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Pose estimation for augmented reality:

a hands-on survey

Eric Marchand, Hideaki Uchiyama and Fabien Spindler

Abstract—Augmented reality (AR) allows to seamlessly insert virtual objects in an image sequence. In order to accomplish this goal, it is important

that synthetic elements are rendered and aligned in the scene in an accurate and visually acceptable way. The solution of this problem can be related

to a pose estimation or, equivalently, a camera localization process. This paper aims at presenting a brief but almost self-contented introduction to the

most important approaches dedicated to vision-based camera localization along with a survey of several extension proposed in the recent years. For

most of the presented approaches, we also provide links to code of short examples. This should allow readers to easily bridge the gap between

theoretical aspects and practical implementations.

Index Terms—Survey, augmented reality, vision-based camera localization, pose estimation, PnP, SLAM, motion estimation, homography, keypoint

matching, code examples.

✦

1 INTRODUCTION

Augmented reality (AR) allows to seamlessly insert virtual objects

in an image sequence. A widely acknowledged definition of

augmented reality is due to Azuma in the first survey dedicated

to the subject [7]. An AR system should combine real and virtual

objects, be interactive in real time, register real and virtual

objects. It has to be noted that this definition does not focus

on specific technologies for localization and visualization. Back

in 1997, registration was considered as "one of the most basic

problems currently limiting augmented reality [7]".

Pose estimation: a "basic problem" for augmented reality.

AR has been intrinsically a multidisciplinary and old research area.

It is clear that real and virtual world registration issues received

a large amount of interest. From a broader point of view, this is

a motion tracking issue. To achieve this task, many sensors have

been considered: mechanical devices, ultrasonic devices, magnetic

sensors, inertial devices, GPS, compass, and obviously, optical

sensors [146]. To paraphrase [146], there was no silver bullet to

solve this problem but vision-based techniques rapidly emerged.

Indeed, with respect to other sensors, a camera combined

with a display is an appealing configuration. As pointed out

in [9], such a setup provides vision-based feedback that allows

to effectively close the loop between the localization process

and the display. This also reduces the need for heavy calibration

procedure. Nevertheless, when Azuma’s survey [7] was published,

only few vision-based techniques meeting his definition existed.

Until the early 2000s, almost all the vision-based registration

techniques relied on markers. Then various markerless approaches

quickly emerged in the literature. On one hand, markerless model-

based tracking techniques improve clearly (but are in line with)

marker-based methods. On the other hand, with the ability to easily
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match keypoints like SIFT, and the perfect knowledge of multi-

view geometry, new approaches based on an image model and

on the estimation of the displacement of the camera [122] arose.

Finally, the late 2000s saw the introduction of keyframe-based

Simultaneous Localization and Mapping (SLAM) [57] that, as a

sequel of structure from motion approaches (widely used in off-

line compositing for the movie industry), allows to get rid of a

model of the scene.

Although vision-based registration is still a difficult problem,

mature solutions may now be proposed to the end-users and real-

world or industrial applications can be foreseen (if not already

seen). Meanwhile, many open source software libraries (OpenCV,

ViSP, Vuforia,...) and commercial SDK (Metaio (now with Apple),

Wikitude, AugmentedPro, Diotasoft,...) have been released provid-

ing developers with easy-to-use interfaces and efficient registration

processes. It therefore allows fast prototyping of AR systems.

Rationale.

Unfortunately, using such libraries, end-users may widely consider

the underlying technologies and methodological aspects as black

boxes. Our goal is then to present, in the reminder of the paper, a

brief but almost self-contained introduction to the most important

approaches dedicated to camera localization along with a survey

of the extensions that have been proposed in the recent years. We

also try to link these methodological concepts to the main libraries

and SDK available on the market.

The aim of this paper is then to provide researchers and

practitioners with an almost comprehensive and consolidated in-

troduction to effective tools for facilitating research in augmented

reality. It is also dedicated to academics involved in teaching

augmented reality at the undergraduate and graduate level. For

most of the presented approaches, we also provide links to code

of short examples. This should allow readers to easily bridge

the gap between theoretical aspects and practice. These examples

have been written using both OpenCV and the ViSP library [79]

developed at Inria.

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
http://www.irisa.fr/lagadic/visp
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Choices have to be made.

A comprehensive description of all the existing vision-based lo-

calization techniques used in AR is, at least in a journal paper, out

of reach and choices have to be made. For example, we disregard

Bayesian frameworks (Extended Kalman Filter). Although such

methods were widely used in the early 2000s, it appears that

EKF is less and less used nowadays for the profit of deterministic

approaches (to mitigate this assertion, it is acknowledged that they

are still useful when considering sensor fusion). Not considering

display technologies (e.g., optical see-through HMD), we also

disregard eyes/head/display calibration issues. As pointed out

in [146], many other sensors exist and can be jointly used with

cameras. We acknowledge that this provides robustness to the

localization process. Nevertheless, as stated, we clearly focus in

this paper, only on the image-based pose estimation process.

Related work.

In the past, two surveys related to AR (in general) have been

published in 1997 [7] and 2001 [8]. These surveys have been

completed in 2008 by an analysis of 10 years of publications

in ISMAR [151]. Demonstrating the interest for vision-based

localization, it appears that more than 20% of the papers are

related to "tracking" and then to vision-based registration (and they

are also among the most cited papers). In [146] the use of other

sensors and hybrid systems is explored. Dealing more precisely

with 3D tracking, a short monograph was proposed in [65].

To help the students, engineers, or researchers pursue further

research and development in this very active research area, we

explain and discuss the various classes of approaches that have

been considered in the literature and that we found important

for vision-based AR. We hope this article will be accessible and

interesting to experts and students alike.

2 OVERVIEW OF THE PROBLEM

The goal of augmented reality is to insert virtual information in

the real world providing the end-user with additional knowledge

about the scene. The added information, usually virtual objects,

must be precisely aligned with the real world. Figure 1 shows

how these two worlds can be combined into a single and coherent

image.

Fig. 1. AR Principle and considered coordinate systems: to achieve a coherent

compositiong, computer graphics (CG) camera and real one should be located

at the very same position and have the same parameters.

From the real world side, we have the scene and the camera.

Let us denote Fc the camera frame, Fw the scene frame (or world

frame). On the virtual side, we have a virtual world with various

virtual objects whose position are expressed in the virtual world

frame FCGw (computer graphics (CG) frame). To render the virtual

scene, a virtual (CG) camera is added to the system. Let us denote

FCGc the virtual camera frame. For simplicity and without loss of

generality, let us assume that the world frame and the virtual world

are the same (FCGw =Fw). To create an image of the virtual world

that is consistent with the real camera current view, CG camera and

real one should be located at the very same position and have the

same parameters (focal, viewing angle, etc). Once the real and CG

cameras are perfectly aligned, a compositing step simply provides

the resulting augmented image.

Within this process, the only unknown is the real camera

position in the world frame (we denote cTw the transformation

that fully defines the position of Fw wrt. Fc). Vision-based AR is

thus restricted to a camera pose estimation problem. Any error in

the estimation of the camera position in the world reference frame

appears to the user as inconsistencies.

Pose estimation is a problem which found its origin in pho-

togrammetry where it is known as space resection. A simple

definition could be: "given a set of correspondences between 3D

features and their projections in the images plane, pose estimation

consists in computing the position and orientation of the camera".

There are many ways to present the solutions to this inverse

problem. We made the choice to divide the paper according to

available data: do we have 3D models (or can we acquire them?)

or do we restrict to planar scenes? The paper is then organized as

follow:

• In Section 3, we chose to consider first the general case

where 3D models are available or can be built on-line.

We first review in Section 3.1 the solutions based on

classical pose estimation methods (known as PnP). We

then show in Section 3.2 a generalization of the previous

method to handle far more complex 3D model. When 3D

models are not a priori available, they can be estimated

on-line thanks to Simultaneous Localization and Mapping

(SLAM) techniques (see Section 3.3). Finally when 3D

data can be directly measured, registration with the 3D

model can be done directly in the 3D space. This is the

objective of Section 3.4.

• It appears that the problem could be easily simplified when

the scene is planar. This is the subject of Section4. In that

case, the pose estimation could be handled as a camera

motion estimation process.

• From a practical point of view, the development of actual

AR applications rises the question of the features extrac-

tion and of the matching issues between image features.

This issue will be discussed in Section 5.

Overall, whatever the method chosen, it will be seen that

pose estimation is an optimization problem. The quality of the

estimated pose is highly dependent on the quality of the mea-

surements. We therefore also introduce in Section 3.1.3 robust

estimation process able to deal with spurious data (outliers) which

is fundamental for real-life applications.

3 POSE ESTIMATION RELYING ON A 3D MODEL

In this section we assume that a 3D model of the scene is available

or can be estimated on-line. As stated in the previous section, the

pose should be estimated knowing the correspondences between
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2D measurements in the images and 3D features of the model. It

is first necessary to properly state the problem. We will consider

here that these features are 3D points and their 2D projections (as

a pixel) in the image.

Let us denote Fc the camera frame and cTw the transformation

that fully defines the position of Fw wrt. Fc (see Figure 2). cTw,

is a homogeneous matrix defined such that:

cTw =

(
cRw

ctw

03×1 1

)
(1)

where cRw and ctw are the rotation matrix and translation vector

that define the position of the camera in the world frame (note that
cRw being a rotation matrix, it should respect the orthogonality

constraints).

Fig. 2. Rigid transformation cTw between world frame Fw and camera frame Fc

and perspective projection

The perspective projection x̄ = (u,v,1)⊤ of a point wX =
(wX ,wY,wZ,1)⊤ will be given by (see Figure 2):

x̄ = K Π cTw
wX (2)

where x̄ are the coordinates, expressed in pixel, of the point in the

image; K is the camera intrinsic parameters matrix and is defined

by:

K =




px 0 u0

0 py v0

0 0 1




where (u0,v0,1)
⊤ are the coordinates of the principal point (the

intersection of the optical axes with the image plane) and px (resp

py) is the ratio between the focal length of the lens f and the

size of the pixel lx: px = f/lx (resp, ly being the height of a pixel,

py = f/ly). Π the projection matrix is given, in the case of a

perspective projection model, by:

Π =




1 0 0 0

0 1 0 0

0 0 1 0




The intrinsic parameters can be easily obtained through an off-line

calibration step (e.g. [20], [149]). Therefore, when considering the

AR problem, we shall consider image coordinates expressed in the

normalized metric space x = K−1x̄. Let us note that we consider

here only a pure perspective projection model but it is clear that

any model with distortion can be easily considered and handled.

From now, we will always consider that the camera is calibrated

and that the coordinates are expressed in the normalized space.

If we have N points wXi, i = 1..N whose coordinates expressed

in Fw are given by wXi = (wXi,
wYi,

wZi,1)
⊤, the projection xi =

(xi,yi,1)
⊤ of these points in the image plane is then given by:

xi = Π cTw
wXi. (3)

Knowing 2D-3D point correspondences, xi and wXi, pose estima-

tion consists in solving the system given by the set of equations (3)

for cTw. This is an inverse problem that is known as the Perspec-

tive from N Points problem or PnP (Perspective-n-point).

3.1 Pose estimation from a known 3D model

In this paragraph, we review methods allowing to solve the set of

equations (3) for the pose cTw. Among various solutions, we will

explain more deeply two classical algorithms widely considered

in augmented reality: one method that does not require any

initialization of the pose (Direct Linear Transform) and a method

based on a gradient approach that needs an initial pose but which

can be consider as the "gold standard" solution [48]. We will also

discuss more complex, but also more efficient, solutions to the

pose estimation issue. Optimization procedure in the presence

of spurious data (outliers) is also considered. In each case, a

comprehensive description of each methods will be given.

3.1.1 P3P: solving pose estimation with the smallest subset of

correspondences

P3P is an important and old problem for which many solutions

have been proposed. Theoretically, since the pose can be rep-

resented by six independent parameters, three points should be

sufficient to solve this problem.

Most of the P3P approaches rely on a 2 steps solution. First

an estimation of the unknown depth cZi of each point (in the

camera frame) is done thanks to constraints (law of cosines)

given by the triangle CXiX j for which the distance between Xi

and X j and the angle between the two directions CXi and CX j

are known and measured. The estimation of the points depth is

usually done by solving a fourth order polynomial equation [39]

[105] [41] [5]. Once the three points coordinates are known in

the camera frame, the second step consists in estimating the rigid

transformation cTw that maps the coordinates expressed in the

camera frame to the coordinates expressed in the world frame

(3D-3D registration, see Section 3.4). The rotation represented

by quaternions can be obtained using a close form solution [49].

Alternatively least squares solution that use the Singular Value

Decomposition (SVD) [5] can also be considered. Since a fourth

order polynomial equation as to be solved, the problem features

up to four possible solutions. It is then necessary to have at least a

fourth point to disambiguate the obtained results [39] [48].

More recently, Kneip et al. [62] propose a novel closed-form

solution that directly computes the rigid transformation between

the camera and world frames cTw. This is made possible by

introducing first a new intermediate camera frame centered in

C whose x axes is aligned with the direction of the first point

X1 and secondly a new world frame centered in X1 and whose

x axes is aligned with the direction of the first point X2. Their

relative position and orientation can be represented using only two

parameters. These parameters can then be computed by solving

a fourth order polynomial equation. A final substitution allows

computing cTw. The proposed algorithm is much faster than the

other solutions since it avoids the estimation of the 3D points depth

in the camera frame and the estimation of the 3D-3D registration

step. Kneip’s P3P implementation is available in OpenGV [59].

Although P3P is a well-known solution to the pose estimation

problem, other PnP approaches that use more points (n > 3) were

usually preferred. Indeed pose accuracy usually increases with the

number of points. Nevertheless within an outliers rejection process
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such as RANSAC, being fast to compute and requiring only three

points correspondences, fast P3P such as [59] is the solution to

chose (see Section 3.1.3). P3P is also an interesting solution to

bootstrap a non-linear optimization process that minimizes the

reprojection error as will be seen in Section 3.1.2.

3.1.2 PnP: pose estimation from N point correspondences

PnP considered an over-constrained and generic solution to the

pose estimation problem from 2D-3D point correspondences. Here

again, as for the P3P, one can consider multi-stage methods

that estimate the coordinates of the points [105] or of virtual

points [67] in the camera frame and then achieve a 3D-3D

registration process [105]. On the other side, direct or one stage

minimization approaches have been proposed.

Among the former, [105] extended their P3P algorithm to P4P,

P5P and finally to PnP. In the EPnP approach [67] the 3D point

coordinates are expressed as a weighted sum of four virtual control

points. The pose problem is then reduced to the estimation of

the coordinates of these control points in the camera frame. The

main advantage of this latter approach is its reduced computational

complexity, which is linear wrt. the number of points.

Within the latter one step approaches, the Direct Linear Trans-

form (DLT) is certainly the oldest one [48], [129]. Although not

very accurate, this solution and its sequels have historically widely

been considered in AR application. PnP is intrinsically a non-

linear problem; nevertheless a solution relying on the resolution

of a linear system can be considered. It consists in solving the

homogeneous linear system built from equations (3), for the

12 parameters of the matrix cTw. Indeed, considering that the

homogeneous matrix to be estimated is defined by:

cTw =




r1 tx
r2 ty
r3 tz

03×1 1




where r1, r2 and r3 are the rows of the rotation matrix cRw and
ctw = (tx, ty, tz). Developing (3) yields to solve the system:

Ah =




...

Ai

...


h = 0 (4)

with Ai given by [129]:

Ai =

(
wXi

wYi
wZi 1 0 0 0 0

0 0 0 0 wXi
wYi

wZi 1

−xi
wXi −xi

wYi −xi
wZi −xi

−yi
wXi −yi

wYi −yi
wZi −yi

)
(5)

and

h =
(

r1, tx, r2, ty, r3, tz
)⊤

is a vector representation of cTw. The solution of this homoge-

neous system is the eigenvector of A corresponding to its minimal

eigenvalue (computed through a Singular Value Decomposition of

A). An orthonormalization of the obtained rotation matrix is then

necessary1.

Obviously and unfortunately, being over-parameterized, this

solution is very sensitive to noise and a solution that explicitly

1. The source code of the DLT algorithm is proposed as a supplementary

material of this paper and is available here.

considers the non-linear constraints of the system should be

preferred.

An alternative and very elegant solution, which takes these

non-linear constraints into account, has been proposed in [28]

[93]. Considering that the pose estimation problem is linear

under the scaled orthographic projection model (weak perspective

projection) [48] [28], Dementhon proposed to iteratively go back

from the scaled orthographic projection model to the perspective

one. POSIT is a standard approach used to solve the PnP problem.

An advantage of this approach is that it does not require any

initialization. It inherently enforces the non-linear constraints and

is computationally cheap. A drawback is that POSIT is not directly

suited for coplanar points. Nevertheless an extension of POSIT

has been proposed in [93]. Its implementation is available in

OpenCV [20] or in ViSP [79] and it has widely been used in

AR application (see Section 3.1.4).

In our opinion, the "gold-standard" solution to the PnP consists

in estimating the six parameters of the transformation cTw by

minimizing the norm of the reprojection error using a non-linear

minimization approach such as a Gauss-Newton of a Levenberg-

Marquardt technique. Minimizing this reprojection error provides

the Maximum Likelihood estimate when a Gaussian noise is

assumed on measurements (ie, on point coordinates xi). Another

advantage of this approach is that it allows easily integrating the

non-linear correlations induced by the PnP problem and provides

an optimal solution to the problem. The results corresponding to

this example is shown on Figure 4. Denoting q ∈ se(3) a minimal

representation of cTw (q = (ctw,θu)⊤ where θ and u are the angle

and the axis of the rotation cRw), the problem can be formulated

as:

q̂ = argmin
q

N

∑
i=1

d
(
xi,Π

cTw
wXi

)2
(6)

where d(x,x′) is the Euclidian distance between two points x and

x′. The solution of this problem relies on an iterative minimization

process such as a Gauss-Newton method.

Solving equation (6) consists in minimizing the cost function

E(q) = ‖e(q)‖ defined by:

E(q) = e(q)⊤e(q), with e(q) = x(q)−x (7)

where x(q) = (...,π(cTw
wXi), ...)

⊤ and x = (..., x̃i, ...)
⊤ where

x̃i = (xi,yi) is a Euclidian 2D point and π(X) is the projection

function that project a 3D point X into x̃. . The solution consists

in linearizing e(q) = 0. A first order Taylor expansion of the error

is given by:

e(q+δq)≈ e(q)+J(q)δq (8)

where J(q) is the Jacobian of e(q) in q. With the Gauss-Newton

method the solution consists in minimizing E(q+δq) where:

E(q+δq) = ‖e(q+δq)‖ ≈ ‖e(q)+J(q)δq‖ (9)

This minimization problem can be solved by an iterative least

square approach (ILS), see Figure 3, and we have:

δq =−J(q)+e(q) (10)

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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where J+ is the pseudo inverse2 of the 2N × 6 Jacobian J given

by [78]:

J =




...

− 1
Zi

0 xi

Zi
xiyi −(1+ x2

i ) yi

0 − 1
Zi

yi

Zi
1+ y2

i −xiyi −xi

...



. (11)

Since we have an iterative method, the pose is updated at each

iteration:

qk+1 = qk ⊕δq = expδq q

where ⊕ denotes the composition operation over se(3) obtained

via the exponential map [76]. A complete derivation of this

problem, including the derivation of the Jacobian, is given in [22]3.

Fig. 3. Iterative minimization of the pose: overview of the non-linear least

squares problem (here in 1D).

However, the algorithm requires a good initial guess cTw in

order to converge to the globally optimal solution. If this is not the

case only a local minima is attained. Olsson et al. [94] propose

a Branch-and-Bound algorithm that allows retrieving a global

minimum but this drastically increases the computational cost.

Another iterative method have been proposed in [74] where the

authors proposed to minimize an algebraic error which is faster to

converge but that remains unfortunately sensitive to local minima.

When complexity is of interest (i.e., when N increases), non-

iterative PnP algorithms with a linear complexity have been pro-

posed. A first accurate O(N) solution to the PnP was EPnP [67].

Later, other O(N) solutions such as OPnP [150], GPnP [60],

UPnP [61] were proposed and are of interest when the number

of point correspondences increases.

As can be seen, many approaches have been proposed to solve

the pose estimation from point correspondences. In our opinion,

the choice of the "best" method widely depends on the number

N of points, the noise level, the number of correspondence errors,

etc. Indeed, in real life applications such as AR, pose estimation

is plagued by spurious data and embedding PnP in dedicated

algorithms has then to be considered. This is the purpose of

Section 3.1.3. A discussion about possible choices in an AR

2. An alternative to the pseudo-inverse to solve this system is to consider
the QR decomposition of J(q).

3. The source code of the pose estimation using a non-linear minimisation

technique is also proposed as a supplementary material of this paper and is

available here

context is proposed in Section 3.1.4. Let us finally note that the

specific (and simpler) case of coplanar points will be reviewed in

Section 4.

3.1.3 Dealing with spurious data

Whatever the method chosen to solve the PnP, the solution must

deal with the problem of robustness so as to account for noise in

real video acquisition, occlusion phenomena, changes in illumi-

nation, miss-tracking or errors in the correspondences and, more

generally, for any perturbation that may be found in the video.

Using a robust low-level feature extraction is certainly useful but

usually not sufficient since it is not possible to model all possible

perturbations.

As a solution, a robust estimation process is usually incor-

porated into pose estimation. Voting techniques, Random Sample

Consensus (RANSAC) [39], M-Estimators [50], Least-Median of

Squares (LMedS) [109] have been widely used to solve this issue.

How to consider robust parameters estimation in computer vision

algorithm has been reviewed in [126].

Random Sample Consensus (RANSAC).

RANSAC is an iterative method proposed in [39] to solve the P3P

problem. Since then, it has been applied to many computer vision

problems such as PnP, visual SLAM, homography estimation,

fundamental or essential matrix estimation, etc. The goal is to

divide the data in two sets: the inliers and the outliers (spurious

data). We present this algorithm in the case of a PnP problem

but it is worth keeping in mind that it applies to most estimation

problems (especially those presented in the reminder of this paper

in Section 3.3, 3.4 and 4).

Let us assume that we have a set of pairs of matched 2D-

3D points (correspondences): (xi,
wXi). Among these data let us

assume that some matches are wrong. RANSAC uses the smallest

set of possible correspondences and proceeds iteratively to enlarge

this set with consistent data. At iteration k of the algorithm, it:

1) draws a minimal number (e.g., 3 for a P3P, 4 for a

P4P) of randomly selected correspondences Sk (a random

sample).

2) computes the pose cT̂w from these minimal set of point

correspondences using the P3P, DLT, POSIT or EPnP (or

any other approach that does not require an initialization).

3) determines the number Ck of points from the whole set of

all correspondences that are consistent with the estimated

parameters cT̂w with a predefined tolerance ε (that is for

which d(x,Π cT̂w
wX)2 ≤ ε). If Ck > C∗ then we retain

the randomly selected set of correspondences Sk as the

best one (to date) : S∗ = Sk and C∗ =Ck.

4) repeats steps 1 to 3

The C∗ correspondences that participate to the consensus obtained

from S∗ are the inliers. The others are the outliers. A more accurate

PnP approach considering all the determined inliers can then be

considered to estimate the final pose. It has to be noted that

the number of iterations, which ensures a probability p that at

least one sample with only inliers is drawn, can be determined

automatically. It is given by [39]:

N =
log(1− p)

log(1− (1−η)n)

where η is the probability that a correspondence is an outlier and

s is the size of the sample. For the P4P problem (n = 4) when data

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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is contaminated with 10% of outliers, 5 iterations are required to

ensure that p = 0.99 and with 50% of outliers 72 iterations are

necessary.

IRLS : using M-estimator.

M-estimators are a generalization of maximum likelihood estima-

tion and least squares. Therefore they are well suited to detect and

reject outliers in a least square or iterative least square approach.

With respect to RANSAC, which aggregates a set of inliers from

a minimal number of correspondences, M-estimators use as many

data as possible to obtain an initial solution and then iterate to

reject outliers.

M-estimators are more general than least squares because they

permit the use of different minimization functions not necessarily

corresponding to normally distributed data. Many functions have

been proposed in the literature that allow uncertain measures

to have less influence on the final result and in some cases to

completely reject the measures. In other words, the objective

function is modified to reduce the sensitivity to outliers. The robust

optimization problem is then given by:

q̂ = argmin
q

N

∑
i=1

ρ
(
d(xi,Π

cTw
wXi)

)
(12)

where ρ(u) is a M-estimator [50] that grows sub-quadratically and

is monotonically non-decreasing with increasing |u|. Iteratively

Reweighted Least Squares (IRLS) is a common method of ap-

plying the M-estimator [50], [126]. It converts the M-estimation

problem into an equivalent weighted least-squares problem.

The basic idea is no longer to minimize the error e(q) = x(q)−
x as defined in (7) but the error e(q) = W(x(q)− x) where W is

a diagonal weighting matrix where each element of the diagonal

wi reflects the confidence in the i-th feature (when wi = 0, its

influence in the least square problem is null, when equal to 1, its

influence is maximal). This minimization problem can be solved

by an IRLS approach. Equation (10) is then replaced by:

δq =−(WJ(q))+W e(q). (13)

Weights are recomputed at each iteration according to the cur-

rent estimate of the position q. Many M-estimator ρ(u) (Beaton

Tuckey, Cauchy, Huber,...) can be considered leading to various

ways to compute the confidence. A comprehensive way to com-

pute the weights is given in [126] or in [24] using the Tukey loss

function (which allows to completely rejects outliers and gives

them a zero weight).

RANSAC or M-estimatiors are two classical ways to ensure

robust estimation. They can be considered for pose estimation

but as will be shown in the reminder of this survey, these are

generic tools that allow treating the fundamental problem of the

outliers. Almost all the approaches presented in this paper can take

advantage of these methods that must be considered for real-life

applications.

3.1.4 Example of PnP in AR applications and discussion

All the PnP approaches presented in Sections 3.1.1 and 3.1.2

can now run in real-time even when a large number of point

correspondences are considered. For AR application, rather than

computational efficiency (as soon as real-time requirement are

met), accuracy is the key criterion in order to avoid jitter effects.

POSIT has been widely used in AR contexts with artificial

landmarks such as in [30], [113] or in [18], [68], [78], [117] for

pose initialization. A result of these PnP methods is reported in

Figure 4. Four points are considered to compute the pose. A planar

version of POSIT [93] is considered in the very first image of

the sequence while a non-linear estimation technique [78] is then

considered (a video is available here).

Fig. 4. Pose estimation using planar version of POSIT [93] followed by a non-

linear estimation process [78] to improve the registration.

Alternatively other approaches to pose estimation can be

considered. ARToolkit [54] uses an iterative search for the pose.

A very efficient solution for planar target pose estimation is

considered in [115] and has been used in ARToolkit+ [145].

Although markers were used in the previous examples, key-

points (see Section 5) have also been widely considered in the

literature (see, for example, Figure 5). A non-linear minimization

technique is for example considered in [144] [96] using SIFT and

FERNS. In any case, robust process using RANSAC or IRLS

is usually considered [113]. Also considering keypoints, these

methods are also used for fast re-localization issue [6] [81] in

environments that have been previously reconstructed using a

SLAM approach (see Section 3.3).

Fig. 5. Pose estimation using the EPnP algorithm [67]: reference image on the

left ; projection of the model of the box after pose estimation computed using

EPnP using correspondences shown by blue lines.

As can be seen, users tend to favor a PnP that does not require

any initialization (such as EPnP) along with a RANSAC. An

iterative estimation process based on a non-linear minimization

approach improve the obtain results. Although P3P was not, to

date, the most popular approach, but this tends to change. Indeed

since the size of the environment increases, the need for faster

algorithms (e.g., [62]) now become prevalent (especially in a

SLAM context, see Section 3.3). Time computation of various

PnP approaches with respect to N is reported in e.g. [150] [61].

3.2 Extension to markerless model-based tracking

Various authors have proposed different formulations of the pose

estimation problem, which do not require the need of markers

or keypoints matching process [23], [24], [31], [73], [99], [120],

[140]. Although one can find some differences in these various

solutions, the main idea is the following: as for equation (6) which

is based on the distance between two points, the idea here is to

https://www.youtube.com/watch?v=eKakRZvgGXM&spfreload=10
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define a distance between a contour point in the image and the

projected 3D line underlying the corresponding 3D model.

Assuming an estimate of the pose is known, the 3D model

is first projected into the image according to that pose. Contour

L(q) is sampled (black points in Figure 6) and a search is

performed along the edge normal to the contour (dashed lines)

to find strong gradients in the next frame. Usually the point of

maximum likelihood with respect to the initial sampled point xi

is selected from this exploration step. It is denoted by xi i in the

following (white points in Figure 6).

Fig. 6. Markerless model-based tracking: search for point correspondences

between two frames and distance to be minimized.

A non linear optimization approach is then used to estimate

the camera pose which minimizes the errors between the selected

points and the projected edges [24], [31], that is:

q̂ = argmin
q

∑
i

d⊥(L(q), xi) (14)

where d⊥(L(q), xi) is the squared distance between the point

xi and the projection of the contour of the model for the pose

q. This minimization process is usually handled thanks to a

Gauss-Newton or a Levenberg-Marquardt minimization approach

as presented in Section 3.1.2. The main difference with respect

to Section 3.1.2 is that a point-to-contour distance is considered

rather than a point-to-point distance. The earliest approaches that

consider these markerless model based tracking algorithms mainly

consider models composed with segments (see Figure 7).

Fig. 7. Markerless model-based tracking [31] [140] [24].

Weighted numerical nonlinear optimization techniques like

Newton-Raphson or Levenberg-Marquardt are usually considered.

To reject outliers, methods like RANSAC [18] or the use of

M-Estimators such as the Tukey estimator [24], [31], [140]

are common trends to make the algorithm robust to occlusions

and illumination variations. But the robustness deteriorates when

ambiguities between different edges occur, especially between

geometrical and texture edges of the scene. One way to address

this issue has been to fuse the information of edge features with

information given by particular keypoints [23], [98], [104] or

by other sensors [56]. Other solutions have considered multiple

hypotheses for potential edge-locations in the image [99], [133],

[140].

One of the drawbacks of these methods is that the 3D model

is usually made of segments, which implies dealing with simple

objects or manually pre-processing the CAD model. This is why

more recent approaches proposed to render the 3D model (which

can be arbitrarily complex) using a 3D rendering engine and a

GPU [147] [99] [23]. This allows automatically managing the

projection of the model and determining visible and prominent

edges from the rendered scene. An advantage of these techniques

is to automatically handle the hidden faces removal process and to

implicitly handle self-occlusions (see Figure 8).

Fig. 8. Markerless model-based tracking [147] [100] [23]: GPU is used to render

complex models and to ensure hidden faces removal.

Open source code for markerless model-based tracking exists

in ViSP [24] from Inria4, or in openTL from DLR. A commercial

library was also available from Metaio (see Figure 9).

Fig. 9. Metaio model-based tracker

3.3 Pose from an a priori unknown model: Simultaneous Lo-

calization and Mapping

The previous approaches require a 3D model of the object or of

the environment. Since a comprehensive or even a sparse 3D

knowledge is not always easily available, the development of

pose estimation methods that involve less constraining knowledge

about the observed scene has been considered. The idea is then

to perform the estimation of the scene structure and the camera

localization within the same framework. This problem originally

known as the structure from motion issue was handled off-line due

to the high computational complexity of the solution. For real-time

AR, although the theoretical problem is similar, solutions have

evolved in the recent years and are now very efficient. This leads

to vision-based SLAM (vision-based Simultaneous Localization

And Mapping or vSLAM) that received much attention in both

the robotics and AR community.

Considering monocular SLAM, two methodologies have been

widely considered. The former is based on Bayesian filtering

approaches. In [27], it is proposed to integrate data thanks to

an Extended Kalman Filter whereas in [32] (inspired from Fast-

SLAM) a particle filter is considered. Within these approaches,

measurements are sequentially integrated within the filter, up-

dating the probability density associated with the state of the

system (the camera position, its velocity and the scene structure).

All past poses being marginalized, the number of parameters to

be estimated only grows with the size of the map. The latter

approach is based on the minimization of reprojection errors

4. We propose as a supplementary material of this paper (here) an example

of how to deal with such a such model-based tracker. The interested reader

could easily access the full source code of the tracker in ViSP [79].

http://visp.inria.fr
http://www.opentl.org
http://www.metaio.com
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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(as in Section 3.1.2). It is known as a bundle adjustment (BA)

method [134] [84] [57], which had proved to be very efficient

and accurate in off-line applications. In [127], it has been shown

that, once the "past" poses sequence has been sparsified (choosing

adequately a reduced set of keyframes), the problem becomes

tractable and BA proved to be superior to filter-based SLAM.

Thus, denoting [q]M = (q1, . . . ,qt) a sequence of t camera

positions (keyframes) and [wX]N = (wX1, . . . ,
wXN) a set of N 3D

points, the goal is, as for the PnP problem to minimize the error

between the observations and the reprojection of 3D points. The

error to be minimized is then given by:

([q̂]t , [ŵX]N) = (15)

arg min
([q]t ,[wX]N )

t

∑
j=1

N

∑
i=1

d
(
x ji ,Π

jTw
wXi)

)2

It is obvious that the complexity of the problem increases with the

number of keyframes.

Initialization being an important issue, camera motion between

a given keyframe and the current one is estimated using e.g. [91]

and points are triangulated. [84] and [92] proposed to perform the

BA only on a sliding window (which may lead to a camera drift)

while Parallel Tracking and Mapping (PTAM) [57] considers in

parallel a local BA with a tracking method that involves only a

localization process as in 3.1.2 with points that have been already

reconstructed (see Figure 10).

Fig. 10. Parallel Tracking and Mapping (PTAM) [57] (a video is available here)

[84] [92] and [57], have clearly demonstrated the feasibility of

a deterministic SLAM system for augmented reality on a PC [57]

and on mobile devices [58]. Companies such as Metaio, 13th

Lab (now with Oculus) or Qualcomm provide industrial and cost

effective frameworks5.

Nevertheless, such SLAM based approaches lack absolute

localization and are computationally expensive in large environ-

ments. To achieve real-time requirement and to cope with scale

factor and the lack of absolute positioning issues, it has been

proposed to decouple the localization and the mapping step. Map-

ping is handled by a full scale BA or a keyframe based BA. It is

processed to fix scale factor and define the reference frame. Then,

only a tracking (PnP) is performed on-line providing an absolute

and reliable pose to the end-user. Such an approach has been

successfully used for vehicle localization [110] and augmented

reality [144] [81] [143] (see Figure 11). Another interesting

approach that merges model-based tracking (Section 3.2) with

5. Remark: It has to be noted that for post-production scenario, since
real-time constraints are not relevant, all the image of the sequence can
be considered (no sparsification of the sequence by keyframe selection is
done) within BA methods. Commercial systems such as Boujou from 2D3
(now from Vicon) or MatchMover from Realviz (now in Maya) exploit these
very efficient techniques and are widely used in the cinema industry for
special effects production. Along with camera localization and scene structure,
these softwares are also able to estimate the camera intrinsic parameters and
subsequently also handled non-calibrated image sequences.

SLAM has been proposed in [116] for piecewise planar scene

and in [19] [131] for more complex 3D models. The approach

proposed in [131] has been adopted in the Diotasoft product (see

Figure 12).

Fig. 11. AR system that considers first an off-line SLAM approach followed by an

on-line PnP [81]. The reduced computational complexity allows an implementa-

tion on a smartphone (a video is available here).

Fig. 12. Merging model-based tracking and SLAM [131] as proposed in Diotasoft

tools.

In vSLAM approaches like PTAM, only few pixels contribute

to the pose and structure estimation process. As in Section 4.2,

dense or direct approaches such as DTAM [90], [34] or [137] allow

each pixel contributing to the registration process (optimization

is performed directly over image pixel intensities). This is also

the case for LSD-SLAM [33]. This latter approach is a keyframe

method that builds a semi-dense map, which provides far more in-

formation about the scene than feature-based approaches. Another

interesting feature of LSD-SLAM is that it does not estimate a

rigid transformation between two camera positions but a similarity

transform which allows solving the scale estimation issue thanks

to a scale-drift aware image alignment process. It demonstrated

very impressive results showing that scene reconstruction and

camera localization can be achieved in real-time without GPU ac-

celeration [114]. A sequel of this work demonstrated that it could

run in real-time on a smartphone. It can also be noted that the

code has been released to the community [33]. Considering only

pixel intensities, these approaches do not need feature extraction

and matching process and provide a dense or semi-dense map of

the environment. Nevertheless, the underlying illumination model

assumes photometric consistency (mainly valid for Lambertian

surfaces) which is not always realistic in real scenes and imposes

small baselines between frames.

Over the years, EKF based vSLAM has been progressively

replaced by keyframe and BA-based methods. This was certainly

due to [84] and PTAM [57] which demonstrated that a real-

time implementation of BA was possible. Now, real-time bundle

adjustments can operate on large-scale environment [33]. For AR

applications, with respect to sparse SLAM approaches, such dense

or semi-dense map, obtained thanks to direct methods, can be

considered to build meshes of the environment and ease interaction

between real and virtual worlds.

3.4 Registration in the 3D space

So far we considered a 2D-3D registration process. With some

devices (e.g., multiple cameras systems) it is possible to get

https://www.youtube.com/watch?v=Y9HMn6bd-v8
http://www.diotasoft.com
https://www.youtube.com/watch?v=ibEsHg2k1yQ
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directly the 3D coordinates of the observed points. In this case,

the registration can be done directly in the 3D space. The observed

point cX has to be registered with the model point wX up to the

transformation cTw that needs to be estimated.

Denoting q ∈ se(3) a minimal representation of cTw (as in

Section 3.1.2), the problem can be formulated as:

q̂ = argmin
q

N

∑
i=1

(cXi −
cTw

wXi)
2 (16)

and solved using closed form solutions (e.g., [49]) or robust

Gauss-Newton or Levenberg-Marquardt approaches. This is a

trivial problem when the matching between cXi and wXi is known

(even with some outliers). When this matching is unknown,

Iterative Closest Point ICP [16] is a simple and attractive solution

to this problem. More efficient solutions than ICP were proposed

in [40] [112]. These approaches are used in rigid body target

localization used both in augmented and virtual reality [101]

(see Figure 13) and proposed in commercial products such as in

iotracker or in ART Advanced Realtime Tracking.

Fig. 13. Pose from rigid body targets and multiple cameras [101]. Position of

each element of the constellation are first estimated using triangulation tech-

niques. A rigid transformation is then computed from 3D measurements.

In late 2010 a new sensor, the kinect, has been introduced by

Primesense and Microsoft. The originality of this sensor is that it

is able to provide in real time a dense 3D representation of the

environment. Prior to the introduction of this cheap sensor, only

expensive time-of-flight camera, heavy structured light systems

and stereovision cameras existed. Kinect integrates a structured

light (infra-red) depth sensor able to provide depth map at 30Hz.

KinectFusion [89] was one of the first systems that enables scene

reconstruction and consequently camera localization in real-time

and in a way compatible with interactive applications [53] (see

Figure 14). The idea is to simultaneously localize the camera

and fuse live dense depth data building a global model of the

scene. Indeed, estimation of the 6dof camera pose is equivalent

to finding the pose that aligns the depth map data onto the

current model [89]. This can be done by a modified version of

the ICP [16], where the expensive closest point computation is

replaced by a projective data-association [17] that allows obtaining

fast dense correspondences using closest point approximation. A

fast point-to-plane ICP (based on a Gauss-Newton minimization

approach) is finally used to register the current dense 3D map

with the global model. The camera is then localized and the global

model improved6.

It remains that these methods consider specific sensors. Recent

vSLAM approaches, such as [90] [33], that consider only monoc-

ular cameras now provide similar results and may be considered

as more generic choices.

6. Note that such approaches are also widely used for scene reconstruction.
They are able to provide precise models, which can later be used in markerless
model-based localization methods (see Section 3.2).

Fig. 14. Particles that interact with the reconstructed scene while camera motion

is estimated thanks to KinectFusion [89] [53]

4 POSE ESTIMATION FOR PLANAR SCENES

The previous approaches require a 3D model of the tracked

object. Since such 3D knowledge is not always easily available

(although we have seen that it can be computed on-line), it is

also possible to overcome the pose computation considering less

constraining knowledge about the viewed scene. In this section,

the proposed method copes with this problem by using, at most,

the 2D information extracted from the images and the geometrical

constraints inherent to a moving vision system. The objective

is therefore to estimate the camera displacement between the

acquisitions of two images instead of the camera pose. The 3D

model is then replaced by a reference (localized) image.

For augmented reality applications, the pose between the cam-

era and the world coordinates system is required. If an initial pose
0T̂w is known7, computing the current pose from the estimated

displacement is straightforward and is given by:

nT̂w =
M

∏
n=1

nT̂n−1
0T̂w. (17)

Usually the current image is registered with an image I0 in a

database for which the pose 0Tw has been computed off-line.

Computing 0T̂w may require the introduction of 3D information

and solutions have been presented in Section 3 and in 4.1.3.

Let us note that drift, due to error accumulation, is inherent

to this kind of approach since estimated camera displacements are

successively integrated. To limit the drift, it is possible to compute

the motion no longer between two successive frames as in (17),

but between the current frame and a reference frame (say frame

0) [44]:
nTw = nT0

0Tw (18)

Other solutions to limit drift have been proposed in e.g. [140].

4.1 Motion estimation through points correspondences

As stated our goal will be to estimate the 3D motion undergone

by the camera between the acquisitions of two images using only

2D image information. An efficient solution to motion estimation

through points correspondences relies on the estimation of a

homography.

4.1.1 Overview: the homography

In [122], it has been proposed to restrict the general case to a sim-

ple yet common special case: planar scene. This widely simplifies

the pose estimation process. If we now consider a 2D motion

7. To simplify the notation we note kTw the position of the camera which
acquires frame k and subsequently kTh the displacement of the camera between
frames k and h.

http://www.iotracker.com
http://www.ar-tracking.com/
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model noted w that transfers a point x1 in image I1 to a point

x2 in image I2 according to a set h of parameters (h can account

for a simple translation, an affine motion model, a homography,

etc.): x2 = w(x1,h). From a general point of view, there does not

exist a 2D motion model or transfer function w(.) that account

for any 3D scene and any camera motion. Nevertheless, it can be

demonstrated that, when the scene is planar, the coordinates of

these two points are linked thanks to a homography 2H1 such that

x2 = w(x1,h) =
2H1x1 (19)

with

2H1 = (2R1 +
2t1

1d

1n
⊤
) (20)

where 1n and 1d are the normal and distance to the origin of the

reference plane expressed in camera frame 1 (1n1X = 1d). Let

us note that when the camera undergoes a pure rotation motion,
2t1 = 0 and 2H1 =

2R1. In this special case, equation (19) is then

valid regardless the scene structure which has no longer to be

planar.

Note that, as for the pose, we can chain the homographies

between consecutive frames. We have:

nHw =
M

∏
n=1

nHn−1
0Hw and then nHw = nH0

0Hw (21)

where 0Hw is a homography that map points in frame I0 to planar

3D points expressed in world coordinates Fw.

4.1.2 Homography estimation

The estimation of 1H2 can be easily and precisely retrieved using a

Direct Linear Transform (DLT) algorithm8, see [48]. Equation (19)

can be rewritten as x2 ×
2H1x1 = 0. If the j-th row of 2H1 is

denoted h⊤
j , we have:

x2 ×
2H1x1 =




y2h⊤
3 x1 −h⊤

2 x1

h⊤
1 x1 − x2h⊤

3 x1

x2h⊤
2 x1 − y2h⊤

1 x1


 (22)

with x2 = (x2,y2,1). Finally, we have a homogeneous linear

system Aih = 0 for each corresponding points:



0⊤ −x⊤1i
y2i

x⊤1i

x⊤1i
0⊤ −x2i

x⊤1i

−y2i
x⊤1i

x2i
x⊤1i

0⊤




︸ ︷︷ ︸
Ai(3×9)




h1

h2

h3




︸ ︷︷ ︸
h(9×1)

= 0 (23)

where 2 equations are linearly independent. For N matched points

we have a system Ah= 0 with A= (A1 . . .AN)
⊤ (see Section 3.1.2

on how to minimize the algebraic distance defined by the norm of

‖Ah‖).

Another solution to estimate the homography is to consider the

minimization of a cost function, the geometric distance, defined

by:

ĥ = argmin
h

N

∑
i=1

d(x1i,
1H2x2i)

2 (24)

which can be solved directly for h which represents the 8 inde-

pendent parameters hk,k = 1...8 of the homography 1H2 using a

gradient approach such as a Gauss-Newton. Usually the symmetric

error distance ∑
N
i=1 d(x1i,

1H2x2i)
2 + d(x2i,

1 H
−1
2 x1i)

2 could also

be considered to improve precision. Note that considering the

8. An example of the DLT code for homography estimation is proposed as a

supplementary material of this paper and is available here

geometric distance as in equation (24) or the algebraic one as

for the DLT is, here, equivalent [48].

Rather than solving (24) to estimate the parameters of H it

is also possible to directly perform the optimization over the

displacement parameters 1T2. In that case, thanks to (20), we

have [102]

q̂ = argmin
q

N

∑
i=1

d(x1i, (
2R1 +

2t1

1d

1n
⊤
)x2i)

2 (25)

where q is a minimal representation of 1T2. This latter method

does not require the homography decomposition.

4.1.3 From homography to pose computation

In the case of AR applications, one has to compute the pose nTw

with respect to a reference frame Fw. The homography can be

decomposed to retrieve the pose [48] [36]. Alternatively for planar

scenes, one can directly and easily compute the pose when the 3D

position of some points is known on the reference plane.

Thus to compute the initial pose 0Tw, we assume that all

the points lie in the plane wZ = 0. In that case each 3D point

coordinates is given by wX = (wX ,w Y,0,1)⊤. Their projections in

the image plane is then given by:

x0 = Π 0Tw
wX = Π

(
c1 c2 c3

0tw

)



wX
wY

0

1


 (26)

where ci is the i-th column of the rotation matrix 0Rw which can

be rewritten as:

x0 = Π
(

c1 c2
0tw

)
(wX ,w Y,1)⊤

= 0Hw(
wX ,w Y,1)⊤ (27)

0Hw is a homography that maps the plane of the object (wZ = 0)

on the image plane. It can be easily computed using the DLT algo-

rithm presented in the previous paragraph. Knowing 0Hw, the pose
0Tw can be easily computed noting that (c1,c2,

0tw) = Π −1 0Hw.

Considering that the rotation matrix is orthogonal, the third col-

umn of the rotation matrix is computed such that c3 = c1 × c2.

This is an easy way to estimate pose when the scene is planar9.

Ultimately one wants to compute nTw. Like 0Tw that can be re-

trieved from 0Hw, nTw can be retrieved from the homography nHw.

Indeed, similar to equation (27), we have (c1,c2,
ntw) = Π −1 nHw

(where ci is, here, the i-th column of the rotation matrix nRw) and

c3 = c1 × c2. This gives the complete pose nTw.

4.1.4 Discussion

These motion estimation processes through point correspondences

have been widely studied e.g. [122] (see Figure 15, left). This is

one of the standard approaches for augmenting planar scene. It

can be extended to the case of multiple planes [121]. Non-planar

scene can be considered when pure rotational camera motions are

considered [122] [102]. Alternatively, multiple planar structures

can be considered [121] (see Figure 15, right).

As stated the current image is often registered with a localized

image in a database. This is the case for an augmented museum

application as shown on Figure 23 or for an augmented book

application as shown on Figure 16. For each reference image in

9. The code of this pose estimation method based on the DLT for homogra-

phy estimation is proposed as a supplementary material of this paper and is

available here.

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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Fig. 15. Pose estimation through homography estimation for a single plane (left,

[122]) and for multiple planes (right, [121]).

the database, a pose 0Tw is estimated off-line using, for example,

the planar pose estimation method presented in Section 4.1.3. A

homography nH0 that links the current image In and the reference

one is estimated which allows to deduce the pose nT0 and finally,

according to equation (18), nTw.

Fig. 16. Augmented book [55]: Sift matching followed by a RANSAC based

homography estimation and augmented contents (see full video).

We quickly discuss in Section 5 the 2D point matching issue

which is fundamental in the development of such approaches.

In any case, AR based on homography estimation from point

correspondences has become a standard in the industry and many

commercial libraries providing such capabilities are now available

(Metaio, Vuforia from PTC Inc., Total Immersion, etc.)

4.2 Motion estimation using direct image registration

All the previous approaches consider pure geometric methods. An

alternative is to fully embed the motion estimation process in an

image processing process. The appearance-based approaches, also

known as template-based approaches, are different in the way that

there is no low-level tracking or matching processes. It is also

possible to consider that the 2D model is a reference image (or a

template). In this case, the goal is to estimate the motion (or warp)

between the current image and a reference template at the pixel

intensity level.

4.2.1 Template registration

Let us consider that the appearance of the object is learned from a

model defined as a reference image I0 at some pixel locations

x ∈ W (W is a set of pixels that defines the template to be

tracked) and that we seek its new location w(x,h) in an image

I. As seen in Section 4.1.1, h are parameters of a motion model.

In AR applications it is usually modeled by a homography and

is then defined by equation (19). It is then possible to directly

define this alignement or registration problem as a minimization

of the dissimilarity (or maximization of the similarity) between

the appearance in I0 at the positions x in a region W and in I at

the positions w(x,h). An analytic formulation of the registration

problem can then be written as:

ĥ = argmin
h

∑
x∈W

f (I0(x), I(w(x,h))) (28)

where f is, here, a dissimilarity function. The choice of the

similarity function is important. An obvious choice originates in

the brightness constancy constraint stating that:

I(x) = I(w(x,h)) = I0(x)

is to consider the sum of squared differences (SSD). In this case,

when the appearance is defined as the set of pixel intensities of the

patch and the dissimilarity function is the SSD, it leads typically

to the KLT (for Kanade-Lucas-Tomasi algorithm) [75], [118] for

small patches and translational model or to [10], [46] for large

template and affine motion. For augmented reality applications,

homography has to be preferred [13] as it allows inferring the

camera pose. The problem can be rewritten as:

ĥ = argmin
h

C(h) = ∑
x∈W

(I0(x)− I(w(x,h)))
2

(29)

This is a non-linear optimization problem which, as for the pose

problem defined in Section 3.1.2, can be efficiently solved by a

Gauss-Newton method10.

Remark: the KLT.

The method presented in this paragraph considers a homography

estimation. When a small patch and a translation motion model is

considered, this leads to the KLT algorithm [75] used to track

points over frames. From these tracked points one can easily

compute the homography between two frames, using for example

the DLT approach presented in Section 4.1.2.

4.2.2 Extensions and improvements

The formulation presented in the previous section is the most

simple and intuitive. It is usually referred as the forward additional

approach and has been initially proposed in [75] (KLT). Other

approaches can be considered such as the forward compositional

approach [119], the inverse compositional approach [10] (for

which the pseudo-inverse of the Jacobian has to be computed

only once beforehand) or the Efficient Second Order Minimization

(ESM) method [13] (see Figure 19).

Considering a planar hypothesis, these methods are well suited

to augment planar targets such as painting in museum (see Fig-

ure 17) or books (see Figure 19).

Fig. 17. Direct image registration and camera localization in a museum [11] (see

full video).

Extensions of template trackers have been proposed to handle

efficiently blur [97] (see Figure 18) or degradation in image

resolution [52]. Extension to planar model can also be consid-

ered by adding a parallax term to the definition of a homogra-

phy [103]. Rather than a homography, motion models that include

deformations (modeled using radial basis functions or free form

deformation) have also been proposed [43].

https://www.youtube.com/watch?v=W1BhozWmqYg
http://youtu.be/uD_qxfpPX0E
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Fig. 18. Extension of template registration process to handle blur [97] or to

consider large template deformation [43].

Fig. 19. Companies such as Robocortex propose a SDK based on template

tracking methods (included in AugmentedPro) which can be integrated in third

party products such as xloudia (left) or Dassault Systemes 3DVIA (right, see

video).

However, the SSD is not effective in the case of illumination

changes and occlusions. Several solutions have been proposed to

add robustness toward these variations. The former solution is to

consider an M-Estimator (see Section 3.1.3) as proposed in, e.g.,

[46]. The later deals with the choice of the (dis-)similarity function

that is also important. Along with the SSD, one can consider local

zero-mean normalized cross correlation (ZNCC) [51], the Sum

of Conditional Variances (SCV) [107] or the mutual information

(MI) [25]. The later criterion, the mutual information, proposes

to maximize the information shared between the reference image

and the current one. MI has proved to be robust to occlusions

and illumination variations and can therefore be considered as a

good alignment measure for tracking and localization [25], [26].

In [25], it has been demonstrated that multimodal registration

(using e.g. infrared and visible image) can be handled using

mutual information as a similarity function (see Figure 20).

Fig. 20. Registration and homography estimation between infrared and visible

image (from Google Earth) for camera localization (and augmentation) [25].

4.3 Merging various cues to improve localization

It has been noted that it could be interesting to merge 2D-3D regis-

tration methods along with 2D-2D ones. Indeed, approaches which

directly compute the pose (Section 3) are intrinsically mono-

image processes and can be subject to jitter, whereas motion-

based methods (Section 4) consist in multi-view processes that are

subject to drift. Therefore, merging multiple cues from markerless

10. We propose as a supplementary material of this paper (here) an example

of how to use such tracker. The interested reader could easily access the full

source code of the tracker in ViSP [79].

model-tracking (Section 3.2) and motion-estimation has received

some interest in the AR community.

Most of the current approaches that integrate multiple cues

in a tracking process are probabilistic techniques. Most of these

approaches rely on the well-known Extended Kalman filter or par-

ticle filter [132] [64] [45] but non-linear optimization techniques

have also been considered (see Figure 21). In [141] the proposed

localization approach considers both 2D-3D matching against a

key-frame and 2D-2D temporal matching (which introduces mul-

tiple view spatio-temporal constraints in the tracking process). An

extension is proposed in [140] to integrate contribution of a model-

based tracker similar to [24], [31]. In [104], it is proposed to fuse

a classical model-based approach based on the edge extraction

and a temporal matching (motion estimation) relying on texture

analysis into a single non-linear objective function that has then to

be minimized. In [98], color cues along with keypoints matching

and edge-based model tracking are combined to provide a very

robust tracker.

Fig. 21. Merging keypoints and model-based tracking in a single minimization

process [141] (left), [104] (middle), [98] (right). This allows to introduce a spatio-

temporal constraints in a model-based tracking approach.

5 MATCHING LOW-LEVEL FEATURES

At this point, the geometry that underlies the camera localization

problem has been reviewed. Formulation of the problem, along

with resolution techniques, has been exposed. Although an initial-

ization is always required (and can be quite complex), edge-based

model tracking (section 3.2) and template tracking algorithms

(section 4.2) act as tracking methods and can be considered

as self-contained. For other methods, PnP, SLAM, homography

from point correspondences, low level features extraction and

matching processes are required. A comprehensive review of all

the approaches proposed in the literature seems out of reach [136].

In this section, we review the main solutions that have been

considered in actual AR systems.

5.1 Fiducial marker detection and localization

Fiducial markers have been a basic tool in developing AR appli-

cations. Indeed, they allow achieving simultaneously both target

identification and camera localization. Such markers were first

introduced in [106] and extended to ARtoolkit [54], ARToolkit

plus [145], Studierstube Tracker, and ARTag [37] [38]. To sim-

plify the detection process and the underlying image processing

algorithm, their design is ultimately simplified. Square shape and

binary color combination are usually considered (see Figure 22).

More precisely, rectangle shape is first searched in a binarized

image, and then camera pose with respect to the rectangle is

computed from the known 3D coordinates of four corners of the

marker using approaches similar to those presented in section 3.1

or 4.1.3. The texture inside the marker is uniquely designed

for marker identification. Circular shape is often selected as an

alternative to square shape [86]. Since single circle is not sufficient

http://www.robocortex.com
http://www.augmentedpro.com
http://www.xloudia.com
http://www.3ds.com
http://www.public.robocortex.com/download/videos/robocortex_dassault_systemes.wmv
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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for camera localization, multiple circles are randomly [139],

circularly [14] or squarely [15] distributed on a plane.

Fig. 22. ARToolkit [54], Pokedex 3D (Nintendo), ARTag in the Magic Lens

system [37] (see video), circular Rune-Tag [14] (see video).

Although research related to markers is still active, the devel-

opment of keypoints matching methodologies in the late 1990s

allows augmented reality reaching a new maturity level.

5.2 Keypoints matching

In the previous sections, we mentioned that point correspondences

should be available beforehand. These correspondences are estab-

lished between 2D points in the image and points of a 3D reference

model for PnP (section 3.1) and between two 2D points located

on a plane for homography estimation (section 4.1).

In the literature, SIFT [72], which has been considered a

breakthrough for 2D points matching, was proposed in 1999 and

then various types of keypoint detectors and descriptors have been

considered. The common framework for 2D matching usually

consider three steps: keypoints extraction, description and match-

ing. First, among all the pixels in the image, a subset of pixels

of interest is selected according to a criterion of "cornerness".

For each selected pixel, its local texture is then converted into a

descriptor (a vector that intends to encode, in a unique way, the

keypoint and its local neighborhood). Finally, these descriptors

extracted in two images are matched to find correspondences.

As far as pose or homography estimation is concerned, key-

point descriptors on a reference model (3D or image model) are

first computed offline and stored in a descriptor database. Then,

on-line, keypoints are extracted from each image and matched, in

the descriptor space, with those in the database. Finally, camera

pose or displacement can be computed from these correspon-

dences (see Figure 16 and 23).

Feature extraction

From a captured image, local features are extracted according to

image properties computed from texture such as "cornerness".

Ideally, since a camera can freely move in AR applications,

such features should be extracted from perspectively transformed

images. This process should be highly repeatable and performed

in real time. Therefore, existing keypoint detectors are designed

to feature invariance properties with respect to geometric trans-

formation such as translation, rotation, affine transformation and

scale change.

Historically, Harris detector [47] is a widely used corner detec-

tor that computes the cornerness score of each pixel from gradients

!

Fig. 23. Keypoints matching framework. From a reference image (top), a set of

keypoints is extracted and the corresponding descriptor vectors are computed

off-line. In the current image, another set of keypoints are extracted and their

corresponding descriptor vectors are computed on-line and matched with those

of the reference image. Here SIFT were considered [72]. If the reference image

is localized (ie, 0Tw or 0Hw has been computed off-line, see section 4.1.3),

camera localization can then be computed thanks to a homography estimation).

CG image to be inserted and final augmentation (bottom). Image from [116] [11].

of an image patch. The cornerness score is then classified into flat,

edge and corner according to the intensity structure of the patch.

SUSAN is an alternative approach that selects a pixel as a corner

if it is not self-similar within a local image patch. The similarity

is computed between a pixel and its surrounding pixels in the

patch instead of computing gradients [125]. FAST [108] follows

SUSAN’s approach and considers only pixels on a circle for fast

extraction. FAST is computationally fast because it only computes

similarity with pixels selected with a machine learning technique.

AGAST [77] further improved computational cost against FAST

by dynamically changing the optimal configuration of pixels for

similarity measurement.

Since the keypoints mentioned above are not scale-invariant,

an image pyramid can be considered so that keypoints can be

detected under scale changes. But to deal with scale issue, several

https://www.youtube.com/watch?v=ItOtTdhDoto
https://www.youtube.com/watch?v=F4jdG7DJVSA 
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scale-invariant detectors based on scale space theory have been

proposed [70]. Generally, a linear Gaussian scale space is built

and local extrema on this space is selected as a keypoint. One of

the first scale-invariant keypoint detector used Laplacian of Gaus-

sian (LoG) [71]. But for efficiency issue, LoG is approximated by

a difference of Gaussian in SIFT [72], and is further accelerated

with GPU [123] so that it can be used in AR applications. In

SURF [12], the determinant of the Hessian is used as another

scale-space operator and is computed efficiently with integral

images. Recently, KAZE [2] employs a non-liner diffusion fil-

tering as a non-linear scale space so that object boundaries can be

retained and keypoints extraction be more robust, and accelerated

for real-time detection [3]. Note that non-maximum suppression

that selects only local extrema of cornerness scores within a region

is normally used after extraction because redundant keypoints can

be extracted and may cause false correspondences [88].

Feature description

The next step usually consists in computing a feature vector

that fully describes the keypoint and its local neighborhood. For

robustness issue, the resulting descriptor should be made invariant

to geometric and photometric variations. Rotation invariance is

normally achieved by assigning orientation to extracted keypoints

for orientation normalization. Orientation is computed by several

ways as the peak of histogram of gradient in an image patch [72]

and center of mass [42]. For each oriented keypoint, a feature

vector (a descriptor) is then computed. Roughly, a local keypoint

descriptor can be mainly classified into two approaches: histogram

of oriented gradients or intensity comparisons.

Histogram of oriented gradients used in SIFT [72], [124]

is computed such that an image patch is segmented into small

regions, and histogram of oriented gradients in each region is

computed and finally concatenated (see Figure 24). This well

preserves the shape and intensity information of an image patch.

A similar framework is used in SURF [12] and CARD [4].

Since feature descriptors from the methods above have floating-

point values, they can be compacted into a binary string with

machine learning techniques [128], [135]. Memory consumption

in a descriptor database and computational cost for matching is

then reduced.

Fig. 24. Histogram of oriented gradients (image from [72]): gradient is computed

in the neighborhood of the keypoint. 8 bins histogram of gradient are then

computed in each 4x4 region and concatenated to build the descriptor.

Intensity comparisons based approach has recently been con-

sidered. In BRIEF [21], a descriptor is composed of a binary

string in which each binary digit is computed from intensity

comparison between pairwise pixels (see different pattern in 25).

A binary value is described by 0 if a pixel is brighter and 1 if

darker in the comparison. The descriptor is then composed of

a binary string concatenating the result of a set of binary tests.

This means that a binary descriptor is directly computed from

the image patch while gradients based approaches need additional

computations. They are far more computationally efficient. To

increase the discriminative property of descriptors, different de-

signs of intensity comparisons have been proposed in ORB [111]

(rotation invariance), BRISK [69] (scale and rotation invariance),

and FREAK [1], LDB [148].

Fig. 25. Binary descriptors: a pattern is used for sampling the neighborhood of

the keypoint. Pattern for BRIEF [21] (left), BRISK [69] (center), Freak [1] (right)

Fig. 26. Game AR apps [83]. Matching using BRIEF descriptors [21] (see video1

and video2)

All the methods above need correct orientation assignment to

match before computing descriptors. This means that keypoints

are never matched if the orientation assignment failed. To avoid

computing orientation, rotation invariant descriptors have also

been proposed in [35], [130].

Since inertial sensors are now available in mobile phones,

gravity direction may be incorporated in keypoint descriptor [63].

According to gravity direction, a captured image is first rectified

and orientations from both texture and gravity are used to enhance

the distinctiveness of descriptors.

Matching

For AR applications, keypoints matching usually consider a near-

est neighbor searching approach. The idea is basically to find the

closest descriptor in the reference image in the descriptor space.

Since this is not a generic problem, various efficient solutions

for this problem have been already proposed [85]. If a feature

descriptor is binary, brute-force matching with hamming distance

(XOR) is used because it can be efficiently implemented with

common CPUs.

5.3 Alternative frameworks

Recently, keypoint matching has been formulated as a classifi-

cation problem [66], [95]. Compared to the classical framework

presented above, the view set of a keypoint under affine trans-

formations is compactly described and treated as one class. At

run-time, a classification technique is used for deciding to which

class an extracted keypoint belongs. In this approach, statistical

classification tools such as randomized trees [66] and random ferns

[95] are applied.

Enforcing geometrical constraints between keypoints can also

be used to ease matching. In [138], it is proposed to match

keypoint thanks to geometric features instead of using local image

https://www.youtube.com/watch?v=-ZNYoL8rzPY
https://www.youtube.com/watch?v=jBriQMdcGVA&spfreload=10
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patches. Geometrical relationship between neighbor keypoints is

used as a feature so that various kinds of rich and binary textures

can be detected.

Another interesting approach is to consider a contour-based

approach for non-textured objects [29] [80]. In [29], contours of

the objects are extracted with MSER [82] and cross ratios are

computed from bitangent of each contour as a descriptor.

Fig. 27. Pose from a single, closed object contour (MSER) [29] (see video), [80]

5.4 Chosing the "best" matching techniques.

It is difficult to state that one approach is better than the other.

This is usually a trade-off between stability, number of extracted

keypoints, recall, percentage of outliers, computational cost, etc.

It has to be noted that most of these low-level matching methods

are proposed in OpenCV or VLFeat [142]. This is the case for

SIFT, SURF, FAST, BRIEF, ORB, MSER, etc. It is then easy to

test each methods in a specific context and chose the most efficient

one. SIFT, which is patented in the US, have proved for year [72]

to be very efficient and a good choice (although quite heavy to

compute). From a practical point of view, it seems that FAST is

often used in augmented reality libraries; it is for example used in

Vuforia from Qualcomm or Zappar.

6 CONCLUSION

This survey is an attempt to cover the camera localization problem

for real-time augmented reality purposes. We mainly focus on

the geometrical aspects of the pose estimation seen here as an

alignment problem. We also provide hints to the low level image

processing techniques inherent to this process. Our goal in writing

this survey was to produce a guide for researchers, practitioners

and students involved in the development of AR applications. We

hope that the presented material and the accompanying examples

fulfill the initial objective.

We focused on one of the basic tools required in AR ap-

plications. Despite the tremendous progress in the area, much

work remain to be done. Five years ago, tracking reliability and

robustness (to occlusions, fast camera motions, cluttered scene,...)

was clearly an issue. This now has been clearly improved (thank

also to the joint use of computer vision techniques and other

sensors such as IMU). Beyond the camera localization one can

also consider occlusions detection and handling, dynamic scenes,

light source direction. For a precise rendering process, such issues

have to be considered.

The last decade has also seen the development of many

companies and start-ups involved in AR. Nevertheless few "killer

apps" emerged [87] in the industry. Still, most of the proposed

systems are prototypes. Scalability of the solutions, end-users and

market acceptance are clearly potential improvement areas that

must be considered by both academics and industries.
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