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Abstract

This thesis deals with estimating position and orientation in real-time, using measure-

ments from vision and inertial sensors. A system has been developed to solve this problem

in unprepared environments, assuming that a map or scene model is available. Compared

to ‘camera-only’ systems, the combination of the complementary sensors yields an accu-

rate and robust system which can handle periods with uninformative or no vision data and

reduces the need for high frequency vision updates.

The system achieves real-time pose estimation by fusing vision and inertial sensors

using the framework of nonlinear state estimation for which state space models have been

developed. The performance of the system has been evaluated using an augmented reality

application where the output from the system is used to superimpose virtual graphics on

the live video stream. Furthermore, experiments have been performed where an industrial

robot providing ground truth data is used to move the sensor unit. In both cases the system

performed well.

Calibration of the relative position and orientation of the camera and the inertial sen-

sor turn out to be essential for proper operation of the system. A new and easy-to-use

algorithm for estimating these has been developed using a gray-box system identification

approach. Experimental results show that the algorithm works well in practice.
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1
Introduction

Knowledge about position and orientation (pose) is a key ingredient in many applications.

One such application can be found in the field of augmented reality (AR). Here, one of

the main ideas is to overlay a real scene with computer generated graphics in real-time.

This can be accomplished by showing the virtual objects on see-through head-mounted

displays or superimposing them on live video imagery. Figure 1.1 illustrates the concept

of AR with some examples. In order to have realistic augmentation it is essential to

know the position and orientation of the camera with high accuracy and low latency. This

knowledge is required to position and align the virtual objects correctly with the real

world and they appear to stay in the same location regardless of the camera movement.

In this thesis the problem of pose estimation is approached using the combination of

a camera and an inertial measurement unit (IMU). In theory, a ‘vision only approach’

suffices for pose estimation. Such an approach can give good absolute accuracy, but

is difficult to run at high frame rate and is not robust during fast motions. The main

justification for adding an IMU— by itself accurate for a short period, but drift-prone for

longer timescales — is to obtain a robust system. This approach, partly inspired from the

human sensory system, is becoming a promising solution as it is a self-contained system

requiring no external infrastructure.

The combination of inertial and vision sensors has been previously used in literature,

see e.g., Corke et al. (2007) for an introduction. Reported systems apply various methods:

inertial measurements are used as backup (Aron et al., 2007), for short time pose predic-

tion (Klein and Drummond, 2004), or depth map alignment (Lobo and Dias, 2004). Alter-

natively, vision and inertial subsystems are loosely coupled, using visual pose measure-

ments (Ribo et al., 2004; Chroust and Vincze, 2004; Armesto et al., 2007). Vision relies

either on specific targets, line contours or natural landmarks. Calibration of the sensors

is discussed in e.g., (Lobo and Dias, 2007). Furthermore, the problem is closely related

to the problem of simultaneous localization and mapping (SLAM) (Durrant-Whyte and

Bailey, 2006; Thrun et al., 2005), where camera tracking and scene model reconstruction

are performed simultaneously. Single camera SLAM is discussed in e.g., Davison (2003);

1



2 1 Introduction

(a) Sport coverage using virtual annotations. (b) Maintenance assistance.

(c) Visualization of virtual objects in TV shows. (d) On-site virtual reconstruction.

Figure 1.1: Examples of augmented reality applications. Courtesy of BBC R&D

and Fraunhofer IGD.

Davison et al. (2007); Klein and Murray (2007).

1.1 Problem formulation

The work in this thesis has been performed within the EU project MATRIS (MATRIS,

2008), where the objective is to develop a hybrid camera tracking system using vision

and inertial sensors. By using a 3D scene model containing natural landmarks, there is no

need for a prepared environment with artificial markers. This will remove the costly and

time consuming procedure of preparing the environment, and allow for AR applications

outside dedicated studios, for instance outdoors.

A schematic overview of the approach is shown in Figure 1.2. The inertial mea-

surement unit provides rapid measurements of acceleration and angular velocity. The

computer vision system generates correspondences between the camera image and the

scene model. This 3D scene model contains positions of various natural markers and is

generated offline using images and/or drawings of the scene. The inertial and vision mea-

surements are combined in the sensor fusion model to obtain the camera pose. By using

the pose estimates in the computer vision module, a tightly-coupled system is obtained.

The problem of estimating camera pose from inertial and visual measurements is for-

mulated as a nonlinear state estimation problem. This thesis deals with the question of
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Figure 1.2: Estimating camera pose by fusing measurements from an inertial mea-

surement unit and a computer vision system.

how to solve this nonlinear state estimation problem in real-time using the available sen-

sor information. Furthermore, several issues, including calibration, are addressed in order

to obtain a solution working in practice.

1.2 Contributions

The main contributions of the thesis are:

• The development, testing and evaluation of a real-time pose estimation system

based on vision and inertial measurements.

• The derivation of process and measurements models for this system which can be

used for nonlinear state estimation of position and orientation.

• The development of a new and easy-to-use calibration procedure to determine the

relative position and orientation of a rigidly connected camera and IMU.

Some aspects have been previously published in

F. Gustafsson, T. B. Schön, and J. D. Hol. Sensor fusion for augmented reality. In

Proceedings of 17th International Federation of Automatic Control World Congress,

Seoul, South Korea, July 2008. Accepted for publication.

J. D. Hol, T. B. Schön, H. Luinge, P. J. Slycke, and F. Gustafsson. Robust real-time

tracking by fusing measurements from inertial and vision sensors. Journal of Real-

Time Image Processing, 2(2):149–160, Nov. 2007. doi:10.1007/s11554-007-0040-2.

J. D. Hol, T. B. Schön, F. Gustafsson, and P. J. Slycke. Sensor fusion for augmented

reality. In Proceedings of 9th International Conference on Information Fusion, Flo-

rence, Italy, July 2006b. doi:10.1109/ICIF.2006.301604.

Outside the scope of this thesis fall the following conference papers

J. D. Hol, T. B. Schön, and F. Gustafsson. On resampling algorithms for particle fil-

ters. In Proceedings of Nonlinear Statistical Signal Processing Workshop, Cambridge,

UK, Sept. 2006a. doi:10.1109/NSSPW.2006.4378824.

G. Hendeby, J. D. Hol, R. Karlsson, and F. Gustafsson. A graphics processing unit

implementation of the particle filter. In Proceedings of European Signal Processing

Conference, Poznań, Poland, Sept. 2007.

http://dx.doi.org/10.1007/s11554-007-0040-2
http://dx.doi.org/10.1109/ICIF.2006.301604
http://dx.doi.org/10.1109/NSSPW.2006.4378824
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1.3 Thesis outline

This thesis is organized in the following way: Chapter 2 gives an overview of the devel-

oped pose estimation system. It is an edited version of the paper originally published as

Hol et al. (2007) and discusses the setup, the sensor fusion algorithm and the performance

evaluation of the system.

The sensor unit consisting of an IMU and a camera is the subject of Chapter 3. The

operating principles, measurements and processing algorithms of these sensors are dis-

cussed. In Chapter 4 the process and measurement models of the sensor fusion algorithm

for real-time camera pose estimation are derived.

Calibration of the relative position and orientation between the IMU and the camera

is essential for proper operation of the pose estimation system. Similar types of problems

occur when the estimated pose is compared to that of an external reference. Chapter 5

presents a theoretical framework for solving the relative pose calibration problem using

various types of measurements. This theory is applied in Chapter 6 to develop a number

of calibration algorithms.

The pose estimation system has been tested as an augmented reality application. The

result of this experiment is the topic of Chapter 7. Finally, Chapter 8 concludes this thesis

and gives suggestions for further work.



2
System overview

This chapter provides an overview of the developed pose estimation system. It is an edited

version of the paper originally published as

J. D. Hol, T. B. Schön, H. Luinge, P. J. Slycke, and F. Gustafsson. Robust real-time

tracking by fusing measurements from inertial and vision sensors. Journal of Real-

Time Image Processing, 2(2):149–160, Nov. 2007. doi:10.1007/s11554-007-0040-2.

and discusses the setup, the sensor fusion algorithm and the performance evaluation of

the system.

5
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Robust real-time tracking by fusing

measurements from inertial and vision

sensors

J. D. Hola, T. B. Schöna, H. Luingeb, P. J. Slyckeb and F. Gustafssona

aLinköping University, Division of Automatic Control,

SE–581 83 Linköping, Sweden

bXsens Technologies B.V., Pantheon 6a, Postbus 559,

7500 AN Enschede, The Netherlands

Abstract

The problem of estimating and predicting position and orientation (pose) of

a camera is approached by fusing measurements from inertial sensors (ac-

celerometers and rate gyroscopes) and vision. The sensor fusion approach

described in this contribution is based on non-linear filtering of these comple-

mentary sensors. This way, accurate and robust pose estimates are available

for the primary purpose of augmented reality applications, but with the sec-

ondary effect of reducing computation time and improving the performance

in vision processing.

A real-time implementation of a multi-rate extended Kalman filter is de-

scribed, using a dynamic model with 22 states, where 100 Hz inertial mea-

surements and 12.5 Hz correspondences from vision are processed. An ex-

ample where an industrial robot is used to move the sensor unit is presented.

The advantage with this configuration is that it provides ground truth for the

pose, allowing for objective performance evaluation. The results show that

we obtain an absolute accuracy of 2 cm in position and 1◦ in orientation.

2.1 Introduction

This paper deals with estimating the position and orientation (pose) of a camera in real-

time, using measurements from inertial sensors (accelerometers and rate gyroscopes) and

a camera. A system has been developed to solve this problem in unprepared environments,

assuming that a map or scene model is available. For a more detailed description of the

overall system and the construction of scene models we refer to Chandaria et al. (2007)

and Koeser et al. (2007), respectively. In this paper, the sensor fusion part of the system is

described, which is based upon a rather general framework for nonlinear state estimation

available from the statistical signal processing community.

This problem can under ideal conditions be solved using only a camera. Hence, it

might seem superfluous to introduce inertial sensors. However, the most important rea-

sons justifying an inertial measurement unit (IMU) are:
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• Producing more robust estimates. Any single camera system will experience prob-

lems during periods with uninformative or no vision data. This will occur, typically

due to occlusion or fast motion. An IMU will help to bridge such gaps, which will

be illustrated in the present paper.

• Reducing computational demands for image processing. Accurate short time pose

estimates are available using the information from the IMU, reducing the need for

fast vision updates.

The combination of vision and inertial sensors has been used previously in literature.

Corke et al. (2007) give an introduction to this field and its applications. Reported systems

apply various methods: inertial measurements are used as backup (Aron et al., 2007), for

short time pose prediction (Klein and Drummond, 2004), or depth map alignment (Lobo

and Dias, 2004). Alternatively, vision and inertial subsystems are loosely coupled, using

visual pose measurements (Ribo et al., 2004; Chroust and Vincze, 2004; Armesto et al.,

2007). Vision relies either on specific targets, line contours or natural landmarks. Cali-

bration of the sensors is discussed in e.g., (Lobo and Dias, 2007). Furthermore, the prob-

lem is closely related to the problem of simultaneous localization and mapping (SLAM)

(Durrant-Whyte and Bailey, 2006; Thrun et al., 2005), where camera tracking and scene

model construction are performed simultaneously. Single camera SLAM is discussed in

Davison (2003); Davison et al. (2007). In that context so called fast localization algo-

rithms (Williams et al., 2007) are investigated as alternatives to inertial support (Pinies

et al., 2007; Gemeiner et al., 2007).

In our approach, real-time camera pose estimation is achieved by fusing inertial and

vision measurements using the framework of nonlinear state estimation, covering methods

such as the Extended Kalman Filter (EKF), the Unscented Kalman Filters (UKF) and the

particle filter (PF). This results in a tightly coupled system, naturally supporting multi-

rate signals. The vision measurements are based on natural landmarks, which are detected

guided by pose predictions. The measurements from the sensors are used directly rather

than being processed to a vision based pose or an inertial based pose. The components of

the system are well known. However, we believe that the way in which these components

are assembled is novel and we show that the resulting system provides accurate and robust

pose estimates.

The sensors generating the measurements yt are described in Section 2.2. In Sec-

tion 2.3, the framework for state estimation in nonlinear dynamic systems is introduced in

more detail and used to solve the sensor fusion problem we are faced with in the present

application. In implementing this, there are several practical issues that have to be solved.

The overall performance of the system heavily relies on successful solutions to these

matters, which is explained in Section 2.4. The performance of the implementation is

evaluated in Section 2.5, and finally, the paper is concluded in Section 2.6.

2.2 Sensors

An IMU and a digital video camera are combined to provide measurements to the sensor

fusion module, described in this paper. Both sensors are relatively small and unobtrusive

and they can be conveniently integrated into a single sensor unit. An example of a proto-
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type is shown in Figure 2.1. An on board digital signal processor containing calibration

Figure 2.1: A prototype of the MATRIS project, integrating a camera and an IMU

in a single housing. It provides a hardware synchronized stream of video and inertial

data.

parameters is used to calibrate and synchronize data from the different components.

Before discussing the inertial and vision sensors in the subsequent sections, the re-

quired coordinate systems are introduced.

2.2.1 Coordinate systems

When working with a sensor unit containing a camera and an IMU several coordinate

systems have to be introduced:

• Earth (e): The camera pose is estimated with respect to this coordinate system. It

is fixed to earth and the features of the scene are modeled in this coordinate system.

It can be aligned in any way; however, preferably it should be vertically aligned.

• Camera (c): The coordinate system attached to the moving camera. Its origin is

located in the optical center of the camera, with the z-axis pointing along the optical

axis. The camera, a projective device, acquires its images in the image plane (i).
This plane is perpendicular to the optical axis and is located at an offset (focal

length) from the optical center of the camera.

• Body (b): This is the coordinate system of the IMU. Even though the camera and

the IMU are rigidly attached to each other and contained within a single package,

the body coordinate system does not coincide with the camera coordinate system.

They are separated by a constant translation and rotation.

These coordinate systems are used to denote geometric quantities, for instance, ce is the

position of the camera coordinate system expressed in the earth system and Rcb is the

rotation matrix from the body system to the camera system.
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2.2.2 Inertial sensors

The sensor unit contains an IMU with three perpendicularly mounted 1200 degree/s
ADXLXRS300 angular velocity sensors and two 5g 2D ADXL22293 accelerometers,

which are mounted such that three of the sensitive axes are perpendicular to each other.

MEMS rate gyroscopes are chosen because of their dramatically reduced size and low

cost as compared to alternatives such as fiber optic angular velocity sensors.

The signals from the inertial components are synchronously measured at 100 Hz using

a 16 bit A/D converter. A temperature sensor is added to compensate for the temperature

dependency of the different sensing components.

The assembly containing the gyroscopes and accelerometers has been subjected to a

calibration procedure to calibrate for the exact physical alignment of each component,

the gains, the offsets and the temperature relations of the gains and offsets. With these

a 3D angular velocity vector and a 3D accelerometer vector, both resolved in the body

coordinate system, are computed using an on board processor. See e.g., Titterton and

Weston (1997); Chatfield (1997) for suitable background material on inertial sensors and

the associated signal processing.

The calibrated gyroscope signal yω,t contains measurements of the angular velocity

ωb
eb,t from body to earth (eb) expressed in the body coordinate system (b):

yω,t = ωb
eb,t + δbω,t + ebω,t. (2.1)

Even though the gyroscope signal is corrected for temperature effects, some low-frequency

offset fluctuations δω,t remain, partly due to the unmodeled acceleration dependency. The

remaining error ebω,t is assumed to be zero mean white noise. The measurements are not

accurate enough to pick up the rotation of the earth. This implies that the earth coordinate

system can be considered to be an inertial frame.

A change in orientation can be obtained by proper integration of the gyroscope signal.

This orientation can be obtained even during fast and abrupt movements, not relying on

any infrastructure other than the gyroscope itself. However, the accuracy in orientation

will deteriorate for periods longer than a few seconds.

The calibrated accelerometer signal ya,t contains measurements of the combination

of the body acceleration vector b̈t and the gravity vector g, both expressed in the body

coordinate system:

ya,t = b̈
b

t − gb + δba,t + eba,t. (2.2)

Even though the accelerometer measurement is corrected for temperature effects a small

low-frequency offset δa,t remains. The error eba,t is assumed to be zero mean white noise.

Gravity is a constant vector in the earth coordinate system. However, expressed in

body coordinates gravity depends on the orientation of the sensor unit. This means that

once the orientation is known, the accelerometer signal can be used to estimate the accel-

eration, or alternatively, once the acceleration is known, the direction of the vertical can

be estimated.

Accelerations can be integrated twice to obtain a change in position. This can be done

during fast and abrupt motions as long as an accurate orientation estimate is available,

for instance from the gyroscopes. However, the accuracy of the position change will



2.2 Sensors 11

deteriorate quickly as a result of the double integration and the sensitivity with respect to

orientation errors.

2.2.3 Monocular vision

Apart from the inertial sensors, the sensor unit is equipped with a ptGrey DragonFly

CCD camera with a perspective lens with a focal length of 3.2 mm. Color images with

a resolution of 320x240 pixels at a frame rate of 12.5 Hz are streamed to a PC using a

firewire connection. The camera is triggered by the IMU clock allowing for synchronized

measurements.

This setup is one realization of monocular vision: cameras can vary in sensor type,

resolution, frame rate and various lens types can be used, ranging from perspective to

fish-eye. However, they remain projective devices, that is, they are bearings only sensors

which do not provide distance directly.

Extracting camera position and orientation from images is a known and well studied

problem in computer vision (Ma et al., 2006; Hartley and Zisserman, 2004). The key

ingredient is to find correspondences, relations between features found in the image which

correspond to an element in the scene model. All these are rather abstract concepts, which

do have numerous implementations, ranging from Harris detectors (Harris and Stephens,

1988) and point clouds models to patches and textured free-form surfaces models (Koeser

et al., 2007). The correspondences are the pieces of information which can be extracted

from an image and they will be considered to be the vision measurements in this article.

Point correspondences zc ↔ zi are the relation between 3D points zc and 2D image

points zi. For a perspective lens and a pinhole camera the correspondence relation is

zi =

(
fzcx/z

c
z

fzcy/z
c
z

)

+ ei, (2.3a)

or equivalently,

0 ≈
(
−fI2 zit

)
zct =

(
−fI2 zit

)
Rcet (ze − cet ), (2.3b)

where f is the focal length and I2 the 2 × 2 identity matrix. The error eit is assumed

to be a zero mean white noise. Here it is worth noting that this assumption is not that

realistic, due to outliers, quantization effects etc. From (2.3b) it can be seen that the cam-

era pose depends on the rotation matrix Rce and the position ce. Hence, given sufficient

correspondences and a calibrated camera the camera pose can be solved for. Similar rela-

tions can be derived for e.g., line correspondences which also provide information about

the camera pose and optical velocity fields which provide information about the camera

velocity (Corke et al., 2007).

Correspondences are bearings only measurements and as such they provide informa-

tion about absolute position and orientation with respect to the earth coordinate system.

Note that everything is determined up to a scale ambiguity; viewing a twice as large scene

from double distance will yield an identical image. However, these vision measurements

are available at a relatively low rate due to the trade off between exposure time and accu-

racy (pixel noise and motion blur) which is an important limit for small aperture cameras.

Furthermore, processing capacity might constrain the frame rate. Hence, the observed
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image can change drastically from frame to frame, which occurs already with normal hu-

man motion. This is the main cause for the limited robustness inherent in single camera

systems.

The computer vision implementation used in the present implementation is based on

a sum of absolute difference (SAD) block matcher in combination with a planar patch

or free-form surface model of the scene. More details can be found in Chandaria et al.

(2007); Koeser et al. (2007); Skoglund and Felsberg (2007). Both pixel data and 3D po-

sitions are stored for each feature. An example of a scene model is shown in Figure 2.2.

While tracking, search templates are generated by warping the patches in the model ac-

Figure 2.2: An example of a scene model consisting of planar patches ( lower right)

and the actual scene that is modeled (upper left).

cording to homographies calculated from the latest prediction of the camera pose. These

templates are then matched with the current calibrated camera image using the block

matcher. In this way correspondences are generated.

2.3 Sensor fusion

The inertial and vision sensors contained in the sensor unit have complementary proper-

ties. Vision in combination with the map gives accurate absolute pose information at a

low rate, but experiences problems during moderately fast motions. The IMU provides

high rate relative pose information regardless of the motion speed, but becomes inaccu-

rate after a short period of time. By fusing information from both sources it is possible to

obtain robust camera pose estimates.

Combing inertial and vision sensors is possible in several ways. For instance, vision

based methods might be extended by using pose predictions from the IMU. These pose

predictions can be used to determine where in the image the features are to be expected.

Once detected, the features can be used to calculate the pose and this pose is then used

as a starting point for the next pose prediction by the IMU. Alternatively, the IMU can

be considered to be the main sensor, which is quite common in the navigation industry.

In that case, vision can be used for error correction, similar to how radio beacons or the

global positioning system (GPS) are used to correct the drift in an inertial navigation

system (INS).
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Although the sensors have different properties, it is from a signal processing perspec-

tive not relevant to assign a ‘main’ sensor and an ‘aiding’ sensor. Both vision and inertial

sensors are equivalent in the sense that they both provide information about the quantity

of interest, the camera pose in this application. The objective is to extract as much in-

formation as possible from the measurements. More specifically, this amounts to finding

the best possible estimate of the filtering probability density function (pdf) p(xt|y1:t),
where y1:t , {y1, . . . , yt}. The topic of this section is to provide a solid framework for

computing approximations of this type. First, a rather general introduction to this frame-

work is given in Section 2.3.1. The rest of this section is devoted to explaining how this

framework can be applied to handle the present application. The models are introduced

in Section 2.3.2 and the fusion algorithm is discussed in Section 2.3.3.

2.3.1 Theoretical framework

The objective in sensor fusion is to recursively in time estimate the state in the dynamic

model,

xt+1 = ft(xt, ut, vt), (2.4a)

yt = ht(xt, ut, et), (2.4b)

where xt ∈ R
nx denotes the state, yt ∈ R

ny denote the measurements from a set of

sensors, vt and et denote the stochastic process and measurement noise, respectively. The

process model equations, describing the evolution of the states (pose etc.) over time are

denoted by f : R
nx × R

nv × R
nu → R

nx . Furthermore, the measurement model is

given by h : R
nx × R

nu × R
ne → R

ny , describing how the measurements from the

IMU and the camera relate to the state. The goal is to infer all the information from the

measurements yt onto the state xt. The way of doing this is to compute the filtering pdf

p(xt|y1:t). The filtering pdf contains everything there is to know about the state at time

t, given the information in all the past measurements y1:t. Once an approximation of

p(xt|y1:t) is available it can be used to form many different (point) estimates, including

maximum likelihood estimates, confidence intervals and the most common conditional

expectation estimate

x̂t = E(xt|y1:t). (2.5)

The key element in solving the nonlinear state estimation problem in real-time is the

propagation of p(xt|y1:t) over time. It is well known (see e.g., Jazwinski, 1970) that a

recursive solution can be obtained by applying Bayes’ theorem, introducing model (2.4)

in the iterations,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

∫
p(yt|xt)p(xt|y1:t−1)dxt

, (2.6a)

p(xt+1|y1:t) =

∫

p(xt+1|xt)p(xt|y1:t)dxt. (2.6b)

Hence, the quality of the solution is inherently coupled to the models and hence good

models are imperative. It is worth noticing that (2.6a) and (2.6b) are often referred to as
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measurement update and time update, respectively. The sensor fusion problem has now

been reduced to propagating (2.6) over time as new measurements arrive. The problem

is that the multidimensional integrals present in (2.6) lack analytical solutions in all but

a few special cases. The most common special case is when (2.4) is restricted to be a

linear dynamic system, subject to additive Gaussian noise. Then all the involved densities

will be Gaussian, implying that it is sufficient to propagate the mean and covariance. The

recursions updating these are of course given by the Kalman filter (Kalman, 1960).

However, in most cases there does not exist a closed form solution for (2.6), forcing

the use of approximations of some sort. The literature is full of different ideas on how

to perform these approximations. The most common being the EKF (Smith et al., 1962;

Schmidt, 1966) where the model is linearized and the standard Kalman filter equations are

used for this linearized model. A conceptually more appealing approximation is provided

by the PF (Gordon et al., 1993; Isard and Blake, 1998; Kitagawa, 1996) which retains

the model and approximates (2.6). Other popular approximations for the nonlinear state

estimation problem are provided for example by the UKF (Julier and Uhlmann, 2004)

and the point-mass filter (Bucy and Senne, 1971; Bergman, 1999). For a more complete

account of the nonlinear state estimation problem, see e.g., Schön (2006).

2.3.2 Models

The probability density functions p(xt+1|xt) and p(yt|xt) are the key elements in the

filter iterations (2.6). They are usually implicitly specified by the process model (2.4a)

and the measurement model (2.4b). For most applications the model formulation given

in (2.4) is too general. It is often sufficient to assume that the noise enters additively,

according to

xt+1 = ft(xt) + vt, (2.7a)

yt = ht(xt) + et. (2.7b)

The fact that the noise is additive in (2.7) allows for explicit expressions for p(xt+1|xt)
and p(yt|xt), according to

p(xt+1|xt) = pvt
(xt+1 − ft(xt)), (2.8a)

p(yt|xt) = pet
(yt − ht(xt)), (2.8b)

where pvt
( · ) and pet

( · ) denote the pdf’s for the noise vt and et, respectively. Note

that the input signal ut has been dispensed with, since it does not exist in the present

application. The rest of this section will discuss the model used in the current application.

First of all, the state vector has to include the position and the orientation, since they

are the quantities of interest. However, in order to be able to use the IMU and provide

predictions the state vector should also include their time derivatives, as well as sensor

biases. The state vector is chosen to be

xt =
(

bet ḃ
e

t b̈
e

t qbet ωb
eb,t δbω,t δba,t

)T

. (2.9)

That is, the state vector consists of position of the IMU (the body coordinate system) ex-

pressed in the earth system be, its velocity ḃ
e

and acceleration b̈
e
, the orientation of the
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body with respect to the earth system qbe, its angular velocity ωb
eb, the gyroscope bias δbω

and the accelerometer bias δba. All quantities are three dimensional vectors, except for

the orientation which is described using a four dimensional unit quaternion qbe, resulting

in a total state dimension of 22. Parameterization of a three dimensional orientation is in

fact rather involved, see e.g., Shuster (1993) for a good account of several of the existing

alternatives. The reason for using unit quaternions is that they offer a nonsingular param-

eterization with a rather simple dynamics. Using (2.9) as state vector, the process model

is given by

bet+1 = bet + T ḃ
e

t + T 2

2 b̈
e

t , (2.10a)

ḃ
e

t+1 = ḃ
e

t + T b̈
e

t , (2.10b)

b̈
e

t+1 = b̈
e

t + ve
b̈,t
, (2.10c)

qbet+1 = exp(−T
2 ωb

eb,t) ⊙ qbet , (2.10d)

ωb
eb,t+1 = ωb

eb,t + vbω,t, (2.10e)

δbω,t+1 = δbω,t + vbδω,t, (2.10f)

δba,t+1 = δba,t + vbδa,t, (2.10g)

where the quaternion multiplication and exponential are defined according to

(
p0

p

)

⊙
(
q0
q

)

,

(
p0q0 − p · q

p0q + q0p + p × q

)

, (2.11a)

exp(v) ,

(
cos ‖v‖

v

‖v‖ sin ‖v‖
)

. (2.11b)

A standard constant acceleration model (2.10a)– (2.10c) has been used to model the po-

sition, velocity and acceleration. Furthermore, the quaternion dynamics is standard, see

e.g., Shuster (1993). Finally, the angular velocity and the bias terms are simply modeled

as random walks, since there is no systematic knowledge available about these terms.

There is more than one sensor type available, implying that several measurement mod-

els are required. They have already been introduced in Section 2.2, but for convenience

they are all collected here,

ya,t = Rbet (b̈
e

t − ge) + δba,t + eba,t, (2.12a)

yω,t = ωb
eb,t + δbω,t + ebω,t, (2.12b)

yc,t =
(
−fI2 zit

)
Rcb(Rbet (zet − bet ) − cb) + ec,t. (2.12c)

Note that the rotation matrix Rbet is constructed from qbet (Kuipers, 1999). The trans-

formation from body to camera coordinate system is included in (2.12c), compared to

(2.3b).

2.3.3 Fusion Algorithm

The nonlinear estimation framework discussed in Section 2.3.1 suggests Algorithm 2.1 to

fuse the multi-rate information from the inertial and vision sensors. The algorithm uses
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Algorithm 2.1 Recursive camera pose calculation

1. Perform an initialization and set initial state estimate and covariance.

x0 ∼ p(xo)

2. Time update. Calculate p(xt|y1:t−1) by propagating p(xt−1|y1:t−1) through the

process model (2.10).

3. Accelerometer and gyroscope measurement update using model (2.12a)

and (2.12b).

xt ∼ p(xt|y1:t)

4. If there is a new image from the camera,

(a) Predict feature positions from the scene model using x̂t = E(xt|y1:t).
(b) Detect the features in the image.

(c) Measurement update with the found point correspondences using model

(2.12c).

xt ∼ p(xt|y1:t)

5. Set t := t+ 1 and iterate from step 2.

the models (2.10) and (2.12) to perform the time and measurement update steps given

in (2.6). Note that Algorithm 2.1 is generic in the sense that we have not specified which

state estimation algorithm is used. Our implementation, which runs in real-time with

100 Hz inertial measurements and frame rates up to 25 Hz, uses the EKF to compute the

estimates, implying that all involved pdf’s are approximated by Gaussian densities. An

UKF implementation was found to give similar accuracy at the cost of a higher computa-

tional burden (Pieper, 2007). This confirms the results from Armesto et al. (2007).

When the sensor unit is static during initialization, the IMU provides partial or full

(using magnetometers) orientation estimates. This information can be used to constrain

the search space when initializing from vision.

The high frequency inertial measurement updates in Algorithm 2.1 provide a rather

accurate state estimate when a new image is acquired. This implies that the feature posi-

tions can be predicted with an improved accuracy, which in turn makes it possible to use

a guided search in the image using reduced search regions. The algorithm can calculate

the expected covariance of a measurement. This can be the basis for a temporal outlier

removal as a complement to the spatial outlier removal provided by RANSAC methods

(Fischler and Bolles, 1981). Alternatively it can be used to predict the amount of new in-

formation that a certain feature can contribute, which might be useful for task scheduling

when the computational resources are limited (Davison, 2005).

The camera pose is estimated implicitly by Algorithm 2.1 rather than trying to deter-

mine it explicitly by inverting the measurement equations. Hence, when sufficient motion
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is present, the system is able to continue tracking with a very low number of features and

maintain full observability using temporal triangulation.

The information from the IMU makes Algorithm 2.1 robust for temporary absence of

vision. Without vision measurements the estimates will eventually drift away. However,

short periods without vision, for instance, due to motion blur, obstruction of the camera

or an unmodeled scene, can be handled without problems.

Finally, Algorithm 2.1 is rather flexible. It can be rather straightforwardly extended

to include other information sources. For instance, a GPS might be added to aid with

outdoor applications.

2.4 Implementation considerations

When implementing Algorithm 2.1, several practical issues have to be solved. These turn

out to be critical for a successful system, motivating their treatment in this section.

2.4.1 Metric scale

As mentioned in Section 2.2.3, vision-only methods suffer from a scale ambiguity, since

projections, unit-less measurements, are used. Once the scale of the scene model is de-

fined, camera pose can be determined explicitly using three or more correspondences in

combination with a calibrated camera. However, changing the scale of a scene model

will give scaled, but indistinguishable poses. Hence, for vision-only applications scene

models can have an arbitrary scale; a standard choice is to define the unit length to be the

distance between the first two cameras.

For the inertial-vision combination, the scale is relevant. Sensor fusion utilizes posi-

tion information both from the camera and the IMU, which implies that these quantities

must have identical units. Scale is also important when assumptions are made about the

motions of the camera, for instance the type and parameters of a motion model (Davison

et al., 2007).

Introducing a metric scale into the scene model solves this issue. An existing scene

model with arbitrary scale can be converted by comparing it with a Computer Aided

Design (CAD) model or measuring an object with known dimension. An interesting

solution might be to include metric information, for instance using accelerometers, in the

algorithms for building the scene models. However, this is still an open question.

2.4.2 Vertical alignment

Accelerometers cannot distinguish accelerations of the body from gravity, as previously

discussed in Section 2.2.2. To separate the contributions in the measurement, the gravity

vector can be rotated from the earth coordinate system to the body frame and then sub-

tracted. Hence, the scene model should be vertically aligned, or equivalently the gravity

vector should be known in the scene model. Typically, this is not the case.

The performance of the system is extremely sensitive to this alignment, since gravity

is typically an order of magnitude larger than normal body accelerations. For example, a

misalignment of 1◦ introduces an artificial acceleration of 0.17 m/s2 which gives rise to a
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systematic position drift of 8.5 cm when integrated over 1 s. Hence, even for small errors

a systematic drift is introduced which causes the system to lose track without continuous

corrections from correspondences. In this case the drift followed by a correction gives

rise to a saw tooth pattern in the estimates, which deteriorates performance and will be

visible as ‘jitter’.

The gravity vector can be determined by averaging the accelerometer readings over

some time, while the camera is stationary in a known pose. However, a preferable method

is to record accelerometer measurements while scanning the scene and include this data

in the model building procedure to align the scene model vertically.

2.4.3 Sensor pose calibration

The camera and the IMU both deliver measurements which are resolved in the camera

and the body coordinate system, respectively. Typically, these do not coincide, since

the sensors are physically translated and rotated with respect to each other. This rigid

transformation should be taken into account while fusing the measurements.

The problem of determining the relative position and orientation is a well studied

problem in robotics where it is known as hand-eye calibration, see for instance Strobl

and Hirzinger (2006) for an introduction to this topic. However, most methods do not

apply directly since the IMU does not provide an absolute position reference. Absolute

orientation information is available since the accelerometers measure only gravity when

the sensor unit is stationary.

The orientation part of the calibration is determined using a slight modification of

standard camera calibration procedures (Zhang, 2000), where the calibration pattern is

placed on a horizontal surface and accelerometer readings are taken in the various camera

poses. The camera poses are determined in the camera calibration procedure, from which

the vertical directions in the camera frame can be determined. The combination of these

and the vertical directions in the body frame measured by the accelerometers allows for

calculation of the rotation between the frames (Horn, 1987; Lobo and Dias, 2007). This

method requires accurate positioning of the calibration pattern. As floors and desks in

buildings are in practice better horizontally aligned than the walls are vertically aligned,

it is recommended to use horizontal surfaces.

The translational part of the calibration is harder to estimate and a solid calibration

method which does not require special hardware is an open issue. The translation should

also be available from technical drawings of the sensor unit and a rough guess using a

ruler gives a quite decent result in practice. However, with increasing angular velocity

this parameter becomes more dominant and an accurate calibration is necessary.

2.4.4 Time synchronization

It is very important to know exactly when the different measurements are taken. Multi-

ple sensors usually have multiple clocks and these have to be synchronized. This can be

achieved for instance by starting them simultaneously. However, clocks tend to diverge

after a while, which will introduce problems during long term operation. Hardware syn-

chronization, i.e., one central clock is used to trigger the other sensors, solves this problem

and this procedure has been applied in the sensor unit described in Section 2.2.
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2.4.5 Filter tuning

The process and measurement models described in Section 2.3 have a number of stochas-

tic components which are used to tune the filter. The settings used in the present setup are

given in Table 2.1. The measurement noise typically depends on the sensors and should

be experimentally determined. For the accelerometers and gyroscopes a measurement of

a few seconds with a static pose was recorded to calculate an accurate noise covariance.

Alternatively, the specification by the manufacturer can be used.

The noise acting on the vision measurements is harder to determine. The algorithms

return a point estimate for the obtained matches, but typically there is no stochastic in-

formation available. The accuracy for each match is highly individual and can vary a

lot depending on e.g., lighting conditions, local texture, viewing angle, distance and mo-

tion blur. These individual characteristics cannot be captured by a common noise setting.

Hence, it would be beneficial to include accuracy estimation in the image processing al-

gorithms. Although attempts are being made to solve this open issue, see e.g., Skoglund

and Felsberg (2007), the current implementation uses a predefined noise covariance.

The process model currently used is a random walk in acceleration and angular ve-

locity. This model is not so informative but is very general and is useful for tracking

uncontrolled motions such as those generated by a human. The motion model is to be

considered as a separate source of information, apart from the sensors. Hence, when

more information is available in a certain application, for instance in the form of control

signals, these should be included in the model to improve the filter performance. The

covariances in the process model can be seen as tuning knobs, controlling the relative

importance of the measurements and the process model and as such they are important

parameters for stable tracking.

Valid models and parameters are imperative to obtain good estimates. The innova-

tions, defined as the difference between a measurement and its expected value,

et = yt − ŷt, (2.13)

can be used to asses whether the models are correctly tuned. Under the model assump-

tions, the innovations should be normally distributed and the squared normalized inno-

vations eTt S
−1
t et, where St is the predicted covariance of the measurement, should have

a χ2 distribution. It is highly recommendable to monitor these performance indicators,

especially during testing, but also during normal operation.

2.5 Experiments

This section is concerned with an experiment where Algorithm 2.1 with an EKF is used to

fuse the measurements from the sensor unit in order to compute estimates of its position

and orientation. The experimental setup is discussed in Section 2.5.1 and the performance

of the proposed inertial-vision combination provided by the sensor unit is assessed in

Section 2.5.2.
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2.5.1 Setup

The sensor unit is mounted onto a high precision 6 degrees of freedom (DoF) ABB

IRB1440 industrial robot, see Figure 2.3. The reason for this is that the robot will allow

Figure 2.3: The camera and the IMU are mounted onto an industrial robot. The

background shows the scene that has been used in the experiments.

us to make repeatable 6 DoF motions and it will provide the true position and orientation.

The robot has an absolute accuracy of 2 mm and a repeatability of 0.2 mm. This enables

systematic and rather objective performance evaluation of various algorithms, based on

absolute pose errors instead of the commonly used feature reprojection errors. The sen-

sor unit provides 100 Hz inertial measurements synchronized with 12.5 Hz images. The

complete specification is listed in Table 2.1. The scene used for the experiments consists

of two orthogonal planar surfaces as shown in Figure 2.3. Because of the simple geom-

etry, the scene model could be constructed from a textured CAD model. Its coordinate

system is such that the x-axis points upward and that the y and z-axis span the horizontal

plane. Although the scene was carefully positioned, it had to be calibrated w.r.t. gravity

as described in Section 2.4.2. It should be emphasized that the scene has been kept simple

for experimentation purposes only. The system itself can handle very general scenes and

these are modeled using the methods described in Koeser et al. (2007).

With the setup several trajectories have been tested. In this paper, an eight-shaped

trajectory, shown in Figure 2.4, will be discussed in detail. The sensor unit traverses this

2.6 m eight-shaped trajectory in 5.4 s, keeping the scene in view at all times. The motion

contains accelerations up to 4 m/s2 and angular velocities up to 1 rad/s. Hence, the

motion is quite aggressive and all six degrees of freedom are exited. As the displacement

between images is limited to 15 pixels it is still possible to use vision-only tracking, which

allows for a comparison between tracking with and without an IMU.

The experiment starts with a synchronization motion, which is used to synchronize

the ground truth data from the industrial robot with the estimates from the system. Time

synchronization is relevant, since a small time offset between the signals will result in a

significant error. After the synchronization, the eight-shaped trajectory (see Figure 2.4)
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Table 2.1: Specifications for the sensor unit and the parameter values used for in the

filter tuning. Note that the noise parameters specify the standard deviation.

IMU
gyroscope range ±20.9 rad/s
gyroscope bandwidth 40 Hz
accelerometer range ±17 m/s2

accelerometer bandwidth 30 Hz
sample rate 100 Hz

Camera
selected resolution 320 × 240 pixel
pixel size 7.4 × 7.4 µm/pixel
focal length 3.2 mm
sample rate 12.5 Hz

Filter settings
gyroscope measurement noise 0.01 rad/s
accelerometer measurement noise 0.13 m/s2

2D feature measurement noise 0.1 pixel
3D feature measurement noise 1 mm
angular velocity process noise 0.03 rad/s
acceleration process noise 0.1 m/s2

gyroscope bias process noise 0.5 mrad/s
accelerometer bias process noise 0.5 mm/s2
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Figure 2.4: The eight-shaped trajectory undertaken by the sensor unit. The gray

shaded parts mark the interval where vision is deactivated. The circle indicates the

origin of the scene model.
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is repeated several times, utilizing the accurate and repeatable motion provided by the

industrial robot.

2.5.2 Results

The experimental setup described in the previous section is used to study several aspects

of the combination of vision and inertial sensors. The quality of the camera pose estimates

is investigated by comparing them to the ground truth data. Furthermore, the increased

robustness of the system is illustrated by disabling the camera for 1 s during the second

pass of the eight-shaped trajectory. Additionally, the feature predictions are shown to

benefit from the inertial measurements. The findings will be discussed in the following

paragraphs.

By comparing the estimates from the filter to the ground truth the tracking errors are

determined. Examples of position and orientation errors (z, roll) are shown in Figure 2.5.

The other positions (x, y) and orientations (yaw, pitch) exhibit similar behavior. The
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Figure 2.5: Tracking error during multiple passes of the eight-shaped trajectory. The

black line shows the position (z) and orientation (roll) errors, as well as the number

of correspondences that were used. The gray band illustrates the 99% confidence

intervals. Note that vision is deactivated from 9.7 s to 10.7 s. The vertical dotted

lines mark the repetition of the motion.



2.5 Experiments 23

absolute accuracy (with vision available) is below 2 cm for position and below 1◦ for ori-

entation. These values turn out to be typical for the performance of the system in the setup

described above. Furthermore, the accuracy of the IMU is not affected by the speed of

motion, resulting in a tracking accuracy which is rather independent of velocity, as illus-

trated by Figure 2.6 which shows the tracking error of the eight-shaped trajectory executed

at various speeds. Other experiments, not described here, show similar performance for
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Figure 2.6: Tracking error for several experiments executing the eight-shaped tra-

jectory at different speeds.

various trajectories.

A proper treatment of the implementation considerations as discussed in Section 2.4

is necessary in order to obtain good performance. Still, calibration errors and slight mis-

alignments as well as scene model errors and other unmodeled effects are causes for

non-white noise, which can deteriorate the performance. However, with the assumptions

and models used, the system is shown to estimate the camera pose quite accurately us-

ing rather low-rate vision measurements. The estimated camera poses result in good and

stable augmentation.

The system tracks the camera during the entire experiment, including the period where

vision is deactivated. The motion during this period, indicated using gray segments in Fig-

ure 2.4, is actually quite significant. Vision-only tracking has no chance of dealing with

such a gap and loses track. Indeed, such an extensive period where vision is deactivated is

a little artificial. However, vision might be unavailable or corrupted, due to fast rotations,

high velocity, motion blur, or simply too few visible features. These difficult, but com-

monly occurring, situations can be dealt with by using an IMU as well, clearly illustrating

the benefits of having an IMU in the system. In this way, robust real-time tracking in

realistic environments is made possible.

The measurements from the IMU will also result in better predictions of the feature

positions in the acquired image. This effect is clearly illustrated in Figure 2.7, which

provides a histogram of the feature prediction errors. The figure shows that the feature

prediction errors are smaller and more concentrated in case the IMU measurement updates

are used. This improvement is most significant when the camera is moving fast or at lower

frame rates. At lower speeds, the vision based feature predictions will improve and the

histograms will become more similar.

The improved feature predictions facilitate the use of smaller search regions to find

the features. This implies that using an IMU more features can be detected, given a

certain processing power. On the other hand, the improved feature predictions indicate

that the IMU handles the fast motion and that the absolution pose information which
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Figure 2.7: Histogram of the prediction errors for the feature positions. The feature

predictions are calculated using the latest vision pose and the most recent inertial

pose, respectively.

vision provides is required at a reduced rate.

2.6 Conclusion

Based on a framework for nonlinear state estimation, a system has been developed to ob-

tain real-time camera pose estimates by fusing 100 Hz inertial measurements and 12.5 Hz
vision measurements using an EKF. Experiments where an industrial robot is used to

move the sensor unit show that this setup is able to track the camera pose with an absolute

accuracy of 2 cm and 1◦. The addition of an IMU yields a robust system which can handle

periods with uninformative or no vision data and it reduces the need for high frequency

vision updates.
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3
Sensors

Chapter 2 introduced the sensor unit and its application. This sensor unit consists of

an inertial measurement unit (IMU) and a camera which are integrated in a singe small

housing. The sensors are synchronized at hardware level, significantly simplifying the

signal processing. Figure 3.1 shows two versions of the sensor unit. In the upcoming

(a) 2005 (b) 2007

Figure 3.1: Two version of the sensor unit, showing progressing product design and

miniaturization.

sections of this chapter, the operating principles, measurements and processing algorithms

of the inertial measurement unit and the camera will be discussed in more detail.

3.1 Inertial measurement unit

The IMU within the sensor unit contains a 3D rate gyroscope and a 3D linear accelerom-

eter. The gyroscope and accelerometer are based on micro-machined electromechanical

29
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systems (MEMS) technology, see Figure 3.2. Compared to traditional technology, MEMS

MEMS accelerometer

MEMS gyroscope

Figure 3.2: The MEMS components are integrated into the circuit board of the IMU.

devices are small, light, inexpensive, have low power consumption and short start-up

times. Currently, their major disadvantage is the reduced performance in terms of accu-

racy and bias stability. This is the main cause for the drift in standalone MEMS inertial

navigation systems (Woodman, 2007).

The functionality of the MEMS sensors are based upon simple mechanical princi-

ples. Angular velocity can be measured by exploiting the Coriolis effect of a vibrating

structure. When a vibrating structure is being rotated, a secondary vibration is induced

from which the angular velocity can be calculated. Acceleration can be measured with a

spring suspended mass. When subjected to acceleration the mass will be displaced. Using

MEMS technology the necessary mechanical structures can be manufactured on silicon

chips in combination with capacitive displacement pickups and electronic circuitry (Ana-

log Devices, 2008).

3.1.1 Sensor model

The MEMS accelerometer and gyroscope sensors have one or more sensitive axes along

which a physical quantity (specific force and angular velocity, respectively) is converted

to an output voltage. A typical sensor shows almost linear behavior in the working area

as illustrated in Figure 3.3. Based on this linear behavior in a sensitive axis, the following

relation between the output voltage u and the physical signal y is postulated for multiple

sensors with their sensitive axis aligned in a suitable configuration,

ut = GRyt + b. (3.1)

Here G is a diagonal matrix containing the individual gains g, R is the alignment ma-

trix specifying the direction of the sensitive axis w.r.t. the sensor housing and b is the

offset vector. Note that the gain and the offset are typically temperature dependent. The

calibrated measurement signal yt is obtained from the measured voltages by inverting

(3.1).
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u

y

∆y

∆u

b

Figure 3.3: Schematic behavior of an inertial sensor. The output voltage u depends

almost linearly on the physical quantity y, where y denotes angular velocity or ex-

ternal specific force. This relation is parameterized by an offset b and a slope or gain

g = ∆u
∆y .

Gyroscopes

The 3D rate gyroscope measures angular velocities resolved in the body coordinate frame,

that is, with respect to (w.r.t.) the sensor housing. The sensor noise is characterized in

Figure 3.4. The histogram of Figure 3.4a shows that the noise distribution is close to a

Gaussian. However, the minima in the Allan deviation of Figure 3.4b indicate that even

under constant conditions a slowly varying sensor bias is present (IEEE Std 952-1997,

1998). Additionally, calibration errors (errors in gain, alignment and linearity) as well as

uncompensated temperature effects result in bias. The fluctuating behavior of the bias is

usually approximated with a random walk.

Summarizing the previous discussion, the 3D rate gyroscope measurements yω are

modeled as

yω = ωb
eb + δbω + ebω, (3.2)

where ωb
eb is the angular velocity, body to earth, expressed in the body coordinate frame,

δbω is a slowly varying sensor bias and ebω is white noise.

Accelerometers

Contradictory to what their name implies, accelerometers do not measure accelerations.

Instead, they measure the total external specific force acting on the sensor. Although ac-

celeration is related to specific force by Newton’s law, the two are not identical as shown

in the following example: an accelerometer lying still on a table undergoes zero accelera-

tion but will measure a force of 1 g pointing upward due to the earth’s gravitational field.

By subtracting gravity, acceleration can be recovered. Alternatively, the accelerometer

can be used as an inclinometer when no acceleration is present.

Similar to the 3D gyroscope, the 3D accelerometer measurements suffer from white

noise and a slowly varying bias, see Figure 3.5. With these, the accelerometer measure-

ments ya are modeled as

ya = f b + δba + eba = Rbe(b̈
e − ge) + δba + eba, (3.3)
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Figure 3.4: Gyroscope noise characteristics.
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Figure 3.5: Accelerometer noise characteristics.
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where f b is the normalized external specific force in the body coordinate system, δba is a

slowly varying sensor bias and eba is white noise. The second form the expression splits

the specific force into its contributions from the acceleration of the sensor b̈
e

and the

gravity vector ge, both expressed in the earth coordinate frame. These vectors have been

rotated to the body coordinate frame by the rotation matrix Rbe.

3.1.2 Calibration

Using the discussion in the previous section, calibrating the IMU boils down to finding

the gain G, alignment R and the offset b in (3.1) for the accelerometer and gyroscope.

The calibration principle is to subject the IMU to a known acceleration or angular velocity

and choose the calibration parameters such that the observed sensor output is as likely as

possible. Ignoring the time variability of the biases and using the standard assumptions of

independent, identically distributed Gaussian noise, this maximum likelihood optimiza-

tion can be formulated as

θ̂ = arg min
θ

∑

t

1

2
‖ut − h(st, θ)‖2, (3.4)

where the parameter vector θ consists of G,R and b. Traditionally, known excitations

are obtained using special manipulators such as turntables. Alternatively, the IMU can be

placed in several static orientations (Ferraris et al., 1995).

The sensor unit has been calibrated at production using a propriety calibration proce-

dure. Besides gain, alignment and offset also temperature effects and g-sensitivity of the

gyroscopes are accounted for (Xsens Motion Technologies, 2008). Recalibration is not

necessary unless the housing is opened or the sensor is subjected to a large shock.

3.1.3 Strapdown inertial navigation

Inertial navigation is a technique to compute estimates of the position and orientation of an

object relative to a known starting pose using inertial measurements from accelerometers

and gyroscopes (Woodman, 2007; Chatfield, 1997; Titterton and Weston, 1997). In a

strapdown configuration such as the sensor unit, the measurements are acquired in the

body coordinate frame, rather than in an inertial reference frame. Hence, the orientation

qeb can be calculated by integrating the angular velocity ωb
eb. The position be can be

obtained by double integration of the external specific force f b which has been rotated

using the known orientation and corrected for gravity. This procedure is illustrated in

Figure 3.6.

In practice, the angular velocity and the external specific force are replaced by the

gyroscope and accelerometer measurements. These include bias and noise terms which

cause errors in the calculated position and orientation, the integration drift. The gyro-

scope noise results in a random walk in orientation, whereas a constant gyroscope bias

introduces orientation errors which grow linearly in time (Woodman, 2007). Similarly, the

accelerometer noise results in a second order random walk in position and a constant ac-

celerometer bias introduces position errors which grow quadratic in time. Note that in Fig-

ure 3.6 there is a coupling between position and orientation. Hence, any orientation error

introduces an artificial acceleration as gravity is not correctly compensated for: a small,
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Figure 3.6: Strapdown inertial navigation algorithm.

but realistic inclination error of θ = 0.1◦ already introduces a non-existing acceleration

of a = g sin θ = 0.0017 m/s2 which gives rise to a position error of p = 1
2at

2 = 3.1 m
in 60 s. For the used inertial sensor, this coupling turns out to be the dominant position

error source (Woodman, 2007).

From the previous discussion it follows that any inertial navigation solution deterio-

rates with time. Using MEMS inertial sensors, the integration drift causes the orientation

estimate, but especially the position estimate, to be accurate and reliable only for a short

period of time.

3.2 Vision

Besides an IMU, the sensor unit contains a camera. This is a rather complex system which

consists of two functional parts: an optical system (the so-called image formation system

or objective) which collects light to form an image of an object, and an image sensor,

usually a CCD or CMOS, which converts incident light into a digital image.

Various types of objectives exist, each with a specific application area. Examples

include standard perspective lenses, wide angle lenses, zoom lenses, macro lenses and

fish-eye lenses. In general they are rather complex composite devices composed of a

number of functional elements, see Figure 3.7. The most important elements are lens

Figure 3.7: Cross section of a low-cost objective. The triplet of lens elements bundle

the parallel rays of light entering the system from the left and to form an image on

the right.

elements and stops. The lens elements have refractive surfaces which bend the light,
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whereas the stops limit the bundle of light propagating through the system. Combining

a number of elements an optical system can be designed in such a way that the desired

image formation is achieved with minimal optical aberration.

From a pure geometric perspective, ignoring effects such as focus and lens thickness,

the process of image formation can be described as a central projection (Hartley and

Zisserman, 2004). In this projection, a ray is drawn from a point in space toward the

camera center. This ray propagates through the optical system and intersects with the

image plane where it forms an image of the point.

The perhaps best known example of a central projection is the pinhole camera, see

Figure 3.8. Its widespread use in computer vision literature can be explained by noting

z

y

x

C

P

p
y

xf

optical axis

optical center

principal point

image plane

Figure 3.8: Pinhole camera projection. The image p of a point P is the intersection

point of the image plane and the line trough point P and the optical center C. Note

that placing the image plane in front of the optical center yields an identical image.

that a perfect perspective objective is equivalent to a pinhole camera. With this obser-

vation, the equivalence between the focal length f and the distance between the optical

center and the image plane becomes clear.

Although the pinhole model is powerful model which is sufficient for many applica-

tions, it is a simplification of the imaging process. This simplification has its limitations.

One of these is that it is unclear where the optical center is located physically in drawings

such as Figure 3.7. Clearly, the optical center has to lie somewhere on the optical axis, but

exactly where, or even whether it lies behind, inside, or in front of the objective depends

highly on the typically unknown detailed design of all the elements in an objective. As

discussed in Chapter 2, the location of the optical center is important when combining

vision with inertial sensors as in the tracking application at hand. A calibration algorithm

which can be used to determine the position of the optical center will be discussed in

Chapter 5 and Chapter 6.

3.2.1 Sensor model

The image formation process of a camera consists of two stages: the objective projects

incident rays of light to points in the sensor plane and these are converted to a digital

image by the image sensor. The former is usually described using an ideal projection

combined with a distortion accounting for deviations. The sensor model has to capture
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all three phenomena — projection, distortion and digitalization — to describe the image

formation of a real camera:

Normalized pinhole projection. Assume for now that the focal length of the pinhole

model is unity, that is f = 1. In that case the image is called normalized. From sim-

ilar triangles in Figure 3.8 it follows that the 2D normalized image pin = (xn, yn)
T

of a 3D point pc = (X,Y, Z)T , resolved in the camera coordinate system, is given

by

(
xn
yn

)

=
1

Z

(
X
Y

)

. (3.5a)

This elementary camera model can be classified as a 2D bearings only measure-

ment: from image coordinates it is possible to find a line on which the correspond-

ing 3D point lies. However, it provides no information about the distance or depth

of the point. Hence, one cannot tell whether the size of an object is 1 mm or

1 km. This property is the reason why it is by definition impossible to determine the

scale factor in optical reconstruction or in structure from motion problems, where

a model of the observed scene is constructed from optical measurements.

In computer vision literature, it is common to work with homogeneous coordinates

which are elements of a projective space, see e.g., Hartley and Zisserman (2004).

Homogeneous coordinates are obtained from Euclidean ones by augmenting them

with an additional 1. Using the homogeneous vectors p̃in = (xn, yn, 1)T and p̃c =
(X,Y, Z, 1)T the normalized pinhole projection (3.5a) can be written as

Z





xn
yn
1



 =





1 0 0 0
0 1 0 0
0 0 1 0





︸ ︷︷ ︸

,Π0







X
Y
Z
1






, (3.5b)

where Π0 is known as the standard projection matrix. In this form the projection

equation is linear, which is of course preferable in many situations. Note that since

in projective space equivalence is defined up to scale, (3.5b) is usually written as

λp̃in = Πop̃
c, (3.5c)

where λ ∈ R
+ is an arbitrary scale factor.

Distortion. The normalized pinhole projection is an ideal projection and the image for-

mation process of a real perspective objective will deviate from it, especially for

low-quality objectives. An example is shown in Figure 3.9. The typical distortion

encountered is dominated by radial distortion (Hartley and Zisserman, 2004; Zhang,

2000). A simple distortion model to account for the radial distortion expresses the

distorted image coordinates pid = (xd, yd)
T as a function of the normalized image

coordinates pin = (xn, yn)
T ,

pid = (1 + k1‖pin‖2 + k2‖pin‖4)pin, (3.6)
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(a) Observed image. (b) Ideal image.

Figure 3.9: Camera images suffer from distortion.

where the ki are distortion coefficients. Several modifications and extensions of

this distortion model, which include e.g., tangential distortion, are encountered in

literature.

Digitalization. Digital cameras deliver images with coordinates typically specified in

pixels and indexed from the top left. Furthermore, there is the possibility of non-

square as well as non-orthogonal pixels. This introduces both (non-uniform) scaling

and a principal point offset. Both effects, as well as focal lengths f 6= 1, can be

accounted for by an affine transformation which transforms the distorted image

coordinates pid = (xd, yd)
T into pixel coordinates pi = (x, y)T ,





x
y
1



 =





fsx fsθ x0

0 fsy y0
0 0 1





︸ ︷︷ ︸

,K





xd
yd
1



 . (3.7)

Here, the camera calibration matrix K is composed of the focal length f , the pixel

sizes sx, sy , the principal point coordinates x0, y0 and a skew parameter sθ.

Combining (3.5)–(3.7) in a single forward camera model, the image pi = (x, y)T of the

3D point pc = (X,Y, Z)T is given by

pi = (A ◦ D ◦ Pn)
︸ ︷︷ ︸

,P

(pc), (3.8)

where P is a composite function which consists of a normalized projection function Pn,

a distortion function D and an affine transformation A. Here, Pn maps 3D points to

normalized image coordinates as in (3.5b), D distorts the normalized image as in (3.6) and

A transforms the distorted image to pixel coordinates, as in (3.7). That is, pi = A(pid),
pid = D(pin) and pin = Pn(pc). The discussed relations hold only for a perspective

camera, but the model structure is also applicable to omni-directional cameras and fish-

eye lenses (Kannala and Brandt, 2006).
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In general, 3D points will not be expressed in the camera coordinate frame as pc since

this coordinate frame is moving. Instead, they are expressed in the fixed earth coordinate

system as pe. These two coordinate frames are related by a rotation Rce and a translation

ce, which can be used to obtain pc from pe,

pc = Rce(pe − ce). (3.9)

The parameters Rce and ce parameterize the position and orientation of the camera and

are called the extrinsic parameters. In contrast, the parameters involved in (3.8) are the

so-called intrinsic or internal parameters.

The most direct way to obtain a measurement model for a 3D point pe and its corre-

sponding 2D image point pi is the combination of (3.8) and (3.9). However, this would

yield an unnecessary complex equation. Instead, it is advantageous to apply preprocess-

ing and work with normalized image coordinates pin = (D−1 ◦ A−1)(pi). Then, the

measurement model is based on the normalized camera projection Pn, which in case of a

perspective projection can be written in a particularly simple linear form,

yc,k =
[−I2 pin,k

]
Rce(pek − ce) + ec,k. (3.10)

Here yc,k is a measurement constructed from the k-th measured 2D/3D correspondence

pik ↔ pek, ce is the position of the camera in the earth coordinate frame, Rce is the

rotation matrix which gives the orientation of the camera coordinate system w.r.t. the

earth coordinate frame and ec,k is white noise. Note that the prediction ŷc,k,t|t−1 = 0.

3.2.2 Calibration

The goal of a camera calibration procedure is to find the intrinsic parameters of the cam-

era. These are the parameters involved in (3.8) and include the camera calibration ma-

trix and the distortion parameters. Camera calibration is a well-known problem in com-

puter vision and several approaches and accompanying toolboxes are available, see e.g.,

Bouguet (2003); Zhang (2000); Kannala and Brandt (2006). These procedures typically

require images at several angles and distances of a known calibration object. A planar

checkerboard pattern is a frequently used calibration object because it is very simple to

produce, it can be printed with a standard printer, and has distinctive corners which are

easy to detect. An example image involving such a pattern is shown in Figure 3.10. From

the images of the calibration pattern 2D/3D correspondences pik ↔ pek are constructed.

In general this is a difficult problem, but exploiting the simple structure of the calibration

pattern it is a relatively simple task.

The calibration problem is to choose the intrinsic parameters such that the obtained

correspondences are as likely as possible. This cannot be done without determining the

extrinsic parameters of the calibration images as well. Under the standard assumptions of

i.i.d. Gaussian noise, this maximum likelihood optimization can be formulated as

θ̂ = arg min
θ

N∑

k=1

1

2
‖pik − P(pek, θ)‖2, (3.11)

where the parameter vector θ consists of the intrinsic and extrinsic parameters. This is a

nonlinear least squares problem which can be solved using standard algorithms (Nocedal
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Figure 3.10: An example of an image used for camera calibration. The calibration

object is a planar checkerboard pattern.

and Wright, 2006). These algorithms require an initial guess of the parameters which can

be found from the homographies, the one-to-one relations that exist between the images

and the planar calibration pattern (Zhang, 2000).

3.2.3 Correspondence detection

Computer vision techniques can be used to determine the position and orientation of the

camera from the images it takes. The key ingredients for doing so are the 2D/3D cor-

respondences, the corner stones in many computer vision applications. To obtain these

correspondences typically two tasks have to be solved, which are extensively studied in

literature:

Feature detection. The first task consists of detecting points of interest or features in

the image. Here, features are distinctive elements of the camera image, for in-

stance, corners, edges, or textured areas. Common algorithms include the gradient

based Harris detector and the Laplace detector (Harris and Stephens, 1988; Miko-

lajczyk et al., 2005), and the correlation based Kanade-Lucas-Tomasi tracker (Shi

and Tomasi, 1994).

Data association. Once a feature has been found, it needs to be associated to a 3D point

to form a correspondence. This is the second task, which can be solved using

probabilistic methods such as RANSAC (Fischler and Bolles, 1981). However,

it can be drastically simplified by making use of some kind of descriptor of the

feature which uniquely identifies it by providing information of the local image

such as image patches or local histograms. This descriptor should preferably be

invariant to scale changes and affine transformations. Common examples are SIFT

(Lowe, 2004) and SURF (Bay et al., 2008). Other detectors as well as performance

overviews are given in Mikolajczyk and Schmid (2005); Mikolajczyk et al. (2005).
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Once three or more correspondences have been obtained in a single image, they can be

used to calculate the position and orientation of the camera, see e.g., Hartley and Zisser-

man (2004); Ma et al. (2006). This is actually a reduced version of the camera calibration

problem of Section 3.2.2, where in this case only the extrinsic parameters are sought as

the intrinsic parameters are already known. Minimizing the prediction errors of the cor-

respondences pik − P(pek, θ) using nonlinear least squares yields the camera pose.

Correspondences can also be used to find the 3D position of a feature. In the simplest

case this can be done using the epipolar geometry of a correspondence which is observed

in two images taken from different locations. Extensions to multiple images exist as well

(Hartley and Zisserman, 2004). These are the basis for structure from motion algorithms

in which a model of the environment is computed from a sequence of images, see for

instance Bartczak et al. (2007).

Implementation

In the setting of the MATRIS project, the basic assumption is that a textured 3D model

of the tracking environment is available. Such a model can be obtained from e.g., CAD

drawings or from structure from motion algorithms. Given a reasonably accurate predic-

tion of the camera pose, e.g., from inertial navigation, an artificial image can be obtained

by projecting the 3D model. This artificial image will resemble the camera image and

is used to construct 2D search templates which are matched against the camera image,

see Figure 3.11. For a successful match the association problem is already solved and a

correspondence is obtained directly.

Figure 3.11: Correspondences are generated by comparing the 3D scene model

viewed from the predicted camera pose (left) to the camera image (right).
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State space models

Chapter 2 introduced a sensor fusion algorithm for real-time camera pose estimation. The

key components of this algorithm are the process and measurement models. In the up-

coming sections these models are derived from the equations in Chapter 3 in combination

with kinematics.

4.1 Kinematics

Kinematics deals with aspects of motion in absence of considerations of mass and force.

It assigns coordinate frames to a rigid body and describes how these move over time. A

general, length preserving transformation between two Cartesian coordinate frames con-

sists of a translation and/or a rotation. Both transformations are illustrated in Figure 4.1.

A translation is defined as a displacement of the origin, while keeping the axes aligned,

(a) Translation. (b) Rotation.

Figure 4.1: The elementary transformations.

whereas a rotation is a change in axes, while keeping the origins coincident. These trans-

formations and their properties are the topic of the following sections.

41
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4.1.1 Translation

A translation of a coordinate frame corresponds to a displacement of its origin and is

parameterized using a displacement vector. In the translated frame a point x has a new

coordinate vector, see Figure 4.2. Mathematically, expressing a point x resolved in the b

xa

xb

ba
a

bx

Figure 4.2: The point x is expressed in the b frame and in the translated a frame.

frame in the translated a frame is defined as

xa , xb + ba. (4.1)

Here, xa denotes the position of the point x w.r.t. the a frame whose origin is the point

a. Solving for xb gives the inverse transformation,

xb = xa − ba , xa + ab. (4.2)

Hence, ab = −ba.

4.1.2 Rotation

A rotation of a coordinate frame corresponds to changing direction of coordinate axis,

while the origin remains where it is. Rotations can be described using a number of differ-

ent parameterizations, see e.g., Shuster (1993) for an overview. Commonly encountered

parameterizations include rotation matrices, Euler angles and unit quaternions.

A geometric interpretation of vector rotation is given in Figure 4.3. The rotation the

α

n

b

p
q

x

x∗

e
b
1

e
b
2

e
b
3

e
a
1

e
a
2

e
a
3

Figure 4.3: The rotation of x around axis n with angle α.
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point x to x∗, that is a rotation around the unit axis n by an angle α, can decomposed as

xb∗ = pb + (q − p)b + (x∗ − q)b

= (xb ·nb)nb + (xb − (xb ·nb)nb) cosα+ (nb × xb) sinα

= xb cosα+ nb(xb ·nb)(1 − cosα) + (nb × xb) sinα.

Here all quantities are resolved in the b frame. Note that this ‘clockwise’ vector rotation

corresponds to an ‘anti-clockwise’ rotation of the coordinate frame. Hence, expressing a

point x resolved in the b frame in the rotated a coordinate frame is defined as

xa , xb cosα+ nb(xb ·nb)(1 − cosα) + (nb × xb) sinα. (4.3)

This equation is commonly referred to as the rotation formula.

The cross product has the property,

u × v × w = v(w ·u) − w(u ·v),

and can be written as a matrix-vector multiplication, a × b = S(a)b with

S(a) ,





0 −a3 a2

a3 0 −a1

−a2 a1 0



 . (4.4)

Using these relations, (4.3) can be rewritten as

xa = xb cosα+ nb(xb ·nb)(1 − cosα) + (nb × xb) sinα

= xb cosα+ (nb × nb × xb + xb)(1 − cosα) + (nb × xb) sinα

=
[
I + (sinα)S(nb) + (1 − cosα)S2(nb)

]

︸ ︷︷ ︸

,Rab

xb. (4.5)

Hence, a rotation of the coordinate frame can be defined using a rotation matrix R,

xa , Rabxb. (4.6)

The rotation matrix Rab is a member of the special orthogonal group, {R ∈ R
3×3 :

RRT = I,detR = +1}. Solving for xb gives the inverse transformation

xb = (Rab)Txa , Rbaxa. (4.7)

It follows that Rba = (Rab)T .

Alternatively, a rotation of the coordinate frame can be defined using unit quaternions,

xa , qab ⊙ xb ⊙ (qab)c. (4.8)

Here, {xa, xb} ∈ Qv are the quaternion equivalents of {xa,xb}, qab ∈ Q1 is a unit

quaternion describing the rotation from the b to the a coordinate frame and ⊙, · c denote
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quaternion multiplication and conjugation respectively. Details on quaternions and their

properties can be found in Appendix A. Solving for xb gives the inverse transformation

xb = (qab)c ⊙ xa ⊙ qab , qba ⊙ xa ⊙ (qba)c. (4.9)

Hence, qba = (qab)c. The connection to (4.3) becomes clear by expanding the quaternion

products in (4.8) and substituting qab = (q0, q) = (cos α2 ,n
b sin α

2 ):

(0,xa) = (0, (q20 − q · q)xb + 2(xb · q)q + 2q0(x
b × q))

= (0,xb cosα+ nb(xb ·nb)(1 − cosα) + (nb × xb) sinα).

All the rotation parameterizations are similar and can be interchanged. However, they

differ in the number of parameters, singularity, global representation and the difficulty

of the differential equations. The reason for using unit quaternions is that they offer a

nonsingular parameterization with a rather simple, bilinear differential equation which

can be integrated analytically and have only four parameters. In contrast, Euler angles

have only three parameters, but suffer from singularities and have a nonlinear differential

equation. Furthermore, rotation matrices have at least 6 parameters.

Although quaternions are used for all the calculations, rotation matrices are occasion-

ally used to simplify notation. Furthermore, Euler angles provide an intuitive represen-

tation which is used for visualizing a trajectory. All these parameterizations represent

the same quantity and can be converted to each other. These conversions are given in

Appendix B.

4.1.3 Time derivatives

Straightforward differentiation of (4.1) w.r.t. time gives the translational transformation

for velocities

ẋa = ẋb + ḃ
a
. (4.10)

The time derivative for rotation cannot be derived that easily. Since rotations can be

decomposed in incremental rotations, see e.g., Shuster (1993), it holds that

qab(t+ δt) = δq ⊙ qab(t) =
(
cos δθ2 ,n

a sin δθ
2

)
⊙ qab(t),

for some rotation axis na and angle δθ. Then, the formal definition of differentiation

yields

q̇ab(t) = lim
δt→0

qab(t+ δt) − qab(t)

δt
= lim
δt→0

δq ⊙ qab(t) − qab(t)

δt
,

= lim
δt→0

(
cos δθ2 − 1,na sin δθ

2

)

δt
⊙ qab(t) = 1

2ω
a
ab(t) ⊙ qab(t). (4.11)

Here, the instantaneous angular velocity ωaab from b to a and resolved a is defined as

ωaab , lim
δt→0

2

(
1 − cos δθ2 ,n

a sin δθ
2

)

δt
=

(

0, lim
δt→0

na
δθ

δt

)

. (4.12)
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Note that the angular velocity is a vector and conforms to the standard definition. Fur-

thermore, (4.11) can be written in several ways, for instance,

q̇ba = (q̇ab)c = qba ⊙ ( 1
2ω

a
ab)

c = −qba ⊙ 1
2ω

a
ab = qba ⊙ 1

2ω
a
ba

= qba ⊙ 1
2ω

a
ba ⊙ qab ⊙ qba = 1

2ω
b
ba ⊙ qba

This implies that the angular velocity vector can be transformed according to

ωaab = −ωaba, (4.13a)

ωaab = qab ⊙ ωbab ⊙ qba. (4.13b)

Using the above results (4.8) can be differentiated to obtain

ẋa = q̇ab ⊙ xb ⊙ qba + qab ⊙ xb ⊙ q̇ba + qab ⊙ ẋb ⊙ qba

= 1
2ω

a
ab ⊙ qab ⊙ xb ⊙ qba − qab ⊙ xb ⊙ qba ⊙ 1

2ω
a
ab + qab ⊙ ẋb ⊙ qba

= ωaab ⊗ xa + qab ⊙ ẋb ⊙ qba, (4.14)

where ⊗ is the quaternion cross product, see Appendix A.1. Note that (4.14) is equivalent

to the perhaps more commonly used notation

ẋa = ωa
ab × xa +Rabẋb.

4.2 Continuous-time models

In Chapter 2 sensor fusion is used to combine the inertial and vision measurements to

obtain a real-time camera pose estimate. The key components are the process and mea-

surement models. In deriving these, the choice of which state vector to use is essential.

For this a number of issues are considered, including whether or not to treat the inertial

measurements as control inputs and which coordinates (body or camera) to use.

The process model consists of a constant acceleration model and a constant angular

velocity model, implying that acceleration and angular velocity are included in the state

vector. This model is mainly motivated by the intended application of real-time AR,

where accurate pose predictions are required to compensate for the processing lag. The

alternative of considering the inertial measurements as control inputs reduces the state

vector dimension, but lacks an easy possibility for prediction.

The IMU provides kinematic quantities measured in the body frame, whereas the

vision measurements relates to the camera frame. These two frames are rigidly connected,

i.e., cb and qbc are constant. Hence, the camera and sensor poses w.r.t. the earth frame are

related to each other according to

ce(t) = be(t) +Reb(t)cb, (4.15a)

qce(t) = qcb ⊙ qbe(t). (4.15b)

Differentiating these equations w.r.t. to time according to Section 4.1.3 yields

ċe(t) = ḃ
e
(t) + ωe

eb(t) ×Reb(t)cb, (4.16a)

c̈e(t) = b̈
e
(t) + ω̇e

eb(t) ×Reb(t)cb + ωe
eb(t) × ωe

eb(t) ×Reb(t)cb, (4.16b)
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as well as

q̇ce(t) = qcb ⊙ q̇be(t). (4.16c)

This implies that a transition from body to camera or vice versa can occur on multiple lo-

cations in the process and measurement models resulting in slightly different state vectors.

Some examples are given below.

Body based state vector. In this case the state vector contains position, velocity, accel-

eration, orientation and angular velocity of the body frame. This yields a relatively

straightforward process model,

∂
∂t be = ḃ

e
, (4.17a)

∂
∂t ḃ

e
= b̈

e
, (4.17b)

∂
∂t b̈

e
= vea, (4.17c)

∂
∂t q

be = − 1
2ωb

eb ⊙ qbe, (4.17d)

∂
∂t ωb

eb = vbω, (4.17e)

where the time-dependence has been suppressed. It is driven by the process noises

vea and vbω. The state vector implies that the measurement model is given by

ya = Rbe(b̈
e − ge) + δba + eba, (4.17f)

yω = ωb
eb + δbω + ebω, (4.17g)

yc,k =
[−I2 pin,k

]
Rcb(Rbe(pek − be) − cb) + ec,k. (4.17h)

The inertial measurement models (3.2) and (3.3) are used directly. The correspon-

dence measurement model (3.10) is adapted using (4.15) to incorporate the transi-

tion from the body frame to the camera frame.

Camera based state vector. Here, the state vector contains position, velocity, accelera-

tion, orientation and angular velocity of the camera frame. This results in

∂
∂t ce = ċe, (4.18a)

∂
∂t ċe = c̈e, (4.18b)

∂
∂t c̈e = vea, (4.18c)

∂
∂t q

ce = − 1
2ωc

ec ⊙ qce, (4.18d)

∂
∂t ωc

ec = vcω, (4.18e)

and

ya = Rbc(Rce(c̈e − ge) + ω̇c
ec × bc + ωc

ec × ωc
ec × bc) + δba + eba, (4.18f)

yω = Rbcωc
ec + δbω + ebω, (4.18g)

yc,k =
[−I2 pin,k

]
Rce(pek − ce) + ec,k. (4.18h)
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Note that the process model is very similar to (4.17). However, using the camera

based state vector the correspondence measurement model (3.10) remains unmodi-

fied and the inertial measurement models (3.2) and (3.3) are adapted using (4.16) to

account for the transition from the camera frame to the body frame. This results in

additional nonlinear terms and requires the introduction of the angular acceleration

ω̇c
ec in the state.

Mixed state vector. Using a mixed state vector, i.e., the state contains position and ori-

entation of the camera frame and velocity, acceleration and angular velocity of the

body frame, the process model is given by

∂
∂t ce = ḃ

e
+RecRcb(ωb

eb × cb), (4.19a)

∂
∂t ḃ

e
= b̈

e
, (4.19b)

∂
∂t b̈

e
= vea, (4.19c)

∂
∂t q

ce = − 1
2 (Rcbωb

eb) ⊙ qce, (4.19d)

∂
∂t ωb

eb = vbω. (4.19e)

Note that this process model contains the transition from the body frame to the cam-

era frame (4.16), resulting in additional coupling between the states. The associated

measurement model is

ya = RbcRce(b̈
e − ge) + δba + eba, (4.19f)

yω = ωb
eb + δbω + ebω, (4.19g)

yc,k =
[−I2 pin,k

]
Rce(pek − ce) + ec,k. (4.19h)

That is, the measurement models (3.2), (3.3) and (3.10) are unmodified.

In view of the framework for nonlinear estimation introduced in Chapter 2, linear models

are favorable. Compared to (4.17), both (4.18) and (4.19) introduce nonlinear terms at

the high sampling rate of the IMU. Hence the body based state vector (4.17) has been

developed further, resulting in the discrete time models discussed in the upcoming section.

4.3 Discrete-time models

Integrating (4.17) — extended with the gyroscope and acceleration biases δbω,t and δba,t
discussed in Section 3.1.1 — w.r.t. time results in the discrete-time model of Chapter 2.

For convenience it is repeated here.

bet+1 = bet + T ḃ
e

t + T 2

2 b̈
e

t , (4.20a)

ḃ
e

t+1 = ḃ
e

t + T b̈
e

t , (4.20b)

b̈
e

t+1 = b̈
e

t + ve
b̈,t
, (4.20c)

qbet+1 = exp(−T
2 ωb

eb,t) ⊙ qbet , (4.20d)

ωb
eb,t+1 = ωb

eb,t + vbω,t, (4.20e)
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δbω,t+1 = δbω,t + vbδω,t, (4.20f)

δba,t+1 = δba,t + vbδa,t, (4.20g)

where T is the integration interval and exp denotes the quaternion exponential defined in

Appendix A.2. Furthermore, the Jacobian of (4.20) w.r.t. to the state vector is given by

F =













I3 TI3
T 2

2 I3 0 0 0 0
0 I3 TI3 0 0 0 0
0 0 I3 0 0 0 0
0 0 0 exp(−T

2 ωb
eb)L F1 0 0

0 0 0 0 I3 0 0
0 0 0 0 0 I3 0
0 0 0 0 0 0 I3













. (4.21)

Here, the quaternion operator · L ( ·R similarly) is defined in Appendix A.3 and

F1 ,
∂

∂ωb
eb

(
exp(−T

2 ωb
eb) ⊙ qbe

)

= −T
2 (qbe)R




− v

T

‖v‖ sin ‖v‖
1

‖v‖

[

I − vv
T

‖v‖2

]

sin ‖v‖ + vv
T

‖v‖2 cos ‖v‖





v=−T
2

ω
b
eb

.

Using the small angle approximation, i.e., cosx = 1 and sinx = x, this expression can

be simplified to

F1 ≈ −T
2 (qbe)R

[
T
2 ω

b,T
eb

I3

]

.

This approximation is valid when the angular acceleration signal is sampled fast enough,

for instance in case of human motion and sample rates of 100 Hz and above.

The measurement models of (4.17) remain unchanged, but are mentioned again for

completeness,

ya = Rbe(b̈
e − ge) + δba + eba, (4.22a)

yω = ωb
eb + δbω + ebω, (4.22b)

yc,k =
[−I2 pin,k

]
Rcb(Rbe(pek − be) − cb) + ec,k. (4.22c)

The Jacobian of (4.22) w.r.t. to the state vector is given by

H =





0 0 Rbe H2(b̈
e − ge) 0 I3 0

0 0 0 0 I3 0 I3
H1R

be 0 0 H1H2(p
e
k − be) 0 0 0



 , (4.23)

where

H1 ,
[
−I2 pin

]
Rcb,

H2(v
e) ,

∂

∂qbe
(qbe ⊙ ve ⊙ qeb) = (qbe)TR(ve)R + (qbe)L(ve)L

[
1 0
0 −I3

]

.
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The discussed process and measurement models and their Jacobians are used in an

EKF to fuse the visual and inertial measurements using Algorithm 2.1. Note that these

models depend on the relative pose between the camera and the IMU, cb, qcb, for which

accurate calibration values need to be found.





5
Calibration theory

Calibration refers to the process of determining the output relation of a measurement de-

vice as well as applying suitable correction factors to it in order to obtain desired behavior.

Examples of calibration procedures are IMU calibration and camera calibration, see Sec-

tion 3.1.2 and Section 3.2.2. Camera calibration deals with estimation of the intrinsic and

extrinsic parameters explaining the observed projection. With IMU calibration the raw

sensor readings are converted into relevant physical units, while correcting for several

undesired effects such as non-orthogonality and temperature dependence.

A calibration method proposes an appropriate model structure to describe the mea-

surements and determines the model parameters which give the best match between the

prediction and the measured output. This can be formulated as a nonlinear least squares

minimization problem,

θ̂ = arg min
θ

V (θ) (5.1a)

V (θ) =

N∑

t=1

‖et‖2 =

N∑

t=1

‖yt − ŷ(θ, ut)‖2, (5.1b)

where V is the cost function, et are the prediction errors, yt are the measurements, ut the

inputs, θ are the model parameters to be estimated and ŷ( · , · ) is the predicted measure-

ment according to the model. This formulation is a special case of the prediction error

framework (Ljung, 1999) used in system identification. Depending on the structure of the

problem and the available measurements, various calibration methods can be designed.

The sensor unit consists of an IMU and a camera. Obviously, these sensors have to be

calibrated individually. However, as stressed in Chapter 2 and Section 4.3, calibration of

the relative position and orientation between the sensors is essential for proper operation

of the present application. A similar type of problem occurs in assessing the performance

of Algorithm 2.1 as discussed in Chapter 2. There the estimated pose is compared to an

external reference, in our case an industrial robot. Here, the positions and orientations

51
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between the involved coordinate systems have to be taken into account as well. Hence,

the relative pose calibration problem has to be solved for several coordinate frames, see

Figure 5.1. Details about the coordinate frames can be found in Chapter 2.

Tracking system

Reference system

Earth Camera Body

Robot

base

Robot

tool

Figure 5.1: Relations between the coordinate frames. Solid lines stand for rigid

connections which have to be calibrated, dotted lines for non-rigid, time varying

relations.

The topic of this chapter is to provide a theoretical background on the various ap-

proaches which can be used to calibrate the relative position and orientation of the rigid

connections. The starting point for relative pose calibration are the geometric relations

between three coordinate frames, denoted a, b and c, see (4.15)

qca = qcb ⊙ qba, (5.2a)

ca = ba +Rabcb. (5.2b)

These equations can be used in various ways, depending on which measurements are

available. Several possibilities will be discussed in the upcoming sections.

5.1 Kinematic relations

An IMU typically provides measurements of acceleration and angular velocity. This sec-

tion deals with the problem of finding the relative position and orientation from these

kinematic quantities.

5.1.1 Acceleration

A rigid connection between the b and the c system implies that qcb and cb are constants.

Hence, (5.2b) reduces to

ca(t) = ba(t) +Rab(t)cb.

Differentiating twice w.r.t. time and applying the transformation rules for angular velocity

and angular acceleration (4.13a) yields the following relation between the accelerations

c̈a(t) and b̈
a
(t),

c̈a(t) = b̈
a
(t) + ω̇a

ab(t) ×Rab(t)cb + ωa
ab(t) × ωa

ab(t) ×Rab(t)cb

= b̈
a
(t) +Rab(t)(ω̇b

ab(t) × cb + ωb
ab(t) × ωb

ab(t) × cb).
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This expression can be manipulated according to

Rca(t)(c̈a(t) − b̈
a
(t)) = Rcb(ω̇b

ab(t) × cb + ωb
ab(t) × ωb

ab(t) × cb)

= Rcb[S(ω̇b
ab(t)) + S(ωb

ab(t))
2]cb, (5.3)

where S has been defined in (4.4). This equation is linear in cb and can be written as

yt = Htx. Combining several time instants, a large system of linear equations can be

constructed from which cb can be solved using the following theorem.

Theorem 5.1 (Generalized least squares)
Suppose {yt}Ni=1 are measurements satisfying yt = Htx. Then the sum of the squared

residuals, weighted according to Σ−1
t ,

V (x) =

N∑

t=1

‖et‖2
Σt

=
N∑

t=1

(yt −Htx)
TΣ−1

t (yt −Htx), (5.4)

equivalently formulated using stacked matrices,

V (x) = ‖e‖2
Σ = (y −Hx)TΣ−1(y −Hx), (5.5)

is minimized by

x̂ = (HTΣ−1H)−1HTΣ−1y. (5.6)

Proof: At its minimum, the gradient of V is zero,

dV

dx
= −2HTΣ−1(y −Hx) = 0.

Solving for x yields (5.6), see e.g., Nocedal and Wright (2006).

Note that methods based on the QR-factorization or the singular value decomposition

(SVD) are numerically superior to the analytical expression in Theorem 5.1 and should

be used to perform the actual computation.

Theorem 5.1 defines a mapping f from the measurements y to the estimate x̂, i.e.,

x̂ = f(y) according to (5.6). Introducing noise e in the model, that is, y = Hx+e, where

e has zero mean and covariance σ2Σ, the covariance of the estimate can be approximated

as

Cov x̂ ≈ [Dy x̂] Cov y[Dy x̂]
T , (5.7)

where Dy x̂ is the Jacobian of the estimator x̂ w.r.t. the measurements y. This expression

is known as Gauss’ approximation formula (Ljung, 1999) and is exact for linear estima-

tors. Application to Theorem 5.1 yields

Cov x̂ = σ2(HTΣ−1H)−1, (5.8)

and Theorem 5.1 returns the best linear unbiased estimate.
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Assuming Gaussian noise, i.e., y = Hx + e with e ∼ N (0, σ2Σ), the probability

density function (PDF) of the measurements y is given by

p(y) =
1

(2π)
ne
2 σne

√
det Σ

e−
1

2σ2
(y−Hx)T Σ−1(y−Hx), (5.9)

where ne is the dimension of e. Maximizing p(y), or equivalently log p(y), w.r.t. x results

in (5.6). That is, the result of Theorem 5.1 can be interpreted as the maximum likelihood

(ML) estimate. Furthermore, maximizing log p(y) w.r.t. σ2 yields the following ML

estimate for the covariance scale factor,

σ̂2 =
V (x̂)

ne
. (5.10)

Introducing the notation P , H(HTΣ−1H)−1HTΣ−1, the expected value of V can be

shown to be

EV (x̂) = E(y −Hx̂)TΣ−1(y −Hx) = E eT (I − PT )Σ−1(I − P )e

= E eTΣ−1(I − P )e = Etr[(I − P )Σ−1eeT ] = tr[(I − P )Σ−1 Cov e]

= σ2 tr(I − P ) = σ2(ne − nx).

Hence, the ML estimate σ̂2 (5.10) is biased. Correcting for this bias results in

σ̂2 =
V (x̂)

ne − nx
. (5.11)

5.1.2 Angular velocity

Switching focus from translation to orientation, the rigid connection b–c implies that

(5.2a) reduces to

qca(t) = qcb ⊙ qba(t).

Differentiating left and right hand sides w.r.t. time, see (4.12), yields

1
2ωc

ca(t) ⊙ qca(t) = qcb ⊙ 1
2ωb

ba(t) ⊙ qba(t).

Hence, the angular velocities for rigid connections are related by

ωc
ca(t) = qcb ⊙ ωb

ba(t) ⊙ qbc. (5.12)

This expression can be used to solve for the relative orientation qcb. A one-step solution is

provided by Horn (1987). Theorem 5.2 contains a simplified proof and extends the orig-

inal theorem with expressions for the Jacobians of the estimate w.r.t. the measurements,

thus allowing analytic expressions for the covariance of estimate.

Before Theorem 5.2 is stated, some notation has to be introduced. In order to avoid

ambiguities with partitioning of Jacobian matrices, they are defined as (Magnus and

Neudecker, 1999)

Dx f =
∂ vec f(x)

∂(vecx)T
, (5.13)
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where vec( · ) is the vectorization operator. With this definition, even matrix functions of

matrix variables are well defined. As an alternative to evaluating each partial derivative

in (5.13), the Jacobian Dx f can be identified from the (vectorized) differential of f :

d vec f(x) = A(x) d vecx ⇔ Dx f = A(x). (5.14)

Since computations with differentials are relatively easy, this is a rather useful and pow-

erful approach.

Theorem 5.2 (Rotation A)
Suppose {vat }Nt=1 and {vbt}Nt=1 are measurements satisfying vat = qab ⊙ vbt ⊙ qba. Then

the sum of the squared residuals,

V (qab) =
N∑

t=1

‖et‖2 =
N∑

t=1

‖vat − qab ⊙ vbt ⊙ qba‖2, (5.15)

is minimized by q̂ab = x1, where x1 is the eigenvector corresponding to the largest eigen-

value λ1 of the system Ax = λx with

A = −
N∑

t=1

(vat )L(vbt )R. (5.16)

Furthermore, the Jacobians of q̂ab w.r.t. the measurements are given by

Dva
t
q̂ab = −[(q̂ab)T ⊗ (λ1I4 −A)†][I4 ⊗ (vbi )R][Dv vL], (5.17a)

Dvb
t
q̂ab = −[(q̂ab)T ⊗ (λ1I4 −A)†][I4 ⊗ (vat )L][Dv vR], (5.17b)

where ⊗ is the Kronecker product and † is the Moore-Penrose pseudo inverse. The Jaco-

bians Dv vL and Dv vR are defined as

Dv vL =







e0R
e1R
e2R
e3R







[
0
I3

]

, Dv vR =







e0L
e1L
e2L
e3L







[
0
I3

]

,

where {ei}4
i=1 is the standard basis in R

4.

Proof: The squared residuals can be written as

‖et‖2 = ‖vat ‖2 − 2vat · (qab ⊙ vbt ⊙ qba) + ‖vbt‖2.

Minimization only affects the middle term, which can be simplified to

vat · (qab ⊙ vbt ⊙ qba) = −(vat ⊙ (qab ⊙ vbt ⊙ qba))0

= −(vat ⊙ qab)T (vbt ⊙ qba)c

= −(qab)T (vat )L(vbt )Rq
ab,
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using the relation (a ⊙ b)0 = aT bc for the scalar part of quaternion multiplication. The

minimization problem can now be restated as

arg min
‖qab‖=1

N∑

t=1

‖et‖2 = arg max
‖qab‖=1

(qab)TAqab,

where A is defined in (5.16). Note that the matrices · L and ·R commute, i.e., aLbR =
bRaL, since aLbRx = a ⊙ x ⊙ b = bRaLx for all x. Additionally, · L and ·R are skew

symmetric for vectors. This implies that

(vat )L(vbt )R = [−(vat )
T
L][−(vbt )

T
R] = [(vbt )R(vat )L]T = [(vat )L(vbt )R]T ,

from which can be concluded that A is a real symmetric matrix.

Let qab = Xα with ‖α‖ = 1, where X is an orthonormal basis obtained from the

symmetric eigenvalue decomposition of A = XΣXT . Then,

(qab)TAqab = αTXTXΣXTXα =
4∑

i=1

α2
iλi ≤ λ1,

where λ1 is the largest eigenvalue. Equality is obtained for α = (1, 0, 0, 0)T , that is,

q̂ab = x1.

The sensitivity of the solution can be determined based on an analysis of the real

symmetric eigenvalue equation, Ax = λx. The Jacobian of the eigenvector x(A) is given

by

DA x = xT ⊗ (λ1I4 −A)†

as derived by Magnus and Neudecker (1999). Furthermore, writing At = −RtLt =
−LtRt and applying (5.14), yields

dAt(Lt) = −Rt(dLt) ⇔ DLt
At = −I4 ⊗Rt

dAt(Rt) = −Lt(dRt) ⇔ DRt
At = −I4 ⊗ Lt

Straightforward application of the chain rule results in

Dva
t
q̂ab = [DA x][DLt

A][Dva
t
Lt], Dvb

t
q̂ab = [DA x][DRt

A][Dvb
t
Rt].

Evaluating this expression gives (5.17).

To incorporate measurement noise, the model is extended to

vat = vat,0 + eat , vbt = vbt,0 + ebt , vat,0 = qab ⊙ vbt,0 ⊙ qba, (5.18)

where eat and ebt are mutually independent, zero mean noises with covariance Σva
t

and

Σvb
t
. Application of Gauss’ approximation formula (5.7) yields the following covariance

expression for the estimate produced by Theorem 5.2

Cov q̂ab =
N∑

t=1

[Dva
t
q̂ab]Σva

t
[Dva

t
q̂ab]T + [Dvb

t
q̂ab]Σvb

t
[Dvb

t
q̂ab]T . (5.19)
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Assuming independent identically distributed Gaussian noise, eat , e
b
t ∼ N (0, σ2I3),

the residuals et are distributed according to

et , vat − qab ⊙ vbt ⊙ qba = eat − qab ⊙ ebt ⊙ qba ∼ N (0, 2σ2I3), (5.20)

and the PDF for all the residuals is given by

p(e) =
N∏

t=1

1

(4π)
3

2σ3
e−

1

4σ2
(ea

t −q
ab⊙eb

t⊙q
ba)T (ea

t −q
ab⊙eb

t⊙q
ba). (5.21)

Maximizing p(e), or equivalently log p(e), w.r.t. qab results in Theorem 5.2. That is,

the result of Theorem 5.2 can be interpreted as the maximum likelihood (ML) estimate.

Furthermore, maximizing log p(e) w.r.t. σ2 yields the following ML estimate for the

covariance scale factor,

σ̂2 =
V (q̂ab)

6N
. (5.22)

The expected value of V (q̂ab) is given by

EV (q̂ab) = E

N∑

t=1

(eat − R̂abebt)
T (eat − R̂abebt)

= E

N∑

t=1

tr eat e
a,T
t + trebte

b,T
t − 2(eat )

T R̂abebt ≈ (6N − 6)σ2,

where a second order Taylor expansion of E(eat )
T R̂abebt has been used. Hence, the ML

estimate σ̂2 (5.22) is biased. Correcting for this bias results in

σ̂2 =
V (x̂)

6(N − 1)
. (5.23)

Validation

Theorem 5.2 and its associated covariance expressions have been validated using Monte

Carlo (MC) simulations. The scenario defined by orientation qab = 2−
1

2 (1, 1, 0, 0) and

measurements {vbt} = {e1, e2, e3,−e1,−e2,−e3} where {ei}3
i=1 is the standard basis

in R
3 will be used as an example. Measurements are generated by adding Gaussian noise

with Σ = 10−4I3 to {vat } and {vbt}.

From the measurements a set (M = 104) of orientation estimates {q̂abk }Mk=1 and co-

variance estimates {Q̂k}Mk=1 have been generated using Theorem 5.2 and (5.19). Fig-

ure 5.2 shows the distribution of the orientation error vectors ek , 2 log(q̂abk q
ba), where

the quaternion logarithm is defined in Appendix A. The orientation errors have zero mean,

implying that the orientation estimates are unbiased. Furthermore, the empirical dis-

tribution of the orientation errors is consistent with the theoretical distribution derived

using the covariance estimates of (5.19). A comparison between the MC covariance
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Figure 5.2: Histogram of the orientation errors. Both the empirical distribution

(gray bar) as well as the theoretical distribution (black line) are shown.

QMC = Cov q̂ab and the theoretical covariance Qth = E Q̂ shows also a very good match:

QMC = 10−5







0.62 −0.62 −0.00 −0.00
−0.62 0.62 0.00 0.00
−0.00 0.00 1.24 −0.01
−0.00 0.00 −0.01 1.24






,

Qth = 10−5







0.62 −0.62 0.00 −0.00
−0.62 0.62 −0.00 −0.00

0.00 −0.00 1.25 0.00
−0.00 −0.00 0.00 1.25






.

5.2 Geometric measurements

Besides measuring kinematic quantities, an IMU can also measure direction vectors such

as gravity and the magnetic field. These vectors are geometric measurements, as well as

direct position and orientation measurements from for instance an external reference sys-

tem or computer vision. In this section it is discussed how relative position and orientation

can be determined using these geometric measurements.

5.2.1 Direction vectors

Directional vectors evaluated in different coordinate frames are related by

vat = qab ⊙ vbt ⊙ qba. (5.24)

This is the same relation that holds for angular velocities (5.12). Hence, qab can be deter-

mined by direct application of Theorem 5.2.



5.2 Geometric measurements 59

5.2.2 Position and orientation

The transformations (5.2) can be written using homogeneous transformation matrices,

T ac ,

[
Rac ca

0 1

]

=

[
RabRbc ba +Rabcb

0 1

]

=

[
Rab ba

0 1

] [
Rcb cb

0 1

]

= T abT bc. (5.25)

These transformation matrices are useful for evaluating paths between coordinate frames.

Comparing multiple paths between two systems yields relations between the intermedi-

ate coordinate transformations. Figure 5.3 gives two examples of such relations. These

b’ c’

b c

a d

T bc

T bc

T bb
′

t T cc
′

t

(a) Relative pose.

b c

a d

T abt

T bc

T ad
T dct

(b) Absolute pose.

Figure 5.3: Two examples of geometric relations between 4 coordinate systems.

Multiple paths exist between a− c and b− c′. The connections a− d and b− c are

rigid, implying that T ad, T bc are constant. All other transformations vary between

measurements, denoted with Tt.

geometric relations have been studied extensively in the robotics literature and are there

known as hand-eye calibration, see for instance Tsai and Lenz (1989); Strobl and Hirzinger

(2006).

The classical hand-eye calibration scenario in robotics is to move a manipulator (hand)

from b to b′ and observe the position change of a sensor (eye) from c to c′. Figure 5.3a

illustrates this scenario. Evaluating the two routes between b and c′ yields the relation

T bc
′

t = T bb
′

t T bc = T bcT cc
′

t , typically written as AX = XB, from which the unknown

transformation T bc can be solved given a number of relative poses {T bb′t , T cc
′

t }Nt=1. The

relative poses are usually not available since both the manipulator and the sensor give the

tool - robot base transformation respectively the camera - world transformation. Hence,

the relative poses are constructed from two absolute poses at different times, e.g., T bb
′

t =
T bat1 T

ab
t2 . These absolute poses are used directly in the slightly more general scenario

given in Figure 5.3b. It yields the relation T ac = T abt T bc = T adT dct , typically written as

AX = ZB, from which the unknown transformations T bc and T ad can be jointly solved

for, given a number of poses {T abt , T dct }Nt=1.

The relation of Figure 5.3b can be decomposed in its rotational and translational part,

T abt T bc = T adT dct ⇔
{

qabt q
bc = qadqdct

bat +Rabt cb = da +Radcdt
(5.26)
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These parts are inherently coupled and many nonlinear optimization techniques have been

proposed for solving it, see Strobl and Hirzinger (2006) for an overview. However, de-

coupling approaches are frequently employed with satisfactory results: assuming known

rotations, the translational part is linear in the unknowns cb,da and can be solved using

bat −Radcdt =
[
Rabt I

]
[
cb

da

]

(5.27)

in combination with Theorem 5.1. A one step solution to the rotational part is given by

Theorem 5.3. It gives an explicit solution along with expressions for the Jacobians of the

estimate.

Theorem 5.3 (Rotation B)
Suppose {qabt }Nt=1 and {qdct }Nt=1 are measurements satisfying qabt ⊙qbc = qad⊙qdct . Then

the residual rotation error,

V (qad, qbc) =

N∑

t=1

‖et‖2 =

N∑

t=1

‖qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1‖2, (5.28)

is minimized by q̂ad = v1 and q̂bc = u1, the first right and left singular vectors of the

matrix A = UΣV T , with

A =

N∑

t=1

(qabt )TL(qdct )R. (5.29)

Furthermore, the Jacobians of q̂dc, q̂ab w.r.t. the measurements are given by

Dqab
t
x̂ = [x̂T ⊗ (σ1I16 −B)†][DAB][K4,4(I4 ⊗ (qdct )TR)][Dq qL] (5.30a)

Dqdc
t
x̂ = [x̂T ⊗ (σ1I16 −B)†][DAB][I4 ⊗ (qabt )TL][Dq qR], (5.30b)

where K, implicitly defined by vecAT = K vecA, is the commutation matrix. Further-

more,

x̂ =

(
q̂ad

q̂bc

)

, B =

(
0 AT

A 0

)

, DAB = [I64 +K8,8]

[(
I4
0

)

⊗
(

0
I4

)]

,

Dq qL = [(e0R)T , (e1R)T , (e2R)T , (e3R)T ]T , Dq qR = [(e0L)T , (e1L)T , (e2L)T , (e3L)T ]T ,

where {ei}4
i=1 is the standard basis in R

4.

Proof: The residual orientation error can be rewritten as

‖et‖2 = ‖qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1‖2

= (qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1)(qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1)c

= 2 − (qabt ⊙ qbc ⊙ qcdt ⊙ qda) − (qabt ⊙ qbc ⊙ qcdt ⊙ qda)c.

Using the quaternion properties, q+ qc = 2q0 and (a⊙ b)0 = aT bc, the above expression

can be simplified to

‖et‖2 = 2 − 2(qabt ⊙ qbc)T (qcdt ⊙ qda)c = 2 − 2(qbc)T (qabt )TL(qdct )Rq
ad.
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The minimization problem can now be restated as

arg min
‖qad‖=1

‖qbc‖=1

N∑

t=1

‖et‖2 = arg max
‖qad‖=1

‖qbc‖=1

(qbc)TAqad,

where A is defined in (5.29).

Let qbc = Uα and qad = V β with ‖α‖ = 1 and ‖β‖ = 1, where U and V are

orthonormal bases obtained from the singular value decomposition ofA = UΣV T . Then,

(qbc)TAqad = αTUTUΣV TV β =

4∑

i=1

αiσiβi ≤ σ1,

where σ1 is the largest singular value. Equality is obtained for α = β = (1, 0, 0, 0)T , that

is, q̂bc = u1 and q̂ad = v1.

The sensitivity of the solution can be found by analyzing the differential of the SVD,

analogous to Papadopoulo and Lourakis (2000). However, explicit expressions can be

obtained by making use of the connection between the singular value decomposition of A
and the eigenvalue decomposition of B, see Golub and Van Loan (1996). Indeed,

Bx =

(
0 AT

A 0

)(
v1
u1

)

=

(
0 V ΣUT

UΣV T 0

)(
v1
u1

)

= σ1

(
v1
u1

)

,

so a singular value σ1 of A, with its singular vectors u1 and v1, is also an eigenvalue of

B with eigenvector x. Hence, the sensitivity of the solution can be determined based on

an analysis of the real symmetric eigenvalue equation, Bx = σx. The Jacobian of the

eigenvector x(B) is given by

DB x = xT ⊗ (σ1I8 −B)†

as derived by Magnus and Neudecker (1999). Now, notice that B can be decomposed as

B =

(
0 AT

A 0

)

=

(
I4
0

)

AT
(
0 I4

)
+

(
0
I4

)

A
(
I4 0

)
.

Taking the differential of the above equation yields

dB =

(
I4
0

)

dAT
(
0 I4

)
+

(
0
I4

)

dA
(
I4 0

)
,

vec(dB) =

[
(
0 I4

)T ⊗
(
I4
0

)]

K4,4 vec(dA) +

[
(
I4 0

)T ⊗
(

0
I4

)]

vec(dA)

= [I64 +K8,8]

[(
I4
0

)

⊗
(

0
I4

)]

︸ ︷︷ ︸

DA B

vec(dA).

Furthermore, writing At = LTt Rt and applying (5.14) once more, yields

dAt(Lt) = (dLt)
TRt ⇔ DLt

At = K4,4(I4 ⊗RTt ),

dAt(Rt) = LTt (dRt) ⇔ DRt
At = (I4 ⊗ LTt ).
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Straightforward application of the chain rule results in

Dqab
t
x̂ = [DB x][DAB][DLt

A][Dqab
t
Lt],

Dqdc
t
x̂ = [DB x][DAB][DRt

A][Dqab
t
Rt].

Evaluating these expressions gives (5.30).

Notice that qabt ⊙ qbc ⊙ qcdt ⊙ qda = 1 ⊙ δqt, where δqt = (cos αt

2 ,n
a
t sin αt

2 ) = (1,0)
in absence of errors. With this notation, the cost function (5.28) can be interpreted as

V (x̂) =

N∑

t=1

‖qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1‖2 =
N∑

t=1

(cos αt

2 − 1,nat sin αt

2 )2

=

N∑

t=1

(cos αt

2 − 1)2 + (sin αt

2 )2 = 2

N∑

t=1

(1 − cos αt

2 ) ≈ 1

4

N∑

t=1

α2
t .

That is, an intuitive interpretation of Theorem 5.3 is that it minimizes error angles, and

the solution is physically relevant.

To incorporate measurement noise, the model is extended to

qabt = qabt,0 ⊙ δqabt , qdct = qdct,0 ⊙ δqdct , qabt,0 ⊙ qbc ⊙ qcdt,0 ⊙ qda = 1. (5.31)

Here, the quaternion errors δqabt , δq
dc
t are modeled as mutually independent random ro-

tations about random vectors, that is, δq = exp 1
2θ where θ is zero mean noise and has

covariance Σθ. This implies that

E δq = Eexp 1
2θ ≈

(
1 − E ‖θ‖2

0

)

, (5.32a)

Cov δq = E(δq − E δq)(δq − E δq)T

≈ E

(
1
64 (‖θ‖2 − E ‖θ‖2)2 − 1

16 (‖θ‖2 − E ‖θ‖2)θT

− 1
16 (‖θ‖2 − E ‖θ‖2)θT 1

4θθT

)

, (5.32b)

where the small angle approximation, i.e., cosx = 1 − 1
2x

2 and sinx = x have been

used. Application of Gauss’ approximation formula (5.7) yields the following covariance

expression for the estimate of Theorem 5.3

Cov x̂ =

N∑

t=1

[Dqab
t
x̂]Σqab

t
[Dqab

t
x̂]T + [Dqdc

t
x̂]Σqdc

t
[Dqdc

t
x̂]T , (5.33)

where the covariance Σqab
t

= (qabt )L[Cov δqabt ](qabt )TL (and Σqdc
t

analogously).

Assuming independent identically distributed Gaussian noise θabt ,θ
dc
t ∼ N (0, σ2I3),

the quaternion covariance (5.32b) simplifies to

Cov δq ≈
(

6σ4

64 0

0 σ2

4 I3

)

. (5.34)
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Hence, for small σ2 the (1,1) entry is negligible and the residuals et are distributed ac-

cording to

et , qabt ⊙ qbc ⊙ qcdt ⊙ qda − 1 ∼ N (0,Σet
), Σet

=

[
0 0

0 σ2

2 I3

]

. (5.35)

Hence, the PDF for all the residuals is given by

p(e) =

N∏

t=1

1

(π/6)
3

2σ3
e−

1

2
(qab

t ⊙qbc⊙qcd
t ⊙qda−1)T Σ†

et
(qab

t ⊙qbc⊙qcd
t ⊙qda−1). (5.36)

Maximizing p(e), or equivalently log p(e), w.r.t. x results in Theorem 5.2, only with a

different weighting. That is, the result of Theorem 5.2 is very similar to the maximum

likelihood (ML) estimate. Furthermore, maximizing log p(e) w.r.t. σ2 yields the follow-

ing ML estimate for the covariance scale factor,

σ̂2 =
2V (x̂)

3N
. (5.37)

The expected value of V (x̂) is given by

EV (x̂) = E

N∑

t=1

(qabt ⊙ q̂bc ⊙ qcdt ⊙ q̂da − 1)T (qabt ⊙ q̂bc ⊙ qcdt ⊙ q̂da − 1)

≈ 3(N − 2)

2
σ2,

where a second order Taylor expansion w.r.t. qabt , q
dc has been used. Hence, the ML

estimate σ̂2 (5.37) is biased. Correcting for this bias results in

σ̂2 =
2

3(N − 2)
V (x̂). (5.38)

Validation

Theorem 5.3 and its associated covariance expression have been validated using Monte

Carlo (MC) simulations. The scenario defined by the orientations qad = 2−
1

2 (1, 1, 0, 0),

qbc = 2−
1

2 (0, 0, 1, 1) and measurements {qabt } = {e1, e2, e3, e4,−e1,−e2,−e3,−e4}
where {ei}4

i=1 is the standard basis in R
4 will be used as an example. Measurements are

generated by adding Gaussian rotation vectors with Σ = 10−4I3 to {qabt } and {qdct }.

From the measurements a set (M = 104) of orientation estimates {q̂adk , q̂bck }Mk=1 and

covariance estimates {Q̂k}Mk=1 have been generated using Theorem 5.3 and (5.33). Fig-

ure 5.4 shows the distribution of the orientation error vectors eak , 2 log(q̂adk q
da) and

ebk , 2 log(q̂bck q
cb). The orientation errors have zero mean, implying that the orientation

estimates are unbiased. Furthermore, the empirical distribution of the orientation errors

is consistent with the theoretical distribution derived using the covariance estimates of

(5.33). A comparison between the MC covariance QMC = Cov x̂ and the theoretical
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Figure 5.4: Histogram of the orientation errors. Both the empirical distribution

(gray bar) as well as the theoretical distribution (black line) are shown.

covariance Qth = E Q̂ shows also a very good match:

QMC = 10−5
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.

Note that the estimates q̂ad and q̂bc are uncorrelated.

5.3 Mixing kinematic and geometric measurements

The methods discussed in Section 5.1 and Section 5.2 are based on either kinematic or

geometric measurements. Difficulties arise combining the two types of measurements,
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for instance in case of an IMU measuring angular velocity and acceleration and a cam-

era (indirectly) measuring position and orientation. Attempts using differentiated or in-

tegrated measurements are not successful. Integration of the kinematic measurements

(dead-reckoning) suffers from severe drift after a short period of time. Differentiating

the geometric measurements has problems due to noise amplification and low sampling

frequencies.

In this section the prediction error method (Ljung, 1999) is used to combine mea-

surements from both types. The idea used in the prediction error method is very simple,

minimize the difference between the measurements and the predicted measurements ob-

tained from a model of the system at hand. This prediction error is given by

et(θ) = yt − ŷt|t−1(θ), (5.39)

where ŷt|t−1(θ) is used to denote the one-step ahead prediction from the model. The

parameters θ are now found by minimizing a norm V (θ, e) of the prediction errors,

θ̂ = arg min
θ

VN (θ, e). (5.40)

Obviously, a suitable predictor ŷt|t−1(θ) is needed to solve (5.40). The key idea is to

realize that the state-space models derived in Chapter 4 describe the underlying process

and that a EKF can be used to compute the one-step ahead prediction ŷt|t−1(θ), see Fig-

ure 5.5. The parameters in the process and measurements model have a clear physical

Measurements

Inputs

EKF

Innovations

State

Minimization

VN (θ, e)

θ
e

Figure 5.5: Gray-box system identification using KF innovations as prediction er-

rors. The parameter vector θ is adjusted to minimize the cost function VN (θ, e).

interpretation, allowing for gray-box identification where only the parameters of interest

are estimated. The prediction errors, et = yt− ŷt|t−1(θ), or innovations are already being

computed in the KF iterations. This explains why the term innovation representation is

used for KF-based model structures (Ljung, 1999).

Although the choice of the cost function VN (θ, e) does not influence the limit of the

estimate θ̂, it influences the covariance of the estimate (Ljung, 1999). The optimal, mini-

mum variance estimate is obtained with the maximum likelihood cost function

VN (θ, e) =

N∑

t=1

− log pe(et, t). (5.41)

Since for a correctly tuned filter, the innovations et are normal distributed with zero mean

and covariance St = CtPt|t−1C
T
t + Rt, where the state covariance Pt|t−1, the measure-

ment Jacobian Ct and the measurement covariance Rt are provided by the EKF, the cost
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function (5.41) is equivalent to

VN (θ, e) =
1

2

N∑

t=1

eTt S
−1
t et =

1

2
ǫT ǫ. (5.42)

Here, the Nny-dimensional vector ǫ = (ǫT1 , . . . , ǫ
T
N )T is constructed by stacking the

normalized innovations

ǫt = S
−1/2
t et (5.43)

on top of each other. With this choice of cost function the optimization problem boils

down to a nonlinear least-squares problem. This kind of problem can be efficiently solved

using Gauss-Newton or Levenberg-Marquardt methods, see e.g., Nocedal and Wright

(2006). These methods require partial derivatives of the normalized innovations ǫ w.r.t.

the parameter vector θ. Since the KF iterations do not allow simple analytic expression

for these numerical differentiation is used. The covariance of the estimate θ̂ can be deter-

mined using

Cov θ̂ =
ǫT ǫ

Nny

(
[Dθ ǫ][Dθ ǫ]

T
)−1

, (5.44)

where the residuals ǫ and the Jacobians [Dθ ǫ] are evaluated at θ̂, see Ljung (1999). This

expression can also be obtained by linearizing ǫ(θ),

ǫ(θ) ≈ ǫ(θ̂) + [Dθ ǫ](θ − θ̂).

and applying Theorem 5.1.

The validation of this system identification approach to calibrate relative pose from

mixed measurements is postponed to Section 6.3.
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Calibration algorithms

The calibration theory discussed in Chapter 5 can be applied in a number of calibration

methods for relative pose. Two groups are distinguished: internal calibration algorithms,

which calibrate the coordinate frames within the sensor unit of the tracking system and

external calibration algorithms for calibrating the tracking system with an external ref-

erence system. The classification and their coordinate frames are shown in Figure 6.1.

These coordinates frames have already been introduced in the previous chapters, but their

Tracking system

Reference system

Earth Camera Body

Robot

base

Robot

tool

Figure 6.1: coordinate frames of the tracking system and the reference system. Solid

lines are rigid connections, dotted lines are non-rigid, varying connections.

definition will be repeated here for convenience.

Earth (e): The camera pose is estimated with respect to this coordinate frame. It is fixed

to earth and the features of the scene are modeled in this coordinate frame. It can

be aligned in any way, however, preferably it should be vertically aligned.

Camera (c): The coordinate frame attached to the moving camera. Its origin is located

in the optical center of the camera, with the z-axis pointing along the optical axis.

The camera, a projective device, acquires its images in the image plane (i). This

67
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plane is perpendicular to the optical axis and is located at an offset (focal length)

from the optical center of the camera.

Body (b): This is the coordinate frame of the IMU. Even though the camera and the

IMU are rigidly attached to each other and contained within the sensor unit, the

body coordinate frame does not coincide with the camera coordinate frame. They

are separated by a constant translation and rotation.

Robot base (r): The robot positions its tool with respect to this coordinate frame. This

unmovable frame is fixed to the earth, so it is rigidly connected to the earth frame.

Robot tool (t): This is the coordinate frame controlled by the robot. The sensor unit

is mounted to the robot tool, hence the camera frame is rigidly connected to this

frame.

Both the internal and external calibration methods will be discussed in the subsequent

sections.

6.1 Internal calibration

Internal calibration algorithms determine the relative pose between the camera and the

IMU in the sensor unit, see Chapter 3. It has to be repeated when the objective of the

camera is adjusted or changed. Since in that case a camera calibration has to be performed

anyway, it would be preferable when the sensor unit can be calibrated reusing the camera

calibration setup and without additional hardware.

Lobo and Dias (2007) present a two-step algorithm to determine the relative pose

between an IMU and a camera. First they determine the relative orientation comparing

gravity measured by the IMU with gravity determined from the camera images, i.e., using

directional vectors as discussed in Section 5.2.1. The optical vertical direction is calcu-

lated from vertical vanishing points, determined using vertical lines present in the scene

or in a vertically aligned camera calibration pattern. However, it is quite difficult to align

a calibration pattern perfectly with the vertical; it requires a vertical surface on which

the pattern has to be aligned. It turns out that floors and desks are more horizontal than

walls and edges are vertical. Additionally, levelness can be easily verified with a spirit

level and the vertical is independent of the alignment in the horizontal plane. Taking this

into account, a modified algorithm is presented in Algorithm 6.1. It is an extension to the

camera calibration procedure, see Section 3.2.2, and facilitates calculation of the relative

orientation between the IMU and the camera.

Once the relative orientation is known, Lobo and Dias (2007) describe a second algo-

rithm to determine the relative position: the sensor unit has to be placed on a turntable and

positioned such that the accelerometer reading stays constant for rapid rotations. That is,

the accelerometers are positioned in the rotation center of the turntable and do not trans-

late when the turntable is rotated. This geometric measurement is complemented with

relative pose information from images of a calibration pattern before and after a turn. To

calculate the relative position this procedure has to be repeated several times with different

poses of the sensor unit on the turntable.
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Algorithm 6.1 Orientation calibration (static)

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a desk or the

floor.

2. Acquire images {It}Nt=1 of the pattern while holding the sensor unit static in various

poses, simultaneously taking accelerometer readings {ya,t}Nt=1.

3. Perform a camera calibration using the images {It}Nt=1 to obtain the orientations

{Rcet }Nt=1.

4. Compute an estimate q̂cb from {gct} = {Rcet ge} and {gbt} = {−ya,t} using Theo-

rem 5.2. Note that ge = (0, 0,−g)T since the calibration pattern is placed horizon-

tally.

5. Determine the covariance of q̂cb using (5.19).

This algorithm has two major drawbacks: not only does it require special hardware,

i.e., a turntable, but it is also labor intensive as the positioning of the sensor unit is very

sensitive. Using Section 5.3 a flexible algorithm has been derived for estimating the rela-

tive pose between the IMU and the camera which does not suffer from these drawbacks.

The system is modeled similar to Section 4.3 as

bet+1 = bet + T ḃ
e

t +
T 2

2
b̈
e

t , (6.1a)

ḃ
e

t+1 = ḃ
e

t + T b̈
e

t , (6.1b)

qbet+1 = e−
T
2

ω
b
eb,t ⊙ qbet , (6.1c)

where b̈
e

t and ωbeb,t are given by

b̈
e

t = Rebt ua,t + ge −Rebt δba −Rebt eba,t, (6.2a)

ωb
eb,t = uω,t − δbω − ebω,t. (6.2b)

Here ua,t and uω,t are the accelerometer signal and the gyroscope signal respectively.

The associated measurements are modeled as

yc =
[
−I2 pin

]
Rcb(Rbe(pe − be) − cb) + ec. (6.3)

This is a standard discrete-time state-space model parameterized by

θ =
(

(φcb)T , (cb)T , (δbω)T , (δba)
T , (ge)T

)

(6.4)

That is, the parameter vector θ consists of relative orientation as axis angle φcb, relative

position cb, gyroscope bias (δbω, accelerometer bias δba and gravity ge.

Algorithm 6.2 applies the model (6.1)–(6.3) in the grey-box system identification ap-

proach discussed in Section 5.3 to estimate the relative pose. Besides relative position and
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Algorithm 6.2 Pose calibration (dynamic)

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a desk or the

floor.

2. Acquire inertial measurements {ya,t}Mt=1, {yg,t}Mt=1 and images {It}Nt=1.

• Rotate around all 3 axes, with sufficiently exiting angular velocities.

• Always keep the calibration pattern in view.

3. Obtain the point correspondences between the undistorted and normalized 2D fea-

ture locations z
i,n
t,k and the corresponding 3D grid coordinates zet,k of the calibration

pattern for all images {It}, see Section 3.2.2.

4. Compute an estimate θ̂ by solving (5.40), using θ0 =
(

(φcb0 )T ,0,0,0, (ge0)
)

as

a staring point for the optimization. Here, ge0 = (0, 0,−g)T since the calibration

pattern is placed horizontally and φcb0 can be obtained using Algorithm 6.1.

5. Determine the covariance of θ̂ using (5.44).

orientation, nuisance parameters like sensor biases and gravity are also determined. The

algorithm requires a calibrated camera and, apart from a camera calibration pattern, no

hardware is required. The data sequences can be short, a few seconds of data is sufficient.

The algorithm is very flexible: the motion of the sensor unit can be arbitrary, provided

it contains sufficient rotational excitation. A convenient setup for the data capture is to

mount the sensor unit on a tripod and pan, tilt and roll it. However, hand-held sequences

can be used equally well.

6.2 External calibration

In case the tracking system is to be compared to an external reference system a calibra-

tion has to be performed to determine the relative poses between the coordinate frames

involved. Depending of the type of reference system different calibration methods have

to be used. For a reference system providing pose measurements, e.g., an industrial robot

as used in Chapter 2, the theory of Section 5.2 applies and Algorithm 6.3 can be used.

Alternatively, a high grade inertial navigation system, see Section 3.1.3, can be used

to as an external reference system. Such systems also provide kinematic measurements,

see Section 5.1, and Algorithm 6.4 can be used to determine the relative poses between

the involved coordinate frames.

6.3 Experiments

The algorithms presented in the previous sections have been applied to obtain the results

of Chapter 2. This section is devoted to show calibration results for internal calibration.
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Algorithm 6.3 Reference system calibration (pose)

1. Acquire pose measurements {T ect }Nt=1 and {T rtt }Nt=1 from the sensor unit and the

reference system respectively.

2. Compute an estimate q̂rw, q̂tc from {qrtt } and {qect } using Theorem 5.3.

3. Compute an estimate ê
r, ĉt from {trt} and {cet} by applying Theorem 5.1 to (5.27).

4. Use (5.33) and (5.8) to determine the covariances of q̂rw, q̂tc and ê
r, ĉt.

Algorithm 6.4 Reference system calibration (inertial)

1. Capture inertial measurements {ya,t}Nt=1, {yω,t}Nt=1 and {za,t}Nt=1, {zω,t}Nt=1

from the sensor unit and the reference IMU respectively. Rotate around all 3 axes,

with sufficiently exiting angular velocities.

2. Compute an estimate q̂bt from {ωb
t} = {yω,t} and {ωt

t} = {zω,t} using Theo-

rem 5.2.

3. Compute an estimate b̂
t

from {ya,t} and {za,t} by application of Theorem 5.2 to

the combination of (5.3) and

ya,t −Rbtza,t = Rbet (b̈
e

t − ge) −RbtRtet (ẗ
e
t − ge) = Rbet (b̈

e

t − ẗ
e
t ).

4. Use (5.19) and (5.8) to determine the covariances of q̂bt and t̂
b
.

Algorithm 6.2 has been used to calibrate the sensor unit described in Chapter 3. This

algorithm computes estimates of the relative position and orientation between the IMU

and the camera, i.e., cb and φcb, based on the motion of the sensor unit. This motion

can be arbitrary, as long as it is sufficiently exiting in angular velocity and the calibration

pattern always stays in view. The setup employed, shown in Figure 6.2, is identical to

that of a typical camera calibration setup: the camera has been mounted on a tripod and a

camera calibration pattern is placed on a desk.

A number of experiments have been performed. During such an experiment the sensor

unit has been rotated around its three axes, see Figure 6.3 for an example. The measure-

ments contains relatively small rotations as the calibration pattern has to stay in view.

However, modest angular velocities are present, which turn out to provide sufficient ex-

citation. The data is split into two parts, one estimation part and one validation part, see

Figure 6.3. This facilitates cross-validation, where the parameters are estimated using the

estimation data and the quality of the estimates can then be assessed using the validation

data Ljung (1999).

In Table 6.1 the estimates produced by Algorithm 6.2 are given together with confi-

dence intervals (99%). Note that the estimates are contained within the 99% confidence
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Figure 6.2: The sensor unit is mounted on a tripod for calibration. The background

shows the camera calibration pattern that has been used in the experiments.

intervals. Reference values are also given, these are taken as the result of Algorithm 6.1

(orientation) and from the technical drawing (position). Note that the drawing defines the

position of the CCD, not the optical center. Hence, no height reference is available and

some shifts can occur in the tangential directions. Table 6.1 indicates that the estimates

are indeed rather good.

In order to further validate the estimates the normalized innovations (5.43) are studied.

A histogram of the normalized innovations and their autocorrelations are given in Fig-

ure 6.4 and Figure 6.5, respectively. Both figures are generated using the validation data.

The effect of using the wrong relative position and orientation is shown in Figure 6.4b

and Figure 6.4c. From Figure 6.4a and Figure 6.5 it is clear that the normalized inno-

vations are close to white noise using θ̂. This implies that the model with the estimated

parameters and its assumptions appears to be correct, which in turn is a good indication

that reliable estimates φ̂cb, ĉb have been obtained. The reliability and repeatability of the

estimates has also been confirmed by additional experiments.

The experiments show that Algorithm 6.2 is an easy-to-use calibration method to de-

termine the relative position and orientation between the IMU and the camera. Even

small displacements and misalignments of the sensor unit can be accurately calibrated

from short measurement sequences made using the standard camera calibration setup.
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Figure 6.3: A trajectory of the sensor unit used for calibration. It contains both

estimation data (t < 3.5 s) and validation data (t ≥ 3.5 s), as indicated by the

dashed line.

Table 6.1: Calibration results for Algorithm 6.2. The obtained estimates and their

99% confidence intervals are listed for 3 trials. Reference values have been included

for comparison.

Orientation φcbx (◦) φcby (◦) φcbz (◦)

Trial 1 -0.06 [-0.28, 0.17] 0.84 [ 0.67, 1.01] 0.19 [-0.06, 0.44]

Trial 2 -0.19 [-0.36, -0.02] 0.75 [ 0.62, 0.88] 0.45 [ 0.23, 0.67]

Trial 3 -0.29 [-0.48, -0.10] 0.91 [ 0.76, 1.05] 0.08 [-0.11, 0.27]

Referencea -0.23 [-0.29, -0.17] 0.80 [ 0.73, 0.87] 0.33 [ 0.22, 0.44]

Position cbx (mm) cby (mm) cbz (mm)

Trial 1 -13.5 [-15.2, -11.9] -6.7 [ -8.1, -5.2] 34.5 [ 31.0, 38.0]

Trial 2 -15.7 [-17.3, -14.2] -8.8 [-10.1, -7.5] 33.2 [ 28.7, 37.7]

Trial 3 -13.5 [-14.9, -12.0] -7.3 [ -8.6, -6.0] 29.7 [ 26.8, 32.7]

Referenceb -14.5 -6.5 -
a

using Algorithm 6.1.
b

using the CCD position of the technical drawing.
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Figure 6.4: Histograms of the normalized innovations, for validation data. Both the

empirical distribution (gray bar) as well as the theoretical distribution (black line)

are shown for several parameter vectors.
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Figure 6.5: Autocorrelation of the normalized innovations, for validation data. The

horizontal lines indicate the 99% confidence interval.





7
Application example

The pose estimation system of Chapter 2 has been tested in a number of scenarios. Its

accuracy has been evaluated using an industrial robot as ground truth, discussed in Sec-

tion 2.5. Furthermore, the system has been tested as an augmented reality application,

also reported in Chandaria et al. (2007). The results of this experiment will be the topic

of this chapter.

Example 7.1: An augmented reality application

The system has been used to track the sensor unit in a relatively large room, approximately

5 × 4 × 2.5 m in size, see Figure 7.1. The sensor unit is handheld and is allowed to

Figure 7.1: The sensor unit is tracked in a large room. The monitor shows the live

camera image augmented with a virtual character.
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move without constraints in this room, both close to and far away from the walls. The

pose output of the pose estimation system is used to draw virtual graphics on top of the

camera images in real-time. There is no ground-truth data available for this test, implying

that the tracking performance has to be evaluated qualitatively from the quality of the

augmentation.

The pose estimation system requires a 3D model of the environment. In this case, the

model was not generated using the computer vision approaches described in Section 3.2.3,

but created manually using a 3D modeling tool. This tool takes the geometry from a

CAD model and uses digital photo’s to obtain textures for the surfaces. The resulting

model, shown in Figure 7.2a, consists of the three main walls. The floor and roof do

(a) 3D model of the room.
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(b) Camera trajectory.

Figure 7.2: Overview of the test setup.

not contain sufficient features and are ignored, together with the fourth wall containing

mostly windows.

The system worked very well for the described setup. The augmentations showed no

visible jitter or drift, even during fast motion. Tracking continued for extensive periods

of time without deterioration or divergence. Furthermore, the system is capable to handle

periods with few or no features at all, which pose difficulties for pure computer vision

approaches. These situations occur for instance when the camera is close to a wall or

during a 360◦ revolution. A reinitialization was required after 2 s without visible features.
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Beyond that period the predicted feature positions were to far off to enable detection.

A sample trajectory of about 90 s is shown in Figure 7.2b. It contains acceleration

up to 12 m/s2 and angular velocity up to 9.5 rad/s. Furthermore, the trajectory involves

several 360◦ rotations which include several views where the camera only observes the

unmodeled window wall. An impression of the augmentation result is given by Figure 7.3.

The overlaid graphics stay on the same location, regardless of the position and orientation

of the camera. This is also the case when no features are available, for instance when only

the unmodeled wall is in view, see Figure 7.3e.

This example serves as a proof of concept for the performance of the developed pose

estimation system in realistic environments. The potential of the system is high as this

example is only one of many possible applications where it can be used.
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8
Concluding remarks

In this thesis the problem of pose estimation is approached using a combination of vision

and inertial sensors. The aim has been to show how the associated nonlinear state estima-

tion problem can be solved in real-time using the available sensor information and how

a solution working in practice can be obtained. The conclusions are given in Section 8.1

and in Section 8.2 some ideas about future work are discussed.

8.1 Conclusions

This thesis deals with estimating position and orientation in real-time, using measure-

ments from vision and inertial sensors. A system has been developed to solve this problem

in unprepared environments, assuming that a map or scene model is available. Compared

to ‘camera-only’ systems, the combination of the complementary sensors yields a robust

system which can handle periods with uninformative or no vision data and reduces the

need for high frequency vision updates.

The system is well suited for use in augmented reality applications. An application

example is discussed where the augmentations based on the pose estimates from the sys-

tem showed no visible jitter or drift, even during fast motion and tracking continued for

extensive periods of time without deterioration or divergence. Furthermore, experiments

where an industrial robot is used to move the sensor unit show that this setup is able to

track the camera pose with an absolute accuracy of 2 cm and 1◦.

The system achieves real-time pose estimation by fusing vision and inertial sensors

using the framework of nonlinear state estimation. Accurate and realistic process and

measurement models are required. Fur this reason, a detailed analysis of the sensors and

their measurements has been performed.

Calibration of the relative position and orientation of the camera and the inertial sen-

sor is essential for proper operation. A new algorithm for estimating these parameters

has been developed, which does not require any additional hardware, except a piece of
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paper with a checkerboard pattern on it. The key is to realize that this problem is in fact

an instance of a standard problem within the area of system identification, referred to as

a gray-box problem. The experimental results shows that the method works well in prac-

tice. Even small displacements and misalignments can be accurately calibrated from short

measurement sequences made using the standard camera calibration setup.

8.2 Future work

Some suggestions for future research related to the work in this thesis are the following:

• Sensor fusion

– Adapt the pose estimation system and its models to function in combination

with spherical lenses.

– Extend the scene model while tracking with newly observed features or gen-

erate it from scratch. That is, perform simultaneous localization and mapping

(SLAM).

– Investigate covariance estimation for feature detectors.

• Calibration algorithms

– Extend the calibration method to determine the relative pose of the camera

and the inertial sensor (Algorithm 6.2) for use with spherical lenses.

– Apply the calibration theory of Chapter 5 to related problems, such as deter-

mining the distance between a GPS antenna and an IMU.
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A
Quaternion preliminaries

This appendix provides a very short introduction to quaternions and their properties. Only

the most basic operations are stated, without proof. For more details, see e.g., Kuipers

(1999); Hamilton (1844).

A.1 Operations and properties

A quaternion q ∈ R
4 is a 4-tuple of real numbers is denoted by q = (q0, q1, q2, q3).

Alternatively it is denoted by q = (q0, q), where q0 is called the scalar part and q the

vector part of a quaternion. Special quaternions groups are Qs = {q ∈ R
4 : q = 0},

Qv = {q ∈ R
4 : q0 = 0} and Q1 = {q ∈ R

4 : ‖q‖ = 1}.

For quaternions the following operators are defined:

addition p+ q , (p0 + q0,p + q), (A.1)

multiplication p⊙ q , (p0q0 − p · q, p0q + q0p + p × q), (A.2)

conjugation qc , (q0,−q), (A.3)

norm ‖q‖ , (q20 + q · q)
1

2 =
√

(q ⊙ qc)0 (A.4)

inverse q−1 , ‖q‖−2qc, (A.5)

inner product p · q , − 1
2 (p⊙ q + q ⊙ p), (A.6)

cross product p⊗ q , 1
2 (p⊙ q − q ⊙ p). (A.7)

Associative and distributive properties hold, but only additions are commutative. Multi-

plications do in general not commutate.

p+ (q + r) = (p+ q) + r,

p+ q = q + p,
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p⊙ (q ⊙ r) = (p⊙ q) ⊙ r,

p⊙ (q + r) = p⊙ q + p⊙ r,

p⊙ q 6= q ⊙ p.

An exception to this is scalar multiplication,

λq = (λ,0) ⊙ (q0, q) = (λq0, λq) = qλ.

Furthermore, the following properties are useful,

(p⊙ q)c = qc ⊙ pc,

(p⊙ q)−1 = q−1 ⊙ p−1,

‖p⊙ q‖ = ‖p‖‖q‖.

A.2 Exponential

The quaternion exponential is defined as a power series similar to the matrix exponential:

exp q ,

∞∑

n=0

qn

n!
. (A.8)

The quaternion exponential of a vector v ∈ Qv is a special case, since v = (0,v) and

v2 , v ⊙ v = (0 · 0 − v ·v, 0v + 0v + v × v) = (−‖v‖2,0). Hence,

exp v =
∞∑

n=0

vn

n!
=

∞∑

n=0

v2n

2n!
+

∞∑

n=0

v2n+1

(2n+ 1)!

=

(
∞∑

n=0

(−1)n
‖v‖2n

(2n)!
,

v

‖v‖
∞∑

n=0

(−1)n
‖v‖2n+1

(2n+ 1)!

)

=

(

cos ‖v‖, v

‖v‖ sin ‖v‖
)

. (A.9)

The inverse operation log q is for unit quaternions q = (q0, q) given by

log q =
q

‖q‖ arccos q0 (A.10)

A.3 Matrix/vector notation

The multiplication of quaternions can also be written using matrix/vector notation:

p⊙ q = (p0q0 − p · q, p0q + q0p + p × q)

=







p0 −p1 −p2 −p3

p1 p0 −p3 p2

p2 p3 p0 −p1

p3 −p2 p1 p0







︸ ︷︷ ︸
pL







q0
q1
q2
q3







=







q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0







︸ ︷︷ ︸
qR







p0

p1

p2

p3






,

(A.11)
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where the left and right multiplication operators, · L, ·R have been introduced. Note that

(qc)L = qTL , (qc)R = qTR.

This notation turns out to be very useful in deriving various expressions, for instance,

d

d p
(p⊙ q) =

d

d p
(qRp) = qR,

d

d q
(p⊙ q) =

d

d p
(pLq) = pL.

Furthermore, the Jacobians of the matrix operators have the following special structure

Dq qL =































1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0































=







e0R
e1R
e2R
e3R






, Dq qR =







e0L
e1L
e2L
e3L






, (A.12)

where {ei}4
i=0 is the standard basis of R

4.





B
Conversions

Orientations can be described with several interchangeable parameterizations. This ap-

pendix gives conversions between unit quaternions, rotation vectors, rotation matrices

and Euler angles.

B.1 Rotation matrices

The rotation xa = qabxbqba can also be written as xa = Rabxb with

R =





2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 2q20 + 2q22 − 1 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 2q20 + 2q23 − 1



 , (B.1)

where the annotation ab has been left out for readability.

B.2 Euler angles

The aerospace sequence – Euler angles (ψθφ) → (zyx) – yields the rotation matrix

Rab = RxφR
y
θR

z
ψ

=





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosψ sinψ 0
− sinψ cosψ 0

0 0 1





=





cos θ cosψ cos θ sinψ − sin θ
sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ
cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ



 .
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Solving for the angles gives

ψab = tan−1

(
R12

R11

)

= tan−1

(
2q1q2 − 2q0q3
2q20 + 2q21 − 1

)

, (B.2a)

θab = − sin−1(R13) = − sin−1(2q1q3 + 2q0q2), (B.2b)

φab = tan−1

(
R23

R33

)

= tan−1

(
2q2q3 − 2q0q1
2q20 + 2q23 − 1

)

. (B.2c)

Here, the convention is to call ψ heading or yaw, θ elevation or pitch and φ bank or roll.

B.3 Rotation vector

A rotation around axis n by angle α has a rotation vector e , αn. The conversion to and

from a quaternion is given by

qab = exp 1
2eab, eab = 2 log qab, (B.3)

with exp and log defined in Appendix A.2.
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