSD, Novartis, Prometheus, Roivant, Sanofi and Topadur., Grant/ research support from: Patent issued "mir-29 for the treatment of systemic sclerosis" (US8247389, EP2331143), Abbvie, Acceleron, Alcimed, Amgen, AnaMar, Arxx, AstraZeneca, Baecon, Blade, Bayer, Boehringer Ingelheim, Corbus, CSL Behring, Galapagos, Glenmark, Horizon, Inventiva, Kymera, Lupin, Medscape, Miltenyi Biotec, Mitsubishi Tanabe, MSD, Novartis, Prometheus, Roivant, Sanofi and Topadur., Tracy Frech: None declared, Daniel Furst: None declared, Dinesh Khanna Consultant of: Eicos Sciences Inc, Janssen, Thomas Krieg: None declared, Masataka Kuwana Speakers bureau: Speaker fees from AbbVie, Asahi Kasei Pharma, Astellas, Boehringer Ingelheim, Chugai, Eisai, GlaxoSmithKline, Janssen, Nippon Shinyaku, Ono Pharmaceuticals, Tanabe-Mitsubishi, and consultancy fees from AstraZeneca, Boehringer Ingelheim, Corbus, Kissei, Mochida outside of the submitted work., Marco Matucci-Cerinic: None declared, Janet Pope: None declared, Alessia Alunno: None declared

DOI: 10.1136/annrheumdis-2022-eular.3592

POS0901 INTERSTITIAL LUNG DISEASE IN MIXED CONNECTIVE TISSUE DISEASE: CLINICAL AND SEROLOGICAL ASSOCIATIONS

M. Silvério-António^{1,2}, J. Martinho^{1,2}, A. T. Melo^{1,2}, F. Guimarães³, D. Santos Oliveira^{4,5}, J. M. Pestana Lopes⁶, A. Saraiva⁷, L. Gago⁸, A. M. Gomes Correia⁹, A. L. Fernandes¹⁰, S. P. Dinis¹¹, R. Nicolau¹², S. P. Silva¹³, C. Costa¹⁴, T. Beirão¹⁵, A. Furtado¹⁶, P. M. Azevedo Abreu¹⁷, C. Afonso³, D. Peixoto³, E. Dourado^{1,2}, N. Khmelinskii^{1,2}. ¹Centro Hospitalar Universitário Lisboa Norte, Rheumatology Department, Lisbon, Portugal; ²Instituto de Medicina Molecular, Rheumatology Research Unit, Lisbon, Portugal; ³Unidade Local de Saúde do Alto Minho, Rheumatology Department, Ponte de Lima, Portugal; ⁴Centro Hospitalar Universitário São João, Rheumatology Department, Porto, Portugal; ⁵Faculty of Medicine, University of Porto, Center for Health Technology and Services Research (CINTESIS), Porto, Portugal; ⁶Hospital Garcia de Orta, Rheumatology Department, Lisbon, Portugal; ⁷Centro Hospitalar Universitário de Coimbra, Rheumatology Department, Coimbra, Portugal; ⁸Centro Hospitalar Lisboa Ocidental, Rheumatology Department, Lisbon, Portugal; ⁹Hospital de Braga, Rheumatology Department, Braga, Portugal; ¹⁰Centro Hospitalar Universitário do Algarve, Rheumatology Department, Faro, Portugal; ¹¹Unidade Local de Saúde da Guarda, Rheumatology Department, Guarda, Portugal; ¹²Centro Hospitalar Tondela-Viseu, Rheumatology Department, Viseu, Portugal; ¹³Centro Hospitalar do Baixo Vouga, Rheumatology Department, Aveiro, Portugal; ¹⁴Centro Hospitalar Trás-os-Montes e Alto Douro, Rheumatology Department, Vila Real, Portugal; ¹⁵Centro Hospitalar Vila Nova de Gaia/Espinho, Rheumatology Department, Gaia, Portugal; ¹⁶Hospital do Divino Espírito Santo, Rheumatology